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Abstract

We establish a categorical duality for the finitely generated Lindenbaum-Tarski algebras of propositional nilpotent
15 minimum logic. The latter’s conjunction is semantically interpreted by a left-continuous (but not continuous)

triangular norm; implication is obtained through residuation. Our duality allows one to transfer to nilpotent

minimum logic several known results about inutitionistic logic with the prelinearity axiom (also called

Gödel-Dummett logic), mutatis mutandis. We give several such applications.
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20 1 Introduction

Hájek [15] introduced a family of non-classical propositional logics whose conjunction

is semantically interpreted by continuous triangular norms [21], or t-norms for short. The

semantics of implication remains thereby defined through residuation [see (1) in Section 2],

a technique first investigated in algebraic contexts [20, and references therein]. Hájek’s
25 framework encompasses such time-honoured non-classical logics as Lukasiewicz infinite-

valued logic, and intuitionistic logic with the prelinearity axiom [i.e. axiom (2) in Section 2],

also known as Gödel-Dummett logic, or just Gödel logic in [15]. The literature on t-norm-based

logics is nowadays extensive.
As it turned out [9], continuity is not necessary in order to perform residuation: continuity

30 from the left alone suffices. Thus, one can extend Hájek’s original scheme to include

non-classical logics whose conjunction is semantically interpreted by left-continuous t-norms.

The resulting framework, called monoidal t-norm-based logic (MTL, for short) is attracting

growing interest (see for instance [9, 10, 14, 19, 24]). Note in particular that the systemMTL is

shown to have analytic hypersequent calculus in [2].
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In this article, we offer evidence that at least some logics based on left-continuous but
discontinuous t-norms enjoy a reasonably rich duality theory. We carry out an in-depth case

study of nilpotent minimum logic [9], from the point of view of algebraic and categorical
logic. Even though the conjunction in nilpotent minimum is not idempotent, and thus, on

5 the proof-theoretic side contraction fails (note that the weaker law x � x � x ¼ x � x holds),
we shall nonetheless obtain tight connections with Gödel logic and its well-established

duality theory. Let us outline the contents of the article.
The standard Lindenbaum-Tarski construction provides the algebraic counterpart of

nilpotent minimum logic, namely, nilpotent minimum algebras [9], or NM-algebras for short
10 (please see Section 2 for definitions). Throughout, we shall focus attention on finitely

axiomatized theories in nilpotent minimum logic; their algebraic counterparts are finite

NM-algebras.1 Section 2 gathers the necessary preliminary notions on NM-algebras.
In Section 3, building on results in [3] and [6], we establish a spectral (or Stone-type) duality

for finite NM-algebras. Theorem 3.5 and its Corollary 3.6 show that the dual of an
15 NM-algebra can be described as a forest (i.e. a finite partially ordered set such that below any

element there lies a subset that inherits a total order), such that each one of its trees
(i.e. partially ordered subsets with a minimum) is enriched by one additional bit of information.

Homomorphisms of NM-algebras dualize to order-preserving maps (between the correspond-
ing forests) satisfying appropriate additional conditions. This seems to be the first instance of a

20 (finite) spectral duality for a logic that is based on a discontinuous t-norm, and the rest of our

article aims at showing that the construction is actually useful in obtaining further results.
Several applications of Corollary 3.6 are collected in Section 4.

� In 4.1, we build on the main result of [6] to obtain an explicit description of finite

coproducts of finite NM-algebras;
25 � in 4.2, we derive a strong form of amalgamation for finite NM-algebras, along with the

strongest possible form of the Deduction Theorem for nilpotent minimum logic;
� in 4.3, we establish a functional representation of free finitely generated NM-algebras

that is the exact non-classical analogue of the folklore representation of free finitely
generated Boolean algebras by Boolean functions on a Boolean cube and

30 � in 4.4, we give an exact recursive formula for the cardinality of free finitely generated
NM-algebras,2 that is, we solve the NM-algebraic analogue of Dedekind’s problem on
the cardinality of free finitely generated distributive lattices. (This should be compared

with Horn’s formula for the cardinality of free finitely generated Gödel algebras [17];
see also [1, 6] for different proofs of Horn’s formula.)

35 For all our results we give essentially self-contained proofs, up to facts already proved in [3, 6].

2 Background on NM-algebras

An integral commutative residuated lattice is an algebraic structure ðA; �;!;^;_;>Þ of type

ð2; 2; 2; 2; 0Þ such that ðA; �;>Þ is a commutative monoid, ðA;^;_;>Þ is a lattice with greatest
element >, and the following adjointness condition holds

x � y � z iff x � y ! z ð1Þ

1One easily checks that the variety of NM-algebras is locally finite; thus, finite, finitely generated and finitely

presented NM-algebras coincide.
2compare with [1].
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for any x; y; z 2 A, where � is the partial order induced on A by the lattice structure.
(Throughout, ‘iff ’ is short for ‘if and only if ’.) A bounded integral commutative residuated
lattice is an integral residuated lattice with an extra constant ? that is the bottom of the

5 induced lattice structure. In this case, a derived unary operation : may be defined
by :x ¼ x ! ?. For background on residuated lattices see [20]; for their relationship to
non-classical logics, see [25].

An NM-algebra is a bounded integral commutative residuated lattice ðA; �;!;^;_;?;>Þ

that satisfies three extra equations:

ðx ! yÞ _ ðy ! xÞ ¼ > ð2Þ

ðx ! ?Þ ! ? ¼ x ð3Þ

ðx � y ! ?Þ _ ðx ^ y ! x � yÞ ¼ >: ð4Þ

10 For further background on NM-algebras and logics based on left-continuous t-norms,
see [1, 3, 9, 14, 24].

As mentioned above, negation in NM-algebras is defined by

:x ¼ x ! ?: ð5Þ

15 Thus, (3) asserts that NM-algebras are a family of involutive residuated lattices, meaning that
they satisfy the classical law of double negation. Following [14], we define the set of positive
and negative elements of A by

Aþ ¼ fx 2 A : x > :xg A� ¼ fx 2 A : x < :xg;

respectively. In [16], it is proved that A can have at most one element x such that x ¼ :x,
20 which is then called the negation fixpoint (or simply fixpoint) of A.

A Gödel algebra is a Heyting algebra ðG;!;^;_;?;>Þ satisfying the prelinearity axiom
(2). Equivalently, a Gödel algebra is a bounded integral commutative residuated lattice
ðG; �;!;^;_;?;>Þ in which idempotence (x ! ðx � xÞ ¼ >) and prelinearity (2) hold.
Indeed, it follows at once that the monoidal operation � and the meet operation ^ coincide

25 for Gödel algebras. Generalized Gödel algebras (also known as relative Stone algebras [7] and
Gödel hoops [10]) are integral commutative residuated lattices with prelinearity and
idempotence, but not necessarily bounded.

As usual, an NM-algebra that does not split into the direct product of two non-trivial
NM-algebras is called directly indecomposable. Let us recall a characterization of

30 indecomposable NM-algebras that is crucial to the sequel. To this end, we need to introduce
connected and disconnected rotations of generalized Gödel algebras.

DEFINITION 2.1
Let D ¼ ðD; �;!;^;_;?;>Þ be a generalized Gödel algebra. We define its disconnected
rotation3

DRðDÞ ¼ ðD� f1g [D� f0g;�;);u;t;?;>Þ

3Readers familiar with the definitions of connected and disconnected rotations given in [18] should notice that our

terminology differs somewhat from that adopted there.
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as an algebra of type ð2; 2; 2; 2; 0; 0Þ with operations defined as follows.

ðx; iÞ u ðy; jÞ ¼ ðy; jÞ u ðx; iÞ ¼

ðx ^ y; 1Þ if i =j =1,

ðx _ y; 0Þ if i =j =0,

ðx; 0Þ if i<j.

8>><
>>:

ðx; iÞ t ðy; jÞ ¼ ðy; jÞ t ðx; iÞ ¼

ðx _ y; 1Þ if i =j =1,

ðx ^ y; 0Þ if i =j =0,

ðy; 1Þ if i<j.

8>><
>>:

ðx; iÞ � ðy; jÞ ¼ ðy; jÞ � ðx; iÞ ¼

ðx � y; 1Þ if i =j =1,

ð>; 0Þ if i =j =0,

ðy ! x; 0Þ if i<j.

8>><
>>:

ðx; iÞ ) ðy; jÞ ¼

ðx ! y; 1Þ if i =j =1,

ðy ! x; 1Þ if i =j =0,

ðx � y; 0Þ if i>j,

ð>; 1Þ if i<j.

8>>>>>><
>>>>>>:

> ¼ ð>; 1Þ ? ¼ ð>; 0Þ:

Note that, upon defining :ðx; iÞ as ðx; iÞ ) ?,

:ðx; iÞ ¼
ðx; 1Þ if i =0,
ðx; 0Þ if i =1.

�

5 Similarly, the connected rotation of D is

CRðDÞ ¼ D� f1g [
1

2
;
1

2

� �� �
[D� f0g;�;);u;t;?;>

� �
;

which is an algebra of type ð2; 2; 2; 2; 1; 0; 0Þ with the operations u;t;�;);?;> given as in

the disconnected rotation over D� f1g [D� f0g; and extended by

ðx; iÞ u
1

2
;
1

2

� �
¼

1

2
;
1

2

� �
u ðx; iÞ ¼

1
2 ;

1
2

� �
if i =1,

ðx; iÞ otherwise,

�

ðx; iÞ t
1

2
;
1

2

� �
¼

1

2
;
1

2

� �
t ðx; iÞ ¼

ðx; iÞ if i =1,
1
2 ;

1
2

� �
otherwise,

�

ðx; iÞ �
1

2
;
1

2

� �
¼

1

2
;
1

2

� �
� ðx; iÞ ¼

1
2 ;

1
2

� �
if i =1,

ð>; 0Þ otherwise,

�
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ðx; iÞ )
1

2
;
1

2

� �
¼

1
2 ;

1
2

� �
if i =1,

ð>; 1Þ otherwise,

(

1

2
;
1

2

� �
) ðx; iÞ ¼

1
2 ;

1
2

� �
if i =0,

ð>; 1Þ otherwise,

(

Note that

:
1

2
;
1

2

� �
¼

1

2
;
1

2

� �
:

5 A routine verification shows that the disconnected rotation of a generalized Gödel algebra is
an NM-algebra without negation fixpoint, while its connected rotation is an NM-algebra with
fixpoint. Moreover, we have:

THEOREM 2.2 ([3])
10 An NM-algebra A is directly indecomposable if and only if it is isomorphic either to the

connected or to the disconnected rotation of a generalized Gödel algebra GðAÞ.

Specifically, if A is a directly indecomposable NM-algebra with (respectively, without)
a negation fixpoint, then A is isomorphic to the connected (respectively, disconnected)
rotation of the generalized Gödel algebra GðAÞ ¼ ðAþ; �;!;^;_;>Þ. Conversely, it is clear

15 that each generalized Gödel algebra G uniquely determines one directly indecomposable
NM-algebra without fixpoint and one directly indecomposable NM-algebra with fixpoint:
namely, the disconnected rotation and the connected rotation of G, respectively.

If A and B are directly indecomposable NM-algebras and f:A ! B is a homomorphism,
then the restriction of f to Aþ is an order preserving map into Bþ that also preserves the

20 implication. The following lemma is an easy consequence of the definitions of connected
and disconnected rotation.

LEMMA 2.3
Let A and B be directly indecomposable NM-algebras such that if A has a negation fixpoint p,
then B also has a negation fixpoint q. Let f : Aþ ! Bþ be an order preserving map that also

25 preserves implication. Then f can be uniquely extended to a morphism f 0 : A ! B by setting
f 0ð pÞ ¼ q if A has a negation fixpoint, and f 0ðxÞ ¼ :f ð:xÞ for each x 2 A�.

3 Prime spectra of finite NM-algebras

Given an integral commutative residuated lattice A; a filter of A is a nonempty subset � � A
closed under �, and upwards closed in the underlying lattice order. The filter � is prime if

30 � 6¼ A and x _ y 2 � implies x 2 � or y 2 �:
All partially ordered sets ( posets, for short) considered in this article are finite. Following

standard usage, by a chain we mean a totally ordered set. Building on [6], in this section
we develop a categorical duality between finite NM-algebras, and a combinatorial
category consisting of certain suitably enriched finite posets, along with an appropriate

35 notion of order-preserving maps between them. We recall the needed notions and results
from [6].
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DEFINITION 3.1
If P is a poset and S � P, the down-set of S is the set of elements of P smaller than or equal
to some element of S. A forest is a poset F such that for every x 2 F, the down-set of x
(i.e. fy 2 F j y � xg) is a chain when endowed with the order inherited from F. A tree is a

5 forest with a minimum element, called the root of the tree. A function f:F ! G between
forests is open, or an open map, if it is order-preserving and carries down-sets to down-sets.

Clearly, open maps between forests (more generally, posets) compose, and the identity
function on a poset is open. Thus, posets and open maps form a category. We denote by F the
category of forests and open maps between them.

10 THEOREM 3.2 ([6])
The category of finite Gödel algebras and F are dually equivalent via the functor
Spec that sends a finite Gödel algebra to the poset of its prime filters (ordered by
reverse set-theoretic inclusion), and a morphism f:A ! B of Gödel algebras to the open
map given by

Spec ð f Þ : � 2 Spec ðBÞ� fa 2 A j f ðaÞ 2 �g 2 Spec ðAÞ:

15 While the preceding theorem is concerned with finite Gödel algebras, one easily checks that
the variety of Gödel algebras is locally finite. Therefore, finitely generated, finitely presented
and finite Gödel algebras coincide. Similarly, as already mentioned, the variety of
NM-algebras is also locally finite. In the sequel, we shall work with finite NM-algebras

20 only. It follows that the corresponding generalized Gödel algebras given by Theorem 2.2
are necessarily finite.

If A is a directly indecomposable NM-algebra and GðAÞ is the generalized Gödel algebra
whose underlying set is Aþ; then it is immediately checked that the set of prime filters of A is
given by the union of the set of proper prime filters of GðAÞ and the maximal filter whose

25 underlying set is Aþ: We shall denote by GðAÞ? the Gödel algebra obtained adjoining a
bottom element to G(A). Observe that the identity bijection between GðAÞ?nf?g and Aþ

preserves implication and order.
We shall denote by Spec ðAÞ the poset of prime filters of A, ordered by reverse inclusion,

and call it the prime spectrum of A. By the foregoing, along with the Theorem 3.2, we infer:

30 LEMMA 3.3
If A is a directly indecomposable NM-algebra, the prime spectrum of the Gödel algebra
GðAÞ? is order-isomorphic to Spec ðAÞ.

Consider now directly indecomposable NM-algebras A and B such that G(A) is isomorphic
(as a generalized Gödel algebra) to G(B). Assume further that A has a fixpoint, whereas B has

35 not. Then Spec ðAÞ is order-isomorphic to Spec ðBÞ. In other words, the prime spectrum does
not carry enough information to tell A and B apart. To remedy this situation, we shall
augment Spec ðAÞ with one additional bit of information.

DEFINITION 3.4
A labelled tree is a pair (T, j), where T is a tree and j 2 f0; 1g. We say ðT; jÞ is of

40 type j. A labelled forest is a set of labelled trees F ¼ fðTi; jiÞ j i 2 Ig, for I a finite index set.
A morphism of labelled trees �: ðT; jÞ ! ðT 0; j 0Þ is an open map from T to T 0 such that j � j 0.
A morphism of labelled forests �:F1 ! F2 is specified by morphisms of labelled trees
�i: ðTi; jiÞ ! ðT 0

i0 ; j
0
i0 Þ, i 2 I, where ðT 0

i0 ; j
0
i0 Þ 2 F2, for each ðTi; jiÞ 2 F1.
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It is trivial to check that morphisms of labelled trees and forests compose, and that the
identity morphisms are given by the underlying set-theoretical identities. Thus, we obtain a
category LF of labelled forests and their morphisms. We let LT denote the full subcategory of
labelled trees, and DNM the category of finite directly indecomposable NM-algebras and their

5 homomorphisms.
We next define a contravariant augmented spectral functor Spec þ from DNM to LT as

follows: for each directly indecomposable NM-algebra A, let

Spec þ
ðAÞ ¼ ðSpec ðAÞ; j Þ ;

where j¼ 0 if A has a negation fixpoint, and j¼ 1 otherwise. For each homomorphism
10 f:A ! B in DNM , let Spec þ

ð f Þ: Spec þ
ðBÞ ! Spec þ

ðAÞ be given by

Spec þ
ð f Þð�Þ ¼ fx 2 A j f ðxÞ 2 �g :

Notice that since there are no homomorphisms from NM-algebras with negation fixpoint into
algebras without fixpoint, the duals of the morphisms in DNM are well defined morphisms
in LT . Now a routine verification shows that Spec þ: DNM ! LT indeed is a contravariant

15 functor.

THEOREM 3.5
The categories DNM and LT are dually equivalent via Spec þ.

PROOF. According to [22, Chapter IV], it is enough to prove that Spec þ is full, faithful and
essentially surjective, meaning that for every ðT; j Þ 2 LT there is A 2 DNM such that

20 Spec þ
ðAÞ is isomorphic to (T, j) in LT .

Claim 1. Spec þ is essentially surjective.

Indeed, let (T, j ) be given. Consider the Gödel algebra GT whose dual (in the sense of
Theorem 3.2) is order-isomorphic to T. If j¼ 0, then (T, j) is isomorphic in LT to the image
under Spec þ of the connected rotation of the generalized Gödel algebra whose underlying

25 set is GTnf?g.
If j¼ 1, then (T, j ) is isomorphic in LT to the image under Spec þ of the disconnected

rotation of that same Gödel algebra.

Claim 2. Spec þ is full.

30 Let A, B 2 DNM, and let Spec þ
ðAÞ ¼ ðTA; j Þ and Spec þ

ðBÞ ¼ ðTB; iÞ. Consider a morphism
�: ðTB; iÞ ! ðTA; j Þ of labelled trees. By definition, � is an open map from TB into TA and
i � j. Consider the Gödel algebra GTA

whose dual (in the sense of Theorem 3.2) is order-
isomorphic to TA. Define GTB

analogously. Then there is a unique Gödel algebra
homomorphism f:GTA

! GTB
such that � is the dual of f. Note that GTA

and GTB
are

35 Gödel algebras with a unique maximal filter, corresponding to the roots of TA and TB,
respectively. Therefore, f restricts to a map

f 0:GTA
nf?g ! GTB

nf?g

of generalized Gödel algebras that is order preserving, and preserves implication.
By Lemma 2.3 there is a unique NM-algebra homomorphism h:A ! B extending f 0. If � is

40 a prime filter of GTB
, then

Spec þ
ðhÞð�Þ ¼ fx 2 A j hðxÞ 2 �g ¼ fx 2 Aþ j f 0ðxÞ 2 �g ¼ �ð�Þ;

with the last equality granted by Theorem 3.2.
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Claim 3. Spec þ is faithful.

If f:A ! B and g:A ! B are distinct homomorphisms of NM-algebras in DNM , by Lemma
2.3 the order-preserving maps Aþ ! Bþ they induce are distinct. By Theorem 3.2, Spec þ

ð f Þ
and Spec þ

ðgÞ are distinct morphisms in LT, and the proof is complete. g
5 We now let FNM denote the category of all finite NM-algebras and their homomorphisms.

COROLLARY 3.6
The categories FNM and LF are dually equivalent via Spec þ.

PROOF. By [3, Lemma 2.5], a finite NM-algebra A is isomorphic to a direct product of a finite
family ðAi; i 2 IÞ of directly indecomposable NM-algebras, and this decomposition is unique

10 up to isomorphism. Thus, Spec þ
ðAÞ is isomorphic to the labelled forest fðSpec þ

ðAiÞÞ j i 2 Ig.
A routine verification using Theorem 3.5 shows that Spec þ: FNM ! LF is full, faithful and
essentially surjective. g

The proof of Theorem 3.5 does not explicitly construct the (contravariant) adjoint to
Spec þ, which we shall call NMFun for NM-functions. For our applications in the sequel,

15 however, it is important to have an explicit description of this functor, and we provide
one here.

Note that NMFun can be regarded as the finite analogue for NM-logic of the functor that
associates to a Stone space X the Boolean algebra of all continuous f0; 1g-valued functions
on X, where f0; 1g is endowed with the discrete topology. Here the role of f0; 1g is taken over

20 by the augmented prime spectrum of the free NM-algebra on one generator, and that of
finite Stone spaces (i.e. finite sets) by labelled forests. The continuity required in the Boolean
case (that becomes immaterial for finite sets) is here replaced by the requirement that
functions are open maps. As is well known, while the order-preserving requirement dually
corresponds to preservation of the lattice operations (see e.g. [8]), the stronger openness

25 requirement dually corresponds to preservation of the Heyting implication (see e.g. [13]).
For the rest of this article, for each integer n� 0, let Cn denote a (fixed, but otherwise

arbitrary) chain of nþ 1 elements. Further, let S denote the labelled forest consisting of the
labelled tree ðC0; 0Þ, along with two copies of the labelled tree ðC1; 1Þ (Figure 1). As we shall
see in Subsection 4.3, S is the augmented spectrum of the free singly generated NM-algebra.

30 For a labelled forest F, let

NMFun ðF Þ ¼ f f:F ! S j f is a morphism in LF g ð6Þ

denote the set of all morphisms in LF from F to S. We shall now endow NMFun ðF Þ with
operations �, !, ^, _, ?, > so as to make it an NM-algebra.

0 11

FIGURE 1. A picture of Spec þ
ðF1Þ—whereF1 denotes the free singly generatedNM-algebra—

consisting of the chain C0 of type 0, and two copies of the chain C1 of type 1
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First we need to distinguish the two copies of ðC1; 1Þ in S. To this purpose, let us denote the

bottom elements of the first and second copy by ? and > and the top elements by ?þ and >�,

respectively. We denote by 0 the only element of ðC0; 0Þ.
Since morphisms in LF are open maps, each f 2 NMFun ðF Þ carries trees to trees. It follows

5 that each f 2 NMFun ðF Þ is completely determined by the preimages of 0, ? and >.
To equip NMFun ðF Þ with a structure of NM-algebra, we first pick a labelled tree (T, j )

in the labelled forest F and consider the subset GT of the set of morphisms NMFun ðT; j Þ
defined as

GT ¼ f f 2 NMFun ðT; j Þ: f�1ðf?;>;>�gÞ ¼ Tg:

10 Observe that the subforest f?;>;>�g of S is isomorphic to the prime spectrum of the free

Gödel algebra over one free generator, and hence, by the duality of Theorem 3.2 and

by [6, Remark 2], ðGT;!;^;_;?;>Þ is a Gödel algebra, with operations completely

determined by specifying the preimage of >, as follows: for any subset A of T, set

A "¼ fx 2 T j y � x for some y 2 Ag:

15 We then have:

ð f ^ gÞ�1
ðf>gÞ ¼ f�1ðf>gÞ \ g�1ðf>gÞ

?�1ðf>gÞ ¼ ;

ð f ! gÞ�1
ðf>gÞ ¼ f�1ðf?gÞ [ ½ð f�1ðf>;>�gÞ \ g�1ðf>;>�gÞÞn� "	;

where

� ¼ f�1ðf>gÞ \ g�1ðf>�gÞ:

Clearly, the ?-free reduct of GTnf?g is the generalized Gödel algebra ðGþ
T ;!;^;_;>Þ, for

Gþ
T ¼ f f 2 NMFun ðT; j Þ j f�1ðf>;>�gÞ ¼ T g:

20 Given f 2 Gþ
T ; let f

0 2 NMFun ðT; j Þ be given by f 0ðxÞ ¼ ? if fðxÞ ¼ > and f 0ðxÞ ¼ ?þ if

fðxÞ ¼ >�: If the labelled tree (T, j ) is such that j¼ 1 then there are no morphisms from the

labelled tree (T, j ) into ðC0; 0Þ: Consider the NM-algebra DRðGþ
T Þ: It is easy to see that

the correspondence " from DRðGþ
T Þ into NMFun ðT; j Þ given by

"ð f Þ ¼
f if f 2 Gþ

T

g0 if f ¼ :g for some g 2 Gþ
T

�

25 is bijective. Thus we can give NMFun ðT; j Þ a structure of NM-algebra isomorphic to

DRðGþ
T Þ: Similarly, if (T, j) is such that j¼ 0, the correspondence that assigns to the fixpoint

of CRðGþ
T Þ the only morphism f : ðT; j Þ ! ðC0; 0Þ and behaves like " over the remaining

elements of CRðGþ
T Þ defines a bijection between CRðGþ

T Þ and NMFun ðT; j Þ: In this case
30 we can equip NMFun ðT; j Þ with a structure of NM-algebra isomorphic to CRðGþ

T Þ.
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We conclude from Theorem 2.2 that ðNMFun ðT; jÞ; �;!;^;_;>;?Þ is a finite directly
indecomposable NM-algebra. For the general case of the labelled forest F,
ðNMFun ðFÞ; �;!;^;_;>;?Þ simply is the NM-algebra arising as the direct product of
the family fNMFun ðT; j Þ j ðT; j Þ a labelled tree in Fg.

5 Let us now turn to morphisms. If F and G are labelled forests, consider a morphism
�:F ! G in LF. We define a function NMFun ð�Þ:NMFun ðGÞ ! NMFun ðF Þ as follows. If
g:G ! S is an element of NMFun ðGÞ, we set

ðNMFun ð�ÞÞðgÞ ¼ g 
 � :

A routine verification shows that the ensuing function NMFun ð�Þ preserves all operations
10 �, !, ^, _, ?, >, and thus is a homomorphism of NM-algebras. By definition, NMFun

preserves composition and identities; hence, it is a contravariant functor from labelled
forests to finite NM-algebras. One now straightforwardly verifies that NMFun : LF ! FNM

is adjoint (in the contravariant sense) to Spec þ: FNM ! LF.

4 Applications of Spectral Duality

15 4.1 Co-products

Recall that any variety is complete and co-complete (see e.g. [23]). Products of NM-algebras
are just direct products with pointwise operations. Co-products in varieties of algebras are
usually much harder to describe explicitly. As it turns out, an efficient Stone-type duality
often provides the key to such a description, cf. [6, Introduction]. Using the main results in

20 the latter paper, we shall show how to explicitly compute finite co-products of NM-algebras.
As before, F is the category of forests and their open maps; now, we let T be the full
subcategory of trees. Given trees S and T, the product S� T with its projection maps
�S:S� T ! S, �T:S� T ! T is constructed in [6, Theorem 3.6], to which the reader is
referred for further information.

25 PROPOSITION 4.1
Let ðS; iÞ and ðT; j Þ be labelled trees, and let S� T, together with its projections �S, �T, be the
product of S and T in T. The labelled tree

ðS� T; i� j Þ;

where i� j 2 f0; 1g denotes multiplication of binary digits, endowed with the projection maps

�ðS; iÞ: ðS� T; i� j Þ ! ðS; iÞ ; �ðT; j Þ: ðS� T; i� j Þ ! ðT; j Þ

30 induced by �S and �T, respectively, is the product of ðS; iÞ and ðT; j Þ in LT.

PROOF. Since �S and �T are open maps, their labelled counterparts �ðS; i Þ and �ðT; j Þ are
morphisms in LT , because i� j � i; j for each i; j 2 f0; 1g. To verify the universal property of
products, let ðP; kÞ be a labelled tree, and let pðS; i Þ: ðP; kÞ ! ðS; iÞ, pðT;j Þ: ðP; kÞ ! ðT; j Þ be two

35 morphisms of labelled trees. This implies k � i; j. By Definition 3.4, there are unique
corresponding open maps pS:P ! S, pT:P ! T in T. Since S� T, with �S and �T, is the
product of S and T in T, there exists a unique open map f:P ! S� T such that

pS ¼ �S 
 f and pT ¼ �T 
 f: ð7Þ

10 of 17 Finitely Generated Nilpotent Algebras

proofreader



+ [A3B2 Ver: 8.07r-Standard] [15.5.2007–2:44pm] [1–17] [Page No. 1] FIRST PROOFS

K:/Journals/Inprocess/Oup/logcom/exm021.3d (LOGCOM)

Paper: exm021 OUP

Then f induces a unique morphism g: ðP; kÞ ! ðS� T; i� j Þ: indeed, since k � i; j, we have
k � i� j, whence g exists. From (7) we immediately infer

pðS;iÞ ¼ �ðS; i Þ 
 g and pðT; j Þ ¼ �ðT; j Þ 
 g : ð8Þ

5 To see that g is the unique morphism in LT satisfying (9), it is enough to note that its
underlying open map of trees f is unique, by the universal property of products in T.
The extension of the preceding result to labelled forests is straightforward, cf. [6, p. 204], and
shall be omitted for the sake of brevity. See Figure 2 in Subsection 4.3 below for a picture of
S2 ¼ S� S, where S is as in Figure 1.

10 4.2 Amalgamation, interpolation and the deduction theorem

For background, and for an extensive analysis of interpolation in algebraic logic, see [11].
Recall that a variety has the amalgamation property if whenever S, A and B are given algebras
with injective homomorphisms S ! A and S ! B, there exists an algebra C with injective
homomorphisms A ! C and B ! C such that the diagram

15 commutes.
Several possible stronger forms of the amalgamation property, or variations thereof, have

been considered in the literature. (Please, see again [11] and references therein). Observe
that a natural condition to ask of the commutative square (9) is that it be a push-out square—

20 in other words, that C with the given maps be a co-product of A and B fibred over S.
Explicitly, this means that for any algebra ~C and homomorphisms A ! ~C, B ! ~C
commuting with the given S ! A, S ! B as in (9), there is a unique homomorphism
C ! ~C making the triangles

25 commute. When this holds, the amalgam C is canonical, because fibred co-products are of
course unique up to isomorphism. Since fibred co-products exist in any variety, the point is

0 0 0 10 0 1 1 1

FIGURE 2. The augmented prime spectrum S2 of the free 2-generated NM-algebra
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then to show that the push-out of monomorphisms (that is, in the context of varieties,

injective homomorphisms) are again monomorphisms. In traditional algebraic (especially

group-theoretic) language, the same construction is known as a free product with amalgamated

subalgebra, even though what is really involved is a co-product. To sum up, following
5 tradition we shall say that a variety of algebras has free products with amalgamation if

injectivity of homomorphisms is stable under push-outs.
In [6] it is proved by duality that finite Gödel algebras have free products with

amalgamation. Here we shall prove the analogous result for finite NM-algebras.

PROPOSITION 4.2
10 The category of finite NM-algebras has free products with amalgamation.

PROOF. We first prove the dual property that epimorphisms are stable under pull-backs in LF.

The question is at once reduced to LT. We shall use the following easy observation:

a morphism in LT is an epimorphism if and only if its underlying open map of trees is an

epimorphism in T if and only if its underlying set-theoretic function is surjective.

15 Now let ðA; iÞ, ðB; j Þ, and (S, k) be labelled trees, and let sðA; i Þ: ðA; i Þ ! ðS; kÞ,
sðB; j Þ: ðB; j Þ ! ðS; kÞ be epimorphisms. Form the pull-back

Let us denote by pA, pB, sA, sB the underlying open maps of pðA; i Þ, pðB; j Þ, sðA; i Þ, sðB; j Þ,

respectively. Note that sA and sB are epimorphisms, because they come from epimorphisms
20 in LT. It is immediate to verify that

is a pull-back square in T, because (10) is a pull-back square in LT. By [6, Corollary 4.1],

if pA and pB are epimorphisms, so are sA and sB, and thus so are sðA; i Þ and sðB; j Þ.
Upon applying Theorem 3.5, we conclude that monomorphisms are stable under push-

25 outs in FNM . Since monomorphisms are the same thing as injective homomorphisms of

NM-algebras, we are done. g
The logical relevance of amalgams is that, for a variety of algebras, the amalgamation

property together with the congruence extension property is equivalent to strong deductive

interpolation (see [12]). In the presence of the deduction theorem for the corresponding
30 propositional logic, deductive interpolation is equivalent to Craig (implicative) interpolation

(cf. [5, 3.1.1]). Recall that Craig interpolation holds for a logic if, given two formulas �; such

that �!  is provable in the logic, then there exists a formula �, the interpolant, whose

variables occur both in � and  , such that �! � and � !  are provable.
It should be noted that nilpotent minimum logic does not enjoy Craig interpolation, as the

35 formula  ¼ ðx ^ :xÞ ! ð y _ :yÞ shows. For,  is clearly a tautology of the logic, and an
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interpolant would be a variable-free formula � such that both ðx ^ :xÞ ! � and �! ðy _ :yÞ
are tautologies. Needless to say, such a � does not exist.

For nilpotent minimum logic the Deduction Theorem in its classical form would state that
for all pair of formulas � and  over the set of propositional variables fx1, . . . ; xng, it holds

5 that � �  iff � �!  , where � �  iff in any NM-algebra A and for all a1, . . . ; an 2 A,
�ða1, . . . ; anÞ ¼ > implies  ða1, . . . ; anÞ ¼ >, while � means that  ða1, . . . ; anÞ ¼ > in each
NM-algebra A and for all a1, . . . ; an 2 A.

To show that the classical Deduction Theorem does not hold for nilpotent minimum logic,
it suffices to check the following counterexample. Consider the NM-algebra NMFun ðSÞ and

10 let i 2 NMFun ðSÞ denote the identity function iðxÞ ¼ x for all x 2 S. Notice that ði � iÞðxÞ ¼ ?

if x 2 f0;?;?þg, while ði � iÞð>Þ ¼ > and ði � iÞð>�Þ ¼ >�. Hence i�1ðf>gÞ ¼ ði � iÞ�1
ðf>gÞ,

but ði ! ði � iÞÞ�1
ðf>gÞ 6¼ S, as ði ! ði � iÞÞð0Þ ¼ 0 and ði ! ði � iÞÞð?þÞ ¼ >�.

On the other hand, the following Local Deduction Theorem (see [4, Thm. 1]) is stated
(for the larger class of monoidal t-norm-based logics) in [9]: � �  iff there is an integer n > 0

15 such that

� � � � � � � �|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n times

!  

holds. Nilpotent minimum logic enjoys the following form of Global Deduction Theorem.

PROPOSITION 4.3
For each pair of formulas �; ,

� �  iff � ð� � �Þ !  :

20 PROOF. Immediate, since the equation x � x ¼ x � x � x holds in every NM-algebra. g

4.3 Representation of free NM-algebras

The description of co-products provided in Subsection 4.1, along with [6, Theorem 3.6],
affords a representation theorem for finite NM-algebras, to which we now turn. For related

25 work based on different techniques, we refer the reader to [1, 3, 26].
For each integer n� 0, let us write Fn to denote the free NM-algebra over n generators.

Let us further write Sn for the product in LF of S with itself n times.

LEMMA 4.4
For each integer n� 0, Spec þ

ðFnÞ is isomorphic, as a labelled forest, to Sn.

30 PROOF. The main point is:

Claim. Spec þ
ðF1Þ is isomorphic to S.

By the duality between FNM and LF , the claim is equivalent in showing that NMFun ðSÞ
is isomorphic to F1 as an NM-algebra.

One checks that the subdirectly irreducible finite NM-algebras are precisely the finite
35 NM-chains. Direct inspection shows that there are precisely three singly generated NM-chains

that are not proper quotients of some other singly generated NM-chain. Specifically,
they are N0 ¼ f? < x ¼ :x < >g, N1 ¼ f? < x < :x < >g, N2 ¼ f? < :x < x < >g,
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where x denotes the generator. Clearly, F1 is the largest singly generated NM-algebra, and
it embeds into the direct product N0 �N1 �N2. Hence jF1j � 48.

NMFun ðSÞ is generated by the identity function i:x� x for all x 2 S: it is an easy
(if somewhat lengthy) exercise to verify that each one of the 48 elements f 2 NMFun ðSÞ

5 can be written as �f (i ) for some NM-term �f (x).
In details (compare with [1, Sec. V, Case C]), let �0 :¼ ðx ! :xÞ�

ð:x ! xÞ � ðx ! :xÞ � ð:x ! xÞ, �> :¼ :ð:ðx � xÞ � :ðx � xÞÞ and �? :¼ :ð:ð:x � :xÞ�
:ð:x � :xÞÞ. Moreover, let �0 be the term ? if f ð0Þ ¼ ?, the term x if f ð0Þ ¼ 0, the term > if
f ð0Þ ¼ >. Similarly, let �? (respectively �>) be the term ? if f ð?þÞ ¼ ? (resp. f ð>�Þ ¼ ?), the

10 term> if f ð?þÞ ¼ > (resp. f ð>�Þ ¼ ?), the term x if f ð?þÞ ¼ ?þ (resp. f ð>�Þ ¼ >�), the term
:x if f ð?þÞ ¼ >� (resp. f ð>�Þ ¼ ?þ). One checks that �f :¼ ð�0 ^ �0Þ _ ð�? ^ �?Þ _ ð�> ^ �>Þ
is such that �f ðiÞ ¼ f. Hence NMFun ðSÞ ffi N0 �N1 �N2 ffi F1. Take an NM-algebra B and
let b(i) be an element of B. The function ’:NMFun ðSÞ ! B defined as ’ð f Þ :¼ �f ðbðiÞÞ is
the (necessarily unique) NM-homomorphism extending b. This settles our claim.4

15 To complete the proof, note that, as in any variety, Fn is a co-product of n copies of F1.
By Corollary 3.6, an application of Spec þ yields the lemma. g
For the sake of clarity, we observe that F0 is the NM-algebra f?;>g, whose augmented
spectrum Spec þ

ðF0Þ is isomorphic to fðC0; 1Þg. Dually, then, S0 ¼ fðC0; 1Þg.

As an immediate consequence of the fact that NMFun is (contravariant) adjoint to Spec þ,
20 together with the fact that, by Lemma 4.4, Spec þ

ðFnÞ is isomorphic to Sn, we obtain the
following representation result.

PROPOSITION 4.5
For each integer n� 0, NMFun ðSnÞ is isomorphic to Fn, the free NM-algebra over n
generators.

25 We emphasize once more that the preceding proposition only becomes fully effective
when coupled with the explicit description of products of labelled forests provided in
Subsection 4.1. By way of example, Figure 2 displays a picture of S2.

4.4 Determining the size of free NM-algebras

As a final application of our duality, we obtain an exact recursive formula for the cardinality
30 of the free finitely generated NM-algebra.

Throughout this subsection, fix an integer n� 1. Let us display S as

1
0

� �
ðC0; 0Þ ; 2

1
1

� �
ðC1; 1Þ

� �
ð11Þ

meaning that it consists of
�
1
0

�
¼ 1 copies of ðC0; 0Þ, and 2

�
1
1

�
¼ 2 copies of ðC1; 1Þ. Consider

Newton’s binomial expansion

ð1þ 2xÞn ¼ 1þ
Xn
k¼1

�
n
k

	
2kxk: ð12Þ

4For a less computational proof of the same claim, one can verify the dual of the universal property of free objects

for S in the category of labelled forests; that is, one verifies that S is cofree in LF.
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Observe that C0 acts as neutral element under product in T, whereas C1 acts as an element of
infinite period (i.e. Ch

1 6¼ Ck
1 unless h¼ k). Thus, by (11) and (12), we can display Sn as

Sn ¼ ðC0; 0Þ; 2
n
1

� �
ðC1

1; 0Þ, . . . ; 2
k n

k

� �
ðCk

1; 0Þ, . . . ; 2
nðCn

1; 1Þ

� �
ð13Þ

5 Note that here the type of Ck
1 is 1 if and only if k¼ n, because otherwise by a trivial induction

ðCk
1; j Þ has at least one factor of type 0, and thus has type j¼ 0. By Proposition 4.5, we know

jFnj ¼ jMor ðSn; SÞj ð14Þ

where j � j denotes cardinality, and Mor ðA;BÞ is the number of morphisms in LF from A to B.
By direct inspection,

jMor ððCn
1 ; 0Þ; SÞj ¼ 1þ 2j TMor ðCn

1 ;C1Þj ð15Þ

10 and, similarly,

jMor ððCn
1 ; 1Þ; SÞj ¼ 2jTMor ðCn

1 ;C1Þj ð16Þ

where TMor ðA;BÞ denotes the number of morphisms from A to B in the category of trees T.
By (14) we have

jFnj ¼ 3�
Yn�1

k¼1

jMor ððCk
1 ; 0Þ; SÞj

2k
n
k

� �0
B@

1
CA� jMor ððCn

1 ; 1Þ; SÞj
2n ð17Þ

15 where the first factor 3 accounts for the number of morphisms ðC0; 0Þ ! S; note that the
second factor evaluates to 1 when n¼ 1. By (15), (16) and (17), we obtain

jFnj ¼ 3�
Yn�1

k¼1

ð1þ 2jTMor ðCk
1;C1ÞjÞ

2k
n
k

� �0
B@

1
CA� 22

n

jTMor ðCn
1;C1Þj

2n ð18Þ

Thus it remains to determine jTMor ðCk
1;C1Þj. But by [6, Corollary 4.2], these numbers satisfy

20 the recurrence

jTMor ðCk
1 ;C1Þj ¼

Yk
m¼1

ð1þ jTMor ðCk�m
1 ;C1ÞjÞ

k
m

� �
ð19Þ

for each integer k� 0, where C 0
1 ¼ C0, and, again, the product evaluates to 1 when k¼ 0.

We have thus proved (compare with [1, Theorem 4.12]):

PROPOSITION 4.6
25 For each integer n� 1, the cardinality of the free NM-algebra Fn satisfies the recurrence

relations (18) and (19), subject to the initial condition jTMor ðC 0
1 ;C1Þj ¼ 1.

See Figure 3 for a table of the first few values of jFnj.

Finitely Generated Nilpotent Algebras 15 of 17

proofreader



+ [A3B2 Ver: 8.07r-Standard] [15.5.2007–2:44pm] [1–17] [Page No. 1] FIRST PROOFS

K:/Journals/Inprocess/Oup/logcom/exm021.3d (LOGCOM)

Paper: exm021 OUP

References

[1] S. Aguzzoli and B. Gerla. Comparing the expressive power of some fuzzy logics based on
residuated t-norms. In Proceedings of the IEEE International Conference on Fuzzy
Systems, FUZZ-IEEE 2006, pp. 2012–2019, 2006.

5 [2] M. Baaz, A. Ciabattoni and F. Montagna. Analytic calculi for monoidal t-norm-based
logic. Fundamenta Informaticae, 59, 315–332, 2004.

[3] M. Busaniche. Free Nilpotent Minimum Algebras. Mathematical Logic Quarterly, 52,

219–236, 2006.
[4] J. Czelakowski. Logical matrices and the amalgamation property. Studia Logica, 41,

10 329–341, 1982.
[5] J. Czelakowski and D. Pigozzi. Amalgamation and interpolation in abstract algebraic

logic. In Models, Algebras, and Proofs, X. Caicedo and C. H. Montenegro eds., Lecture
Notes in Pure and Applied Mathematics, 203, pp. 187–265. 1999.

[6] O. M. D’Antona and V. Marra. Computing co-products of finitely presented Gödel
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