
Causality and Counterfactuals in the Situation Calculus

Mark Hopkins and Judea Pearl
Department of Computer Science

University of California, Los Angeles
{mhopkins,judea}@cs.ucla.edu

Abstract

Structural causal models offer a popular frame-
work for exploring causal concepts. However, due
to their limited expressiveness, structural models
have difficulties coping with such concepts as ac-
tual (event-to-event) causation. In this paper, we
propose a new type of causal model, based on em-
bedding structural considerations in the language of
situation calculus. By using situation calculus as a
basic language, we leverage its power to express
complex, dynamically changing situations and, by
relying on structural considerations, we can formu-
late an effective theory of counterfactuals within
the situation-calculus.

1 Introduction
Researchers have recently devoted a good deal of effort to
causality. One of the main branches of this research has fo-
cused on structural causal models [Pearl, 2000], which have
been applied to a diverse range of problems, including appli-
cations in statistics, econometrics, and epidemiology. Their
principal strength lies in assessing causal relationships be-
tween variables (for example, the causal relationship between
the level of pesticide use on crop yield).

The problem with using structural causal models is that
the language of structural models is simply not expressive
enough to capture certain intricate relationships that are im-
portant in causal reasoning. The ontological commitment of
these models is to facts alone, assignments of values to ran-
dom variables, much like propositional logic. Just as propo-
sitional logic is not a particularly effective tool for reasoning
about dynamic situations, it is similarly difficult to express
dynamic situations (with objects, relationships, and time) in
terms of structural causal models.

One problem that suffers from this weak expressiveness is
termed “actual cause” [Halpern and Pearl, 2001], the identifi-
cation of the actual cause of an event in a given scenario. For
example:

Firing Squad: There are two rifleman (R1 and R2) in a
firing squad. On their captain’s order, they both shoot simul-
taneously and accurately. The prisoner dies.

From this story, we can ask causal queries such as: did R1’s
shot cause the prisoner’s death? We can also ask whether

the captain’s order caused the prisoner’s death. The difficul-
ties in defining such a concept of causation have been well-
documented in the philosophical literature. In [Halpern and
Pearl, 2001], Halpern and Pearl propose a sophisticated defi-
nition for actual causality based on structural causal models,
however although this definition works on many previously
problematic examples, it still does not fit with intuition on
all examples. Some of these difficulties can be traced to the
limited expressiveness of the structural model formulation.
[Hopkins and Pearl, 2003] provides a detailed account of the
drawbacks of defining actual cause in the structural model
framework.

Hence, we will propose a causal model based on situa-
tion calculus, a second-order logical language that has been
widely employed to describe dynamic situations [McCarthy,
1963]. Related efforts have been made along these lines
[Costello and McCarthy, 1999; Lin, 1995; Gustafsson and
Doherty, 1996; Thielscher, 1999]. Our work differs from
these by exploiting the valuable lessons that can be learned
from the structural model approach. In this paper, we will
make steps towards unifying the disparate areas of situation
calculus and structural equation modeling by proposing a
model-theoretic approach to counterfactuals in the situation
calculus. We will also discuss extensions to probabilistic
counterfactuals.

2 Review of Structural Causal Models

One of the main benefits of structural causal models is their
ability to handle counterfactual queries, i.e. queries asking
whether A would have occurred had B not occurred.

Formally, a causal model is a triple (U, V, F), in which
U is a finite set of random variables (called background or
exogenous), V is a finite set of endogenous random variables
(disjoint from U), and F = {FX |X ∈ V } where FX is a
function Dom(R) → Dom(X) that assigns a value to X
for each setting of the remaining variables in the model R =
U ∪V \{X}. For each X , we can define PAX , the parent set
of X , to be the set of variables in R that can affect the value
of X (i.e. are non-trivial in FX). We also assume that the
domains of the random variables are finite.

Causal models can be depicted as a causal diagram, a di-
rected graph whose nodes correspond to the variables in U∪V
with an edge from Y to X ∈ V iff Y ∈ PAX .

kaoru mulvihill
Text Box
In Proceedings of the 7th International Symposium on Logical Formalizations of Commonsense Reasoning, 115--122, 2005.

kaoru mulvihill
Text Box
TECHNICAL REPORT
R-301
May 2005

Figure 1: Causal model for the Firing Squad scenario. All
variables are propositional. C = UC ; R1 = C; R2 = C;
D = R1 ∨ R2.

Example In Fig. 1, we see the firing squad scenario ex-
pressed as a causal model. Here, U = {UC} and V =
{C, R1, R2, D}. All variables are propositional, with value
1 indicating a true proposition, and value 0 indicating that the
proposition is false.

If we assume a particular value for the background vari-
ables U , then the resulting causal model is called a causal
world. We generally assume that any particular value for U
uniquely determines the values of the variables in V . This al-
ways happens when the causal diagram is acyclic (such causal
models are called recursive). Causal worlds are of interest
since they represent a specific situation, while causal models
represent a more general scenario. For instance, if we as-
sume that UC = 1 in our firing squad causal model, then the
resulting causal world describes our story (given in the intro-
duction). The more general model allows for the situation in
which the captain does not signal.

A probabilistic causal model gives us a distribution over
causal worlds. A probabilistic causal model is a pair <
M, P (u) >, where M is a causal model, and P (u) is a prob-
ability function defined over the domain of U .

To handle counterfactual queries, we define the concept of
submodels. Given a causal model M = (U, V, F), X ⊆
V , x ∈ Dom(X), the submodel of M under intervention
X = x is MX=x = (U, V, FX=x), where FX=x = {FY |Y ∈
V \X}∪ {X = x}. Intuitively, the submodel fixes the values
of the variables in X at x. Consequently, the values of the
remaining variables represent what values they would have
had if X had been x in the original model. MX=x and FX=x

are typically abbreviated Mx and Fx. The value of variable
Y ∈ V in submodel Mx (under context u) is represented as
YMx

(u) (or simply Yx(u)).

Example (interventions) Consider the firing squad causal
model under context u = {UC = 1} and the question: would
the prisoner be dead if we make sure that R1 does not fire
his gun? This corresponds to evaluating DR1=0(u). In this
case, the captain still signals, so rifleman 2 still shoots. Thus
DR1=0(u) = 1, and we conclude that the prisoner still dies
in this counterfactual scenario.

Unfortunately, when we attempt to use structural models
for the broader question “Did R1’s shot cause the prisoner’s
death?”, we run into difficulties. [Halpern and Pearl, 2001]’s
definition answers many such queries correctly, but fails on
some. Let us consider various drawbacks with the structural
causal model approach when considering event-to-event cau-
sation.

Figure 2: (a) Structural causal model for the Candle scenario.
B = 1; WRO = ¬B; RD = B ∨ WRO. (b) Structural
causal model for the Alarm scenario. HS = 1; WS = ¬HS;
AR = HS ∨WS. All variables are endogenous and propo-
sitional. Notice that although these models are isomorphic,
we would desire them to yield different answers for certain
causal queries.

Inability to distinguish between condition and transi-
tion: In a structural causal model, everything is represented
as a random variable. Thus, one cannot distinguish between
an enduring condition (e.g. the man is dead) versus a tran-
sitional event (e.g. the man dies). To see why making this
distinction can be important when making causal determi-
nations, consider an example where a man dies of a heart
attack. We can immediately say that the heart attack is the
cause of the man’s death (transitional event). However, what
if we know for certain that 5 minutes later, the man would
have been shot and killed? Is it then accurate to say that the
heart attack is the cause of the state of the man being dead
10 minutes after his heart attack? To take this example to the
extreme, is it correct to say that the heart attack is the cause
of the man being dead in the year 3000? Imagine somebody
in the year 3000 saying the following: “That man’s heart at-
tack is the reason why he is dead today.” This suggests the
usefulness of making a distinction between conditions and
transitions. Consider the following story:

Candle: A man blows out a candle. The candle only had
5 minutes of wax left to burn at the time.

Question: is the man blowing out the candle the cause of
darkness in the room one hour later? The intuitive answer
is no, since the candle would have burned out by then re-
gardless. However, when modeled as a structural model in
Fig. 2(a), Halpern and Pearl’s definition concludes that the
man’s action is indeed the cause of the room being dark one
hour after the fact. For contrast, suppose we had the following
situation:

Alarm: A man sets his alarm clock before bed. When
his wife goes to bed, she goes to set it (for the same time),
but realizes it has already been set, so she does nothing. The
alarm goes off at the arranged time.

Notice that the structural model for this story (depicted in
Fig. 2(b)) is isomorphic to the model for the candle story. Yet
the intuitive answer in this case is that the man setting his
alarm did indeed cause his alarm to go off. Why the differ-
ence? In the first story, the effect in question is an enduring
condition, while in the second story, the effect is a transitional
event. Such semantic differences are critical when making
causal determinations. Notice that in the candle example, we
would indeed want to say that the man’s action caused the

Figure 3: Structural causal models for the Bottle scenario. (a)
ST = 1; BT = 1; BS = ST ∨ BT . (b) ST = 1; BT = 1;
SH = ST ; AR = BT ∧ ¬SH ; AR = SH ∨ BH . All
variables are endogenous and propositional.

candle to extinguish, which is a transitional event. However,
when dealing with enduring conditions, like the room being
dark, we generally apply a stricter counterfactual criterion to
decide questions of causation. The structural framework can-
not make such distinctions, and clearly any definition of cau-
sation would have to return identical answers for any query
regarding the preceeding two isomorphic causal models.

Inability to express the notion of an object: A primary
benefit of a first-order logical language is the ability to rea-
son using objects. Consider the following story from [Hall,
2004]:

Bottle: Suzy and Billy both pick up rocks and throw them
at a bottle. Suzy’s rock gets there first, shattering the bottle.
Both throws were perfectly accurate.

[Halpern and Pearl, 2001] models this story using the
causal models depicted in Fig. 3. Under its definition of ac-
tual cause, Suzy and Billy’s throws both cause the bottle to be
shattered in the first model, while only Suzy’s throw causes
the bottle to be shattered in the corrected second model. Al-
though the model in this case can be corrected to yield the
intuitive result, this example demonstrates the potential util-
ity of explicitly representing the objects of the scenario. For
example, we can provide a more elegant depiction of the sce-
nario by simply representing the general rule that a rock hit-
ting the bottle causes it to break, and by having distinct ob-
jects representing the two rocks. For a more complex sce-
nario, this may be the only practical way for a human to cor-
rectly model the situation. Additionally, we may be able to
derive information from the general rule that will help us in
making causal determinations.

Inability to distinguish between presence and absence
of an event: A structural causal model does not make a dis-
tinction between an event’s occurrence and non-occurrence
(all are represented as indistinguishable value assignments to
a variable). Nevertheless, when making causal determina-
tions, human beings often take such factors into considera-
tion. Consider the following:

Bystander: Say that two assasins simultaneously shoot
a man, and that either shot would have been sufficient to kill
him. We would conclude that both assasin’s shots are causes
of the man’s death. Now, suppose that a bystander could have
thrown himself into the path of one of the bullets, but did not.

Intuitively, would we conclude that the bystander’s inac-
tion was the cause of the man’s death? We would not, since

Figure 4: Causal model for the Bystander scenario. All vari-
ables are propositional. BDP = 1; A1 = 1; A2 = 1;
D = (BDP ∧ A1) ∨ A2. Notice that BDP and A1 are
logically indistinguishable.

the man would have been shot and killed regardless by the
other bullet. Nevertheless, given random variables A1 (for the
first assasin’s shot) and BDP (for BystanderDoesn’tProtect),
we can easily see that these variables would be treated iden-
tically in the resulting structural causal model, depicted in
Fig. 4. Still, we would like different answers when asking
whether the first’s assasin’s shot or the bystander’s inaction
was a cause of the target’s death. The lesson here is that fac-
tors such as action versus inaction are important when making
causal determinations, and the structural model framework
does not make such distinctions.

Hence, let us attempt to go beyond the ontological commit-
ment of structural causal models. In the proceeding sections,
we will show how to embed structural causal models in the
language of situation calculus.

3 Review of Situation Calculus
The situation calculus is a second-order representation lan-
guage for dynamically changing worlds. For a formal de-
scription of Lsitcalc, see [Reiter, 2000] – for the purposes of
this paper, it suffices to review the following aspects:

Objects: As in first-order logic, we have variables that
represent objects in the world. For example, R1 could repre-
sent the first rifleman.

Actions: All changes to the world are brought about by
actions. Actions are represented by function symbols and
may be parameterized. For example, shoot(X, Y) could rep-
resent the action of object X shooting at object Y .

Situations: A situation is a possible world history. Specif-
ically, a situation is simply a sequence of actions. The ini-
tial situation is denoted by the distinguished constant S0.
There is also a reserved binary function symbol do. do(α, s)
represents the situation that results from performing action
α in situation s. An example situation could be the fol-
lowing: do(die(P), do(shoot(R1, P), do(signal(C), S0))),
which represents the situation that results from C giving a
signal, followed by A shooting at P, followed by P’s death.
Notice that above, the actions occur right-to-left as we read
it. As a shorthand, we can describe the same situation as:
[signal(C), shoot(R1, P), die(P)]. In this form, the start-
ing situation S0 is assumed.

Relational Fluents: Relational fluents are situation-
dependent predicates. They are represented by predicate sym-
bols whose last argument is a situation term. For example,
dead(x, s) could be a fluent describing whether object x is

dead in situation s.
Functional fluents: Functional fluents are situation-

dependent functions. They are represented by function sym-
bols whose last argument is a situation term. For example,
distance(x, y, s) could be a fluent returning the distance be-
tween x and y in situation s.

Situation-independent predicates: We will also need
predicates with are situation-independent. For example,
rifleman(x) could be a predicate returning whether object
x is a rifleman.

We should also draw attention to a special binary predi-
cate symbol v: situation × situation that defines an or-
dering relation on situations. The semantic interpretation of
s v s′ is that s is a subhistory of s′. In other words, s
is some subsequence of the actions of s′ starting from S0.
For example, [shoot(R1, P)] v [shoot(R1, P), die(P)], but
[die(P)] 6v [shoot(R1, P), die(P)].

Once we have established a set of objects, actions, fluents,
and predicates, we then need a way to describe the dynam-
ics of the world. Specifically, we need to describe the ini-
tial state of the world, the conditions under which actions are
permissible, and the effect of actions on the world. This is
accomplished with three distinct sets of axioms.

Initial Database Axioms: An initial database axiom is
a first-order situation calculus sentence that is uniform in S0

(i.e. mentions no situation term except S0). These axioms are
used to describe the initial state of the system, and may in-
clude sentences that contain no reference at all to a situation,
e.g. rifleman(R1).

Action Precondition Axioms: An action precondition
axiom describes the conditions that must hold in order for an
action to be permissible in a given situation. For example,
Poss(shoot(x, y), s) ≡ rifleman(x) ∧ sawSignal(x, s)
states that it is possible for object x to shoot object y in situ-
ation s iff x is a rifleman and has seen a signal to fire.

Successor State Axioms: Successor state axioms are used
to describe how fluents change in response to actions. For ex-
ample, dead(x, do(a, s)) ≡ dead(x, s) ∨ a = die(x) asserts
that object x will be dead after action a if and only if it is
already dead in situation s or if a is x’s death.

We will refer to our collection of objects, actions, fluents,
predicates, and axioms as the situation-calculus specification
of our problem.

Clearly, not all situations of a given situation-calculus
specification are possible, since an action’s precondition ax-
iom may not be satisfied when we attempt to execute it. We
refer to the “possible” situations as executable, and define
the concept formally as: executable(s) = (∀a, s∗) do(a, s∗)
v s ⊃ Poss(a, s∗). In words, a situation is executable if
(and only if) it is possible to perform all of its actions in order
(from S0).

4 A Motivating Example
In this section, we will begin to address the issue of trans-
lating structural causal models into the language of situation
calculus. We will approach this problem by asking the ques-
tion: what should structural causal models look like in sit-
uation calculus? Before proceeding to general formalisms,

Objects:

Actions:

Situation-independent predicates:

Action-precondition axioms:

- R1, R2(riflemen)
- C(captain), P(prisoner)

- signal(x). x signals.
- shoot(x,y). x shoots y.
- die(x). x dies.

- rifleman(x), captain(x), prisoner(x)

- Poss(signal(x),s) captain(x) wantsToSignal(x,s)

- Poss(shoot(x,y),s)

º Ù

º Ù Ù

º Ù Ø

º

º $ Ú

º $ Ú

º Ú

Ø Ø

" Ø Ú Ú

Ø

rifleman(x) prisoner(y) sawSignal(x,s)

- Poss(die(x),s) shot(x,s) dead(x,s)

- wantsToSignal(x,do(a,s)) wantsToSignal(x,s)

- sawSignal(x,do(a,s)) y[a=signal(y)] sawSignal(x,s)

- shot(x,do(a,s)) y[a=shoot(y,x)] shot(x,s)

- dead(x,do(a,s)) a=die(x) dead(x,s)

- rifleman(R1), captain(R1), prisoner(R1), etc.

- (x) (sawSignal(x,S0) shot(x,S0) dead(x,S0))

- wantsToSignal(C), wantsToSignal(R1), etc.

Successor-state axioms:

Initial database axioms:

Fluents:
- wantsToSignal(x,s).
(x wants to signal in situation s).

- sawSignal(x,s).
(x has seen the signal in situation s).

- shot(x,s).
(x is shot (injured) in situation s).

- dead(x,s).
(x is dead in situation s).

Figure 5: Sitcalc specification for Firing Squad scenario.

Figure 6: DAG representing time dependencies between ac-
tions in the Firing Squad scenario.

let us first translate the firing squad causal model, in order to
provide motivation.

We can begin with a situation calculus specification for the
scenario. Figure 5 depicts a possible sitcalc specification for
the firing squad scenario. How does such a specification com-
pare with the corresponding structural causal model? The key
difference is that while the sitcalc specification tells us when
actions are allowable, it does not enforce a deterministic pro-
gression of events. Specifically, while the sitcalc specifica-
tion of the firing squad scenario tells us the conditions under
which a rifleman may fire, it does not state (as the structural
model does) that Rifleman A will fire if the captain signals.
The sitcalc specification thus takes a more general view than
we want. In order to model the progression of events in the
actual scenario, we need to add more to the sitcalc specifi-
cation. We need to specify the situation (out of the many
permissible situations) that we are currently interested in.

In the firing squad scenario, we are interested in the situa-
tion that results from four actions. We can graphically depict
these actions as a directed acyclic graph (DAG), such as the
one in Fig. 6. The arrows in the graph represent time de-
pendency between the actions, e.g. signal(C) occurs before
shoot(R1, P). Such a diagram corresponds to the set of all
situations that follow the partial order that it specifies. We can
choose any of these situations (it does not make a difference
which one we choose) and call it the potential situation. Now
we can show that the sitcalc specification, together with this
situation, enforces a deterministic progression of events.

To extract the actual course of events in the scenario, we try

each action of the potential situation in order. In our example,
we try to execute signal(C). We can (its action precondition
axiom is satisfied). Then we can try to execute shoot(R1, P).
We can also do this. In fact, we can execute each action of our
potential situation in order, hence we conclude that the actual
course of events in the scenario are that the captain signals,
the two riflemen shoot, and the prisoner dies.

The next issue is handling counterfactuals. Say we want to
extract the course of events when the captain does not signal,
yet the second rifleman shoots anyway. For this, we remove
signal(C) from the potential situation, and when we attempt
to execute shoot(R2, P), we do so automatically, regardless
of whether its action precondition axiom is satisfied. In this
case, when we try to execute each action of the potential sit-
uation in order, we cannot execute shoot(R1, P) (its action
precondition axiom is not satisfied), then we automatically
execute shoot(R2, P), and we are able to execute die(P).
Thus we conclude that in the counterfactual scenario, the sec-
ond rifleman shoots and the prisoner dies.

Hence, we see (at least intuitively) how notions of de-
terministic progression of events and counterfactuals can be
modeled with a sitcalc specification and a potential situation.
The last issue is how probabilistic causal models are mapped
into this framework. The key question here is: what is the cor-
respondent of exogenous variables in the situation calculus
framework? The solution is the initial database axioms. Just
as exogenous variables specify the given background condi-
tions for structural causal models, so do the initial database
axioms in situation calculus. Rather than taking the initial
values of the fluents as given, we can put a probability distri-
bution over the possible values of the fluents. For the firing
squad scenario, the only uncertain background variable de-
termines whether the captain signals. Hence, all of the prob-
ability mass would be distributed among two sets of initial
database axioms, differing only by the value assigned to the
wantsToSignal(C) fluent.

5 Formalisms
Given the motivating example from the previous section, let
us proceed to formalize the notion of a situation calculus
causal model. We begin with some preliminary notation.
Definition 1 Let S = [a1, ..., an] be a situation, and let A
be a set of ground action terms. We define S-A as SS−A,
constructed as follows:

1. SS−A ← S0.

2. For i = 1 to n: if ai 6∈ A then SS−A ← do(ai, SS−A)

Definition 2 Let S be a situation, and let a be an action. We
define a ∈ S to mean that (∃s)do(a, s) v S. Similarly, a 6∈ S
means that (6 ∃s)do(a, s) v S.

Intuitively, S−A is the situation S with any mention of the
actions in A removed. a ∈ S means that the action a appears
in the sequence of actions S (recall that a situation is simply
a sequence of actions).

Recall from the previous section that our causal model will
consist of a sitcalc specification (possibly with an incom-
pletely specified initial situation), and a potential situation.
Hence, we need to formally define potential situation.

Definition 3 Given a situation-calculus specification D, a
potential situation is a pair (S, F), where S is a (not nec-
essarily executable) situation of D, and F : {a|a ∈ S} →
{0, 1} is a function that maps each a ∈ S to either 0 or 1.

F associates either a zero or a one to each action of the sit-
uation. These values are flags to ignore the preconditions of a
particular action (as in the example when we force the second
rifleman to shoot, regardless of the captain’s signal). Gener-
ally when initially defining a potential situation, we want F
to be the trivial function that maps all actions of S to 0 (sig-
nifying that none of them are being forced to occur). We will
call this function F0(S). We are now ready to define causal
models in the situation calculus.
Definition 4 A situation calculus causal model (SCCM) is a
pair (D, P), where D is a situation calculus specification
(possibly with an incompletely specified initial situation) and
P is a potential situation of D.

Given an SCCM M = (D, P), we can fully specify the
initial situation with a set U of axioms that fully specify the
values of the fluents of D. We shall use M(U) to denote the
new SCCM (D ∪ U, P).

An SCCM with a fully-specified initial situation would be
the SCCM correspondent of a causal world. We can also de-
fine a probabilistic SCCM as a pair < M, P (U) >, where M
is an SCCM, and P (U) is a probability distribution over sets
of axioms that fully specify the initial situation of M .

To handle counterfactuals in SCCM M =
(D, P = (S, F)), we can define a new causal model
[¬a1, ...,¬am, b1, ..., bn]M where ai, bi ∈ S. The
new model will be the pair (D, P ′ = (S′, F ′)), where
S′ = S − {a1, ..., am} and F ′ : {a|a ∈ S′} → {0, 1} maps
the actions of S′ to {0, 1} such that F ′(a) = 1 iff F (a) = 1
or (∃j)(a = bj). Intuitively, we remove the actions from P
that we want to force not to occur, and we flag those actions
of P that we want to make sure to happen, regardless of their
preconditions.

Now we introduce the key operator that extracts the actual
course of events in a particular causal model.
Definition 5 Given a situation calculus causal model M =
(D, P = ([a1, ..., an], F)) (with a fully specified initial situ-
ation), the natural executable subsituation NES(M) is con-
structed iteratively as follows:

1. NES(M)← S0.

2. For i = 1 to n: if (Poss(ai, NES(M)) or F (ai) = 1)
then NES(M)← do(ai, NES(M)).

Essentially, we attempt to perform each action of the po-
tential situation in order. If it is possible to perform the action
at each given step (or if the action is being forced to occur),
we add it to the natural executable subsituation; if not, we
omit it. Semantically, the natural executable subsituation of a
causal model corresponds to the actual course of events under
that model. Notice that M must have a fully specified initial
situation, so that the action preconditions can be successfully
evaluated.

Given the preceding definition of an SCCM, we can con-
struct a logical language for talking about counterfactuals.

Syntax: We begin with a sitcalc specification D, and
define our language with respect to D. We wish to formu-
late three types of queries: whether a relational fluent holds,
whether a functional fluent has a certain value, and whether
an action occurs. Thus, we define a query term as any ground
action term of D, or any ground fluent term of D, with the sit-
uation argument removed. For example, for our firing squad
sitcalc specification, dead(P) would be a query term, rather
than dead(P, s). Define Q(D) as the set of all possible query
terms of D.

Now define a basic causal formula of our language as one
of the form [¬a1, ...,¬am, b1, ..., bn]q(U), where ai, bi are
actions of D, q ∈ Q(D), and U is a set of axioms uniform
in S0 that, together with D, completely specify the initial sit-
uation (i.e. all ground fluents are assigned truth values for
S0). Our language L(D) is the set of Boolean combinations
of basic causal formulas.

Semantics: A formula in L(D) is true or false in
SCCM M = (D, P). We write M |= ϕ if causal formula
ϕ is true in M . For a query term q = R(X1, ..., Xk)
where R is a relational fluent of D, we have M |=
[¬a1, ...,¬am, b1, ..., bn]q(U) iff D ∪ U |= R(X1, ..., Xk,
NES([¬a1, ...,¬am, b1, ..., bn]M(U))). Similarly for a
query term q = G(X1, ..., Xk) where G is a functional flu-
ent of D, we have M |= [¬a1, ...,¬am, b1, ..., bn]q(U)
iff D ∪ U |= G(X1, ..., Xk, NES([¬a1, ...,¬am,
b1, ..., bn]M(U))). Finally, for a query term q = a
where a is a ground action term of D, we have M |=
[¬a1, ...,¬am, b1, ..., bn]q(U) if a ∈ NES([¬a1, ...,¬am,
b1, ..., bn]M(U)).

The truth value of Boolean combinations of causal formu-
las are defined in the natural way. We say M |= ϕ1 ∧ ϕ2 if
M |= ϕ1 and M |= ϕ2. Also, M |= ¬ϕ if ¬(M |= ϕ).

Once we have this language for expressing counterfactu-
als in an SCCM, an extension for probabilistic counterfactu-
als easily follows. Namely, Pr([¬a1, ...,¬am, b1, ..., bn]q)
= ΣU (Pr(U)∗ [¬a1, ...,¬am, b1, ..., bn]q(U)). The proba-
bility of a causal formula is the sum of the probabilities of the
U (complete specifications of the initial situation) in which
the formula holds.

Example For our firing squad example, we have an SCCM
M = (D, P), where D is the sitcalc specification in
Fig. 5 (without the axiom wantsToSignal(C, S0)), and
P = [signal(C), shoot(R1, P), shoot(R2, P), die(P)].
Let us evaluate the formula [¬signal(C),
shoot(R2, P)]dead(P)(U), where U is the single-
ton set with axiom wantsToSignal(C, S0) (no-
tice again the correspondence with exogenous vari-
ables in the structural causal model framework).
M |= [¬signal(C), shoot(R2, P)]dead(P)(U) if
dead(P, NES([¬signal(C), shoot(R2, P)]M(U)))
holds. Indeed it does, since NES([¬signal(C),
shoot(R2, P)]M(U)) = [shoot(R2, P), die(P)]. Thus we
conclude that if the captain does not signal, and yet the second
rifleman still (somehow) shoots, the prisoner will still be dead
when all is said and done. We can also consider probabilistic
counterfactuals. Take probabilistic SCCM < M, P (U) >,
where M is the SCCM defined above, and P (U) is a distri-

Structural causal SCCM
model element equivalent

Exogenous variables Initial database axioms
Endogenous variables
(enduring conditions)
Endogenous variables
(transitional events)
Functional mechanisms
(for enduring conditions)
Functional mechanisms
(for + potential situation

Fluents

Actions

Successor-state axioms

Action precondition axioms
transitional events)

1.
2.

3.

4.

5.

Figure 7: Parallels between structural causal models and SC-
CMs.

bution over the two singleton sets {wantsToSignal(C, S0)}
and {¬wantsToSignal(C, S0)}. Evaluating
Pr([¬shoot(R2, P)] dead(P)) = ΣU ([¬shoot(R2, P)]
dead(P)(U) ∗ Pr(U)), we see that the probability that
the prisoner ends up dead when the second rifleman is
forced not to shoot is equivalent to the probability of
wantsToSignal(C, S0), i.e. the prior probability that the
captain wants to signal.

Although we have been drawing parallels between the
SCCM framework and the structural model framework as we
go along, at this point it might be helpful to summarize these
correspondences. In Fig. 7, we show the key components of
structural causal models, and highlight their analogs in terms
of situation calculus causal models.

6 Further Examples
In this section, we revisit two simple examples which were
discussed in Section 2, and show how their representation as
SCCMs can provide the expressivity needed to resolve the
problems they face in the structural framework. Notice that
for questions of actual cause, we are usually concerned ex-
clusively with a specific causal world, hence in the following
examples, all sitcalc specifications will have completely spec-
ified initial situations.
Example Let us formulate the candle story as
an SCCM. The sitcalc specification D (with a
completely specified initial situation) is given in
Fig. 8. Our potential situation will be P = (S =
[blow(A, C), extinguish(C), waxRunsOut(C)], F0(S))
(simply the possible events of our scenario in temporal
order). This gives rise to SCCM M = (D, P). Recall that
the problem with using the structural model approach was
that we could not distinguish between the act of extinguish-
ing (transitional event) and the state of being extinguished
(enduring condition). In the SCCM representation however,
this is not a problem, since transitional events and enduring
conditions are represented as two different classes of ob-
ject: actions and fluents, respectively. Although providing
a definition of actual cause in the SCCM framework is
outside of the scope of this paper, it might be instructive
to show how certain queries about this model look in the
logical representation developed in the previous section.
For example, to ask whether the candle would have been
manually extinguished had A not blown when he did, we ask

Objects:

Actions:

- A(man)
- C(candle)

- blow(x,y). (x blows at y).
- extinguish(x). (x extinguishes).
- waxRunsOut(x). (x runs out of wax).
Action-precondition axioms:

Successor-state axioms:

Initial database axioms:

- Poss(blow(x,y),s) human(x) candle(y)

- Poss(extinguish(x),s) candle(x) blownAt(x,s)

- Poss(waxRunsOut(x),s) candle(x)

- burning(x,do(a,s)) [a=extinguish(x) a=waxRunsOut(x)] burning(x,s)

- blownAt(x,do(a,s)) y[a=blow(y,x)] blownAt(x,s)

- human(A), candle(A), human(A), candle(C)

- burning(C,S0), burning(A,S0), (x) blownAt(x,S0)

º Ù

º Ù

º

º Ø Ú Ù

º $ Ú

Ø Ø

Ø " Ø

Fluents:

Situation-independent predicates:

- burning(x,s).
(x is burning in situation s).

- blownAt(x,s).
(x is being blown at in situation s).

- human(x), candle(x).

Figure 8: Sitcalc specification for the Candle scenario.

Objects:

Actions:

- A1, A2(assasins), B1, B2(bullets)
- S(bystander), T(target)

- shoot(x,y,z). (x shoots y at z).
- stop(x,y). (x stops y).
- die(x). (x dies).
Action-precondition axioms:

Successor-state axioms:

Initial database axioms:

- Poss(shoot(x,y,z),s) human(x) bullet(y) human(z)

- Poss(stop(x,y),s) human(x) bullet(y) heroic(x) (z)inFlight(y,z,s)

- Poss(die(x),s) (y)[inFlight(y,x,s) bullet(y) human(x)]

- inFlight(x,y,do(a,s)) z)[a=shoot(z,x,y)] z)[a=stop(z,x) inFlight(x,y,s)]

- human(A1), bullet(A1), etc.

- (x)(heroic(x)), (x)(y)(inFlight(x,y,S0))

º Ù Ù

º Ù Ù Ù $

º $ Ù Ù

º ($ Ú Ø($ Ù

Ø

" Ø " " Ø

Fluents:

Situation-independent predicates:

- inFlight(x,y,s).
(x is en route to y in situation s).

- human(x), bullet(x), heroic(x).

Figure 9: Sitcalc specification for the Bystander scenario.

M |= [¬blow(A, C)]extinguish(C)(). To ask whether the
candle would have been burning at the end of the situation
(i.e. if the room would have been dark), had A not blown
when he did, we ask M |= [¬blow(A, C)]burning(C)().
The reader can verify can the former query evaluates to false,
while the latter query evaluates to true, using the tools of the
previous section. The key idea here is that since transitional
events and enduring conditions are two distinct types of
object, a definition of actual cause in the SCCM framework
can exploit this distinction, while a definition of actual cause
in the structural model approach cannot.

Example Now let us formulate the bystander story
as an SCCM. We have M = (D, P), where D
is the sitcalc specification given in Fig. 9, and
P = (S = [shoot(A1, B1, T), shoot(A2, B2, T),
stop(S, B1), die(T)], F0(S)). The difficulty with the
structural model approach in this example is that it does not
discriminate between the occurrence and non-occurrence of
an event (both are indistinguishable value assignments to
a random variable), a semantic distinction that can prove
extremely helpful in making causal determinations (see Sec-
tion 2). In the SCCM framework, a fundamental difference
is drawn between an action occurring and not occurring.
Namely, the action appears in the NES when it occurs,
and does not otherwise, e.g. stop(S, B1) 6∈ NES(M),
indicating its non-occurrence. A definition of actual cause
in the SCCM framework can be designed to take advantage
of this distinction. Another lesson to be drawn here is the

utility of objects. Using this formulation of the story, it
is meaningful to say things like “The first assasin’s bullet
reached the man and killed him.” A definition of actual cause
can potentially exploit the extra information gleaned from
knowing whose bullets penetrated the man’s body.

7 Conclusion
Structural causal models are excellent tools for many types
of causality-related questions. Nevertheless, their limited ex-
pressivity render them less than ideal for some of the more
delicate causal queries, like actual causation. These queries
require a language that is suited for dealing with complex,
dynamically changing situations. Here, we have outlined a
new type of causal model, based on the language of situation
calculus. We have developed the notions of a causal model
in this language, and drawn parallels between our model and
its structural analog. With this new approach, we can lever-
age the expressive power of situation calculus in attempts to
capture complex concepts of causation that have not yet been
successfully defined. The next step is to successfully define
actual cause within this framework and to demonstrate com-
patibility with intuition. We believe the framework shows
promise in this regard.

Acknowledgements
This work was supported by MURI grant N00014-00-1-0617.

References
[Costello and McCarthy, 1999] Tom Costello and John McCarthy.

Useful counterfactuals. Linkoping Electronic Articles in Com-
puter and Information Science, 3(2), 1999.

[Gustafsson and Doherty, 1996] J. Gustafsson and P. Doherty. Em-
bracing occlusion in specifying the indirect effects of actions.
KR, 1996.

[Hall, 2004] Ned Hall. Two concepts of causation. In Causation
and Counterfactuals, pages 225–276, Cambridge, MA, 2004.
MIT Press.

[Halpern and Pearl, 2001] Joseph Halpern and Judea Pearl. Causes
and explanations: A structural-model approach – part i: Causes.
UAI, pages 411–420, 2001.

[Hopkins and Pearl, 2003] Mark Hopkins and Judea Pearl. Clarify-
ing the usage of structural models for commonsense causal rea-
soning. In Proceedings of the AAAI Spring Symposium on Log-
ical Formalizations of Commonsense Reasoning, pages 83–89,
Menlo Park, CA, 2003. AAAI Press.

[Lin, 1995] F. Lin. Embracing causality in specifying the indirect
effect of actions. IJCAI, pages 1985–1991, 1995.

[McCarthy, 1963] John McCarthy. Situations, actions, and causal
laws. Technical report, Stanford University, 1963.

[Pearl, 2000] Judea Pearl. Causality: Models, Reasoning, and In-
ference. Cambridge University Press, 2000.

[Reiter, 2000] Raymond Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical Sys-
tems. MIT Press, 2000.

[Thielscher, 1999] M. Thielscher. From situation calculus to flu-
ent calculus: State update axioms as a solution to the inferential
frame problem. Artificial Intelligence, 111:277–299, 1999.

