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ABSTRACT 
 
Vector logic is a matrix-vector representation of the logical calculus inspired in neural 
network models. In this algebraic formalism, the truth values map on orthonormal Q-
dimensional vectors, the monadic operations are represented by square matrices, and the 
dyadic operations produce rectangular matrices that act on the Kronecker product of the 
vector truth values. In this formalism, the theorems and tautologies of classical logic are 
demonstrated using the rules of matrix algebra. In the present work, we analyze a three-
valued vector logic that adds to the “yes” and “no” vectors, a third “uncertain” vector that 
represents the truth value corresponding to undecidable propositions. Fuzziness is produced 
both via linear combinations of “yes” and “no” vectors, and by the supplementary 
dimension of the logical vector subspace.  We describe the basic matrix operators, and we 
show that for this three-valued vector logic, the modalities “possibility” and “necessity” are 
simple square matrices instead of infinite recursive processes. Finally, we explore the 
application of this formalism to represent the complex valued operator NOT , and the 
usefulness of vector logic to understand the powers and limitations of some reversible 
logical computations. 
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1. INTRODUCTION 

   The logical abilities integrate the repertoire of cognitive performances of the human 

brain, and the understanding of the nature of these abilities is of the first importance. Since 

the foundational investigations of George Boole [1], the searching for this understanding 

generates an unexpected field of convergence of biological, philosophical and technological 

contributions. Engineers are currently developing conceptual and technical instruments, in 

particular artificial neural networks, which originate in the intersection between 

philosophical logic and theoretical neuroscience (see [14], [15]).  

 

   During the last decades, linear algebra has become a basic formalism to analyze the 

properties of neural network models [2], [15], [18], [26], [27]. In this framework, matrices 

and vectors have been used to represent logical operations sustained by associative 

memories [19].  Some recent publications are exploring the potentialities of vectorial 

representations to approach different aspects of logic. In Dick [8], the author uses vectors 

and matrices to extend the logical formalisms to the complex domain; the work by 

Westphal and Hardy [29] actualize a geometrical approach (suggested by Leibniz) where 

vectors are used to construct representations for many logical rules, a formalism developed 

by these authors to explore the computational potentialities of optical logical gates.     

 

    Based in biologically inspired neural models, we developed some years ago a formalism 

named “vector logic”. In this vector logic, truth values map on orthonormal Q-dimensional 

vectors, monadic operations generate square matrices, and dyadic operations produce 

rectangular matrices that act on the Kronecker product of the two truth values [20], [27]. 

Within this formalism, the theorems and tautologies of classical logic are demonstrated 

using the rules of matrix algebra. In the two-valued domain, this vector logic can very 

naturally generate a fuzzy logic closely related with Lukasiewicz and Kleene three-valued 

logics. This fuzzy logic appears when the matrix operators act over truth values represented 

by linear combinations of “yes” and “no” vectors [21], [22], [23]. Vector logic is an 

algebraic logic that introduces very naturally an operator approach, a fact that could confer 

to this construction an additional interest. 
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      Until now, vector logic has been restricted to vector spaces of dimension two. 

Nevertheless, the potentialities and usefulness of larger dimensionalities remain to be 

explored. Consequently, the objective of the present article is to extend the vector logic 

representation in new directions. We begin with a brief mention to some historical facts 

related with the interactions between algebraic logic and neural modeling.  After that, we 

introduce the notion of classificatory matrix, a device that establishes a correspondence 

between semantic vectors and truth-values. We describe the basic formalism, and we 

analyze some of the properties of two and three-dimensional vector logic, showing how this 

algebra can be used to represent the classical three-valued logics of Lukasiewicz and 

Kleene. We also show that the basic modal operators “possibility” and “necessity” are 

generated by completely different procedures in two and three-valued vector logics.  

Finally, we explore the extension of vector logic formalism to the complex domain and its 

usefulness to understand the powers and limitations of computations performed by 

reversible logical gates. 

 

2. ALGEBRAIC LOGIC AND NEURAL MODELS 

Nowadays, the mathematical analysis of the logic has reached a high level of conceptual 

and technical sophistication. This level is the consequence of a deep formalization program 

that has produced, together with many other important results, some of the highlights of 

modern computational theory. Clearly, the contributions of Gödel and Turing are between 

the most important works in the history of science. In another flank, several recent 

pragmatic contributions to parallel computation have begun to use the theory of the neural 

networks. As we are going to argue in what follows, the initial neural network theories 

were strongly based in the ideas and mathematics of George Boole and Charles S. Peirce. 

To exemplify the pragmatic achievements of these theories, we mention the contemporary 

design of adaptive programs able to implement the ‘cognitive computations” of virtuous 

players in strategy games (eg. the backgammon).  

   These two types of contributions reflect, with different emphasis, two conceptual 

approaches. These approaches approximately map on the theoretical orientations called 



 4

“mathematical logic” an “algebraic logic”. A deep analysis of the subtle relationships 

between mathematical logic and algebraic logic is in [12]. Using an extremely schematic 

description, we can say that one approach focus the logic as being the basis of the 

mathematics; on the contrary, in the other approach, the mathematics is considered as a 

source of formalisms able to model the logical operations. Here we will elude all 

philosophical discussions, but to describe the nature of these two different approaches, let 

us to quote in extenso a celebrated text of Jorge Luis Borges: “Coleridge observes that all 

men are born Aristotelians or Platonists. The latter feel that classes, orders, and genres are 

realities; the former, that they are generalizations. For the latter, language is nothing but 

an approximative set of symbols; for the former, it is the map of the universe. The Platonist 

knows that the universe is somehow a cosmos, an order; that order, for the Aristotelian, 

can be an error or a fiction of our partial knowledge. Across the latitudes and the epochs, 

the two immortal antagonists change their name and language: one is Parmenides, Plato, 

Spinoza, Kant, Francis Bradley; the other, Heraclitus, Aristotle, Locke, Hume, William 

James.” [2]. 

   In the present paper we adopt an “Aristotelian” approach, looking for simple but powerful 

representations for the logical functions using matrix operators based in neural models of 

associative memories.  The introduction by Lukasiewicz of the parenthesis-free notation (or 

Polish notation) can be considered as a first step towards the introduction of an operator 

theory in logic. In this notation, a dyadic operation ω  between propositions p and q , 

ie. qp ω , become expressed as qpΩ , where Ω  can be interpreted as an operator acting on 

two variables p and q.  A full operator theory for logical operations requires that the 

operators by themselves become algebraic objects susceptible of being operated between 

them. In this sense, let us mention an interesting historical point. George Boole was an 

expert and an innovator in the application of operator methods to the theory of differential 

and difference equations [7]. Nevertheless, his logical algebra was mainly an algebra 

concerning operations and not operators. Only few years after Boole’s  “Laws of Thought”, 

Arthur Cayley published the foundational article of matrix theory.  The application of 

Cayley’s matrices to the logical theory was suggested by Peirce and performed by Inving 

Copi in the framework of the Peirce’s algebraic theory of relations [5].  
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   The algebra of the logic, rooted mainly in the mathematical constructions of Boole and 

Peirce, has been decisive for the creation, in the following century, of the first mathematical 

theories of neuronal networks. These theories assumed that formal neurons are connected in 

networks that exhibit large and versatile computing abilities. The first influential theory of 

neuronal networks, published by McCulloch and Pitts in 1943, establishes that any formal 

neuron in the network was a logical device that computed Boolean inputs. The crucial 

result of this theory was that any well formed formula (wff) of propositional calculus can 

be implemented by means of a network of formal neurons [17]. In addition, these authors 

show that networks having formal neurons with recursive connections became able to 

implement existential and universal quantifiers, hence creating the conditions to install in 

the networks a first order predicate calculus. In a sense, the neural model designated by 

McCulloch and Pitts seems to crystallize the objective enunciated by Boole in the first 

phrase of his book “An Investigation of the Laws of Thought”: “The design of the following 

treatise is to investigate the fundamental laws of those operations of the mind by which 

reasoning is performed; to give expression to them in the symbolic language of a Calculus, 

and upon this foundation to establish the science of Logic and construct its method.” [1]. 

  In the theory of neural networks, Boolean nets were followed by matrix associative 

memories. Both approaches are the basis of the modern neural network theory. The matrix 

memories are distributed memories that store information in the structure of their numerical 

coefficients [15]. The matrix memories have versatile computing abilities, and can perform 

parallel processing of data coded in vectors. The matrix memories are naturally governed 

by the laws of matrix algebra and consequently, they are operators capable of acting over 

vectorial inputs; in addition, they are also capable of interacting with other matrix 

memories via standard matrix operations. Among these computing abilities, let us mention 

the capacity to build up logical gates [20] [22] [23].  

   Vector logic is the result of using these matrix logical gates to re-describe the basic and 

classical results of elementary logic. A point of interest is that Boole’s algebraic logic can 

be embedded in the vector logic formalism [21]. In addition, the rules of matrix algebra 

produce that in the vector logic framework, the order of variables and operators involved in 
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a wff of the propositional calculus, is exactly the order emerged from Polish notation, a 

confirmation that Lukasiewicz’s notation was a germ of an operator theory [20] [23], 

1996). 

   Assuming that in the neural realm concepts map on vectors [25], we are going to 

introduce here some definitions. 

 

Definition 2.1. Reduced conceptual space. It is a set of conceptual normal (ie. module = 

1) vectors { }n1 c,,cRCS L=  such that for each RCSc∈  only one complementary 

vectorial concept RCS'c∈  exists. If vector c represents the concept “book”, 'c represents 

“no-book”. Here we have 'cc ⊥ . 

 

Definition 2.2. Extended conceptual space. It is a set of conceptual vectors 

{ }n1 c,,cECS L=  such that for each ECSc∈  a complementary vectorial concept 

ECS'c∈ exists, but there exists also a vector ECS''c ∈  . If vector c represents the concept 

“book” and 'c  represents “no-book”, vector ''c represents a concept partially compatible 

with “book” and “no-book”, eg. the oral version of a legend, or an electronic-book. We 

assume that 'cc ⊥ , ''cc ⊥  and  ''c'c ⊥ . 

 

Definition 2.3. Classificatory Matrix. It is a matrix F(concept) that assigns to each 

vectorial concept, a vectorial truth-value. In the case of a Reduced Conceptual Space, we 

define 

TT 'ncsc)c(F +=  ,   with RCS'c,c ∈ . 

In the case of an Extended Conceptual Space, we have 

TTT ''hc'ncsc)c(F ++=  ,    with ECS''c,'c,c ∈ . 

The vectors s,n,h are othonormal Q-dimensional real vector that represent truth-values: s 

corresponds to “true” (or “yes”), n to “false” (or “not”) and h to “uncertain”. 

These classificatory matrices are devices capable to decide if a normalized neural vector f 

represents a category providing the answers “yes”, “not” or “uncertain”. For instance, if  

F(c)f = s, then f is identical to categorical vector c. These matrices establish a natural link 

between cognitive categorization and logical systems based on vectorial truth-values.  
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3. DEFINITIONS IN BASIC LOGIC. 

   In this section we present the basic definitions that prepare us for the particular 

developments presented in the next sections.  

 

Definition 3.1. Truth-values. We define as “truth-values” a set of m abstract objects 

m1 t,,t L  that allows one to assign an abstract (i.e. qualitative or quantitative) value to a 

given proposition. The set of truth-values  

 

{ }m1m t,,t L=τ  

allows to define a m-valued logic. Particular cases are { }f,t2 =τ  (t = ”true”, f = “false”) 

and { }u,f,t3 =τ  (t = ”true”, f = “false”, u = “uncertain”) that allow to define two-valued 

and three-valued logical systems, respectively. 

Definition 3.2. Monadic operations. They are the applications of the form 

mm:)m(Mon ττ → , 

and let  { })m(MonMm ≡ . 

Definition 3.3. Dyadic operations. They are functions of the form 

mmm:)m(Dyad τττ →×  , 

being  ×  the Cartesian product. 

Definition 3.4. Elemetary m-valued logic. It is the following triad   
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mmmm D,M,EL τ=   

with  { })m(DyadDm ≡ . 

Definition 3.5. Particular elementary m-valued logic. It is a triad where some particular 

subset of monadic and dyadic operations have been selected: 

),)m(Dyad,)m(Dyad(),,)m(Mon,)m(Mon(,PEL 2121
mm LLτ=  . 

For instance, the particular elementary logic 

{ } ),(),(,1,0PEL2 ×+−=   

is the classical Boolean logic over the symbols 0 and 1, with the monadic complementation 

10 =− and 01 =−  together with the dyadic addition +  (addition modulo 2 if symbols 0 

and 1 are natural numbers) and the dyadic multiplication × . 

   A vector logic is an algebraic model of elementary logic where the truth-values map on 

Q-dimensional vectors and the monadic and dyadic operations are executed by matrix 

operators. Now we define the basic notions. 

Definition 3.6. m-dimensional Vector Logic. This vector logic is a systems of logic 

consisting in 

1. A set of m Q-dimensional normal column vectors  

{ }m1m v,,vV L=   ,  1Q
i Rv ×∈ , 
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2. A set of monadic matrices 

mm VV:M →μ    ,     QQRM ×∈μ  

3. A set of dyadic matrices 

mmm VVV:D →⊗δ    ,     
2QQRD ×∈δ , 

where mm VV ⊗  is the tensor product of mV  . The elements of this tensor product are the 

Kronecker products of the vectors belonging to mV : mmji VV)vv( ⊗∈⊗ , 

mji Vv,v ∈∀ .   

 

   The Kronecker product is essential in our vector logic, and is defined as follows [11]. 

Given two matrices nmij ]a[A ×=  and qpij ]b[B ×=  , the Kronecker product BA ⊗  is 

given by 

)nq()mp(ij ]Ba[BA ×=⊗ . 

   Two basic properties are the following: 

(P1)  TTT BA)BA( ⊗=⊗  

(P2)  )'BB()'AA()'B'A)(BA( ⊗=⊗⊗  . 

Property (P2) requires conformable matrices (or vectors). In the case of two r-dimensional 

column vectors a and c, and two r’-dimensional vectors b and d, we have 

d,bc,a)db)(ca()dc()ba( TTT ==⊗⊗ , 

an important result for the operation of the dyadic vector logic functions.  

 

     In the following, we are going to use these basic definitions to construct two- and three-

dimensional vector logics and to explore many interesting properties. 
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4. VECTOR LOGIC IN A TWO-DIMENSIONAL SUBSPACE. 

   Let us define a propositional calculus as a classification system that assigns a truth value 

to each proposition. In this case, the truth values are: true t (or “yes”), false f (or “no”). 

Hence, { }f,t2 =τ . This classical dyadic logic possesses 4 monadic operations and 16 

dyadic operations. The establishment of a two-dimensional vector logic begins with the 

existence of a correspondence between the abstract truth-values t and f, and two Q-

dimensional normalized column vectors: st a  and  nf a , 1QRn,s ×∈  , with 2Q ≥ .  

Hence, { }n,sV2 = .  

 

   We can consider that this kind of vector logic is the result of a classificatory matrix F(c) 

acting on a reduced conceptual space RCS (see Definition 2.1). In the evolution of 

cognition, this RCS is the initial fundamental scenario. A sequel of this fact is a well 

defined two-valued logic with uncertainty not included in the potential repertoire of truth-

values.  In a scalar representation of the emerged logic, with a set of truth-values 

{ }f,t2 =τ , this is the end of the story. But inside the vector representation, the set of truth-

values { }n,sV2 =  and the associated matrix logical gates, allow to compute linear 

combinations of vectors s and n, and these linear combinations of vectors become a first 

natural representation for uncertain truth-value assignments.   

 

4.1. BASIC OPERATORS. 

 The scalar product between Q-dimensional column vectors, v,uvuT = , is the basic 

operation behind the interesting properties displayed by vector logic. The orthonormality 

between vectors s and n implies that 1v,u =  if u = v, and 0v,u =  if vu ≠ , 2Vv,u ∈  

 

   In this two-dimensional vector logic, the two basic monadic operators 

 

22 VV:M →μ    ,     QQRM ×∈μ  
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are the identity and the negation, defined as follows: 

M1) Identity. A logical identity peqpι corresponds with a logical matrix behaving as 

follows: 22 Vu,uuI ∈=  ; the structure of this matrix is 

 

TT
2 nnssI += ; 

 

notice that  ss,nns,ssIs =+=  and nIn = , due to the orthogonality of s respect to 

n. 

  

M2) Negation. The classical negation p¬  corresponds with the matrix operation 

22 Vu,uN ∈ , being 

 

TT
2 snnsN +=  . 

 

Hence nsN2 =   and snN2 = . Notice that involutory character of the logical negation, 

peq)p(¬¬ ,  corresponds with the fact that 2
2

2 I)N( =  (but remark that the vector 

logic identity matrix is not generally an identity matrix in the sense of matrix algebra, 

except in very special cases).  

 

   Between the 16 two-valued dyadic operators 

222 VVV:D →⊗δ    ,     
2QQRD ×∈δ , 

we are going to begin with the conjunction and the disjunction. 

 

D1) Conjunction. The classical conjunction between two propositions  qp ∧  is 

represented by a matrix acting over two vector truth-values: 22 Vv,u,)vu(C ∈⊗  .The 

matrix 2C  that reproduces the features of the classical conjunction truth-table is: 
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TTTT
2 )nn(n)sn(n)ns(n)ss(sC ⊗+⊗+⊗+⊗= . 

 

This matrix behaves as follows: s)ss(C2 =⊗ ; n)nn(C)sn(C)ns(C 222 =⊗=⊗=⊗ .  

 

D2) Disjunction. The classical disjunction qp ∨  corresponds with the matrix 

 

TTTT
2 )nn(n)sn(s)ns(s)ss(sD ⊗+⊗+⊗+⊗= , 

 

being s)sn(D)ns(D)ss(D 222 =⊗=⊗=⊗  and  n)nn(D2 =⊗ . 

In the classical two-valued logic, the conjunction and the disjunction operations satisfy the 

De Morgan Law: )qp(eqqp ¬∨¬¬∧  (and also is true the converse: 

)qp(eqqp ¬∧¬¬∨ ). In the two-dimensional vector logic this Law is also verified 

 

)vNuN(DN)vu(C 22222 ⊗=⊗  , 

but the Kronecker product allows the following factorization: 

)vu()NN(DN)vu(C 22222 ⊗⊗=⊗ . 

In this case we can prove directly, using the previous matrix definitions that in the two –

dimensional vector logic, that the De Morgan Law is not only a law concerning operations, 

but also a law involving operators: 

 )NN(DNC 22222 ⊗= . 

A detailed study of this logic as an operator logic has been published in [23]. 
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   These matrix expressions for conjunction and disjunction allow us to define the matrices 

222 CNS = and 222 DNP = , corresponding to the Sheffer (or NAND) and the Peirce (or 

NOR) gates, respectively. 

 

D3) Implication.   The “material” implication can be defined in classical logic using the 

expression qpeqqp ∨¬⇒ . In vector logic, the translation of this equivalence leads to a 

matrix 2L  that represents vector logic “material” implication: 

)IN(DL 2222 ⊗=  . 

The explicit expression for this implication is 

TTTT
2 )nn(n)sn(s)ns(n)ss(sL ⊗+⊗+⊗+⊗= , 

that satisfies the classical properties of classical implication: 

s)nn(L)sn(L)ss(L 222 =⊗=⊗=⊗  and n)ns(L2 =⊗ . 

 

D4) Symmetric operators: Equivalence and Exclusive-Or. The equivalence qp ≡  

corresponds in vector logic with the following matrix: 

TTTT
2 )nn(s)sn(n)ns(n)ss(sE ⊗+⊗+⊗+⊗= . 

Hence, s)nn(E)ss(E 22 =⊗=⊗  and  n)sn(E)ns(E 22 =⊗=⊗ . 

The Exclusive-Or is the negation of the equivalence, )qp( ≡¬ , and is represented by the 

matrix  222 ENX =  which explicit expression is 

TTTT
2 )nn(n)sn(s)ns(s)ss(nX ⊗+⊗+⊗+⊗= ; 
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consequently n)nn(X)ss(X 22 =⊗=⊗  and  s)sn(X)ns(X 22 =⊗=⊗  . 

 

4.2 MANY-VALUED TWO-DIMENSIONAL LOGIC. 

In the case of two-valued vector logic, uncertainties in the truth values are introduced via 

vectors nsf γ+δ= , with [ ] 1,1,0, =γ+δ∈γδ . These vectors are processed by “Boolean”, 

non many-valued, matrix operators that produce linear combinations of s and n as outputs. 

The many-valued character of this logic appears in the structure of the coefficients of these 

linear combinations [20] [23].  In particular, this situation generates a class of probabilistic 

logic, which maps on the scalar coefficients that weights vector s. For the case nsu β+α=  

and n's'v β+α=  the many-valued (or “fuzzy”) logic obtained from any two-valued matrix 

G is given by its projection over vector s : 

 

)vectors(Gs)scalars(Val T= . 

 

Thus, we have the following results: 

α−==α 1uNs)(NOT 2
T  

'')vu(Ds)',(OR 2
T αα−α+α=⊗=αα  

')vu(Cs)',(AND 2
T αα=⊗=αα  

)'1(1)vu(Ls)',(IMPL 2
T α−α−=⊗=αα  

'2')vu(Xs)',(XOR 2
T αα−α+α=⊗=αα  

 

With these equations we can further define the corresponding negations: 

 

)',(OR1)',(NOR αα−=αα  

)',(AND1)',(NAND αα−=αα  

)',(XOR1)',(EQUI αα−=αα  

 



 15

It is  well known that the searching of a truth-functional representation for the modal 

operations lead Jan Lukasiewicz to construct, around 1920, a three-valued logic [16] (see 

Section 5.6). The scalar projections of our two-valued vector logic generate an infinite-

valued scalar logic that allows an operational construction of the logical modalities 

“Possibility” and “Necessity” (the full development of this approach was published in 

[22]). Let us assume the existence of an infinite set with binary evaluations concerning a 

proposition P : ,...}p,...,p,p{ n21  , with }f,t{pi ∈ . Then, the proposition “P is possible”, 

P∃ , can be represented by 

....p....ppP n21 ∨∨∨∨=∃  , 

or by the recursive process  

n1n1n QpQ ∨= ++   ,  n = 1, 2, ... 

with 11 pQ = . In this process, the possibility P∃ is the limit of nQ for ∞→n . 

 

   Let us mention in passing, that the McCulloch-Pitts neural model [17] implement this 

recursive process using binary threshold neurons able of computing the AND and the OR. 

In the matrix recursion that we are going to describe, the place of threshold binary neurons 

is filled by logical matrix with the structure of associative memories. 

 

   The matrix version of this process is as follows: 

 

])u[u(D]u[ n1n21n ∃⊗=∃ ++  

 

with 11 u]u[ =∃ , being in general ]1,0[,n)1(su iiii ∈αα−+α= . The scalar projection of 

]u[lim]u[ n
n

∃=∃
∞→

 is given by the infinite product 

 

K)1)(1)(1(1]u[s 321
T α−α−α−−=∃  ; 

 

this product can be condensed in a compact geometrical mean expression: 
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])1(1[lim]u[s n
n

T α−−=∃
∞→

 . 

Hence 

⎩
⎨
⎧

≠α
=α

=∃
0iff1
0iff0

]u[sT   . 

 

The proposition “P is necessary”, P∀ , can be represented using a concatenated conjunction 

....p....ppP n21 ∧∧∧∧=∀ , 

or by the limit for ∞→n  of the recursive process 

n1n1n RpR ∧= ++   ,  n = 1, 2, ... 

with 11 pR =  . The matrix version is: 

 

])u[u(C]u[ n1n21n ∀⊗=∀ ++  

 

where 11 u]u[ =∀  ( ]1,0[,n)1(su iiii ∈αα−+α= ). The scalar projection of 

]u[lim]u[ n
n

∀=∀
∞→

 is the infinite product 

 

K321
T ]u[s ααα=∀ , 

 

and the limit geometrical mean is 

 

n
n

T lim]u[s α=∀
∞→

 . 

 

This limit produces the classical scalar expression for the necessity operator 

 

⎩
⎨
⎧

=α
≠α

=∀
1iff1
1iff0

]u[sT   . 

 

We recall that these modal operators are linked by the well known “Aristotle’s theorem”:  
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]u[]u[ ¬∃¬=∀ . It is easy to prove that, as a consequence of De Morgan Law, both the 

matrix equations and the scalar projections satisfy this theorem [22].  

 

 5. THREE-VALUED VECTOR LOGIC. 

   Let us consider that a propositional calculus results from a classification system that 

assigns a truth value to each proposition. In the case of three-valued logic, the truth values 

can adopt three values: true t (or “yes”), false f (or “no”), and uncertain u (or 

“undecidable”). The calculus allow us to define the basic two classes of functions: the 

monadic functions 33:M τ→τμ   and the dyadic functions 333:D τ→τ×τδ  , with 

}u,f,t{3 =τ . 

 

   Neural systems are capable to create new concepts based on previous concepts. In the 

evolution of cognition, we can consider that the first conceptual constructions emerged 

directly from sensorial experiences, forcing the search of crisp conceptual partitions (hence 

to a RCS and a two-valued logic). In a further step, the experience with logical 

uncertainties (as described in section 4.2) could naturally conduce to enlarge the conceptual 

space generating a ECS (Definition 2.2) that include non-complementary concepts ''c , a 

fact that allows to introduce  a third truth-valued in the logical evaluations.  

 

   The corresponding three-valued vector logic results from the mapping between the three 

abstract truth values }u,f,t{3 =τ  on a Q-dimensional vector space containing orthonormal 

column vectors. We have hu;nf;st aaa , with 3Vh,n,s ∈  ( 3V  a Q-dimensional 

vector space, 3Q ≥ ). Similarly with the two-valued vector logic,  for two vectors  

}h,n,s{v,u ∈   the variety of inner products between u and v is 1v,u =  if u = v, and 

0v,u =  if vu ≠ . 

   In general, a m-valued logic possesses )nm(m  n-adic operators. Consequently, for a 

three-valued logic we have 27 monadic operators and 19,683 dyadic operators (the classical 

two-valued logic displays 4 monadic and 16 dyadic operators).  These figures indicate that 

inside a three-valued logic the searching of relevant operators must be oriented in some 
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way. We begin with the construction of the matrix operators corresponding to the logical 

identity, the negation (NOT), the conjunction (AND) and the disjunction (OR) as defined in 

the Lukasiewicz’s three-valued logic. A variety of many-valued logics is described in 

references [14] and [28].   

 

   As in the case of the two-valued logic, in the classical three-valued logic the basic gates 

are described using truth tables.  In the three-valued vector logic the tables became 

matrices.  

 

5.1 MONADIC OPERATORS. 

   The two central monadic operators are the logical identity and the negation, defines in 

what follows. 

M1) Identity 

TTT
3 hhnnssI ++= ; 

notice that  hhIandnnI,ssI 333 === .  

M2) Negation 

TTT
3 hhsnnsN ++=  ; 

hence hhNandsnN,nsN 333 === , being 

3
2

3 I)N( = . 

 

5.2 BASIC DYADIC OPERATORS. 
 
   We adopt for these dyadic operators the general polynomial expression. Let Op represent 

any dyadic operator defined by 

 

,)hh(b)nh(b)hn(b)sh(b)hs(b

)nn(a)sn(a)ns(a)ss(aOp
T

5
T

4
T

3
T

2
T

1

T
4

T
3

T
2

T
1

⊗+⊗+⊗+⊗+⊗

+⊗+⊗+⊗+⊗=
 

 

with  }h,n,s{b,a ii ∈ . Then we put 
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)bbbbb(I)aaaa(ROp 543214321 +=   

 

where the coefficients in R(…) depend only on “classical” truth values s and n , and 

coefficients in I(…) involve terms including the uncertain vector h. The terms represented 

by R describe the matrices corresponding to the two-valued vector logic, and the terms 

represented by I indicate the effect of the additional dimension h in the logical vector 

subspace. 

 

    We proceed now to describe the conjunction and disjunction three-valued matrices.  

 

D1) Conjunction  

.)hh(h)nh(n)hn(n)sh(h)hs(h

)nn(n)sn(n)ns(n)ss(sC
TTTTT

TTTT
3

⊗+⊗+⊗+⊗+⊗

+⊗+⊗+⊗+⊗=
 

This matrix satisfies the definition of the three-valued Lukasiewicz’s conjunction: 

s)ss(C3 =⊗ ; n)nh(C)hn(C)nn(C)sn(C)ns(C 33333 =⊗=⊗=⊗=⊗=⊗ ; and  

h)hh(C)sh(C)hs(C 333 =⊗=⊗=⊗ . Consequently 

 

)hhnnh(I)snnn(RC3 += . 

 

D2) Disjunction  

,)hh(h)nh(h)hn(h)sh(s)hs(s

)nn(n)sn(s)ns(s)ss(sD
TTTTT

TTTT
3

⊗+⊗+⊗+⊗+⊗

+⊗+⊗+⊗+⊗=
 

with s)sh(D)hs(D)sn(D)ns(D)ss(D 33333 =⊗=⊗=⊗=⊗=⊗ ; n)nn(D3 =⊗ ; 

and h)hh(D)nh(D)hn(D 333 =⊗=⊗=⊗ . This three-valued disjunction can be 

expressed as 

  

)sshhh(I)sssn(RD3 += . 
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Notice that, due to the fact that the term )aaaa(R 4321  represents the classic vector logic 

operator, the previous monadic and dyadic operators can be written as follows: 

T
23 hhII +=  ; 

T
23 hhNN += ; 

TTTTT
23 )hh(h)nh(n)hn(n)sh(h)hs(hCC ⊗+⊗+⊗+⊗+⊗+=  

TTTTT
23 )hh(h)nh(h)hn(h)sh(s)hs(sDD ⊗+⊗+⊗+⊗+⊗+= . 

 

    In the two valued vector logic, the operators 2C  and 2D  satisfy De Morgan Laws: 

)NN(DNC 22222 ⊗=   and  )NN(CND 22222 ⊗= . In the present case, is easy to 

prove that three-valued 3C and 3D  also satisfy De Morgan Laws: 

 

)NN(DNC 33333 ⊗=  , 

)NN(CND 33333 ⊗= . 

 

We also note that the matrices 333 CNS = and  333 DNP =  , corresponding to the Sheffer 

(or NAND) and the Peirce (or NOR) gates, respectively, are: 

 

)hhssh(I)nsss(RS3 +=  , 

)nnhhh(I)nnns(RP3 += . 

 

5.3. LOOKING FOR IMPLICATION 

   Lukasiewicz and Kleene create two different three-valued implications [14], [28]. 

Lukasiewicz’s implication is a function of two variables, IL(x,y) with }u,f,t{y,x ∈ , 

defined as follows:  IL(t,t) = IL(f,t) = IL(f,f) = IL(u,t) = IL(f,u) = IL(u,u) = t : IL(t,f) = f ; 

IL(t,u) = IL(u,f) = u. The three-valued implication proposed by Kleene focus the semantic 

meaning of the truth value u, generating a slight but fundamental difference respect to 

Lukasiewicz’s implication. Kleene’s implication can be defined by a function IK(x,y) as 
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follows:  IK(t,t) = IK(f,t) = IK(f,f) = IK(u,t) = IK(f,u) = t : IK(t,f) = f ; IK(t,u) = IK(u,f) = 

IK(u,u) = u. 

 

   If we try to construct an implication inside the three-valued vector logic, we discover that 

using the classical definition qp →  eq  qp ∨¬ , we obtain a matrix implication that 

behaves like Kleene’s implication. The three-valued matrix version for the classical 

definition of the implication is: 

}h,n,s{v,u,)vuN(D)vu(L 333 ∈⊗=⊗ . 

Using the properties of the Kronecker product, we have 

)vu)(IN(D)vu(L 3333 ⊗⊗=⊗  

and we can define the matrix implication 3L  as: 

)IN(DL 3333 ⊗= . 

Computing the outcomes from this operator, we can easily determine its structure. In our 

compact notation, we have 

 

)hsshh(I)snss(RL3 += , 

 

indicating that here we have a matrix version of Kleene’s implication.  

 

5.4 EQUIVALENCE AND EXCLUSIVE-OR 

   A natural departure point for constructing a three-valued vector logic equivalence is to 

adopt the classical equivalence   qp ≡  eq  )pq()qp( →∧→ . We begin using as vector 

implication the operator 3L  defined previously, and we construct the vectorial equivalence 

EQU(u,v) as 

}h,n,s{v,u,)]uv(L)vu(L[C)v,u(EQU 333 ∈⊗⊗⊗= . 

Kronecker factorization produces: 

)uvvu)(LL(C)v,u(EQU 333 ⊗⊗⊗⊗= .  

Remark that )LL(C 333 ⊗  is a matrix of order 4QQ× . This operator can be computed 

directly, and the set of outputs obtained can be used to select a 2QQ× matrix operator 
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capable to generate the same outputs (a projection on a lower dimension of the mapping 

produced by EQU acting on u and v). The result of this projection is a correspondence 

)vu(E)v,u(EQU 3 ⊗a  , 

where 3E  is an equivalence matrix given by the expression 

 

)hhhhh(I)snns(RE3 += . 

 

   The exclusive-or (or XOR) matrix 3X  can be immediately obtained using the expression 

333 ENX = . The result is 

 

)hhhhh(I)nssn(RX3 += . 

    

5.5 POLISH VECTOR LOGIC 

   A matrix for the Lukasiewicz’s implication PL  (P for “Polish”), can be directly written 

as  

 

)hsshs(I)snss(RLP += . 

 

   Using this matrix Lukasiewicz’s implication, PL , we can construct Lukasiewicz versions 

for the disjunction PD  and the conjunction PC . After that, we can define the equivalence 

PE , and the exclusive-or PX  . We proceed calculating the detailed expressions for the 

following equations: 

 

)IN(LD 33PP ⊗=  

)NN(DNC 33P3P ⊗=  

)uvvu)(LL(C)v,u(EQU PPPP ⊗⊗⊗⊗=  

)vu(E)v,u(EQU PP ⊗a  

P3P ENX = .  
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(In order to check the consistency inside this “polish” vector logic, note that 

P
2

3
2

3P3333P33p L)IN(L)IN)(IN(L)IN(D =⊗=⊗⊗=⊗ ). 

 

The results of these operations are  

 

)sshhs(I)sssn(RDP +=  

)hhnns(I)snnn(RCP +=  

)hhhhs(I)snns(.REP +=  

)hhhhn(I)nssn(RXP += . 

 

5.6 MODALITIES IN THREE-VALUED VECTOR LOGIC. 

   We showed in Section 4.2 that an infinite-valued logic can be the result of linear 

combinations of two truth values processed by a dyadic (ie. Booelean) matrix, with the 

modal operators “possibility” and “necessity” arising naturally as the limits of recursive 

processes.  

 

   In this section we analyze how we can represent the logical modalities “Possibility” and 

“Necessity” in the framework of three-valued vector logic. It is an important historical fact 

that Lukasiewicz three-valued logic was directly derived from investigations concerning 

modal propositions, and from the searching of truth-functional representations for the 

operators “possibility” and “necessity” [16].  Let us quote some passages of his important 

1930 article (in the following quotation, the expression “matrix method” refers to the 

characterization of logical operations using mathematical functions defined by “truth-

tables”). Lukasiewicz wrote: "When I became aware of the incompatibility of traditional 

theorems of modal propositions in 1920, I was in the process of establishing a normal 

bivalent propositional calculus based on the matrix method . At that time I was convinced 

that it was possible to demonstrate all the thesis of the ordinary propositional calculus 

assuming that propositional variables could take on only two values, "0" (false), and "1" 

(true). (…) Our whole system of logic is based on the law of bivalence, even though it has 
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been fiercely disputed since ancient times. Aristotle knew this law, but he questioned its 

validity as it referred to future contingent propositions. The law of bivalence was flatly 

rejected by the Epicureans. Chrysippus and the Stoics were the first ones to develop it fully 

and incorporate it as a principle of their dialectic, the equivalent of modern day 

propositional calculus. The arguments regarding the law of bivalence have metaphysical 

overtones: its supporters are resolute determinists; whereas its opponents generally have 

an indeterministic Weltanschauung. Thus, we are once again in the area of concepts of 

possibility and necessity." [16]. 

 

In his article, Lukasiewicz demonstrates that the operators possibility (pos) and necessity 

(nec) acting on the dyadic truth-valued set { }f,t2 =τ , degenerate into identical 

expressions: 

 

pos(t) = t  ,    pos(f) = f ; 

nec(t) = t  ,    nec(f) =f . 

 

On the contrary, inside a three-valued set }u,f,t{3 =τ , Lukasiewicz [16] shows how the 

mathematical definitions for the modal operators pos and nec split into meaningful 

expressions: 

 

pos(t) = pos(u) = t  ,   pos(f) = f ; 

nec(t) = t ,   nec(u) = nec(f) = f. 

 

   Inside the three-valued vector logic, based on the set {s,n,h}, we can define the matrix 

operators possibility, Pos,  and necessity, Nec, directly from the previous truth-functional 

Lukasiewicz’s definitions. We obtain the following matrices: 

 

T
2 shIPos +=  , 

T
2 nhINec +=  , 
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where TT
2 nnssI += , is the two-valued logical identity. Note that the operator Pos  

satisfies the condition of a modal possibility: 

 

Pos s = Pos h = s ,    Pos n = n . 

 

The operator Nec produces 

 

Nec s = s ,     Nec h = Nec n = n. 

 

These results correspond with the truth-tables established in Lukasiewicz [16] from his 

three-valued logic. It is interesting to note that these matrix operators verify the Aristotle’s 

theorem: 

 

33 NPosNNec=  ,                                                                                           , 

 

where 3N  is the three-valued matrix negation. 

   We want to emphasize that with this three-valued vector logic formalism, the modal 

operators “possibility” and “necessity” are simple monadic operators represented by square 

matrices. This is an important difference with two-valued vector logic because in the 

enlarged logical space recursive processes are no longer necessary. 

 

   It is interesting to analyze Lewis’ “strict implication”, a kind of implication that connects 

classical “material” implication with modalities; this operation is executed by a matrix Lew 

[22]:  

 

 3LNecLew =                                                                     

 

This matrix strict implication only produces outputs inside the set {s,n}.  An alternative 

Lewis matrix can be constructed using Lukasiewicz (Polish) matrix implication:  
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PP LNecLew = . 

 

   Using our compact notation, we have 

 

)nssnn(I)snss(RLew +=  

)nssns(I)snss(RLewP +=   

 

The sole difference between Lew and PLew  is the response respect to input hh ⊗ :  

n)hh(Lew =⊗  , but s)hh(LewP =⊗ . 

 

 The logical matrix operators transform many fundamental theorems of propositional 

calculus in natural algebraic operations: This was previously illustrated for the De Morgan 

Law. Other interesting case is given by following the logical equivalence 

 

qp →   eq  pq ¬→¬ .  

 

This important property of logical implication, can be proved inside the two-valued, the 

three-valued and the three-valued Polish vector logics using the normal properties of matrix 

operations and Kronecker products. Let Pand3,2=ρ , and let 2=λ  if 2=ρ  and 

Por3if3 =ρ=λ . Then, the proofs are unified using the following equations: 

 

)vIuN(D)vu)(IN(D)vu(L λλρλλρρ ⊗=⊗⊗=⊗  . 

 

This equality assumes that )IN(DL λλρρ ⊗= . Considering that )ab(D)ba(D ⊗=⊗ ρρ  

(for { }h,n,sb,a ∈ ) and λλλ = NNI , we have: 

 

.)uNvN)(IN(D)uNvNN(D

)uNvI(D)vIuN(D

λλλλρλλλρ

λλρλλρ

⊗⊗=⊗=

=⊗=⊗
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Consequently, 

 

)uNvN(L)vu(L λλρρ ⊗=⊗ . 

 

6. EXTENSIONS 

   The original motivation for translating the formalism of elementary logic into the matrix 

format of vector logic, were neural network theories.  Nevertheless, the emerging 

formalism is interesting in itself, and allows to state with a novel approach problems out of 

the neural domain. As an example, we recently employed the vector logic formalism to 

analyze the emergence of complex dynamics in a class of one-dimensional cellular 

automata [24]. Here we are going to translate into this formalism, some points concerning 

the use of complex numbers in logic, and the matrix representations of the Fredkin gate. 

 

6.1 VECTOR LOGIC AND COMPLEX OPERATORS. 

   Recently, different motivations lead to propose algebraic logics that use complex 

numbers. The work by Dick [8] shows the construction of a fuzzy logic in the complex 

domain that becomes capable to introduce contextual conditions to improve inferential 

rules. The theory of quantum computation naturally leads to the extension of logical theory, 

including reversible logical gates [10] and vector variables in the complex domain [9]. 

 

   Nevertheless, considering the intrinsic formal interest of the extension of the logic theory 

to the complex domain, in the present section we are going to analyze an important operator 

coming from the theory of quantum gates. This “quantum” operator is the square root of 

NOT, symbolized by NOT , and represents one of the pivots of the quantum computing 

theory [6], [13]. Here, we are not directly concerned with quantum computation, and our 

interest is to explore a gate (with a specific usefulness for the quantum computation theory) 

that allows extending the formalism to the complex domain. It seems clear that NOT  is a 

symbolic multidimensional version of the imaginary number 1−  , and that quantum 

physics allows a concrete implementation of this formal  fact. 
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a) The square root of 2N . 

We begin looking for an operator 2N  . Let 

nss)N( 2 β+α=  , 

n's'n)N( 2 β+α= , 

with 1'' =β+α=β+α  . 

The fact that 

[ ] nsNs)N()N( 222 == , 

[ ] snNn)N()N( 222 == , 

imposes the equations  

⎪⎩

⎪
⎨
⎧

=ββ+αβ
=βα+α

1'
0'2

                                    

⎪⎩

⎪
⎨
⎧

=β+βα

=αβ+αα

0''

1'''
2                                  

We can also put 

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
β
α

⎥
⎦

⎤
⎢
⎣

⎡
ββ
αα

1
0

'
'

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
β
α

⎥
⎦

⎤
⎢
⎣

⎡
ββ
αα

0
1

'
'

'
'

 

 

It is easy to prove from these equations that the symmetry conditions 'β=α  and 'α=β  

must hold; hence 

022 =β+α . 

Assuming 

'iv'u;ivu +=β+=α       ( 1i −= ), 

we obtain 'uu =   and 'vv −=  , and 

ivu +=α , 

ivu −=β . 
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Finally, being 1=β+α  , we have  

2
1vu ==  . 

Consequently, 

)i1(;)i1( 2
1

2
1 −=β+=α  

α=ββ=α ';'  , 

and 

n)i1(s)i1(s)N( 2
1

2
1

2 −++= , 

n)i1(s)i1(n)N( 2
1

2
1

2 ++−=  . 

We can see here that the operator 2N  produces an output formally similar to a fuzzy one 

(see Section 4.2), but with complex coefficients.  

 

Let us define the matrix  

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−

−+
=⎥

⎦

⎤
⎢
⎣

⎡
ββ
αα

=
)i1()i1(

)i1()i1(
'
'

A
2
1

2
1

2
1

2
1

 . 

 

In what follows we are going to apply the well known property of matrix calculus 

11 bMa =    and   22 bMa =    ⇒   [ ] [ ]2121 bbaaM =   

 

Using the appropriate vales for matrix M components) we obtain 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−

−+

01
10

)i1()i1(

)i1()i1(
2

2
1

2
1

2
1

2
1

 . 

 

Defining 
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⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

P  , 

 

the previous equation becomes  

 

PA2 =  . 

 

Defining ]ns[U = , we obtain 

 

 

UAU)N( 2 = , 

 

and if vectors s and n are linearly independent, we have an exact solution of the form 

 

+= UAUN2 , 

 

where +U  is the right Moore-Penrose pseudo-inverse 

 

T1T U)UU(U −+ =  

 

Note that second member of the matrix equation PA2 =  is the two-dimensional NOT used 

in the theory of quantum gates (hence A is in a sense the minimal matrix square root of 

NOT), but the formalism that produces the complex parameters α  and β  depends on Q-

dimensional vectors s and n included in matrix U.  

 

b) The square root of 3N . 

   In the framework of the three-valued vector logic, the search of the operator NOT  can 

be stated as follows: we look for a matrix operator that satisfies 
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3
2

3 N)N( =   , 

This operator 3N , must be based in the extended set }h,n,s{ . Let us assume that this 

operator satisfies the equations 

 

hnss)N( 3 γ+β+α=  

h'n's'n)N( 3 γ+β+α=  

h''n''s''h)N( 3 γ+β+α= , 

 

with =γ+β+α =γ+β+α ''' =γ+β+α '''''' 1 . The consequence is 

 

[ ] nsNs)N()N( 333 ==  

[ ] snNn)N()N( 333 ==  

[ ] hhNh)N()N( 333 == . 

 

Reproducing the procedure followed in the two-valued case, we obtain the matrix equation 

 

RB2 = , 

 

with 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γγγ
βββ
ααα

=
'''
'''
'''

B   and  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
001
010

R  . 

 

A solution for this matrix equation is 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

−+

=
100
0)i1()i1(

0)i1()i1(

B 2
1

2
1

2
1

2
1

 . 

 

This solution generates the following complex “fuzzy” representation: 

 

n)i1(s)i1(s)N( 2
1

2
1

3 −++=  

n)i1(s)i1(n)N( 2
1

2
1

3 ++−=  

hh)N( 3 = . 

 

Now we can calculate the matrix  3N . Remark that 

 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γ
β
α

=γ+β+α= hnshnss)N( 3  . 

 

Using the analogous expressions for n)N( 3  and h)N( 3 , and defining the matrix 

[ ]hnsV = , we have 

 

VBV)N( 3 =  

 

(matrix V is of order 3Q× ). If the set of truth values {s,n,h} is linearly independent, then a 

solution is provided by 

 

+= VBVN3  

 

where +V  is the right Moore-Penrose pseudo-inverse 
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T1T V)VV(V −+ = . 

 

6.2 VECTOR LOGIC, FREDKIN GATES AND “REVERSIBILITY”. 

The looking for reversible computers, with ideally a quasi zero energy consumption is an 

exiting frontier in contemporary research. Recent advances in this direction come from the 

field of optics, with the search of optical reversible computer devices. In this domain, the 

vector representation of logical variables becomes completely natural [29]. 

 

    The Fredkin gate is a Boolean function with three inputs and three outputs that is widely 

used in the investigations on reversible computers. It can be defined as follows: (t a b)→  (t 

a b), (f a b)→  (f b a) with a,b ∈  { t , f } [10] [9] [23] [24]. The selection of an output 

channel (the second or the third outputs) and the imposition of a given format to the inputs, 

allow this gate to produce a set of dyadic logical functions, including AND, OR and 

implication (IMPL), and also the monadic function NOT. The generation of dyadic 

functions using this gate requires the selection of an output channel and a forced 

configuration of the input. For instance, in order to obtain the conjunction, we can select the 

second output position and introduce the input (x y f) , with x,y∈{ t , f }. The implication is 

obtained in the second output introducing as input the tern (x t y).  

 

   In two-valued vector logic, the Fredkin gate is given by the matrix F that satisfies the 

following equations ( }n,s{Vb,a 2 =∈ ): 

 

bas)bas(F ⊗⊗=⊗⊗  

abn)ban(F ⊗⊗=⊗⊗ . 

 

This matrix Fredkin gate can be reprented by the equation 

 

[ ] RnnIssF T2
2

T ⊗+⊗=    

                                                                                  (14) 
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(for details see [23]) .  [ ]
22

2
2 III ⊗=  ( 2I  is the two-valued identity) and R is an 

interchange matrix such that  

 

ab)ba(R ⊗=⊗ . 

 

This matrix has the structure  

 

T
2

T
2 nInsIsR ⊗⊗+⊗⊗=  .                                                                             (15) 

 

The reversibility of this matrix Fredkin gate means that for three vectorial inputs u,v,w, is 

[ ] wvu)wvu(FF ⊗⊗=⊗⊗  . 

 

The selection of an output position can be performed with a filtering matrix of the form 

 

T
2

T
2 )ns(I)ns( +⊗⊗+=Φ . 

 

The format of the input depends on the logical function we are looking for. The conjunction 

requires the format matrix 

 

nII 22C2
⊗⊗=Σ ; 

 

the implication requires the format matrix 

 

22L IsI
2

⊗⊗=Σ . 

 

Consequently, we obtain the two-valued conjunction and implication operators pre- and 

post-filtering the Fredkin matrix as follows: 

 

2C22 FC ΣΦ= , 
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2L22 FL ΣΦ= . 

 

An important problem is the potential cost of these filtering processes in a physical 

implementation of this reversible gate. 

 

   The extension of reversible gates for three-valued logics, has been recently explored and 

a variety of reversible three-valued logical gates has been analyzed [3], a fact that certainly 

is important for logic, mathematics and physics. In this context, it is interesting that the 

direct extension of the Fredkin gate using the same philosophy that led to built up a Kleene 

three-valued logic destroys reversibility. These “philosophy of construction” implies to 

impose uncertainty whenever the different choices of the uncertain input do not cancel the 

uncertainty. For instance, the choice of the conjunction between “true” and “uncertain” is 

uncertain, because the substitution of “uncertain” by “true” or “false” produces two 

different outcomes. On the contrary, the conjunction between “false” and “uncertain” is 

necessarily false. The resulting “Kleenean” three-valued Fredkin gate is a matrix 

KF satisfying the following equations ( }h,n,s{Vb,a 3 =∈ ) : 

 

bas)bas(FK ⊗⊗=⊗⊗  

abn)ban(FK ⊗⊗=⊗⊗  

⎩
⎨
⎧

≡=⊗⊗
≠⊗⊗

=⊗⊗
zbaiffzzh

baiffhhh
)bah(FK  

 

As can be directly proved, an interesting representation for this matrix is 

 

)FixUnc(hhRnnIssF T
3

T]2[
3

T
K +⊗+⊗+⊗= , 

 

being 

 

33
]2[

3 III ⊗=  , 
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T
3

T
3

T
33 hIhnInsIsR ⊗⊗+⊗⊗+⊗⊗= , 

])nh()hn()sh()hs()sn()ns([)hh(Unc TTTTTT ⊗+⊗+⊗+⊗+⊗+⊗⊗= , 

TTT )hh()hh()nn()nn()ss()ss(Fix ⊗⊗+⊗⊗+⊗⊗= . 

 

This matrix KF is no longer a reversible gate, but if it retains the capacity of bringing the 

operators of Kleene three-valued logic, under the same selection of the outputs and the 

same input configuration that work in the two-valued case.  For instance, defining 

 

T
3

T
3K )hns(I)hns( ++⊗⊗++=Φ , 

nII 33KC3
⊗⊗=Σ  , 

 

we obtain 

 

3KCK3K3 FC ΣΦ=  

 

It is interesting the fact that this “Kleenean” Fredkin gate retains its capacity of displaying a 

variety of three-valued logical gates but, at the same time, loses its reversibility. In a sense, 

the uncertainty represented by the third logical value h is a kind of “logical friction” or 

“informational friction”, with a superficial analogy with the mechanical friction that makes 

irreversible the mechanical behaviour of a harmonic oscillator.   

 

7. CONCLUSIONS AND PERSPECTIVES 

   Vector logic allows submerging the operations of logical calculus into the mechanics of 

matrix algebra.  In particular, this matrix-vector representation allows exploiting the rich 

properties displayed by Kronecker product factorization. The results of this algebraic 

formalism is the existence of a set of well defined correspondences between logical and 

matrix operations.  Moreover, many equivalences between logical expressions become 

identities involving matrix operators. In vector logic, fuzziness was first introduced as 

linear combinations of vectorial truth values, and in a second step the inputs are processed 
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by matrix operators. In the case of three-valued vector logic, the third vector h introduces 

the uncertainty as a specific truth value. Using this third truth value, we can define some 

basic operators and to built up the implication and the equivalence as derived operators. 

.  

   Vector logic shows similarities with the matrix models for associative memories, and this 

fact suggest that the formalism can be an interesting instrument for the modeling of 

processes of reasoning. It can also help to improve the statement of still unsolved 

challenging problems (eg: how to model the neural basis of theorem proving?).   

 

   A cardinal discover by Lukasiewicz [16] was the existence, in his three-valued logic, of 

truth tables capable of describing modalities. This discover has a clear manifestation in our 

linear algebra formalism. In the two-valued vector logic (as in the classical logic), the 

modal operators “possibility” and “necessity” are obtained as the limit of recursive 

processes. On the contrary, in the three-valued vector logic these modalities are computed 

in a single step using a monadic operator, a matrix-vector version of Lukasiewicz’s result.   

 

   The theory of quantum computation teaches us that the matrix logical operator NOT can 

be expressed as a product of complex matrices [6, 13].  Vector logic formalism shows 

natural ways to extend logical formats to the domain of complex numbers in non-quantum 

systems. On one hand, complex numbers itself are susceptible of being represented as pairs 

of real numbers, and this fact produce natural vector representations of complex 

magnitudes using reals. On the other hand, a vector can take its values from the complex 

domain. In particular it is an interesting fact that the looking for an expression for 3N  

generates linear combination of vectors s, n and h, a kind of extended fuzziness with 

complex coefficients. Another interesting remark is that the third truth value h, being a 

fixed point ( hNh)N(h 33 == ), prevents complex fuzziness. This excursion into non-

quantum complex operators can posses some interest due to the ubiquity, in a variety meso 

or macroscopic physical devices, of oscillatory behaviors susceptible of being described 

using complex quantities. These oscillatory systems can naturally confer a potential 

computational interest to these complex vectorial representations.  The development of 
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“complex logics” can be of particular interest for the representations of decision processes 

that need to include the phases of quasi cyclic fuzzy events [8].  

 

   The reversible logical gates provide, at the same time, interesting mathematical constructs 

and important physical challenges. Logical reversibility requires to select a precise position 

to read the output, to format the input, and in addition to store the discarded “garbage” in an 

ordered memory. Many three-valued reversible gates have been reported and carefully 

investigated [3], and the existence of these reversible gates has a great potential importance 

from both formal and physical research. The extension of two-valued Fredkin gate to a 

three-valued Fredkin gate in agreement with “Kleenean” criteria destroys reversibility, and 

this is an interesting fact: it illustrates the loss of order associated with the loss of precision 

in the information. In the three-valued Fredkin gate described in Section 6.2, reversibility is 

preserved in the subcases having s or n as the control input. On the contrary, when the 

control input is the uncertain vector h, uncertainty invades the transformation and prevents 

reversibility (except for three fixed points).  

 

   Finally, we would like to comment that the matrix-vector formalism presented here 

provides a compact representation of gates that perform parallel computing processes. 

Consequently, this formalism could inspire new approaches to search efficient algorithms 

capable  - as happens in the theory of quantum computation (eg. Shor’s algorithm) - of 

exploiting the massive parallelism. If this will be the case, the possibility that these new 

algorithms could be implemented using classical technologies remains open. 
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APPENDIX:  NUMERICAL ILLUSTRATION 

   We describe here the structure of some two- and three-valued vector logic matrix 

operators for the simplest case, with the truth values being normal 2- and 3-dimensonal unit 

vectors.  

 

a) Two-valued matrix operators 

The basic vectors are  T]01[s =  and  T]10[n = . 

The logical identity and the negation are given by the matrices 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

I2     ;       ⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

N2   . 

 

The conjunction is 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

1
0

1
0

0
1

C2   , 

 

and the disjunction is given by 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

0
1

0
1

0
1

D2  . 

 

The implication is 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

0
1

1
0

0
1

L2   . 

 

Finally, the equivalence and the exlusive-or are given by 
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⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

1
0

1
0

0
1

E2  , 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

0
1

0
1

1
0

X2  . 

 

b) Three-valued matrix operators 

   Let   TTT ]100[h;]010[n;]001[s ===  . 

The monadic identity I and negation N matrices are 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

I3   ;   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
001
010

N3     

Note that 333 INN =  

The conjunction 3C and the disjunction 3D  are  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

101
010
000

000
111
000

100
010
001

C3  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

110
000
001

100
010
001

000
000
111

D3  . 

Using these matrices, De Morgan’s Law )NN(DNC 33333 ⊗=  can be numerically 

verified. 

   The implication 3L  given by )IN(DL 3333 ⊗= is given by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

110
000
001

000
000
111

100
010
001

L3  

On the other hand, Lukasiewicz implication matrix PL is given by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010
000
101

000
000
111

100
010
001

LP  
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The matrices corresponding to equivalence 3E  and exclusive-or 3X , are  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

111
000
000

100
001
010

100
010
001

E3  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

111
000
000

100
010
001

100
001
010

X3  

   We have previously showed that in three-valued vector logic the modalities possibility 

and necessity are computed by monadic operators, represented by the square matrices Pos 

and Nec. In the simple orthonormal basis used in this section, they are 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
010
101

Pos   ;    
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
110
001

Nec  

We can immediately confirm Aristotle’s theorem: 33 NPosNNec =  . 

   Lewis’ “strict implication”, is given by 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
110
001

000
000
111

000
110
001

Lew  

 The alternative Lewis matrix constructed using Lukasiewicz matrix implication, 

PP LNecLew = , is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
010
101

000
000
111

000
110
001

LewP  
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