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Abstract

We look at the problem in belief revision of trying
to make inferences about what an agent believed
— or will believe — at a given moment, based on
an observation of how the agent has responded to
some sequence of previous belief revision inputs
over time. We adopt a “reverse engineering” ap-
proach to this problem. Assuming a framework
for iterated belief revision which is based on se-
quences, we construct a model of the agent that
“best explains” the observation. Further consider-
ations on this best-explaining model then allow in-
ferences about the agent’s epistemic behaviour to
be made. We also provide an algorithm which com-
putes this best explanation.

1 Introduction

The problem of belief revision, i.e., of how an agent should
modify its beliefs about the world given some new informa-
tion which possibly contradicts its current beliefs, is by now a
well-established research area in Al [Girdenfors, 1988]. Tra-
ditionally, the work in this area is done from the agent’s per-
spective, being usually pre-occupied with constructing actual
revision operators which the agent might use and with ratio-
nality postulates which constrain how these operators should
behave. In this paper we change viewpoint and instead cast
ourselves in the role of an observer of the agent. Imagine
the following scenario. Suppose we are given some sequence
(41, ..., ¢n) of revision inputs which a particular agent, here-
after A, has received over a certain length of time and suppose
we are also given a sequence (61, ... ,0,) with the interpre-
tation that following the i*" input ¢;, A believed (at least)
;. Throughout the paper, we make the assumptions that .4
received no input between ¢ and ¢,, other than those listed,
and that the 6; are correct (but possibly partial) descriptions
of A’s beliefs after each input. A couple of questions now
suggest themselves:

e What will A believe following a further revision input
(anrl ?

e What did A believe immediately before it received the
first input ¢1? What, apart from 6; did A believe after
the i*® input ¢;?
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One area in which such questions might arise is in human-
machine dialogues [del Cerro et al., 1998], where the ¢; cor-
respond to inputs given to A — the user — by a machine, and
the 60; are the user’s responses. Here, it can be useful for the
machine to keep a model of the evolution of a user’s beliefs
during a dialogue. Another setting where reconstruction of
a prior belief set is needed is in law cases, where guilt and
innocence often depend on who knew what, when. Inquiry is
a possible method of approaching this type of problem. The
above mentioned sequences can be seen as the information
the inquiry yields and which is now used for drawing conclu-
sions. Our aim in this paper is to answer these questions.

Our strategy for dealing with these questions will be to
adopt a “reverse engineering” approach — constructing a
model of the agent. (Similar approaches have already been
tried in the context of trying to infer an agent’s goals from
observable actions, e.g., [Brafman and Tennenholtz, 1997;
Lang, 2004].) Having no access to the agent’s internals, we
assume a belief revision framework A uses for determining
its beliefs and for incorporating new information, and con-
struct a model of A that explains the observation about it.
By considering this model, we will then be able to make ex-
tra inferences or predictions about A’s epistemic behaviour.
Of course this raises the problem of which belief revision
framework to choose. Such a framework will obviously
need to support iterated revision [Darwiche and Pearl, 1997,
Lehmann, 1995b; Nayak er al., 2003], and preferably also
non-prioritised revision [Hansson er al., 2001; Makinson,
1997], i.e., revision in which new inputs are allowed to be
rejected. In this paper, we restrict the investigation to one
such framework that has been studied in [Booth, 2005]. The
idea behind it is that an agent’s epistemic state is made up of
two components: (i) a sequence p of sentences representing
the sequence of revision inputs the agent has received thus
far, and (ii) a single sentence A standing for the agent’s set of
core beliefs, which intuitively are those beliefs of the agent it
considers “untouchable”. The agent’s full set of beliefs in the
state [p, A] is then determined by a particular calculation on
p and A, while new revision inputs are incorporated by sim-
ply appending them to the end of p. Note that our choice of
this framework does not imply that others are less worthy of
investigation. The challenge now becomes to find that partic-
ular model of this form which best explains the observation
0= {(¢1,-.-,%n),(01,...,0,)) we have made of A.



The plan of the paper is as follows. In Sect. 2 we describe
in more detail the model of epistemic state we will be assum-
ing. This will enable us to pose more precisely the problem
we want to solve. We will see that the problem essentially re-
duces to trying to guess what A’s initial epistemic state [p, A]
(i.e., before it received ¢1) was. In Sect. 3, inspired by work
done on reasoning with conditional beliefs, we propose a way
of finding the best initial sequence — or prefix — p(A) for any
given fixed A. Then, in Sect. 4 we focus on finding the best
A. This will amount to equating best with logically weakest.
The epistemic state [p(A), A] obtained by combining our an-
swers will be our proposed best explanation for o, which we
will call the rational explanation. In Sect. 5 we present an
algorithm which constructs the rational explanation for any
given o, before giving some examples to show the type of in-
ferences this explanation leads to in Sect. 6. In Sect. 7 we
briefly mention a related piece of work by Dupin de Saint-
Cyr and Lang, before concluding and giving some pointers
for future research.

2 Modelling the Agent

We assume sentences ¢;,0;, A, etc. are elements of some
finitely-generated propositional language L. In our examples,
P, q,r denote distinct propositional variables. The classical
logical entailment relation between sentences is denoted by
F, while = denotes classical logical equivalence. Wherever
we use a sentence to describe a belief set the intention is that
it represents all its logical consequences. The set of all pos-
sible observations o = (¢, 7) which can be made of .4, where
t = (¢1,...,0,) and 7 = (61,...,6,,) are two finite se-
quences of sentences of the same length, is denoted by O. The
operation - on sequences denotes sequence concatenation.

As indicated in the introduction, we follow [Booth, 2005]
by assuming that, at any given moment in time, an agent’s
epistemic state is represented by a pair [p, A]. ([Konieczny
and Pérez, 2000; Lehmann, 1995b] also use sequences to rep-
resent epistemic states, but without core beliefs). In order to
fully specify the agent’s epistemic processes, we also need to
formally specify (i) how the agent determines its set of beliefs
Bel([p, A]) in any given state [p, A], and (ii) how it incorpo-
rates new revision inputs into its epistemic state. Turning first
to (i), we can describe Bel([p, A]) neatly with the help of a
function f, which takes as argument a non-empty sequence
0 = (m,...,a1) of sentences, and returns a sentence. f is
defined by induction on the length m of o: if m = 1 then
f(o) =oaq. If m > 1 then

f(g'){ ?(25:717/\“0%71,... ifol/ L

otherwise

aal)
...,041)

In other words f(o) is determined by first taking «; and
then going backwards through o, adding each sentence as
we go, provided that sentence is consistent with what has
been collected so far (cf. the “linear base-revision opera-
tion” of [Nebel, 1994] and the “basic memory operator” of
[Konieczny and Pérez, 2000].) The belief set associated to the
state [p, A] is then given by Bel([p, A]) = f(p- A). Hence
when calculating its beliefs from the sentences appearing in
its epistemic state, an agent gives highest priority to A. Af-
ter that, it prioritises more recent information received. Note

that A is always believed, and that Bel([p, A]) is inconsistent
if and only if A is inconsistent.

Example 2.1. Consider A = —p and p = (¢,q — D).
Bel([p,A]) = f(¢,q— p,—p). In order to determine
f(g,q — p,—p) we need to know if ¢ is consistent with
fl@—p,=p). As f(-p) = —pand ¢ — p is con-
sistent with —p, f(g — p,—p) = (¢ = p) A =p = —g A —p.
So ¢ is inconsistent with f(q — p,—p). Consequently we
get f(¢,q —p,~p) = f(¢—p,~p) and Bel([p,A]) =
fla—p,—p) =—qA-p.

An agent incorporates a new revision input A into its epis-
temic state [p, A] by simply appending A to p, i.e., the agent’s
revision function x is specified by setting, for every A € L,

[va]*A: [p)‘7A]

Given this, we see that a new input A will not always be be-
lieved in the new state. Indeed (when A is consistent) it will
be so only if it is consistent with A. If it contradicts A then
it will not be accepted, and in fact in this case the agent’s be-
lief set will remain unchanged (c.f. screened revision [Makin-
son, 1997]). Note also that A remains unaffected by a revi-
sion input, i.e., * is a core-invariant revision operator [Booth,
2005]." Core beliefs are needed to ensure that revision inputs
can be rejected. If they were not allowed, which corresponds
to demanding A = T in the above definitions, any consistent
revision input would belong to the agent’s beliefs.

As is shown in [Booth, 2005], the above revision method
satisfies several natural properties. In particular, it stays
largely faithful to the AGM postulates [Gérdenfors, 1988]
(leaving aside the “success” postulate, which forces all new
inputs to be accepted), and satisfies slight,“non-prioritised”
variants of several postulates for iterated revision which
have been proposed, including those of [Darwiche and Pearl,
1997]. One characteristic property of this method is the fol-
lowing variant of the rule “Recalcitrance” from [Nayak er al.,
2003]:

If A |7/ ()\2 — ﬁAl) then Bel([p, A] * A\ % )\2) F A\
This entails if the agent accepts an input \q, then it does so
wholeheartedly, in that the only way it can be dislodged from
the belief set by a succeeding input A, is if that input contra-
dicts it given the core beliefs A.

Returning to our agent .4 from the introduction, from
now on we assume A’s epistemic state is always of the
form [p, A], and that A determines its belief set and
incorporates new inputs into its epistemic state as de-
scribed above. Then, suppose we make the observation
o = {(¢1,...,bn),(01,...,0,)) about A. Then after
receiving the i*" input ¢;, A’s epistemic state must be
[p- (b1,-..,¢:), A] and its belief set f(p - (¢1,...,P;) - A),
where [p, A] is A’s unknown initial (i.e., before ¢,) epistemic
state. Observation o now amounts to the following:

We make the following definitions:

Definition 2.2. Let o = {((¢1,...,dn),(01,...,0,)) € O.
Then [p, A] explains o (or is an explanation for o) iff (1) above
holds. We say A is an o-acceptable core iff [p, A] explains o
for some p.

'Tn fact the model of [Booth, 2005] allows the core itself to be
revisable. We do not explore this possibility here.



Example 2.3. (i) [p,A] = [(p — ¢q),r] explains
((p;q), (q,7)) because f(p — ¢,p,7) = pAgArF qand
flp—ap,q,7r)=pAgArkr.

(ii) [(p — q), T] does not explain {(p,q), (g,r)) because
fe—ap,a.T)=pAqtr

If we had some explanation [p, A] for o then we would be
able to answer the questions in the introduction: following a
new input ¢, 11 A will believe f(p - (¢1,..., On, Ont1) - A),
before receiving the first input A believes f(p - A), and the
beliefs after the i input are f(p - (¢1,...,¢;) - A).

Note for any o € O there always exists some explanation
[p, A] for o, since the contradiction L is an o-acceptable core
using any p. But this would be a most unsatisfactory expla-
nation, since it means we just infer .A believes everything at
every step.

Our job now is to choose, from the space of possible ex-
planations for o, the best one. As a guideline, we consider
an explanation good if it only makes necessary (or minimal)
assumptions about what A believes. But how do we find
this best one? Our strategy is to split the problem into two
parts, handling p and A separately. First, (i) given a fixed
o-acceptable core A, find a best sequence p(o, A) such that
[p, A] explains o, then, (ii) find a best o-acceptable core A(0).
Our best explanation for o will then be [p(o0, A(0)), A(0)].

3 Finding p

Giveno = {(¢1,...,bn), (61,...,60r)), let us assume a fixed
core A. To find that sequence p(o, A) such that [p(o, A), A]
is the best explanation for o, given A, we will take inspiration
from work done in the area of non-monotonic reasoning on
reasoning with conditional information.

Let’s say a pair (A, x) of sentences is a conditional be-
lief in the state [p, A] iff x would be believed after revising
[p, A] by A, ie., Bel([p, A] * A\) b x. In this case we will
write A =, 4] x.2 This relation plays an important role,
because it turns out A’s beliefs following any sequence of
revision inputs starting from [p, A] is determined entirely by
the set =, o] of conditional beliefs in [p, A]. This is because,
for any sequence of revision inputs ¢1, . .., ¢y, our revision
method satisfies

Bel([p, Alx @1 -x¢m) = Bel([p, Al * f(¢1, ..., o, A)).
Thus, as far as their effects on the belief set go, a sequence of
revision inputs starting from [p, A] can always be reduced to a
single input. (But note the set of conditional beliefs =, 4.
in the state [p, A] * A following revision by A will generally
not be the same as =, ,1.)

All this means observation o may be translated into a par-
tial description of the set of conditional beliefs that .4 has in
its initial epistemic state:

Calo)={f(1,...,0:;,A)=6; |1 =1,...,n}.
Clearly, if we had access to the complete set of A’s condi-
tional beliefs in its initial state, this would give another way to
answer the questions of the introduction. Now, the problem of
determining which conditional beliefs follow from a given set

2The relation =>(p,a] almost satisfies all the rules of a rational in-
ference relation [Lehmann and Magidor, 1992]. More precisely the
modified version does, viz., A ={, ,; X iff [A F =X or A =, 41 x].

C of such beliefs has been well-studied and several solutions
have been proposed, e.g., [Geffner and Pearl, 1992; Lehmann,
1995al. One particularly elegant and well-motivated solution
is to take the rational closure of C [Lehmann and Magidor,
1992]. Furthermore, as is shown in, e.g., [Freund, 2004], this
construction is amenable to a relatively simple representation
as a sequence of sentences! Our idea is essentially to take
p(o, A) to be this sequence corresponding to the rational clo-
sure of C4 (o). First let us describe the general construction.

3.1 The rational closure of a set of conditionals
Given a set of conditionals C = {\; = x; | ¢ = 1,...,1}
we denote by C the set of material counterparts of all the
conditionals in C, i.e., C = {\; — x; | i=1,...,1l}. Thena
sentence v is exceptional for C iff C + =, and a conditional
v = u is exceptional for C iff its antecedent v is. To find the
(sequence corresponding to the) rational closure pr(C) of C,
we first define a decreasing sequence of sets of conditionals
Co2C1 2 -+ 2 Cyy by setting (i) Cy = C, (ii) C; 41 equals
the set of conditionals in C; which are exceptional for C;, and
(iii) m is minimal such that C,,, = C,,,+1. Then we set

pR(€) = (A\Cor A\ oot \ Co)

Writing «; for A C~7;, the rational closure of C is then the rela-
tion = p given by A = p x iff either o, = = A or [aj AN x
where j is minimal such that o I/ —|)\] . Since iy, - g
it easy to check that in fact this second disjunct is equivalent
to f(am,-..,ap,\) F x.
We now make the following definition:

Definition 3.1. Let o € O and A € L. We call pr(Ca(0))
the rational prefix of o with respect to A, and will denote it by

pr(0, A).
Example 3.2. Leto = {(p, q), (r,—p)) and A = —p. Then
Ca(o) {f(p,—p) =, f(p.q,~p) = —p}
= {=»p=r(a/-p) = -p}

Since neither of the individual conditionals are exceptional
for C4(0) we get Cy = Ca(0) and C; = . Clearly then
also Cy = () = C; so we obtain pr(o,A) = (A0, \Ca(0)).
Rewriting the sequence using logically equivalent sentences
we get pR(O7 A) = (Ta -p— 7’).

Now, an interesting thing to note about the rational pre-
fix construction is that it actually goes through indepen-
dently of whether A is o-acceptable. In fact a useful side-
effect of the construction is that it actually reveals whether
A is o-acceptable. Given we have constructed pr(o, A) =
(m, - - -, ), all we have to do is to look at sentence v,
and check if it is a tautology:

Proposition 3.3. Leto € O and A € L, and let pr(o, A) =
(Qm, - - ., ) be the rational prefix of o w.r.t. A. Then

(i) if oy, = T then [pr(o, A), A] is an explanation for o.

(ii) if cny, Z T then A is not an o-acceptable core.

Thus this proposition gives us a necessary and sufficient
condition for A to be an o-acceptable core. This will be used
in the algorithm of Sect. 5.

In Example 3.2 pr(o,A) = (T,—p — r) was cal-
culated. The above proposition implies [(T,—p — ), —p]



is an explanation for o = {((p, q), (r, —p)). This is
verified by f(T,-p—r,p,-p) = —-p Ar F r and
f(T,=p—7r.p,q,~p) = -pAgATF —p.

3.2 Justification for using the rational prefix

In the rest of this section we assume A to be some fixed o-
acceptable core. As we just saw, [pr(o, A), A] then provides
an explanation for o given this A. In this section we want to
show in precisely what sense it could be regarded as a best
explanation given A. Let ¥ = {0 | [0, A] explains o}.

One way to compare sequences in X is by focusing on
the trace of belief sets they (in combination with A) induce
through o, i.e., for each o € 3 we can consider the sequence
(Belg, Bel§, ..., Bel?), where Bel{ is defined to be the be-
liefs after the i*® input in o (under the explanation [, A]). In
other words Bel! = f(o - (¢1,...,¢;) - A). (So Bel§ gives
the initial belief set.)

Example 3.4. Let o, A and pr(o, A) be as in Example 3.2.
Then the belief trace is (—p Ar,—p Ar,—p A g A T).

The idea would then be to define a preference relation <;
over the sequences in X (with more preferred sequences cor-
responding to those “lower” in the ordering) via some prefer-
ence relation over their set of associated belief traces. Given
any two possible belief traces (0o, . . ., 3,) and (7o, - - -, Yn),
let us write (Bo,---,08n) <iex (Y0,---,7n) iff, for all i =
0,...,n, [3; = v, forall j < iimplies ; - 3;]. Then we
define, for any p,o € X:

p =1 0iff (Belf,...,Bell) <iex (Bel],...,Bel?).

(=1 is a pre-order (i.e., reflexive and transitive) on X..) Thus,
given two sequences in 3, we prefer that one which leads to .A
having fewer (i.e., weaker) beliefs before any of the inputs ¢;
were received. If the two sequences lead to equivalent beliefs
at this initial stage, then we prefer that which leads to .A hav-
ing fewer beliefs after ¢; was received. If they lead to equiv-
alent beliefs also after this stage, then we prefer that which
leads to A having fewer beliefs after ¢ was received, and
so on. Thus, under this ordering, we prefer sequences which
induce A to have fewer beliefs, earlier in 0. The next result
shows pr(o, A) is a best element in 3 under this ordering.

Proposition 3.5. pr(0,A) =<y o forallo € ¥.

Another way to compare sequences is to look at their con-
sequences for predicting what will happen at the next step
after o.
iff Bel([o, A] * @1 %%y % A)

Bel([p, A] * ¢1 * -+ % ¢y, x \) for all A

Thus, according to this preference criterion we prefer p to o
if it always leads to fewer beliefs being predicted after the
next revision input. It turns out pr (o, A) is a most preferred
element under <o amongst all minimal elements under <.

Proposition 3.6. For all 0 € X, if 0 =1 pr(o,A) then
pr(0,A) <9 0.

Thus if we take a lexicographic combination of <; and
<5 (with <7 being considered as more important), pr (o, A)
emerges overall as a best, most preferred, member of >. Hav-
ing provided a method for finding the best explanation [p, A]
given A, we now turn our attention to finding the best A itself.

p =20

4 Minimising A

As argued earlier, core beliefs are needed, but at the same
time we try to minimise the assumptions about the agent’s
beliefs. This includes minimising A. The first idea would
be to simply take the disjunction of all possible o-acceptable
cores, i.e., to take Ay (0), defined by

Ay(0) = \/{A | A is an o-acceptable core}.
But is Ay (o) itself o-acceptable? Thankfully the answer is
yes, a result which follows (in our finite setting) from the fol-

lowing proposition which says that the family of o-acceptable
cores is closed under disjunctions.

Proposition 4.1. If A1 and Ao are o-acceptable then so is
A1V Ao
So as a corollary Ay (o) does indeed satisfy:
(Acceptability)  A(o) is an o-acceptable core

What other properties does Ay (o) satisfy? Clearly, Ay (o)
will always be consistent provided at least one consistent o-
acceptable core exists:

If A(0) = L then A’ = L for every
o-acceptable core A’

(Consistency)

Acceptability and Consistency would appear to be abso-
lute rock-bottom properties which we would expect of any
method for finding a good o-acceptable core. However for
Ay we can say more. Given two observations o = (¢, 7) and
o' = (/, 7'}, let us denote by o - o’ the concatenation of o and
o,ie,0-0 = (v, 7-7"). We shall use 0 Cign, 0 to de-
note that o’ right extends o, i.e., o' = o0-0" for some (possibly
empty) 0" € O, and 0 Ty 0 to denote o left extends o, i.e.,
o' = 0" - o for some (possibly empty) o” € O.

Proposition 4.2. Suppose 0 Ciighy 0’ or 0 Ciegy 0. Then
every o'-acceptable core is an o-acceptable core.

As aresult of this we see Ay satisfies the following 2 prop-
erties, which say extending the observation into the future or
past leads only to a logically stronger core being returned.

(Right Monotony) If 0 Cight o' then A(0") - A(0)

(Left Monotony) ~ If 0 e o then A(0') F A(0).
Right- and Left Monotony provide ways of expressing that
A(0) leads only to safe conclusions that something is a core
belief of A — conclusions that cannot be “defeated” by addi-
tional information about .A that might come along in the form
of observations prior to, or after o.

We should point out, though, that it is not the case that by
inserting any observation anywhere in o, A\, will always lead
to a logically stronger core. Consider o; = ((p, q), (p, —p))
and 02 = ((p, =, q), (p, P, —p)), i.e., {(—p), (—p)) was in-
serted in the middle of 0;. Ay(01) = ¢ — —p whereas
Ay (02) = T. So although o5 extends o; in a sense, the cor-
responding Ay is actually weaker. Looking at 01, assuming
as we do that A received no inputs between p and ¢, the only
way to explain the end belief in —p is to ascribe core belief
q — —p to A (cf. the “Recalcitrance” rule in Sect. 2). How-
ever, looking at og, the information that A received (and ac-
cepted) intermediate input —p is enough to “explain away”
this end belief without recourse to core beliefs. Our assump-
tion that A received no other inputs between ¢, and ¢,, dur-
ing an observation 0 = {((¢1,...,¢n), (01,...,0,)) is rather



strong. It amounts to saying that, during o, we kept our eye
on A the whole time. The above example shows that relax-
ing this assumption gives us an extra degree of freedom with
which to explain o, via the inference of intermediate inputs.
This will be a topic for future work.

It turns out the above four properties are enough to actually
characterise A, . In fact, given the first two, just one of Right-
and Left Monotony is sufficient for this task:

Proposition 4.3. Let A : O — L be any function which
returns a sentence given any o € O. Then the following are
equivalent:

(1) A satisfies Acceptability, Consistency and Right Monotony.
(ii) A satisfies Acceptability, Consistency and Left Monotony.
(iii) A(0) = Ay (o) forall o € O.

Note that as a corollary to this proposition we get the sur-
prising result that, in the presence of Acceptability and Con-
sistency, Right- and Left Monotony are in fact equivalent.

Combining the findings of the last two sections, we are now
ready to announce our candidate for the best explanation for
o. By analogy with “rational closure”, we make the following
definition:

Definition 4.4. Let o € O be an observation. Then we call
[pr(0, Ay (0)), Ay(0)] the rational explanation for o.

In Sect. 6 we will give some examples of what we can infer
about A under the rational explanation. But how might we
find it in practice? The next section gives an algorithm for
just that.

5 Constructing the Rational Explanation

The idea behind the algorithm is as follows. Given an obser-
vation o, we start with the weakest possible core Ao = T and
construct the rational prefix (a,, ..., ag)=po of 0 W.r.t. Ag.
We then check whether v, is a tautology. If it is then we
know by Prop. 3.3 that [po, Ag] is an explanation for o and so
we stop and return this as output. If it isn’t then Prop. 3.3 tells
us Ao cannot be o-acceptable. In this case, we modify Ag by
conjoining o, to it, i.e., by setting A; = Ao A a,,. Con-
structing the rational prefix of o w.r.t. the new core then leads
to a different prefix, which can be dealt with the same way.

Algorithm 1 Calculation of the rational explanation

Input: observation o
Output: the rational explanation for o

AE=T
repeat
p<:pR(0aA) {p:(ama"'7a0)}
A<= ANy,
until o, = T
Return [p, A]

Before showing that the output of this algorithm matches
the rational explanation, we need to be sure it always termi-
nates. This is a consequence of the following:

Lemma 5.1. Let A and o, be as after the calculation of
pr(0,A). If iy £ T then A Z A N Qi

This result assures us that if the termination condition of
the algorithm does not hold, the new core will be strictly log-
ically stronger than the previous one. Thus the cores gener-
ated by the algorithm become progressively strictly stronger.

In our setting, in which we assumed a finite propositional lan-
guage, this means, in the worst case, the process will continue
until A = 1. However in this case it can be shown the ratio-
nal prefix of o w.r.t. L is just (T), and so the termination
condition will be satisfied at the very next step.

Now, to show the output matches the rational explana-
tion, consider the sequence [po, Ag),. .., [pk, Ax] of epis-
temic states generated by the algorithm. We need to show
A;, = Ay(0). The direction Ay, - Ay (o) follows from the
fact that [py, Ag] is an explanation for o and so Ay is an o-
acceptable core. The converse Ay (o) - Ay is proved by
showing inductively that Ay (o) - A; foreachi = 0,...,k:
the case 7 = 0 clearly holds since Ag = T. The inductive
step uses the following property:

Lemma 5.2. Let 0 < ¢ < k and suppose p,—1 =
(s - -+ Q). Then, for any o-acceptable core A’,
if A~ A;_1 then A" F .

This enables us to prove that, given Ay (o) - A;_1, we
must also have Ay (o) - A;. Thus Ay (o) - Ay as required.
Since obviously py is the rational prefix of o w.rt. Ay by
construction, we have:

Proposition 5.3. Given input observation o, the algorithm
outputs the rational explanation for o.

Example 5.4. Let o = ((p, q), (r, —p)). Starting with A=T,
in the first run Co = {f(p, T) — r,f(p,q, T) — —p} =
{p — r,p A ¢ — —p}. Only the second conditional is ex-
ceptional, so C; = {p A ¢ — —p}. Now the remaining con-
ditional is exceptional for itself, so Co=Ci. Ais updated to
A =p — —gbecause p = (p — ~q,p — (r A —q)).

The next calculation yields Co = {f(p,p — —q) — 7,
fw,a,p — —q) = —p} = {pA-q — r,qg\-p — —p}
This time none of the conditionals are exceptional, so C; = {).
As this means a; = T, no further run is necessary and
the resultis p = (T,(pA—q) — 1), A = p — —q.
[(T,(pA—q) — r),p — —q| is the rational explanation for o.

6 Some Examples

In this section we want to give a few simple examples to il-
lustrate the rational explanation.

For o = ((p), (¢)), the rational explanation is [(T,p — ¢),
T]. So we infer A’s initial belief set is p — ¢. Indeed to
explain A’s belief in g following receipt of p it is clear A must
initially believe at least p — q since p itself does not entail q.
It seems fair to say we are not justified in ascribing to .4 any
initial beliefs beyond this. After A receives p we assume A
accepts this input — we have no reason to expect otherwise —
and so has belief set pAg. If A is given a further input =(pAq)
we predict A will also accept this input, but will hold on to its
belief in p. The reason being we assume .4, having only just
been told p, now has stronger reasons to believe p than q. If,
instead, A is given further input —p we predict its belief set
will be just —p, i.e., we do not assume .A’s belief in ¢ persists.
Essentially the rational explanation assumes the prior input p
must have been responsible for A’s prior belief in g. And with
this input now being “overruled” by the succeeding input, .4
can no longer draw any conclusions about the truth of q.

Another illustrative example is 0 = {(p), (—p)), for which
the rational explanation is [(T), —p]. Indeed —p must be a



core belief, as that is the only possibility for p to be rejected.
And if p was not rejected, the agent could not consistently
believe —p.

In some cases the rational explanation gives only the trivial
explanation, i.e., Ay(0) = L. One of the simplest examples
extends the prior one: 0 = ((p, —p), (—p,p)). The first part
of the observation tells us that —p must be a core belief, but
when confirmed of that belief A changes its opinion. This
behaviour of always believing the opposite of what one is told
can be called rational only in very specific circumstances that
are not in the scope of this investigation. Hence, failing to
provide a satisfactory explanation for this example is not to
be seen as a failure of the method.

7 Conclusion

Before concluding, one paper which deserves special men-
tion as having similarities with the present one is [de Saint-
Cyr and Lang, 2002] on belief extrapolation (itself an in-
stance of the general framework of [Friedman and Halpern,
1999]). A belief extrapolation operator takes as input a se-
quence of sentences representing a sequence of partial ob-
servations of a possibly changing world, and outputs another
sequence which “completes” the input. These operators pro-
ceed by trying to determine some history of the world which
“best fits” (according to various criteria) the observations. A
fundamental difference between that work and ours is that be-
lief extrapolation is, like traditional operators of revision and
update, an “agent’s perspective” operator — it is concerned
with how an agent should form a picture of how the exter-
nal world is evolving, whereas we are interested in forming a
picture of how an observed agent’s beliefs are evolving. Nev-
ertheless the precise connections between these two works
seems worthy of further study.

To conclude, in this paper we made an attempt at recon-
structing an agent’s initial epistemic state in order to explain
a given observation of the agent and make predictions about
its future beliefs. We did so by assuming a simple yet pow-
erful model for epistemic states allowing for iterated non-
prioritised revision. The algorithm we provided constructs a
best explanation based on the rational closure of conditional
beliefs. This answer should be applicable to problems requir-
ing the modelling of agents’ beliefs, for example in the area
of user modelling.

Generalisations of this approach which are object of future
work include (i) relaxing the assumption that we are given an
unbroken sequence of revision inputs, i.e., allowing also for
intermediate inputs as an explanation for what the core ac-
counts for now, (ii) allowing our observations to incorporate
information about what the agent did not believe after a given
revision step, and (iii) allowing the core beliefs to be revised.
Further, it is of interest to compare our results with what other
models of epistemic states would yield as explanation.
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