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Tijmen R. Daniëls∗ Eric Pacuit†

July 27, 2007

1 Introduction

There is a new field emerging around issues concerning the aggregation of
a collection of individual “judgments” of a group of agents. An individual
“judgment” is represented by a set of sentences in some logical language.
One looks for a procedure that has as its output a “social” judgment. A
key result in this area is List and Pettit’s impossibility result [13]. By
generalizing the well-known doctrinal paradox [12], List and Pettit were
able to show an “Arrow”-style [1] impossibility theorem: for judgment sets
that are subsets of a sufficiently rich collection of sentences there is no “well-
behaved” aggregation procedure. There have been a number of refinements
and generalizations of this elegant result [3, 7, 8, 16, 17, 18].

As our starting point we take work of Dietrich and List, which builds
on List and Pettit’s result and clarifies the connection between judgment
aggregation impossibility results and Arrow’s famous impossibility result. In
the setting studied by these authors, an agenda is a collection of sentences
in some logical language.1 A judgment set is a subset of the agenda. The
impossibility results arise out of assumptions made about 1. the agenda,
2. the possible judgment sets and 3. the aggregation functions. Formal
details can be found in [4].
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for this discussion. See [3] for a discussion.
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Virtually all proofs of impossibility results follow a similar line of rea-
soning. The main idea is to show that assumptions about the aggregation
procedure and the structure of the agenda force the set of so-called “winning
coalitions” to have particular algebraic properties. Intuitively, a winning
coalition is a set of agents that can force the aggregation procedure to select
a certain proposition. More formally, let N be the set of agents. A set
M ⊆ N is said to be a winning coalition if and only if for all propositions ϕ
from the agenda, and in any situation, the aggregation procedure selects ϕ
whenever exactly the agents in M select ϕ.

Given an aggregation procedure F , let ΩF be the set of winning coali-
tions associated with F . The proof of the main impossibility result in [4]
amounts to showing that ΩF is an ultrafilter, that is, a collection closed under
intersections and supersets and that satisfies for all M ⊆ N , either M ∈ ΩF

or N −M ∈ ΩF . Any ultrafilter over a finite set must contain a singleton.
Under the assumption that the set of agents is finite, the impossibility result
immediately follows, i.e., the set of winning coalitions contains a singleton.
Thus there is a formal connection between properties of the agenda and
aggregation procedure and properties of the set of winning coalitions.

We have two goals in this paper. Our principal goal is to introduce
a general framework to systematically investigate the connection between
properties of the agenda and aggregation procedure one the one hand, and
properties of the winning coalitions on the other. Our framework is abstract
and algebraic in nature; and the heart of our paper is formed by three
sections in which we investigate how this perspective relates to more familiar
concepts in the literature. The next section introduces our basic framework.
In section 3, we show how the algebraic structures that we consider arise
from more classical perspectives, i.e., preference or judgement aggregation.
In section 4, we discuss how some of the traditional axioms of social choice
theory can be generalized in our setting.

Our second goal is to prove an Arrow-style impossibility result in our
general setting. Section 5 contains such a result. We conclude in Section 6.

2 Our Setting

Algebraic Preliminaries. To introduce our general framework we will need
some formal machinery. Much of this terminology is well known and the
reader is referred to [2] for an extensive discussion. An partially ordered
set (“poset”) is a pair (Z,≤) where ≤ is a reflexive, transitive and anti-
symmetric relation on Z. We write z < z′ if z ≤ z′ and z 6= z′. With
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a slight abuse of notation we will use Z to denote the ordered set (Z,≤).
Given an element z ∈ Z, we write ↓z := {y ∈ Z | y ≤ z}.

For S ⊆ Z, we write
∨

S for the least upper bound of S, if it exists;
∨

S
is called the join of S. Similarly, we write

∧
S for the greatest lower bound

of S, which is called the meet. If every pair x, y of elements of Z has a join
and a meet, then we call Z a lattice. The join of x and y is denoted x ∨ y
and the meet is denoted x ∧ y.

A lattice is said to be topped if there is some element, denoted 1, such
that for all z ∈ Z, z ≤ 1; equivalently 1 =

∨
Z. A lattice has a zero if there

is an element 0 such that for all z ∈ Z, 0 ≤ z, that is, 0 =
∧

Z. A topped
lattice with a zero is called bounded.

We write x−< y if x < y and x ≤ z < y implies x = z. An atom of a
lattice Z with a zero element 0 is any element a ∈ Z such that 0−< a. Let
A(Z) denote the set of atoms of Z. Given z ∈ Z, let A(z) denote the set
of atoms below z, i.e., A(z) := {a ∈ A(Z) | a ≤ z}. Elements m 6= 1 such
that if m−< z then z = 1 are called co-atoms. Let M(Z) denote the set of
all co-atoms in Z. Finally, given z ∈ Z, a complement of z is an element
y ∈ Z such that z ∨ y = 1 and z ∧ y = 0. A number of lattices with special
properties will be relevant for this paper:

• A lattice is atomic if there is some a ∈ A(z) for every z 6= 0.

• If every element of Z can be written as the join of its atoms, that is
z =

∨
A(z), then Z is called atomistic.2

• If for every z 6= 1 there exists m ∈ M(Z) such that z ≤ m, then Z is
called co-atomic.

• A lattice is complete if every set S ⊆ Z has a join, i.e.,
∨

S exists.

• A lattice is compact if for every non-empty set S ⊆ Z, if
∨

S = z
and y ≤ z, then y ≤

∨
T for some finite T ⊆ S.3

• A Boolean algebra, or Boolean lattice, is a distributive lattice4 in
which every element has a (necessarily unique5) complement.

• We say a lattice is dichotomic if it is (i). atomistic (and hence atomic)
and (ii). co-atomic and (iii). has the following property: For all a ∈

2Of course, every atomistic lattice is atomic. But the converse is not true — consider
the set of natural numbers with its natural ordering, (N,≤).

3This means in particular that z itself equals
W

T for a finite subset T ⊆ S.
4A lattice is distributive if for all x, y, z ∈ Z, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
5In a distributive lattice, if an element has a complement then it is unique.

3



A(Z), there is ac ∈ Z such that for every m ∈ M(Z), a ∨m = 1 iff
ac ≤ m.

As will become apparent below, the join operator plays a special role in
our framework. A crucial notion that appears throughout the text is semi-
order embedabbility, which makes precise when a lattice Y is “contained in”
another lattice Z in a join-preserving way.

Definition 1 “semi order-embeddable”: Let Y and Z be lattices. Y is
semi-order embeddable in Z if there exists a map f such that:
(a) f(1y) = f(1z); (b) f(y1) ∨ f(y2) = f(y1 ∨ y2). (where y1, y2 ∈ Y are
arbitrary elements of Y , and 1y =

∨
Y and 1z =

∨
Z).

Semi order-embeddability is a weaker variant of a more often considered
notion of order-embeddability. A map f is an order-embedding if it pre-
serves meets and zero in addition to joins and 1.

To illustrate the above concepts, consider the following simple example
of a lattice.

The powerset of 3 lattice. Suppose that X is a set with three elements, i.e.,
X = {1, 2, 3}. The poset (℘(X),⊆) forms a lattice which can be pictured as
follows:

X

sssss
KKKKK

{1, 2}
LLLLL {2, 3}

LLLLL {1, 3}
h h h h h h

{1}
MMM

MMM
M {2} {3}

qqq
qqq

q

∅
We will denote this lattice by 3. The join and meet operations are given

by ∪ and ∩ respectively. The lattice is topped by X and the zero is ∅. In
fact, the lattice is a boolean algebra as it is distributive and each element
has a complement. For example, the complement of {x1} is {x2, x3}.

The Framework. Let N be a non-empty set of agents. For much of what
we say in this text it will not matter whether or not N is finite. However,
as usual, we assume there are at least two agents (i.e., |N | ≥ 2). The key
idea is that agents are assumed to select elements of some topped lattice
Z. Intuitively, the elements of Z represent judgment sets and if z′ ≤ z
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then acceptance of z implies acceptance of z′. A profile is any function6

π : N → Z. If z ∈ Z, we write π[A] = z if all agents in the set A choose z
(i.e., for all i ∈ A, π(i) = z). If z ≤ π(i) then we say that agent i accepts
z. Hence we assume that if π(i) = z then agent i accepts all z′ such that
z′ ≤ z, i.e., i accepts each element in the set ↓π(i).

Let ZN := {π | π : N → Z} be the set of all profiles. An aggregation
function is a map F : ZN → Z. Given a profile π, F (π) is the socially
accepted element of Z. Note that, in general, F may be a partial function.
We write dom(F ) for the domain of F .

The next section contains an extended discussion of how to interpret
this framework. For now, we give the basic intuitions. The idea is that the
elements of the lattice are the possible judgment sets. The ordering can
be interpreted as follows: if z′ ≤ z then z′ contains less information7 than
z. It is now easy to understand why the crucial operation is combining—
joining—two or more elements of Z; after all, we are looking for ways to
combine the judgment sets of individual agents. A special role is played by
1, which intuitively is the set of all propositions (the inconsistent set). If
z∨ z′ 6= 1, then z and z′ are consistent with each other. This role of 1 moti-
vates the following assumption (both on profiles and aggregation functions)
that is made throughout the paper.

Consistency: For all π ∈ ZN and all i ∈ N , π(i) < 1 and F (π) < 1. That
is, all agents and society are consistent.

Note that this property can be viewed as two properties on F . The
first is a range restriction (∀π ∈ ZN , F (π) < 1). The second is a domain
restriction on F . That is, we assume that the domain of F is restricted to
consistent profiles. Let Π be the set of all consistent profiles, i.e., Π = {π ∈
ZN | ∀i ∈ N, π(i) < 1}. A standard assumption in the literature is that
with respect to Π, F is a total function.

Definition 2 “Universal Domain”: An aggregation function F : ZN →
Z satisfies universal domain (with respect to consistent profiles) if for all
π ∈ Π, F (π) exists, i.e., Π ⊆ dom(F ).

6When N is finite, a profile is often represented as a element of Zn = Z × Z × · · ·Z
(n-fold product) where n is the size of N . We have chosen to use the function notation
since, unless explicitly stated, we do not assume that N is finite.

7This information-theoretic interpretation of a lattice is very important in theoretical
computer science. In this setting, elements of the lattice represent (finite) information
about an algorithm. See [2] Chapters 8 and 9 for details.
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When the function F satisfies universal domain as defined above, we write
F : Π → Z.

Decisive sets. Fix a profile π ∈ Π. Each element z ∈ Z partitions N into
three sets. Informally, these are the sets that any social aggregation function
can “take into account” when making the social choice. The first set is the
set of agents that accepts z, formally, let [[z]]π = {i ∈ N | z ≤ π(i)} be
this set. Second, the set of agents that would like to “block” z from being
socially accepted, because their judgment is incompatible with it. This is
the set [[z\]]π = {i ∈ N | z ∨π(i) = 1}. Finally, there is the set of agents that
do not have an opinion about z, i.e., the set N − ([[z]]π ∪ [[z\]]π).

A key notion for our paper is a decisive subset of N .

Definition 3 “Decisive subset”: Let F be an aggregation function. Sup-
pose z ∈ Z and let M ⊆ N . M is decisive for F with respect to z iff
for all π ∈ Π the following holds. Whenever z ≤ π(i) for all i ∈ M and
z ∨ π(j) = 1 for all j ∈ N −M , then z ≤ F (π). A set M ⊆ N is decisive
if for all z ∈ Z, M is decisive for F with respect to z.

Our discussion above suggests two (dual) notions connected with the
definition of decisiveness:

1. A set M forces F to accept z if for all π if [[z]]π = M then z ≤ F (π).

2. A set M blocks F from accepting z if for all π if [[z\]]π = M , then
z 6≤ F (π).

Of course, forcing F to accept z is dual to blocking F from accepting z.
The notion of decisiveness we use is weaker—it states that in order for M
to force F to accept z, everyone in M must accept z and everyone outside
of M must block z. That is, in the face of direct opposition, the group M
still manages to force F to accept z. Formally, using the above notation,
according to the above definition M is decisive for F with respect to z if for
all π if [[z]]π = M and [[z\]]π = N −M then z ≤ F (π).

We may slightly weaken the antecedent by saying that M is weakly deci-
sive for F with respect to z, if for all π if [[z]]π = M and [[z\]]π∩N−M 6= ∅ then
z ≤ F (π). All proofs will go through with this weaker notion of decisiveness.

3 Examples

In this section we indicate how the more familiar judgment and preference
aggregation settings fit into our algebraic framework. We begin with a
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general (and well-known) fact. Let W be a non-empty set and ℘(W ) the
powerset of W . A closure operator on W is a function C : ℘(W ) → ℘(W )
satisfying the following three conditions:

1. For all X ⊆ W , X ⊆ C(X)

2. For all X, Y ⊆ W , if X ⊆ Y then C(X) ⊆ C(Y )

3. For all X ⊆ W , C(C(X)) ⊆ C(X)

A set X ⊆ W is said to be closed if C(X) = X. Let WC = {X |X is closed}.
We will make use of the following well-known fact (see [2, Proposition 7.2]
for details).

Fact 1 For any set W 6= ∅ and closure operator C : ℘(W ) → ℘(W ), WC is
a complete lattice with ∧

i∈I

C(Xi) =
⋂
i∈I

Xi

and ∨
i∈I

C(Xi) = C(
⋃
i∈I

Xi),

for any index set I.

We now illustrate how each component of the judgement aggregation frame-
work is represented in our framework.

The Alternatives and Judgement Sets. The basic premise of the judgement
aggregation setting is that a group of agents is making collective judgments
about interconnected propositions. Typically, it is assumed that the propo-
sitions are expressions in some formal language and the “interconnection”
is derived from a consequence relation (cf. for example, the setting in [4]).
More formally, let L be a formal language with a negation symbol (¬). For
simplicity, we might work with the language of propositional calculus al-
though this is not crucial (cf. [3]). Abstractly, a consequence relation is
any relation `⊆ ℘(L)× L satisfy the following properties:8

1. {p} ` p

2. Suppose A ⊆ B. Then if A ` p then B ` p.
8In fact, the second property follows from the other two. However, we include it to

highlight that we are interested in monotonic consequence relations. Consult [11] for
references and an overview of this algebraic approach to logic.
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3. Suppose A ` p and for all q ∈ A, B ` q. Then B ` p

Dietrich [3] provides an extensive analysis of impossibility results in this
setting.9 We first need some more terminology:

• A set X ⊆ L is `-inconsistent (or more simply inconsistent if no
confusion about the consequence relation will arise) if there is some
p ∈ L such that X ` p and X ` ¬p.

• We say X ⊆ L is consistent10 if X is not inconsistent.

• A set X is deductively closed provided X contains all of its conse-
quences, i.e., X = {p | X ` p}.

• Finally, a set X is complete if for every pair p,¬p ∈ L, either p ∈ X
or ¬p ∈ X.

A judgement set is any set X ⊆ L where p ∈ X is intended to mean
“the agent (or group) accepts p.” Typically it is assumed that judgement
sets are consistent, complete and deductively closed (cf. [13]), but weaker
assumptions have also been discussed (cf. [8, 6, 5]).

What is important for this paper is that every ` (satisfying the above
three properties) defines a closure operator C` : ℘(L) → ℘(L) as follows:
for X ⊆ L, C`(X) = {p | X ` p}. Conversely, every closure operator C
can be used to define a consequence relations `C as follows, for X ⊆ L
and p ∈ L, X `C p iff p ∈ C(X). Thus, given a logical language and a
closure operator satisfying properties 1–3, using Fact 1, we can construct a
complete lattice Ldc

` whose elements are the deductively closed subsets of L.
Note that the top of this lattice will be the11 inconsistent set (i.e., the set
of all propositions). Notice also that the co-atoms of this lattice are the
maximally consistent subsets (i.e., complete and consistent subsets). Thus,
in our setting, fixing the lattice Ldc

` amounts to a rationality assumption
that the agents only choose deductively closed and consistent judgement

9Typically, the judgement aggregation problem is studied in the context of proposi-
tional logic. Dietrich [3] provides a general and unified framework to study judgement
aggregation problems with a variety of underlying logics. The goal of his paper is to high-
light the exact properties of the underlying consequence relation that is used to obtain
various impossibility results. In particular, 5 properties of a consequence relation (called
L1-L5) are highlighted. Each of his conditions L1-L5 is used in this paper.

10Dietrich [3]considers a weaker notion of consistency: a set X is weakly consistent if
it contains at most one member of each pair p,¬p ∈ L. In our setting, these are equivalent.

11Assuming ` satisfies 1–3, the deductive closure of any inconsistent set will be the set
of all formulas.
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sets. A stronger rationality assumption is that agents choose complete and
consistent judgement sets. In settings, where judgement sets are assumed
to be complete as well, the agents’ choices in the lattice must be restricted
to the co-atoms.

Weaker rationality assumptions can also been discussed. In particular,
it is not hard to see that we can work with judgement sets satisfying only
consistency (cf. [5] for a recent impossibility result where judgments sets are
only assumed to be consistent). However, this lattice arises as the lattice of
closed sets of a different closure operator.

Definition 4 Let L be a formal language and ` a consequence relation for
L. Define C ′

` : ℘(L) → ℘(L) as follows: for X ⊆ L,

C ′
`(X) =

{
L if X is `-inconsistent
X otherwise (i.e., X is `-consistent)

We first note that C ′
` is in fact a closure operator.

Fact 2 Suppose L is a formal language and ` satisfies properties 1 and 2
above. Then C ′

` is a closure operator.

Proof Suppose X, Y ⊆ L. Since C ′(X) is either L or X, trivially X ⊆
C ′(X). Suppose X ⊆ Y . Either X is `-consistent or X is `-inconsistent.
If X is `-inconsistent and ` satisfies property 2. above, then Y is also `-
inconsistent. Hence C ′(X) = L = C ′(Y ). If X is `-consistent, then C ′(X) =
X. Therefore, X = C ′(X) ⊆ C ′(Y ), as C ′(Y ) is either Y or L and it is
assumed that X ⊆ Y . To see C ′C ′(X) ⊆ C ′(X), first note X is either
consistent or inconsistent. If X is `-inconsistent, then C ′(X) = L and since
C ′ is monotonic C ′(L) = L. Thus C ′(C ′(X)) = L = C ′(X). Suppose that
C ′(X) is `-consistent. Then, by definition C ′(X) = X, so X = C ′(X) =
C ′(C ′(X)). �

Again we use Fact 1 to construct a lattice Lc
` of consistent judgement sets,

where the top element is the inconsistent set of all formulas and the co-atoms
are again the maximally consistent subsets.

An alternative algebraic approach followed by Gärdenfors [8] is to assume
that the set of alternatives are elements of a boolean algebra. Recall that a
boolean algebra is a distribute lattice in which every element has a (unique)
complement. Note that elements of Gärdenfors’ algebra are intended to
represent possible alternatives whereas elements of our lattices are intended
to represent sets of alternatives. In any boolean algebra B, a consequence
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relation can be defined as follows: given two elements x, y of the boolean
algebra, we say y is a consequence of x provided (−x ∨ y) = 1, where −x
is the complement of x (alternatively, if x is less than y in the order). This
can be lifted to sets by saying that an element y of B is a consequence of a
set X of elements of B if12 (−

∨
X ∨ y) = 1. Given a consequence relation,

defining the lattices as described above is an easy exercise.
To summarize, given a formal language L we can construct the powerset

lattice L⊆ = (℘(L),⊆). This lattice makes no rationality assumptions and
does not represent any interconnections between the propositions (elements
of L). Fixing a consequence relation `⊆ ℘(L) × L highlights various sub-
lattices of L⊆. Precisely which sublattices are of interest depends on the
rationality assumptions (i.e., consistency, deductive closure, completeness,
etc.). Notice that each of the above lattices (L⊆, Ldc

` , and Lc
`) satisfy addi-

tional properties. For example, all lattices are atomistic (and hence atomic),
co-atomic, and complemented, to name a few. Our main goal in this pa-
per is to investigate how these lattice-theoretic assumptions are used when
proving Arrow-style impossibility results.

The Agenda. An agenda is a set of propositions under consideration, or
“on the table”. Formally, it is any subset A of the logical language L (or
sub-boolean algebra in Gärdenfors’ setting). Once the agenda is fixed, it
is assumed that the agents’ judgement sets are subsets of the agenda and
the above notions of completeness, deductive closure and consistency are
relativized to the agenda.13

In our setting, fixing an agenda means that we restrict attention to a
sublattice of the “full lattice” built from the language L and consequence
relations ` as described above (i.e., either Lc

` or Ldc
` depending on rationality

assumptions). Of course, not every sublattice will lead to an impossibility
result. Consider, for example, the agenda A = {p, q, p∧ q} and suppose that
an agent chooses the set X = {p, p∧q}. Is this agent inconsistent? Of course,
the answer depends on how to interpret what it means that “q 6∈ X”. If this
is taken to mean that the agent accepts ¬q, then the agent is inconsistent.14

One can also argue that, since the agenda does not contain ¬q, the agent was
not given the ability to express that fact that he is inconsistent. For reasons

12We need to assume B is complete in case X is infinite.
13For example, given an agenda A, a judgement set X ⊆ A is complete with respect to

A if for each p,¬p ∈ A either p ∈ X or ¬p ∈ X.
14In the AI and non-monotonic logic literature, this is called the closed world assumption.
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such as these, it is often assumed that the agenda is negation closed.15 In
our setting, this amounts to the following condition on the agenda: every
element has a (not necessarily unique) complement (cf. Section 4.2 for more
details).

An agenda A in the usual sense is a set of propositions (typically not
the full language L). Given any sublattice L of L⊆, we write L(A) for the
sublattice of L where each element is a subset of A. For example, Lc

`(A) is
the lattice of all `-consistent subsets of A.

In [13] it was noted that an impossibility result requires certain “rich-
ness” conditions on the agenda (in addition to the agenda be negation
closed).16 This has lead to research on characterization theorems that iden-
tify properties of agendas that correspond to impossibility results. It is
beyond the scope of this paper to survey all of the properties that have been
proposed. We will focus on just one property from [4].

Definition 5 “Minimal Connectedness”: An agenda A is minimally
connected if there is an set Y ⊆ A with |Y | ≥ 3 such that (i) Y is a
minimally inconsistent set (that is, Y is inconsistent, but every subset
of Y is consistent) and (ii) there is an even subset Z ⊆ Y such that Y −
Z ∪ {¬p | p ∈ Z} is consistent.

Suppose that the agenda satisfies minimal connectedness and consider L`(A)
(the exact rationality assumptions are not important). It is not hard to see
that part (i) in the above definition implies that the powerset of 3 lattice
is order-embeddable in L`(A). For example, suppose that the set Y has 4
elements (i.e, Y = {p1, p2, p3, p4}. Then part (i) says that Y is minimally
inconsistent, i.e, every subset of Y is consistent, but Y is inconsistent. Focus-
ing on the elements {p1, p2}, {p3} and {p4} we find the following sublattice
in L`(A):

15That is, if p is in the agenda then ∼ p is in the agenda, where ∼ p is ¬p if p 6= ¬q,
otherwise ∼ p is ¬p.

16In fact, this observation is already present in rudimentary form in Guilbaud [10].
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{p1, p2, p3} {p3, p4} {p1, p2, p4}

∅

{p1, p2} {p3} {p4}

Y

Clearly this is isomorphic to the powerset of 3 lattice described in the pre-
vious section. Property (ii) in the above definition implies that additional
structure is present in L`(A). Finding a general way of describing this sub-
structure is beyond the scope of this article. Instead we look at an example.
Suppose that Z = {p1, p2} is the witness for property (ii) in the above defi-
nition. Then, {¬p1,¬p2, p3, p4} is consistent. Hence, we have the following
additional structure in the lattic L`(A):

{p1, p2, p3} {p3, p4} {p1, p2, p4}

0

{p1, p2} {p3} {p4}

1
{¬p1,¬p2, p3, p4}

{¬p1} {¬p2}

In the above picture, note that {¬p1} ∨ {p1, p2} = 1 and {¬p2} ∨ {p1, p2} =
1. In [4], this property is used to prove that the aggregation function is
monotonic. In this paper, Monotonicity of the aggregation function is stated
as an explicit axiom (cf. Section 4.3). As such, in the next Sections, we only
focus on the first property of the above definition.

Other agenda-richness properites have been proposed in the literature.
For example, Gärdenfors [8] assumes a property that implies his agenda is
non-atomic (recall that his agenda is a boolean algebra). Recently, there is
a growing interest in so-called characterization theorems that characterizes
the “agenda-richness properties” that are necessary and sufficient for an
Arrow-style impossibility result. It is beyond the scope of this article to
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discuss the details—the interested reader can consult, for example, [7, 17].
In our setting, these agenda-richness assumptions amount to assuming the
existence of a sublattice with particular structural properties. In this way,
these characterization results can be discussed in our setting; however, this
will be left for future work.

Following [4], we can view preference aggregation as a special case of
judgement aggregation (cf. also [14] for a comparison between judgement
and preference aggregation). Suppose C is a finite set of candidates and P
the set of strict linear orders over C. In the standard Arrovian setting,
agents choose elements of P. In our setting, consider the lattice of subsets of
C×C that are consistent with the order being transitive and irreflexive (the
top element is the set C ×C). Assuming the agents are selecting connected
orders amounts to assuming the agents choose co-atoms of this lattice. Note
that this lattice is dichotomic: if (x, y) is inconsistent with a complete strict
preference relation, then the relation must contain (y, x), and vice-versa.
The lattice 3 also appears here in the form of the Condorcet triple:

1

x > y > z z > x > y y > z > x

x > y y > z z > x

0

In the lattice above, for example, x > y > z means {(x, y), (x, z), (y, z)}
and x > y means {(x, y)}. In this simplified setting, one immediately sees a
conflict between Arrow’s Indpendence of Irrelevant Alternatives (IIA) and
forcing agents to choose the co-atoms. Arguing very informally, IIA states
that the only information that the aggregation procedure can use when de-
ciding whether to make x > y > z the social preference are the atoms below
x > y > z (in this case, x > y and y > z). Now, in the context of pref-
erence aggregation, Arrows’ IIA property implies Neutrality17. Informally,
Neutrality says that the social choice with respect to some basic element of
the agenda depends only on the pattern of the choices of the voters with
respect to this particular element. But this means that, using neutrality, if

17See, for example, [9] for a proof of this fact. In the context of judgement aggregation,
it can be shown that IIA implies Neutrality under certain richness assumptions on the
agenda, such as path connectedness [7, 17, 4].
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x > y > z is socially accepted then a symmetric argument can be used to
force the procedure to accept y > z > x. Since the join of these elements is
1, this gives a contradiction.18

In the rest of this paper, we shift the focus from the formal languages and
consequence relations to the lattices of possible judgement sets. The lattices
we have considered in this Section (Lc

`(A) and Ldc
` (A)) satisfy various lattice-

theoretic proeprties. Our goal in this paper is to relax these assumptions
about the lattice as much as possible while still being able to prove an Arrow-
style impossibility result. For instance, in this paper we will typically not
assume atomicity of the lattice. While in many contexts, assuming atomicity
is very natural, in this text we are interested in the minimal amount of
structure needed to prove an impossibility result (cf. [3] for results similar
in spirit). We hope that this level of generality can lead to new insights
about formal relationships between properties of the agenda, rationality
assumptions and properties of the aggregation function.

4 Axioms

Now that we have seen how the lattice-theoretic framework fits in with the
rest of the social choice literature, we begin by examining a few axioms
familiar from this literature to see how they generalize to our new setting.

4.1 Neutrality

Neutrality of the aggregation function—in the literature on judgement ag-
gregation this property is also known as systematicity—is instrumental to
many Arrow-style results. In atomistic lattices, the corresponding property
is stated as follows:

Definition 6 “NeutralityA”: For all π and π′ and a, b ∈ A(Z) if [[a]]π =
[[b]]π′ then a ≤ F (π) iff b ≤ F (π′).

If Z is an atomistic lattice, each z ∈ Z can be written as the join of the
atoms below it, and hence in such lattices NeutralityA “grounds” the way
the aggregation function behaves on non-atomic (“compound”) elements in
terms of the atoms below them—a fact which underlies many classical proofs
in the literature on social choice. It is interesting to think about possible gen-
eralizations of this notion to non-atomistic lattices, where such a reduction

18A similar point is made more formally in number of papers by Donald Saari. See, for
example, [20].
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Figure 1: Neutrality∗ versus NeutralityA

is not possible. A prima facie natural generalization of NeutralityA is the
following formulation, which is obtained by simply deleting the requirement
that a and b be atomic from the definition of NeutralityA.

Definition 7 “Neutrality∗”: For all π and π′ and z and z′, if [[z]]π =
[[z′]]π′ then z ≤ F (π) iff z′ ≤ F (π′).

As discussed in section 3, Gärdenfors [8] also works with a non-atomistic
lattice, and this author uses ideas similar to the definition above to develop
a notion of Independence of Irrelevant Alternatives for non-atomistic lat-
tices.19 However, as we will argue next the definition above is an unduly
strengthening of NeutralityA and imposing this property upon an aggrega-
tion function gives some unintuitive consequences.

Consider the lattice K1 in figure 1(a)—a concrete example of this lattice
is the lattice of consistent sets of the agenda {p, q,¬p∧¬q} as pictured in fig-
ure 1(c). Suppose Z is any lattice such that K1 is semi order-embeddable;

19Here, we only wish to emphasize the connection between definition 7 and his definition
of IIA for non-atomic lattices. As discussed above, when viewed from our perspective, the
framework of Gärdenfors actually yields an atomistic lattice.
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and let F be any choice function satisfying Neutrality∗. (A) Neutrality∗

forces the collection of decisive sets of F to be closed under non-empty in-
tersections. This condition on the agenda needed to prove closure under
intersections, that is, the semi order-embeddability of K1, is much weaker
than those one needs to prove the same thing in the traditional judgment
aggregation setting. In particular, the set {p, q,¬p} is not minimally incon-
sistent in the sense of Dietrich and List (as in definition 5).

The lattice K2 is perhaps even more ubiquitous; it sits, for instance,
inside the lattice 3, but also in the lattice of consistent sets of the agenda
{p, q,¬q}. Under the condition that K2 is semi order-embeddable in Z,
(B) Neutrality∗ forces the collection of decisive sets of F to be closed under
non-empty intersections, whenever it is closed under supersets.

Proof of (A) and (B) Let F be a profile and A and B decisive sets such
that A ∩ B 6= ∅. Consider first K1 and consider the profile π such that
π[A] = a, π[B] = b, and π[N − A − B] = c. Since A and B are decisive,
a ∨ b ≤ F (π). Now consider K2 and the profile π[N − (B − A)] = a, and
π[B] = b. Since B and every superset of A are decisive, a ∨ b ≤ F (π).

Now consider both lattices and any profile π′ such that π[A∩B] = a∨ b
and π[N − (A ∩B)] = c. In both lattices

[[a ∨ b]]π = (A ∩B) = [[c]]π′ ,

and thus we find a∨b ≤ F (π′) by Neutrality∗. π′ was arbitrary and so A∩B
is decisive. �

Note that we could not have made the same argument based on NeutralityA,
since the element a ∨ b, which figures crucially in it, is not atomic. In the
example above, F chooses the element a∨b because there is sufficient support
for choosing a and b individually, but not because there is support for the
a∨b. The main issue is that in our more general setting, determining whether
a aggregation function accepts an arbitrary element z of the lattice should
depend not only on the acceptance set of z but also on the acceptance sets
of elements whose acceptance is implied by z (i.e., elements of ↓z). What
we are looking for is some way to make precise what it means for the choices
of the agents on ↓z to be “the same” as the choices on some other downset
↓z′. Since the structures ↓z and ↓z′ may be wildly different, it is not a priori
clear to go about.

The idea of a Neutral Simulation (which is inspired by a similar construc-
tion known from modal logic) forms the heart of the notion of Neutrality
that we will employ in the balance of this text. The following definitions
make this notion precise.
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Definition 8 “Neutral Simulation”: Let S ⊆ Z × Z be a symmetric
binary relation on the lattice Z, and let π and π′ be profiles. The relation S
is called a Neutral Simulation on Z between π and π′ if and only if:
(a) whenever zSz′, [[z]]π = [[z′]]π′;
(b) for all y ≤ z, there exists y′ ≤ z′ such that ySy′;
(c) for all y′ ≤ z′, there exists y ≤ z such that ySy′.

Definition 9 “
↓
≡
↓
≡
↓
≡”: We write [[z]]π

↓
≡ [[z′]]π′ if there exists a Neutral Simu-

lation on Z between π and π′ such that zSz′.

Definition 10 “Neutrality”: F satisfies Neutrality (or “is Neutral”) if,

and only if, for all z, z′ ∈ Z and for all π, π′ ∈ dom(F ), if [[z]]π
↓
≡ [[z′]]π′ then

z ≤ F (π) iff z′ ≤ F (π′).

It may be verified that in the examples based on K1 and K2, it is
impossible to find a Neutral Simulation between π and π′ with respect to
the element a ∨ b that allows us to make the same argument as we made
based on NeutralityA. In section 5 we will show that under this notion of
Neutrality, impossibility results emerge only if a richer substructure than
K1 or K2, viz. the lattice 3, is semi order-embeddable in Z—a structure
that is closely related to an agenda condition that figures prominently in
related literature. For now we conclude our discussion of various forms
of the Neutrality axiom with a proof that NeutralityA coincides with our
preferred notion of Neutrality in the traditional, atomistic, context, and so
is a true generalization.

Lemma 11 Suppose Z is an atomistic lattice. Then F satisfies NeutralityA

if and only if F satisfies Neutrality.

Proof. (⇒). Suppose [[x]]π
↓
≡ [[y]]π′ , let S be a witnessing Neutral Simulation

between π and π′ such that xSy and let F satisfy NeutralityA. Pick any
atom a ≤ x. By the Neutral Simulation, there exists y′ ≤ y such that aSy′

and thus [[a]]π = [[y′]]π′ .
Moreover, for all y′′ ≤ y′ there exists x′ ≤ a such that [[x′]]π = [[y′′]]π′ . In

particular this is true for the atoms that make up y′.
Case 1. For all atoms b below y′, [[b]]π′ = N . Then [[y′]] = N , and hence
[[a]]π = N , since aSy′. Pick b arbitrarily from the atoms below y′.
Case 2. There exists b ≤ y′ such that [[b]]π′ 6= N . Now, by Neutral Simula-
tion, there exists x′ ≤ a such that [[x′]]π = [[b]]π′ . Since x′ < a implies x′ = 0,
and [[0]]π = N , it must be that x′ = a.
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Figure 2: Complements

In both cases [[a]]π = [[b]]π′ . Now suppose y ≤ F (π′). Then y′ ≤ F (π′)
and hence b ≤ F (π′). By NeutralityA, a ≤ F (π). Since a was arbitrary
and x is the join of its atoms, x ≤ F (π), and hence we have proved that
y ≤ F (π′) =⇒ x ≤ F (π).

The reverse direction of Neutrality is proved similarly.

(⇐). Suppose a, a′ are atoms and [[a]]π = [[a′]]π′ . Then S = {(a, a′), (0,0)}
clearly forms a Neutral Simulation. Hence by Neutrality, a ≤ F (π) ⇐⇒
a′ ≤ F (π′), as required in order to show NeutralityA. �

4.2 Behavior on Complements

Suppose that Z is a bounded lattice, which may or may not be atomic. We
say that elements z1, z2 are complements if z1 ∧ z2 = 0 and z1 ∨ z2 = 1;
see figure 2(a). Elements z1, z2 ∈ Z−{0,1} are called quasicomplements
if of these two equations only z1 ∨ z2 = 1 holds—that is z1 “blocks” z2 and
vice versa. We say that Z is a lattice with complements if every element
z ∈ Z has at least one complement (in general a complement need not be
unique; see figure 2(b)).

In a “classical” context where F always chooses a co-atom, the following
fact can easily seen to be true. If A, N −A is some partition of the agents,
and all agents in the set A support some element z1 (say, a proposition p),
and all the others support any given complement z2 of z1 (perhaps ¬p), then
F chooses either z1 or z2. If an aggregation function F has this property,
we will call it Decisive.

Definition 12 “Decisive”: F is Decisive if, whenever z1 and z2 are com-
plements, and the profile π is such that z1 ≤ π(i) for all i ∈ A, and z2 ≤ π(i)
for all i ∈ N −A, then either z1 ≤ F (π) or z2 ≤ F (π).
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As explained above, our framework allows for “incomplete” selections. We
would like to demand of the aggregation function F to use the information
provided to it in terms of profiles in an efficient fashion. Decisiveness cap-
tures one such form of efficiency. Decisiveness is a weakening of a condition
on F called completeness in the literature—this is the condition that F al-
ways chooses p or ¬p.20 To bring out the conditions imposed by this axiom
a little bit more clearly, consider the following example:

The consensus aggregation function:21 For all π, F c(π) :=
∧

i∈N π(i).

Clearly F c always selects a consistent element. However, speaking infor-
mally, consensus is not a very efficient aggregation procedure, and in our
framework this fact formally reflects in that F c is not Decisive.

4.3 Monotonicity

Another well known axiom from the literature on social choice theory is
Monotonicity, which states—roughly—that when the support for some ele-
ment z increases, z cannot disappear from the social choice. In atomistic
lattices, the way Monotonicity affects how the aggregation function behaves
on non-atomic (“compound”) elements can again be grounded in terms of
the atoms below them:

Definition 13 “MonotonicityA”: For all a ∈ AZ and for all π, π′, if
[[a]]π ⊆ [[a]]π′, then a ≤ F (π) implies a ≤ F (π′).

Generalizing this idea leads to the following axiom, which will be our pre-
ferred notion.

Definition 14 “Monotonicity”: For all x ∈ Z and for all π, π′, if for all
x′ ≤ x [[x′]]π ⊆ [[x′]]π′, then x ≤ F (π) implies x ≤ F (π′).

Lemma 15 Let Z be atomistic. F satisfies MonotonicityA if and only if F
satisfies Monotonicity.

Proof The right to left direction is immediate. Conversely, suppose x ≤
F (π). Furthermore suppose for all x′ ≤ x, [[x′]]π ⊆ [[x′]]π′ . Then for all
atoms a below x, we have [[a]]π ⊆ [[a]]π′ , and moreover, since a ≤ x ≤ F (π),
by MonotonicityA, a ≤ F (π′). Since x is the join of its atoms, x ≤ F (π′).
�

20And of course, in our framework, completeness would correspond to the idea that F
always picks a co-atom.

21This example assumes Z is a complete lattice when N is infinite.
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Again in classical contexts, where agents choose elements fromM(Z), Mono-
tonicity has some additional consequences, which we might adopt as separate
axioms in our framework of “incomplete” choices. Suppose π and π′ are two
distinct profiles, where π can be obtained from π′ by modifying some agent’s
choice away from an element that blocks x, towards an element that is con-
sistent with x. Then, intuitively, this change should not make x disappear
from the social choice.

Definition 16 “MonotonicityH”: If π and π′ are profiles such that (i)
[[x\]]π′ ⊆ [[x\]]π, and (ii) π(i) = π(j) for all i /∈ [[x\]]π − [[x\]]π′, then x ≤ F (π)
implies x ≤ F (π′).

The following idea is an obvious variant.

Definition 17 “MonotonicityN”: If π and π′ are profiles such that (i)
[[x\]]π′ ⊇ [[x\]]π, and (ii) π(i) = π(j) for all i /∈ [[x\]]π′ − [[x\]]π, then x 6≤ F (π)
implies x 6≤ F (π′).

The following lemma relates these two notions to the Monotonicity axiom.

Lemma 18 Suppose all agents choose elements in M(Z). Then Mono-
tonicity implies both MonotonicityH and MonotonicityN.

Proof Suppose x ≤ F (π). Let y ≤ x. Let π′ be a profile satisfying the
antecedent of MonotonicityH. In this case, for each i ∈ N , π(i) = π′(i)
except when i ∈ [[x\]]π but i 6∈ [[x\]]π′ . Let y ≤ x. If π(i), π′(i) ∈M(Z), either
y ≤ π(i) or y ∨ π(i) = 1, and y ≤ π′(i). Hence for all y ≤ x, [[y]]π ⊆ [[y]]π′

and by Monotonicity, x ≤ F (π′).
Suppose x 6≤ F (π). Let y ≤ x. Let π′ be a profile satisfying the an-

tecedent of MonotonicityN. In this case, for each i ∈ N , π(i) = π′(i) except
when i 6∈ [[x\]]π but i ∈ [[x\]]π′ . Let y ≤ x. If π(i), π′(i) ∈ M(Z), y ≤ π(i) and
either y ≤ π′(i) or y ∨ π′(i) = 1. Hence for all y ≤ x, [[y]]π′ ⊆ [[y]]π. Suppose
x ≤ F (π′). By Monotonicity, x ≤ F (π), contradicting our assumption on
F (π). �

5 An Impossibility Result

In the previous section, we have discussed generalizations of Neutrality and
Monotonicity to our lattice-theoretic setting. In this section we investi-
gate what axioms allow us to prove an Arrow-style impossibility theorem.
Throughout the section, we consider a lattice Z with complements (and
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hence Z is topped and has a zero), though we do not assume Z is atomistic
or even atomic.

We start by considering the behaviour of F with respect to some arbi-
trary element x ∈ Z and one of x’s complements. We use the notation x to
denote some fixed, but arbitrary, element x′ such that x ≤ x′.

Definition 19 “ω(x1, x2)”: Let x1 and x2 be complements and define ω(x1, x2) ⊆
℘(N) as follows: for all A ⊆ N , A ∈ ω(x1, x2) iff whenever ∀i ∈ A, π(i) = x1

and ∀i ∈ N −A, π(i) = x2, then x1 ≤ F (π).

Thus a set of agents A is an element of ω(x1, x2), if A can force x1 when its
opposition N −A, accepts the complement x2.

Lemma 20 Let F satisfy Universal Domain and Neutrality. Suppose x1

and x2 are complements. Then
(a) for all complements y1 and y2, ω(x1, x2) = ω(y1, y2).
(b) ω(x1, x2) = ω(x2, x1).
(c) if A ∈ ω(x1, x2), then N −A 6∈ ω(x1, x2).
(d) if, additionally, F is Decisive, then ω(x1, x2) satisfies the “ultraprop-
erty”: A ∈ ω(x1, x2) if and only if N −A 6∈ ω(x1, x2).

Proof (a). We show ω(x1, x2) ⊆ ω(y1, y2). Let A ∈ ω(x1, x2) and let π be
a profile where ∀i ∈ A, π(i) = x1 and ∀i ∈ N −A, π(i) = x2. As F satisfies
Universal Domain and A ∈ ω(x1, x2), we have x1 ≤ F (π).

Now consider any profile function π′ where ∀i ∈ A, π′(i) = y1 and
∀i ∈ N − A, π′(i) = y2. For all x′ ≤ x1, either x′ 6≤ x2, and so [[x′]]π = A
or x ≤ x2, and so [[x′]] = N . By similar reasoning, for all y′ ≤ y1,
[[y′]]π′ = [[y1]]π′ ∈ {A,N}. Hence, as [[·]]· is antitonic w.r.t. ≤, we see

[[x1]]π
↓
≡ [[y1]]π′ . By Neutrality x1 ≤ F (π) iff y1 ≤ F (π′). In particular,

since x1 ≤ F (π) we have y1 ≤ F (π′). Hence, A ∈ ω(y1, y2). Symmetric
reasoning shows ω(y1, y2) ⊆ ω(x1, x2).

(b). This follows immediately from (a) by taking (y1, y2) = (x2, x1).

(c). Finally we show that A ∈ ω(x1, x2) only if N −A /∈ ω(x1, x2). Suppose
A ∈ ω(x1, x2). Suppose further N − A ∈ ω(x1, x2). Then, since by (b)
ω(x1, x2) = ω(x2, x1), N−A ∈ ω(x2, x1). Now let π be any profile such that
∀i ∈ A, π(i) = x1, and ∀i ∈ N −A, π(i) = x2. Since A ∈ ω(x1, x2) it follows
that x1 ≤ F (π). Since N − A ∈ ω(x2, x1), it follows x2 ≤ F (π). Hence
1 = x1 ∨ x2 ≤ F (π), a contradiction, since F never selects 1. Conclude
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N −A /∈ ω(x1, x2).

(d). Immediate. �

We now generalize from a pair of complements to the behaviour of F
with respect to some arbitrary element x when this element is blocked by a
group of agents.

Definition 21 : “Ω(x)”: Define Ω(x) ⊆ ℘(N) as follows: for all A ⊆ N ,
A ∈ ω(x) iff whenever [[x]]π = A and [[x\]]π = N −A, then x ≤ F (π).

In our setting, Ω is the family of decisive sets for the element x. We have
the following result.

Lemma 22 Let F satisfy Monotonicity, Universal Domain, and Neutrality,
and let F be Decisive. Then for all x ∈ Z, Ω(x) = Ω, where Ω ⊆ ℘(N)
satisfying: (i) A ∈ Ω, B ⊇ A implies B ∈ Ω;
(ii) A ∈ Ω if and only if N −A /∈ Ω.

Proof Let x1 and x2 be complements. First we show that ω(x1, x2) is closed
upwards. Let A ⊆ B. Now let π be such that ∀i ∈ A π(i) = x1 and ∀i ∈
N − A π(i) = x2. Let π′ be such that ∀i ∈ B π(i) = x1 and ∀i ∈
N − B π(i) = x2. If A ∈ ω(x1, x2), we have x1 ≤ F (π). By Monotonicity
x2 ≤ F (π′) and so by Neutrality, B ∈ ω(x1, x2).

We show Ω(x1) ⊇ ω(x1, x2). Let A ∈ ω(x1, x2). Let π be any profile
such [[x1]]π = A and [[x1\]]π = N − A. Furthermore, let π′ be a profile such
that ∀i ∈ A π(i) = x1 and ∀i ∈ N − A π(i) = x2. Then for all x′ ≤ x1,
[[x′]]π ⊇ [[x1]]π = [[x1]]π′ = [[x′]]π′ . Since A ∈ ω(x1, x2), and F satisfies Uni-
versal Domain, x1 ≤ F (π′). By Monotonicity, x1 ≤ F (π). Since π was
arbitrary, A ∈ Ω(x1).

Next we show ω(x1, x2) ⊇ Ω(x1). Suppose A ∈ Ω(x1). Let π be such that
∀i ∈ A, π(i) = x1 and ∀i ∈ N − A, π(i) = x2, then x1 ≤ F (π). Clearly
[[x1]]π = A and [[x1\]]π = N −A. Hence x1 ≤ F (π). So A ∈ ω(x1, x2).

Using the above results and lemma 20(a), we find for any x1 and y1 that
have complements x2 and y2, respectively:

Ω(x1) ⊆ ω(x1, x2) ⊆ ω(y1, y2) ⊆ Ω(y1) ⊆ (y1, y2) ⊆ ω(x1, x2) ⊆ Ω(x1),

proving our claim. �
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The above result shows that Ω(x), that is, the family of decisive sets, is
invariant under the choice of the element x. A family of sets Ω ⊇ ℘(N) that
has property (i) and (ii), and additionally satisfies:

(iii) If A ∈ Ω and B ∈ Ω, then A ∩B ∈ Ω

is called an ultrafilter. We show next that Ω is an ultrafilter if an additional
property holds of the lattice Z.

Lemma 23 Suppose F satisfies the conditions stated in lemma 22. Fur-
thermore suppose 3 = ℘({1, 2, 3}) is semi order-embeddable in Z. Then Ω
is an ultrafilter.

Strictly speaking, the condition that 3 is semi order-embeddable in Z is
weaker than that of minimal inconsistency (cf. definition 5), since the latter
amounts to 3 being order -embeddable. This observation once again illus-
trates an important feature of our framework, viz. that the join-operation
is the crucial operation.

Proof We have already shown Ω is closed under supersets and satisfies the
ultraproperty (this follows from Lemma 20 and Lemma 22). Thus, we need
only show Ω is closed under taking intersections. Let A,B ∈ Ω. We know
A ∩ B 6= ∅. We wish to show that A ∩ B ∈ Ω. Let C = A ∩ B, and let
A′ = A ∪ {i | i /∈ A,B, C}. Note that A′ ⊇ A and hence A′ ∈ Ω. Take π
such that:

[[f({1})]]π = A′

[[f({3})]]π = B

[[f({2})]]π = N − C

Let f be a semi order-embedding of 3, f({1}) and f({2, 3}) are quasi-
complements. [[f({1})]]π = A and [[f({2, 3})]] = B ∩ (N − C) = N − A.
Since A′ ∈ Ω, f({1}) ≤ F (π). f({3}) and f({1, 2}) are quasi-complements,
hence by analogous reasoning f({3}) ≤ F (π). Finally, f({1, 3}) and f({2})
are quasi-complements. [[f({1, 3})]]π = C, and [[f({2})]]π = N − C. Since
Ω has the ultraproperty either C ∈ Ω or N − C ∈ Ω. Suppose the lat-
ter, then f({2}) ≤ F (π) hence

∨
{f({1}), f({2}), f({3})} = 1 ≤ F (π), a

contradiction. So C ∈ Ω. �

An agent i∗ ∈ N is called a dictator if x ≤ F (π) whenever x ≤ π(i∗).
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Theorem 24 Let F satisfy Universal Domain, Neutrality, Monotonicity,
MonotonicityH, and Decisiveness and suppose N is finite; Furthermore sup-
pose 3 is semi order-embeddable; then there exists a dictator.

Proof Since N is finite Ω is a principal ultrafilter with a minimal element
{i∗}. Suppose x ≤ π(i) and suppose furthermore that x 6≤ F (π).

Let X be the set [[x]]π, and B be the set [[x\]]π. Consider the profile π′

where π′(j) = x′ for all j /∈ X∪B. Since at least i ∈ X, we know N−B ∈ Ω
and so x ≤ F (π′). Comparing π with π′, we see that some agents block x
under π′ but not under π, whereas the opinions of all other agents remain
unchanged. By MonotonicityH, x ≤ F (π). �

According to Theorem 24 the social choice will be an element z such that
π(i∗) ≤ z. In words, everything accepted by the dictator i∗ will end up in
the social choice. The dictator is thus a bit weaker than a classical Arrovian
dictator, who would be able to force the equation π(i∗) = z to hold with
equality. However, the weaker form of dictatorship arises quite naturally in
our framework, because of the possible incompleteness of agents’ choices:
i∗ need not have an opinion on all elements of the lattice Z—it might well
happen that x 6≤ π(i∗) while at the same time x ∨ π(i∗) < 1. However, if i∗

would like to preclude some such x ∈ Z from the social choice, she has the
option of choosing to include a quasicomplement of x below her choice π(i),
i.e., force an element that blocks x.

The lattice 3 plays a crucial role in the argument, because it forces the
collection of decisive sets to be closed under intersections. In fact, a converse
of Theorem 24 also holds: if 3 is not embeddable, we can state a possibility
result, at least for complete, compact lattices. Let i∗ be some designated
element of N . The family of majorities with chair i∗ is the family of
sets F such that for A ⊆ N , A ∈ F if and only if either |A| > 1

2N , or
|A| = 1

2N and i∗ ∈ A. The corresponding majority rule with chair i∗ is
the aggregation function:22

Fm
i∗ (π) :=

∧
{z ∈ Z | [[z]]π ∈ F}

Theorem 25 Let N be finite. Let Z be a compact and complete lattice with
complements and let F satisfy Universal Domain, Neutrality, Monotonicity,
MonotonicityH, and Decisiveness. Then F is necessarily dictatorial if and
only if 3 is semi order-embeddable into Z.

22Our example of the majority rule with chair i∗ solely serves for concreteness. The
proof will go through if F is any strong and proper simple game. For simple game theory
see e.g. Taylor and Zwicker [21].
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Proof The right to left part of the theorem follows from the previous
one. As for the other direction, it is an easy exercise to show Fm

i∗ sat-
isfies the axioms stated in the theorem. We will prove, by contraposition,
that Fm

i∗ (π) < 1 for all π (hence is indeed an aggregation function) whenever
the lattice 3 is not semi order-embeddable.

Suppose Fm
i∗ (π) = 1. Since Z is compact, there exists a finite subset

T ⊆ {z ∈ Z | [[z]]π ∈ F} such that
∧

T = 1.
Clearly T cannot be empty or contain only a singleton. We will prove

T is also “pairwise consistent”: let z1, z2 ∈ T . Straightforwardly from the
properties of the family of majorities with chair i∗, we find [[z1]]π∩ [[z2]]π 6= ∅.
Hence there exists j ∈ N , such that z1 ∨ z2 ≤ π(j). Now π(j) < 1, and so
by transitivity it follows z1 ∨ z2 < 1.

Now, there must be a set S ⊂ T such that
∨

S < 1, but
∨

S∨z1∨z2 = 1
for some distinct z1, z2 ∈ T−S. In particular there is such a set S of smallest
cardinality, and moreover we know |S| ≥ 1, by our pairwise consistency
argument. It remains to prove that

∨
S∨z1 < 1 and

∨
S∨z2 < 1. Suppose

one of these inequations fails, say
∨

S ∨ z1 = 1. There is a largest subset
S′ ⊂ S, such that S′ ∨ z1 < 1. That is, for every element y ∈ S − S′,∨

S′ ∨ z1 ∨ y = 1. But then S′ ⊂ S, y /∈ S, z1 /∈ S contradicts that S is the
set of smallest cardinality satisfying the stated assumption.

We have shown that
∨

S, z1, z2 are pairwise consistent, yet
∨

S∪{z1, z2} =
1, viz. 3 is semi order-embeddable. This concludes the proof. �

6 Conclusion

In this text we have introduced a general framework for studying aggrega-
tion problems. Our framework is abstract and lattice-theoretic in nature,
the crucial operation being the joining of two elements of the lattice. Our
work can be categorized broadly as studying the formal connections between
properties of the agenda (or lattice, in our case) and the induced algebraic
structure of the set of winning coalitions. There are a number of recent
papers closely related to our work, notably Dokow and Holzman [7] and
Nehring and Puppe [17]. These authors also work in a very general setting
and provide characterization results.

One fruitful aspect of our framework is its unifying ability: in Section
3 we have argued how lattices arise frequently from more traditional ap-
proaches to social choice theory (cf. Monjardet [15] for a broader perspec-
tive on the use of lattice theory in the social sciences). Additionally, the
lattice-theoretic perspective allows us to push the level of abstraction a bit
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further. We have shown how certain well known axioms might generalize to
our setting, and discussed some insights and limitations that arise from this
perspective.

Many lattices arising from traditional approaches to social choice theory
satisfy very strong conditions. In the penultimate section we have presented
an impossibility theorem, while relaxing a number of such strong conditions.
Moreover, we have stated a lattice-theoretic property that is necessary to
obtain an impossibility result. This property, viz. semi order-embeddability
of the powerset of 3 lattice, is closely related to the notion of a minimal
inconsistent set that appears in the judgment aggregation literature.

Finally, recently there is interest in aggregation of incomplete orders
and incomplete (but consistent) subsets of an agenda. In the preference
aggregation setting see Pini et al. [19] and for the judgment aggregation
setting see Gärdernfors [8] and Dietrich & List [6]. As we are not assuming
that the agents select maximal elements of the lattice, our result contributes
to this literature.

In this text we have placed emphasis on exposition of the framework,
rather than on extending it in as many directions as possible. From where
we stand now, opportunities for further research present themselves in (at
least) three directions. First, one might study how other lattice-theoretic
properties might lead to impossibility results. For instance, one could move
from the complemented lattices that we study in section 5 to lattices with
pseudo-complements, which arise frequently in logic. Second, one might
want to study how other agenda conditions would show up in our setting.
To give an example, an interesting condition that has appeared in the liter-
ature is “path-connectedness”. Dietrich and List have shown in the context
of judgment aggregation that if the agenda satisfies this condition, then
Neutrality of the aggregation function is equivalent to imposing a gener-
alised version of Arrow’s Independence of Irrelevant Alternatives axiom [4].
Finally, one might study the consequences of different axioms, or perhaps
different generalizations of axioms, than those considered in section 4 and 5
inside our setting. We hope to pursue some of these interesting directions
in future work.
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