
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Axiom Pinpointing in General Tableaux

Franz Baader Rafael Peñaloza

LTCS-Report 07-01

Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Nöthnitzer Str. 46
01187 Dresden

Germany

Axiom Pinpointing in General Tableaux

Franz Baader

Theoretical Computer Science, TU Dresden, Germany
baader@inf.tu-dresden.de

Rafael Peñaloza∗

Intelligent Systems, University of Leipzig, Germany
penaloza@informatik.uni-leipzig.de

February 14, 2007

Abstract

Axiom pinpointing has been introduced in description logics (DLs)
to help the user to understand the reasons why consequences hold and
to remove unwanted consequences by computing minimal (maximal)
subsets of the knowledge base that have (do not have) the conse-
quence in question. The pinpointing algorithms described in the DL
literature are obtained as extensions of the standard tableau-based
reasoning algorithms for computing consequences from DL knowledge
bases. Although these extensions are based on similar ideas, they are
all introduced for a particular tableau-based algorithm for a particular
DL.

The purpose of this paper is to develop a general approach for
extending a tableau-based algorithm to a pinpointing algorithm. This
approach is based on a general definition of “tableaux algorithms,”
which captures many of the known tableau-based algorithms employed
in DLs, but also other kinds of reasoning procedures.

1 Introduction

Description logics (DLs) [2] are a successful family of logic-based knowl-
edge representation formalisms, which can be used to represent the concep-

∗Funded by the German Research Foundation (DFG) under grant GRK 446.

1

tual knowledge of an application domain in a structured and formally well-
understood way. They are employed in various application domains, such as
natural language processing, configuration, databases, and bio-medical on-
tologies, but their most notable success so far is the adoption of the DL-based
language OWL [12] as standard ontology language for the semantic web.
As a consequence of this standardization, several ontology editors support
OWL [14, 17, 13], and ontologies written in OWL are employed in more and
more applications. As the size of such ontologies grows, tools that support
improving the quality of large DL-based ontologies become more important.
Standard DL reasoners [11, 9, 23] employ tableau-based algorithms [5], which
can be used to detect inconsistencies and to infer other implicit consequences,
such as subsumption relationships between concepts or instance relationships
between individuals and concepts.

For a developer or user of a DL-based ontology, it is often quite hard
to understand why a certain consequence holds,1 and even harder to decide
how to change the ontology in case the consequence is unwanted. For ex-
ample, in the current version of the medical ontology SNOMED [24], the
concept Amputation-of-Finger is classified as a subconcept of Amputation-
of-Arm. Finding the axioms that are responsible for this among the more
than 350,000 terminological axioms of SNOMED without support by an au-
tomated reasoning tool is not easy.

As a first step towards providing such support, Schlobach and Cornet [21]
describe an algorithm for computing all the minimal subsets of a given knowl-
edge base that have a given consequence. To be more precise, the knowledge
bases considered in [21] are so-called unfoldable ALC-terminologies, and the
unwanted consequences are the unsatisfiability of concepts. The algorithm
is an extension of the known tableau-based satisfiability algorithm for ALC
[22], where labels keep track of which axioms are responsible for an assertion
to be generated during the run of the algorithm. The authors also coin the
name “axiom pinpointing” for the task of computing these minimal subsets.
Following Reiter’s approach for model-based diagnosis [19], Schlobach [20]
uses the minimal subsets that have a given consequence together with the
computation of Hitting Sets to compute maximal subsets of a given knowl-
edge base that do not have a given (unwanted) consequence.2 Whereas the
minimal subsets that have the consequence help the user to comprehend why
a certain consequence holds, the maximal subsets that do not have the con-
sequence suggest how to change the knowledge base in a minimal way to get

1Note that this consequence may also be the inconsistency of the knowledge base or
the unsatisfiability of a concept w.r.t. the knowledge base.

2Actually, he considers the complements of these sets, which he calls minimal diagnoses.

2

rid of a certain unwanted consequence.
The problem of computing minimal (maximal) subsets of a DL knowledge

base that have (do not have) a given consequence was actually considered
earlier in the context of extending DLs by default rules. In [4], Baader
and Hollunder solve this problem by introducing a labeled extension of the
tableau-based consistency algorithm for ALC-ABoxes [10], which is very sim-
ilar to the one described later in [21]. The main difference is that the algo-
rithm described in [4] does not directly compute minimal subsets that have
a consequence, but rather a monotone Boolean formula, called clash formula
in [4], whose variables correspond to the axioms of the knowledge bases and
whose minimal satisfying (maximal unsatisfying) valuations correspond to
the minimal (maximal) subsets that have (do not have) a given consequence.

The approach of Schlobach and Cornet [21] was extended by Parsia et al.
[18] to more expressive DLs, and the one of Baader and Hollunder [4] was
extended by Meyer et al. [16] to the case of ALC-terminologies with general
concept inclusions (GCIs), which are no longer unfoldable. The choice of
the DL ALC in [4] and [21] was meant to be prototypical, i.e., in both cases
the authors assumed that their approach could be easily extended to other
DLs and tableau-based algorithms for them. However, the algorithms and
proofs are given for ALC only, and it is not clear to which of the known
tableau-based algorithms the approaches really generalize. For example, the
pinpointing extension described in [16] follows the approach introduced in
[4], but since GCIs require the introduction of so-called blocking conditions
into the tableau-based algorithm to ensure termination, there are some new
problems to be solved.

Thus, one can ask to which DLs and tableau-based algorithms the ap-
proaches described in [4, 21] apply basically without significant changes, and
with no need for a new proof of correctness. This paper is a first step to-
wards answering this question. We develop a general approach for extending
a tableau-based algorithm to a pinpointing algorithm, which is based on
the the ideas underlying the pinpointing algorithm described in [4]. To this
purpose, we define a general notion of “tableaux algorithm,” which captures
many of the known tableau-based algorithms for DLs and Modal Logics,3 but
also other kinds of decision procedures, like the polynomial-time subsump-
tion algorithm for the DL EL [1]. This notion is simpler than the tableau
systems introduced in [3] in the context of translating tableaux into tree au-
tomata, and it is not restricted to tableau-based algorithms that generate

3Note that these algorithms are decision procedures, i.e., always terminate. Currently,
our approach does not cover semi-decision procedures like tableaux procedures for first-
order logic.

3

tree-like structures.
Axiom pinpointing has also been considered in other research area, though

usually not under this name. For example, in the SAT community, people
have considered the problem of computing maximally satisfiable and mini-
mally unsatisfiable subsets of a set of propositional formulae. The approaches
for computing these sets developed there include special purpose algorithms
that call a SAT solver as a black box [15, 6], but also algorithms that extend
a resolution-based SAT solver directly [7, 25]. To the best of our knowledge,
extensions of tableau-based algorithms have not been considered in this con-
text, and there are no general schemes for extending resolution-based solvers.

In the next section, we define the notions of minimal (maximal) sets
having (not having) a given consequence in a general setting, and show some
interesting connections between these two notions. In Section 3 we introduce
our general notion of a tableaux, and in Section 4 we show how to obtain
pinpointing extension of such tableaux.

2 Basic definitions

Before we can define our general notion of a tableaux algorithm, we need to
define the general form of inputs to which these algorithms are applied, and
the decision problems they are supposed to solve.

Definition 1 (Axiomatized input, c-property) Let I be a set, called the
set of inputs, and T be a set, called the set of axioms. An axiomatized input
over these sets is of the form (I, T) where I ∈ I and T ∈ Pfin(T) is a finite
subset of T. A consequence property (c-property) is a set P ⊆ I × Pfin(T)
such that (I, T) ∈ P implies (I, T ′) ∈ P for every T ′ ⊇ T .

Intuitively, c-properties on axiomatized inputs are supposed to model conse-
quence relations in logic, i.e., the c-property P holds if the input I “follows”
from the axioms in T . The monotonicity requirement on c-properties cor-
responds to the fact that we want to restrict the attention to consequence
relations induced by monotonic logics. In fact, for nonmonotonic logics, look-
ing at minimal sets of axioms that have a given consequence does not make
much sense.

To illustrate Definition 1, assume that I is a countably infinite set of
propositional variables, and that T consists of all Horn clauses over these
variables, i.e., implications of the form p1 ∧ . . . ∧ pn → q for n ≥ 0 and
p1, . . . , pn, q ∈ I. Then the following is a c-property according to the above
definition: P := {(p, T) | T |= p}, where T |= q means that all valua-
tions satisfying all implications in T also satisfy q. As as concrete example,

4

consider Γ := (p, T) where T consists of the following implications:

ax1: → q, ax2: → s, ax3: s → q, ax4: q ∧ s → p (1)

It is easy to see that Γ ∈ P. Note that Definition 1 also captures the fol-
lowing variation of the above example, where I′ consist of tuples (p, T1) ∈
I×Pfin(T) and the c-property is defined as P ′ := {((p, T1), T2) | T1∪T2 |= p}.
For example, if we take the axiomatized input Γ′ := ((p, {ax3, ax4}), {ax1, ax2}),
then Γ′ ∈ P ′.

Definition 2 Given an axiomatized input Γ = (I, T) and a c-property P, a
set of axioms S ⊆ T is called a minimal axiom set (MinA) for Γ w.r.t. P if
(I,S) ∈ P and (I,S ′) /∈ P for every S ′ ⊂ S. Dually, a set of axioms S ⊆ T
is called a maximal non-axiom set (MaNA) for Γ w.r.t. P if (I,S) /∈ P and
(I,S ′) ∈ P for every S ′ ⊃ S. The set of all MinA (MaNA) for Γ w.r.t. P
will be denoted as MINP(Γ) (MAXP(Γ)).

Note that the notions of MinA and MaNA are only interesting in the case
where Γ ∈ P. In fact, otherwise the monotonicity property satisfied by P im-
plies that MINP(Γ) = ∅ and MAXP(Γ) = {T }. In the above example, where we
have Γ ∈ P, it is easy to see that MINP(Γ) = {{ax1, ax2, ax4}, {ax2, ax3, ax4}}.
In the variant of the example where only subsets of the facts {ax1, ax2} can
be taken, we have MINP ′(Γ′) = {{ax2}}.

The set MAXP(Γ) can be obtained from MINP(Γ) by computing the minimal
hitting sets of MINP(Γ), and then complementing these sets [21, 15]. A set S ⊆
T is a minimal hitting set of MINP(Γ) if it has a nonempty intersection with
every element of MINP(Γ), and no strict subset of S has this property. In our
example, the minimal hitting sets of MINP(Γ) are {ax1, ax3}, {ax2}, {ax4}, and
thus MAXP(Γ) = {{ax2, ax4}, {ax1, ax3, ax4}, {ax1, ax2, ax3}}. Intuitively, to
get a set of axioms that does not have the consequence, we must remove from
T at least one axiom for every MinA, and thus the minimal hitting sets give
us the minimal sets to be removed.

The reduction we have just sketched shows that it is enough to design an
algorithm for computing all MinA, since the MaNA can then be obtained by
a hitting set computation. It should be noted, however, that this reduction
is not polynomial: there may be exponentially many hitting sets of a given
collection of sets, and even deciding whether such a collection has a hitting
set of cardinality ≤ n is an NP-complete problem [8]. Also note that there
is a similar reduction involving hitting sets for computing the MinA from all
MaNA.

5

Instead of computing MinA or MaNA, one can also compute the pinpoint-
ing formula.4 To define the pinpointing formula, we assume that every axiom
t ∈ T is labeled with a unique propositional variable, lab(t). Let lab(T) be the
set of all propositional variables labeling an axiom in T . A monotone Boolean
formula over lab(T) is a Boolean formula using (some of) the variables in
lab(T) and only the connectives conjunction and disjunction. As usual, we
identify a propositional valuation with the set of propositional variables it
makes true. For a valuation V ⊆ lab(T), let TV := {t ∈ T | lab(t) ∈ V}.

Definition 3 (pinpointing formula) Given a c-property P and an axiom-
atized input Γ = (I, T), a monotone Boolean formula φ over lab(T) is called
a pinpointing formula for P and Γ if the following holds for every valuation
V ⊆ lab(T): (I, TV) ∈ P iff V satisfies φ.

In our example, we can take lab(T) = {ax1, . . . , ax4} as set of propositional
variables. It is easy to see that (ax1∨ax3)∧ax2∧ax4 is a pinpointing formula
for P and Γ.

Valuations can be ordered by set inclusion. The following is an immediate
consequence of the definition of a pinpointing formula [4].

Lemma 1 Let P be a c-property, Γ = (I, T) an axiomatized input, and φ a
pinpointing formula for P and Γ. Then

MINP(Γ) = {TV | V is a minimal valuation satisfying φ}
MAXP(Γ) = {TV | V is a maximal valuation falsifying φ}

This shows that it is enough to design an algorithm for computing a pin-
pointing formula to obtain all MinA and MaNA. However, like the previous
reduction from computing MaNA from MinA, the reduction suggested by
the lemma is not polynomial. For example, to obtain MINP(Γ) from φ, one
can bring φ into disjunctive normal form and then remove disjuncts implying
other disjuncts. It is well-know that this can cause an exponential blowup.
Conversely, however, the set MINP(Γ) can directly be translated into the pin-
pointing formula ∨

S∈MINP(Γ)

∧

s∈S

lab(s).

In our example, the pinpointing formula obtained from MINP(Γ) = {{ax1, ax2, ax4},
{ax2, ax3, ax4}} is (ax1 ∧ ax2 ∧ ax4) ∨ (ax2 ∧ ax3 ∧ ax4).

4This corresponds to the clash formula introduced in [4]. Here, we distinguish between
the pinpointing formula, which can be defined independently of a tableau algorithm, and
the clash formula, which is induced by a run of a tableau algorithm.

6

3 A general notion of tableaux

Before introducing our general notion of a tableau-based decision procedure,
we want to motivate it by first modelling a simple decision procedure for the
property P introduced in the Horn clause example from the previous section,
and then sketching extensions to the model that are needed to treat more
complex tableau-based decision procedures.

Motivating examples

To decide whether (p, T) ∈ P, we start with the set A := {¬p}, and then
use the rule

If {p1, . . . , pn} ⊆ A and p1 ∧ . . . ∧ pn → q ∈ T then A := A ∪ {q} (2)

to extend A until it is saturated, i.e., it can no longer be extended with the
above rule. It is easy to see that (p, T) ∈ P (i.e., T |= p) iff this saturated
set contains both p and ¬p. For example, for the axioms in (1), one can first
add s using ax2, then q using ax3, and finally p using ax4. This yields the
saturated set {¬p, p, q, s}.

Abstracting from particularities, we can say that we have an algorithm
that works on a set of assertions (in the example, assertion are propositional
variables and their negation), and uses rules to extend this set. A rule is of
the form (B0,S) → B1 where B0, B1 are finite sets of assertions, and S is
a finite set of axioms (in the example, axioms are Horn clauses). Given a
set of axioms T and a set of assertions A, this rule is applicable if B0 ⊆ A,
S ⊆ T , and B1 6⊆ A. Its application then extends A to A ∪ B1.

5 Our simple
Horn clause algorithm always terminates in the sense that any sequence of
rule applications is finite (since only right-hand sides of implications in T
can be added). After termination, we have a saturated set of assertions, i.e.,
one to which no rule applies. The algorithm accepts the input (i.e., says that
it belongs to P) iff this saturated set contains a clash (in the example, this
is the presence of p and ¬p in the saturated set).

The model of a tableau-based decision procedure introduced until now
is too simplistic since it does not capture two important phenomena that
can be found in tableau algorithms for description and modal logics: non-
determinism and assertions with an internal structure. Regarding non-determinism,
assume that instead of Horn clauses we have more general implications of the
form p1 ∧ . . . ∧ pn → q1 ∨ . . . ∨ qm in T . Then, if {p1, . . . , pn} ⊆ A, we need

5The applicability condition B1 6⊆ A ensures that rule application really extends the
given set of assertions.

7

to choose (don’t know non-deterministically) with which of the propositional
variables qj to extend A. In our formal model, the right-hand side of a non-
deterministic rule consists of a finite set of sets of assertions rather than a
single set of assertions, i.e., non-deterministic rules are of the more general
form (B0,S) → {B1, . . . , Bm} where B0, B1, . . . , Bm are finite sets of asser-
tions and S is a finite set of axioms. Instead of working on a single set of
assertions, the non-deterministic algorithm thus works on a finite set M of
sets of assertions. The non-deterministic rule (B0,S) → {B1, . . . , Bm} is
applicable to A ∈ M if B0 ⊆ A and S ⊆ T , and its application replaces
A ∈ M by the finitely many sets A ∪ B1, . . . , A ∪ Bm provided that each of
these sets really extends A. For example, if we replace ax1 and ax2 in (1) by
ax5: → p∨s, then starting with {{¬p}}, we first get {{¬p, p}, {¬p, s}} using
ax5, then {{¬p, p}, {¬p, s, q}} using ax3, and finally {{¬p, p}, {¬p, s, q, p}}
using ax4. Since each of these sets contains a clash, the input is accepted.

Regarding the structure of assertions, in general it is not enough to use
propositional variables. Tableau-based decision procedures in description
and modal logic try to build finite models, and thus assertions must be able
to describe the relational structure of such models. For example, assertions
in tableau algorithms for description logics [5] are of the form r(a, b) and
C(a), where r is a role name, C is a concept description, and a, b are indi-
vidual names. Again abstracting from particularities, a structured assertion
is thus of the form P (a1, . . . , ak) where P is a k-ary predicate and a1, . . . , ak

are constants. As an example of the kind of rules employed by tableau-
based algorithms for description logics, consider the rule treating existential
restrictions:

If {(∃r.C)(x)} ⊆ A then A := A ∪ {r(x, y), C(y)}. (3)

The variables x, y in this rule are place-holders for constants, i.e., to apply the
rule to a set of assertions, we must first replace the variables by appropriate
constants. Note that y occurs only on the right-hand side of the rule. We
will call such a variable a fresh variable. Fresh variables must be replaced by
new constants, i.e., a constant not occurring in the current set of assertions.
For example, let A := {(∃r.C)(a), r(a, b)}. If we apply the substitution σ :=
{x 7→ a, y 7→ c} that replaces x by a and y by the new constant c, then the
above rule is applicable with σ since (∃r.C)(a) ∈ A. Its application yields the
set of assertions A′ = A∪{r(a, c), C(c)}. Of course, we do not want the rule to
be still applicable to A′. However, to prevent this it is not enough to require
that the right-hand side (after applying the substitution) is not contained
in the current set of assertions. In fact, this would not prevent us from
applying the rule to A′ with another new constant, say c′. For this reason,
the applicability condition for rules needs to check whether the assertions

8

obtained from the right-hand side by replacing the fresh variables by existing
constants yields assertions that are already contained in the current set of
assertions.

The formal definition

In the following, V denotes a countably infinite set of variables, and D a
countably infinite set of constants. A signature Σ is a set of predicate
symbols, where each predicate P ∈ Σ is equipped with an arity. A Σ-
assertion is of the form P (a1, . . . , an) where P ∈ Σ is an n-ary predicate
and a1, . . . , an ∈ D. Likewise, a Σ-pattern is of the form P (x1, . . . , xn) where
P ∈ Σ is an n-ary predicate and x1, . . . , xn ∈ V. If the signature is clear from
the context, we will often just say pattern (assertion). For a set of assertions
A (patterns B), cons(A) (var(B)) denotes the set of constants (variables)
occurring in A (B).

A substitution is a mapping σ : V → D, where V is a finite set of variables.
If B is a set of patterns such that var(B) ⊆ V , then Bσ denotes the set of
assertions obtained from B by replacing each variable by its σ-image. We
say that σ : V → D is a substitution on V . The substitution θ on V ′ extends
σ on V if V ⊆ V ′ and θ(x) = σ(x) for all x ∈ V .

Definition 4 (Tableau) Let I be a set of inputs and T a set of axioms. A
tableau for I and T is a tuple S = (Σ, ·S,R, C) where

• Σ is a signature;

• ·S is a function that maps every I ∈ I to a finite set of finite sets of
Σ-assertions;

• R is a set of rules of the form (B0,S) → {B1, . . . , Bm} where B0, . . . , Bm

are finite sets of Σ-patterns and S is a finite set of axioms;

• C is a set of finite sets of Σ-patterns, called clashes.

Given a rule R : (B0,S) → {B1, . . . , Bm}, the variable y is a fresh variable in
R if it occurs in one of the sets B1, . . . , Bm, but not in B0.

An S-state is a pair S = (A, T) where A is a finite set of assertions and
T a finite set of axioms. We extend the function ·S to axiomatized inputs by
defining (I, T)S := {(A, T) | A ∈ IS}.

Intuitively, on input (I, T), we start with the initial set M = (I, T)S of
S-states, and then use the rules in R to modify this set. Each rule application
picks an S-state S from M and replaces it by finitely many new S-states

9

S1, . . . , Sm that extend the first component of S. If M is saturated, i.e., no
more rules are applicable to M, then we check whether all the elements of M
contain a clash. If yes, then the input is accepted; otherwise, it is rejected.

Definition 5 (rule application, saturated, clash) Given an S-state S =
(A, T), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0),
this rule is applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A, and (iii) for
every i, 1 ≤ i ≤ m, and every substitution ρ′ on var(B0 ∪ Bi) extending ρ we
have Biρ

′ 6⊆ A.
Given a set of S-states M and an S-state S = (A, T) ∈ M to which

the rule R is applicable with substitution ρ, the application of R to S with ρ
in M yields the new set M′ = (M\ {S}) ∪ {(A ∪ Biσ, T) | i = 1, . . . , m},
where σ is a substitution on the variables occurring in R that extends ρ and
maps the fresh variables of R to distinct new constants, i.e., constants not
occurring in B0.

If M′ is obtained from M by the application of R, then we write M →R

M′, or simply M →S M′ if it is not relevant which of the rules of the tableau
S was applied. As usual, the reflexive-transitive closure of →S is denoted by
∗
−→S. A set of S-states M is called saturated if there is no M′ such that
M →S M′.

The S-state S = (A, T) contains a clash if there is a C ∈ C and a
substitution ρ on var(C) such that Cρ ⊆ A, and the set of S-states M is full
of clashes if all its elements contain a clash.

We can now define under what conditions a tableau S is correct for a c-
property.

Definition 6 (correctness) Let P be a c-property on axiomatized inputs
over I and T, and S a tableau for I and T. Then S is correct for P if the
following holds for every axiomatized input Γ = (I, T) over I and T:

1. S terminates on Γ, i.e., there is no infinite chain of rule applications
M0 →S M1 →S M2 →S . . . starting with M0 := ΓS.

2. For every chain of rule applications M0 →S . . . →S Mn such that
M0 = ΓS and Mn is saturated we have Γ ∈ P iff Mn is full of clashes.

The simple decision procedure sketched in our Horn clause example is a cor-
rect tableau in the sense of this definition. More precisely, it is a tableau with
unstructured assertions (i.e., the signature contains only nullary predicate
symbols) and deterministic rules. It is easy to see that also the polynomial-
time subsumption algorithm for the DL EL and its extensions introduced

10

in [1] can be viewed as a correct deterministic tableau with unstructured
assertions. The standard tableau-based decision procedure for concept un-
satisfiability in the DL ALC [22] is a correct tableau that uses structured
assertions and has a non-deterministic rule.

In 2. of Definition 6, we require that the algorithm gives the same answer
independent of what terminating chain of rule applications is considered.
Thus, the choice of which rule to apply next is don’t care non-deterministic in
a correct tableau. This is important since a need for backtracking over these
choices would render a tableau algorithm completely impractical. However,
in our framework this is not really an extra requirement on correct tableaux:
it is built into our definition of rules and clashes.

Proposition 1 Let Γ be an axiomatized input and M0 := ΓS. If M and
M′ are saturated sets of S-states such that M0

∗
−→S M and M0

∗
−→S M′,

then M is full of clashes iff M′ is full of clashes.

This proposition is a special case of Lemma 8 which will proven at the
end of this paper. A proof for this particular case would be almost identical
to the one given for that lemma.

4 Pinpointing extensions of general tableaux

Given a correct tableau, we show how it can be extended to an algorithm that
computes a pinpointing formula. As shown in Section 2, all minimal axiom
sets (maximal non-axiom sets) can be derived from the pinpointing formula
φ by computing all minimal (maximal) valuations satisfying (falsifying) φ.
Recall that, in the definition of the pinpointing formula, we assume that every
axiom t ∈ T is labeled with a unique propositional variable, lab(t). The set of
all propositional variables labeling an axiom in T is denoted by lab(T). In the
following, we assume that the symbol >, which always evaluates to true, also
belongs to lab(T). The pinpointing formula is a monotone Boolean formula
over lab(T), i.e., a Boolean formula built from lab(T) using conjunction and
disjunction only.

To motivate our pinpointing extension of general tableaux, we first de-
scribe such an extension of the simple decision procedure sketched for our
Horn clause example. The main idea is that assertions are also labeled with
monotone Boolean formulae. In the example, where T consists of the axioms
of (1) and the axiomatized input is (p, T), the initial set of assertions consists
of ¬p. The label of this initial assertion is > since its presence depends only
on the input p, and not on any of the axioms. By applying the rule (2) using
axiom ax2, we can add the assertion s. Since the addition of this assertion

11

depends on the presence of ax2, it receives label ax2. Then we can use ax3 to
add q. Since this addition depends on the presence of ax3 and of the assertion
s, which has label ax2, the label of this new assertion is ax2 ∧ ax3. There is,
however, also another possibility to generate the assertion q: apply the rule
(2) using axiom ax1. In a “normal” run of the tableau algorithm, the rule
would not be applicable since it would add an assertion that is already there.
However, in the pinpointing extension we need to register this alternative way
of generating q. Therefore, the rule is applicable using ax1, and its applica-
tion changes the label of the assertion q from ax2 ∧ ax3 to ax1 ∨ (ax2 ∧ ax3).
Finally, we can use ax4 to add the assertion p. The label of this assertion is
ax4∧ax2∧ (ax1∨ (ax2∧ax3)) since the application of the rule depends on the
presence of ax4 as well as the assertions s and q. The presence of both p and
¬p gives us a clash, which receives label >∧ ax4 ∧ ax2 ∧ (ax1 ∨ (ax2 ∧ ax3)).
This so-called clash formula is the output of the extended algorithm. Obvi-
ously, it is equivalent to the pinpointing formula (ax1 ∨ ax3)∧ ax2 ∧ ax4 that
we have constructed by hand in Section 2.

The formal definition

Given a tableau S = (Σ, ·S,R, C) that is correct for the c-property P, we
show how the algorithm for deciding P induced by S can be modified to an
algorithm that computes a pinpointing formula for P. Given an axiomatized
input Γ = (I, T), the modified algorithm also works on sets of S-states, but
now every assertion a occurring in the assertion component of an S-state
is equipped with a label lab(a), which is a monotone Boolean formula over
lab(T). We call such S-states labeled S-states. In the initial set of S-states
M = (I, T)S, every assertion is labeled with >.

The definition of rule application must take the labels of assertions and
axioms into account. Let A be a set of labeled assertions and ψ a monotone
Boolean formula. We say that the assertion a is ψ-insertable into A if (i) ei-
ther a /∈ A, or (ii) a ∈ A, but ψ 6|= lab(a). Given a set B of assertions and
a set A of labeled assertions, the set of ψ-insertable elements of B into A is
defined as insψ(B, A) := {b ∈ B | b is ψ-insertable into A}. By ψ-inserting
these insertable elements into A, we obtain the following new set of labeled
assertions: Adψ B := A∪ insψ(B, A), where each assertion a ∈ A\ insψ(B, A)
keeps its old label lab(a), each assertion in insψ(B, A) \ A gets label ψ, and
each assertion b ∈ A ∩ insψ(B, A) gets the new label ψ ∨ lab(b).

Definition 7 (pinpointing rule application) Given a labeled S-state S =
(A, T), a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0),
this rule is pinpointing applicable to S with ρ if (i) S ⊆ T , (ii) B0ρ ⊆ A,

12

and (iii) for every i, 1 ≤ i ≤ m, and every substitution ρ′ on var(B0 ∪Bi) ex-
tending ρ we have insψ(Biρ

′, A) 6= ∅, where ψ :=
∧

b∈B0
lab(bρ) ∧

∧
s∈S lab(s).

Given a set of labeled S-states M and a labeled S-state S ∈ M to which
the rule R is pinpointing applicable with substitution ρ, the pinpointing ap-
plication of R to S with ρ in M yields the new set M′ = (M\{S})∪{(Adψ

Biσ, T) | i = 1, . . . , m}, where the formula ψ is defined as above and σ is
a substitution on the variables occurring in R that extends ρ and maps the
fresh variables of R to distinct new constants.

If M′ is obtained from M by the pinpointing application of R, then we
write M →Rpin M′, or simply M →Spin M′ if it is not relevant which of
the rules of the tableau S was applied. As before, the reflexive-transitive
closure of →Spin is denoted by

∗
−→Spin. A set of labeled S-states M is called

pinpointing saturated if there is no M′ such that M →Spin M′.

To illustrate the definition of rule application, let us look back at the example
from the beginning of this section. There, we have looked at a situation
where the current set of assertions is A := {¬p, s, q} where lab(¬p) = >,
lab(s) = ax2, and lab(q) = ax2 ∧ ax3. In this situation, the rule (1) is
pinpointing applicable using ax1. In fact, in this case the formula ψ is simply
ax1. Since this formula does not imply lab(q) = ax2 ∧ ax3, the assertion q is
ψ-insertable into A. Its insertion changes the label of q to ax1 ∨ (ax2 ∧ ax3).

Consider a chain of pinpointing rule applications M0 →Spin . . . →Spin Mn

such that M0 = ΓS for an axiomatized input Γ and Mn is pinpointing
saturated. The label of an assertion in Mn expresses which axioms are
needed to obtain this assertion. A clash in an S-state of Mn depends on the
joint presence of certain assertions. Thus, we define the label of the clash
as the conjunction of the labels of these assertions. Since it is enough to
have just one clash per S-state S, the labels of different clashes in S are
combined disjunctively. Finally, since we need a clash in every S-state of
Mn, the formulae obtained from the single S-states are again conjoined.

Definition 8 (clash set, clash formula) Let S = (A, T) be a labeled S-
state and A′ ⊆ A. Then A′ is a clash set in S if there is a clash C ∈ C and
a substitution ρ on var(C) such that A′ = Cρ. The label of this clash set is
ψA′ :=

∧
a∈A′ lab(a).

Let M = {S1, . . . , Sn} be a set of labeled S-states. The clash formula
induced by M is defined as

ψM :=
n∧

i=1

∨

A′ clash set inSi

ψA′.

13

Recall that, given a set T of labeled axioms, a propositional valuation
V induces the subset TV := {t ∈ T | lab(t) ∈ V} of T . Similarly, for a
set A of labeled assertions, the valuation V induces the subset AV := {a ∈
A | V satisfies lab(a)}. Given a labeled S-state S = (A, T) we define its
V-projection as V(S) := (AV , TV). The notion of a projection is extended to
sets of S-states M in the obvious way: V(M) := {V(S) | S ∈ M}. The
following lemma is an easy consequence of the definition of the clash formula:

Lemma 2 Let M be a finite set of labeled S-states and V a propositional
valuation. Then we have that V satisfies ψM iff V(M) is full of clashes.

Proof. If V(M) is full of clashes, then for every S-state Si ∈ M, V(Si)
contains a clash. Thus, there is a clash set A′ in Si such that the labels
lab(a) are satisfied by V, for every a ∈ A′. This implies that the V satisfies
the label ψA′ of this clash set. Hence, V satisfies the formula

∨

A clash set in Si

ψA.

Since this is true for every Si ∈ M, then V satisfies the clash formula ψM.
Conversely, if there is a S ∈ M such that V(S) does not contain a clash,

it must be the case that for every clash set A′ in S, there is an assertion
a ∈ A′ such that V doesn’t satisfy lab(a). This means that V does not satisfy
the label of any of the clash sets ψA′ . Hence, this valuation cannot satisfy
the disjunction of such labels, nor the clash formula.

There is also a close connection between pinpointing saturatedness of a
set of labeled S-states and saturatedness of its projection:

Lemma 3 Let M be a finite set of labeled S-states and V a propositional
valuation. If M is pinpointing saturated, then V(M) is saturated.

Proof. Suppose that there is a S-state S = (A, T) ∈ M, and a rule R :
(B0,S) → {B1, . . . , Bm} such that R is applicable to V(S) with a substitution
ρ. By definition of applicability, it holds then that S ⊆ TV , B0ρ ⊆ AV , and
for every i, 1 ≤ i ≤ m and every substitution ρ′ on var(B0 ∪Bi) extending ρ,
Biρ

′ 6⊆ AV .
Suppose now that R is not pinpointing applicable to S with the same

substitution ρ. Since S ⊆ TV ⊆ T and B0ρ ⊆ AV ⊆ A, there must be an i
and a substitution ρ′ on var(B0∪Bi) extending ρ such that insψ(Biρ

′, A) = ∅,
where ψ :=

∧
b∈B0

lab(bρ) ∧
∧

s∈S lab(s). Then, for every b ∈ Bi it holds that
bρ′ ∈ A and ψ |= lab(bρ′). But we know that V satisfies ψ; thus, it must also

14

satisfy lab(bρ′), and thus bρ′ ∈ AV , contradicting the fact the Biρ
′ 6⊆ AV .

Given a tableau that is correct for a property P, its pinpointing extension
is correct in the sense that the clash formula induced by the pinpointing sat-
urated set computed by a terminating chain of pinpointing rule applications
is indeed a pinpointing formula for P and the input.

Theorem 1 (correctness of pinpointing) Let P be a c-property on ax-
iomatized inputs over I and T, and S a correct tableau for P. Then the
following holds for every axiomatized input Γ = (I, T) over I and T:

For every chain of rule applications M0 →Spin . . . →Spin Mn

such that M0 = ΓS and Mn is pinpointing saturated, the clash
formula ψMn

induced by Mn is a pinpointing formula for P and
Γ.

To prove this theorem, we want to consider projections of chains of pin-
pointing rule applications to chains of “normal” rule applications. Unfor-
tunately, things are not as simple as one might hope for since in general
M →Spin M′ does not imply V(M) →S V(M′). First, the assertions and
axioms to which the pinpointing rule was applied in M may not be present
in the projection V(M) since V does not satisfy their labels. Thus, we may
also have V(M) = V(M′). Second, a pinpointing application of a rule may
change the projection (i.e., V(M) 6= V(M′)), although this change does
not correspond to a normal application of this rule to V(M). For example,
consider the tableau rule (3) treating existential restrictions in description
logics, and assume that we have the assertions (∃r.C)(a) with label ax1 and
r(a, b), C(b) with label ax2. Then the rule (3) is pinpointing applicable, and
its application adds the new assertions r(a, c), C(c) with label ax1, where c is
a new constant. If V is a valuation that makes ax1 and ax2 true, then the V
projection of our set of assertions contains (∃r.C)(a), r(a, b), C(b). Thus rule
(3) is not applicable, and no new individual c is introduced. To overcome
this second problem, we define a modified version of rule application, where
the applicability condition (iii) from Definition 5 is removed.

Definition 9 (modified rule application) Given an S-state S = (A, T),
a rule R : (B0,S) → {B1, . . . , Bm}, and a substitution ρ on var(B0), this rule
is m-applicable to S with ρ if (i) S ⊆ T and (ii) B0ρ ⊆ A. In this case,
we write M →Sm M′ if S ∈ M and M′ = (M \ {S}) ∪ {(A ∪ Biσ, T) |
i = 1, . . . , m}, where σ is a substitution on the variables occurring in R that
extends ρ and maps the fresh variables of R to distinct new constants.

15

The next lemma relates modified rule application with “normal” rule
application, on the one hand, and pinpointing rule application on the other
hand. Note that “saturated” in the formulation of the first part of the lemma
means saturated w.r.t. →S, as introduced in Definition 5.

Lemma 4 Let Γ = (I, T) be an axiomatized input and M0 = ΓS.

1. Assume that M0
∗
−→S M and M0

∗
−→Sm M′ and that M and M′ are

saturated finite sets of S-states. Then M is full of clashes iff M′ is
full of clashes.

2. Assume that M and M′ are finite sets of labeled S-states, and that V
is a propositional valuation. Then M →Spin M′ implies V(M) →Sm

V(M′) or V(M) = V(M′). In particular, this shows that M0
∗
−→Spin M

implies V(M0)
∗
−→Sm V(M).

Proof. Part 1 of this lemma is a corollary to Lemma 8, which will be
proven later in this section.

For the second part of the lemma, let S = (A, T) ∈ M and R : (B0,S) →
{B1, . . . , Bm} be such that R is pinpointing applicable to S with substitution
ρ. Then M′ = (M\{S})∪ {(A dψ Biσ, T) | 1 ≤ i ≤ m} where σ and ψ are
as in the definition of pinpointing application.

Take one of the newly added S-states Si = (A dψ Biσ, T) ∈ M′. By the
definition of ψ-insertion, we know that every assertion a ∈ A \ insψ(Biσ, A)
keeps its old label lab(a), each assertion in insψ(Biσ, A) \ A gets a label ψ
and each assertion b ∈ A ∩ insψ(Biσ, A) gets the new label ψ ∨ lab(b). Thus,
if V satisfies ψ, it holds that (A dψ Biσ)V = AV ∪ Biσ, because all the
newly added and modified labels will be satisfied by V. This implies that
V(M) →Sm V(M′).

On the other hand, if V does not satisfy ψ, then (Adψ Biσ)V = AV , since
none of the newly added labels will be satisfied by V, and modifying a pre-
viously existing one by disjoining it with ψ does not change its satisfiability
under V. In this case, V(M) = V(M′).

We are now ready to prove Theorem 1. Let Γ = (I, T) be an axiomatized
input, and assume that M0 →Spin . . . →Spin Mn such that M0 = ΓS and Mn

is pinpointing saturated. We must show that the clash formula ψ := ψMn
is

a pinpointing formula for the property P. This is an immediate consequence
of the next two lemmas.

Lemma 5 If (I, TV) ∈ P then V satisfies ψ.

16

Proof. Let N0 := (I, TV)S. Since S terminates on every input, there is a

saturated set N such that N0
∗
−→S N . Since S is correct for P and (I, TV) ∈

P, we know that N is full of clashes.
By 2. of Lemma 4, M0

∗
−→Spin Mn implies V(M0)

∗
−→Sm V(Mn). In

addition, we know that V(M0) = N0, and Lemma 3 implies that V(Mn)
is saturated. Thus, 1. of Lemma 4, together with the fact that N is full of
clashes, implies that V(Mn) is full of clashes.

By Lemma 2, this implies that V satisfies ψ = ψMn
.

Lemma 6 If V satisfies ψ then (I, TV) ∈ P.

Proof. Consider again a chain of rule applications N0 = (I, TV)S ∗
−→S N

where N is saturated. We have (I, TV) ∈ P if we can show that N is full of
clashes.

As in the proof of the previous lemma, we have that V(M0)
∗
−→Sm V(Mn),

V(M0) = N0, and V(Mn) is saturated. Since V satisfies ψ, Lemma 2 implies
that V(Mn) is full of clashes.

By 1. of Lemma 4, this implies that N is full of clashes.

To complete the proof of Theorem 1, it remains to show the first part of
Lemma 4. Before proving this result, we will introduce the concept of sub-
state. Intuitively, a S-state S is a substate of a S-state S′ if every assertion
and axiom in S is also part of S′. In our case, we want to make this notion
more general, allowing for different constants to appear in both S-states, as
long as there is a “renaming” from the constants of S into the ones of S′.

Definition 10 (substate) A S-state S = (A, T) is a substate of S′ =
(A′, T ′), denoted as S � S′, if it holds that T ⊆ T ′ and there exists a renam-
ing function f : cons(A) → cons(A′) such that if the assertion P (a1, . . . , ak)
is in A, then P (f(a1), . . . , f(ak)) is in A′.

It is important to notice that for every pair of S-states S = (A, T)
and S′ = (A′, T ′) such that S � S′, if there is a set B of patterns and a
substitution ρ on var(B) such that Bρ ⊆ A, then there is also a substitution,
namely ρ′ = ρ ◦ f where f is the renaming function, with Bρ′ ⊆ A′. In
particular, this implies that if S contains a clash, then S′ contains a clash
too.

Lemma 7 Let N and N0 be two sets of S-states, where N0 is saturated. If
there exist S ∈ N and S0 ∈ N0 such that S � S0, then for every N →Rm N ′

there is a S′ ∈ N ′ such that S′ � S0.

17

Proof. If N ′ is obtained by the application of R to a S-state different from
S, then S ∈ N ′. Suppose now that the rule R : (B0,S) → {B1, . . . , Bm} is
applied to S with substitution ρ to obtain N ′, and let S = (A, T) and S0 =
(A0, T0). Since S � S0, it holds that T ⊆ T0 and there is a substitution ρ′ on
var(B0) such that B0ρ

′ ⊆ A0. Thus, conditions (i) and (ii) from the definition
of R being applicable to S0 with ρ′ (see Definition 5) are satisfied. As N
is saturated, this definition cannot be satisfied; hence, condition (iii) must
not hold. This means that there must exist a 1 ≤ i ≤ m and a substitution
ς on var(B0 ∪ Bi) extending ρ′ such that B0ς ⊆ A0. On the other hand, a
substitution σ is used to construct the new set N ′ after the application to the
rule to S with ρ in N . Let S′ = (A∪Biσ, T). Extend the renaming function
f to f ′ including the new constants f ′ : cons(A∪Biσ) → cons(A0) by setting
for every fresh variable x of R appearing in Bi, f ′(σ(x)) = ς(x). This defines
a complete renaming function for the constants in A∪Biσ, and by definition
is such that σ ◦f ′ = ς. Suppose that an assertion P (a1, . . . , ak) is in A∪Biσ.
If it is in A, then, since S � S0, the assertion P (f(a1), . . . , f(ak)) must be
in A0. In the other case, it must be in Biσ, in other words, P (a1, . . . , ak) =
P (σ(x1), . . . , σ(xk)), for some x1, . . . , xk ∈ var(B0 ∪ Bi). As σ ◦ f ′ = ς,
then the assertion P (f ′(a1), . . . , f

′(ak)) = P (ς(a1), . . . , ς(ak)) is in A0. Thus,
S′ � S0.

The following lemma proves Proposition 1 and the first part of Lemma 4.

Lemma 8 Let Γ be an axiomatized input and M0 := ΓS. If M and M′ are
saturated sets of S-states such that M0

∗
−→Sm M and M0

∗
−→Sm M′, then M

is full of clashes iff M′ is full of clashes.

Proof. Recall that the application of a rule to a set of S-states removes
one of these S-states, and adds a finite amount of S-states that extend the
removed one. Then, for every S-state S ∈ M′, there is a S-state S0 ∈ M0

such that S0 � S. Let M0 →Sm M1 →Sm . . . →Sm Mn = M be the chain
of rule applications from M0 to M. Then, by Lemma 7, for every S ∈ M′,
there is a S-state S1 ∈ M1 such that S1 � S. This argument gives us
an inductive step from which it follows that for every S ∈ M′ and every
0 ≤ i ≤ n there is a S-state Si ∈ Mi such that Si � S. If M is full of
clashes, then every element in M contains a clash. In particular, for every
S ∈ M′, there is an element Sn ∈ M such that Sn � S; thus, S contains
also a clash. Hence, if M is full of clashes, then M′ is full of clashes. The
same argument can be used to prove the converse direction.

This completes the proof of Theorem 1. The theorem considers a termi-
nating chain of pinpointing rule applications. Unfortunately, termination of

18

R1 : ({P1(x)}, {ax1}) → {{P (x), Q1(x)}}

R2 : ({P2(x)}, {ax2}) → {{P (x), Q2(x)}}

R3 : ({P (x)}, ∅) → {{r(x, y), P (y)}, {Q1(x)}, {Q2(x)}}

Figure 1: Rules of a terminating tableau

a tableau S does not imply termination of its pinpointing extension. This
is the case since a rule may be pinpointing applicable in cases where it is
not applicable in the normal sense (see the discussion above Definition 9).
Intuitively, one could think that whenever this happens, the rule generates
assertions with a label that does not imply the labels of the existing assertions
that blocked the normal application of the rule. Termination of pinpointing
rule application should follow from the fact that this can happen only finitely
often since lab(T) is finite, and thus there are only finitely many monotone
Boolean formulae over lab(T). We will now show with a counterexample that
this intuition is not correct.

Consider a tableau S where the function ·S maps every input I ∈ I to
the singleton set IS = {{P1(a), P2(a)}} and R contains only the three rules
shown in Figure 1. Suppose that the tableau algorithm is executed over
an input of the form Γ = (I, {ax1, ax2}). This execution begins with the
singleton set of S-states ΓS = {({P1(a), P2(a)}, {ax1, ax2})}. At this point,
any of the rules R1 or R2 is applicable, but not R3 since there is no assertion
of the form P (d) with d a constant. For simplicity, on the following we will
represent every S-state by showing only the set of assertions it contains; the
set of axioms is always the same, namely {ax1, ax2}.

If rule R1 is applied, then the rule R2 is still applicable in the S-state ob-
tained from such application, but R3 is still not applicable because, although
the assertion P (a) can be found there, it also contains the assertion Q1(a),
violating this way the applicability conditions. Further applying the rule R2

to the resulting S-state leads to a saturated S-state. Analogously, if one
starts by applying R2, then the only further applicable rule is R1, leading to
a saturated S-state. Figure 2 shows the tree of possible rule applications for
all sets of S-states reachable from ΓS. In the figure, only a series of assertions
are shown, since every set of S-states that is reached is a singleton. The left
branch shows an application of rule R1 followed by R2 while the right branch
shows the inverse ordering.

This shows that, regardless of the ordering chosen, the execution of the
tableau will reach a saturated set of states after finitely many rule appli-

19

P1(a), P2(a)

P (a), Q2(a)

P (a), Q1(a)

P (a), Q1(a)

P (a), Q2(a)

Figure 2: The complete choice tree for rule application of the tableau using
as axioms ax1 and ax2. The tree shows only the assertions that are added to
the parent S-state after an application of the rule.

cations. Notice that the rule R3 is never applicable. The reason for this
is that at the beginning, Condition (ii) of the definition of applicability is
not fulfilled, and whenever a rule application adds the assertion required for
satisfying it, it adds also more assertions that contradict Condition (iii) of
the same definition.

We can now try to apply the modified algorithm for pinpointing over
this input. For this, we will begin with the set of labeled S-states given
by {{P1(a), P2(a)}}, where the label of both assertions is set to >. An
application of the rule R1 on the only S-state substitutes it with another one
having two additional assertions P (a), Q1(a), labeled with ax1. A pinpointing
application of rule R2 to the resulting S-state adds the assertion: Q2(a) with
label ax2, and modifies lab(P (a)) to the formula ax1 ∨ ax2.

Summarizing, after applying both rules, we have one single S-state de-
fined by the set of assertions A = {P1(a), P2(a), P (a), Q1(a), Q2(a)} where
lab(P1(a)) = lab(P2(a)) = >, lab(P (a)) = ax1 ∨ ax2, lab(Q1(a)) = ax1, and
lab(Q2(a)) = ax2.

We then have an assertion P (a) in this labeled S-state, and although
the assertions Q1(a) and Q2(a) are also there, their labels are such that
lab(P (a)) 6|= lab(Q1(a)) and lab(P (a)) 6|= lab(Q2(a)). Thus, rule R3 is pin-
pointing applicable to this S-state. Applying it leads to the set of labeled
S-states defined by:

{ A ∪ {r(a, b), P (b)}

A ∪ {Q1(a)}

A ∪ {Q2(a)} }.

In fact, the last two sets define the same state, which is the same defined by A.
For the first of those S-states, the rule R3 is again applicable, substituting
it by three more S-states, one of which contains an extra assertion of the

20

form P (c) for which the same rule is again applicable. The same rule can
be applied once and again, and hence the modified algorithm never reaches
a pinpointing saturated set of S-states.

This example shows that the termination of a tableau S does not neces-
sarily imply the termination of its pinpointing example. The reason in this
case is that a rule that can never be applied with the “normal” applicability
conditions produces a non-terminating cycle of addition of new constants to
the S-states. Despite our efforts, we have not been able to fully characterize
the tableaux for which this is not the case, nor any other conditions ensuring
the transfer of termination from a tableau to its pinpointing extension.

5 Conclusion

We have introduced a general notion of tableaux, and have shown that
tableaux that are correct for a consequence property can be extended such
that a terminating run of the extended procedure computes a pinpointing
formula. From this formula, minimal axiom sets and maximal non-axiom
sets can be derived.

The most important topic for future research is to solve the termination
issue: fully characterize the conditions under which tableau termination is
transfered to its pinpointing extension. In addition, our current framework
has two restrictions that we will try to overcome in future work. First, our
tableaux rules always extend the current set of assertions. We do not allow
for rules that can modify existing assertions. Thus, tableau-based algorithms
that identify constants, like the rule treating at-most number restrictions in
description logics (see, e.g., [5]), cannot be modelled. A similar problem
occurs for the tableau systems introduced in [3]. There, it was solved by
modifying the applicability condition of rules by allowing rules that introduce
new individuals (in our notation: rules with fresh variables) to reuse existing
individuals. However, this makes such rules intrinsically non-deterministic.
In our setting, we believe that we can solve this problem more elegantly by
introducing equality and inequality predicates.

Second, our approach currently assumes that a correct tableaux always
terminates, without considering additional blocking conditions. As shown in
[16], extending a tableau with blocking to a pinpointing algorithm requires
some additional effort. Solving this for the case of general tableaux will be a
second important direction for future research.

21

References

[1] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
envelope. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
pages 364–369, Edinburgh (UK), 2005. Morgan Kaufmann, Los Altos.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[3] Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter. From
tableaux to automata for description logics. Fundamenta Informaticae,
57(2–4):247–279, 2003.

[4] Franz Baader and Bernhard Hollunder. Embedding defaults into ter-
minological knowledge representation formalisms. J. of Automated Rea-
soning, 14:149–180, 1995.

[5] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69:5–40, 2001.

[6] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfi-
able subsets of constraints using hitting set dualization. In Manuel V.
Hermenegildo and Daniel Cabeza, editors, Proc. of the 7th Int. Sympo-
sium on Practical Aspects of Declarative Languages (PADL’05), volume
3350 of Lecture Notes in Computer Science, pages 174–186. Springer-
Verlag, 2005.

[7] Gennady Davydov, Inna Davydova, and Hans Kleine Büning. An effi-
cient algorithm for the minimal unsatisfiability problem for a subclass of
CNF. Ann. of Mathematics and Artificial Intelligence, 23(3–4):229–245,
1998.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability
— A guide to NP-completeness. W. H. Freeman and Company, San
Francisco (CA, USA), 1979.

[9] Volker Haarslev and Ralf Möller. RACER system description. In Proc.
of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), 2001.

[10] Bernhard Hollunder. Hybrid inferences in KL-ONE-based knowledge
representation systems. In Proc. of the German Workshop on Artificial
Intelligence, pages 38–47. Springer-Verlag, 1990.

22

[11] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In
Proc. of the 6th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’98), pages 636–647, 1998.

[12] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language. Jour-
nal of Web Semantics, 1(1):7–26, 2003.

[13] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau,
and James Hendler. Swoop: A Web ontology editing browser. J. of Web
Semantics, 4(2), 2005.

[14] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A.
Musen. The Protégé OWL plugin: An open development environment
for semantic web applications. In Proceedings of the Third International
Semantic Web Conference, Hiroshima, Japan, 2004.

[15] Mark H. Liffiton and Karem A. Sakallah. On finding all minimally
unsatisfiable subformulas. In Fahiem Bacchus and Toby Walsh, editors,
Proc. of the 8th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT’05), volume 3569 of Lecture Notes in Computer Science,
pages 173–186. Springer-Verlag, 2005.

[16] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Finding
maximally satisfiable terminologies for the description logic ALC. In
Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006).
AAAI Press/The MIT Press, 2006.

[17] Daniel Oberle, Raphael Volz, Boris Motik, and Steffen Staab. An exten-
sible ontology software environment. In Steffen Staab and Rudi Studer,
editors, Handbook on Ontologies, International Handbooks on Informa-
tion Systems, pages 311–333. Springer-Verlag, 2004.

[18] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL
ontologies. In Allan Ellis and Tatsuya Hagino, editors, Proc. of the
14th International Conference on World Wide Web (WWW’05), pages
633–640. ACM, 2005.

[19] R Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[20] Stefan Schlobach. Diagnosing terminologies. In Manuela M. Veloso
and Subbarao Kambhampati, editors, Proc. of the 20th Nat. Conf. on

23

Artificial Intelligence (AAAI 2005), pages 670–675. AAAI Press/The
MIT Press, 2005.

[21] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services
for the debugging of description logic terminologies. In Georg Gottlob
and Toby Walsh, editors, Proc. of the 18th Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI 2003), pages 355–362, Acapulco, Mexico, 2003.
Morgan Kaufmann, Los Altos.

[22] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descrip-
tions with complements. Artificial Intelligence, 48(1):1–26, 1991.

[23] Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proc. of
the 2004 Description Logic Workshop (DL 2004), pages 212–213, 2004.

[24] K.A. Spackman, K.E. Campbell, and R.A. Cote. SNOMED RT: A refer-
ence terminology for health care. J. of the American Medical Informatics
Association, pages 640–644, 1997. Fall Symposium Supplement.

[25] Lintao Zhang and Sharad Malik. Validating SAT solvers using an inde-
pendent resolution-based checker: Practical implementations and other
applications. In Proc. of the Conference on Design, Automation and
Test in Europe (DATE’03), pages 10880–10885. IEEE Computer Soci-
ety Press, 2003.

24

