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Abstract
We study existing parallel algorithms for the decomposition of a partitioned graph into its strongly connected components
(SCCs). In particular, we identify several individual procedures that the algorithms are assembled from and show how to
assemble a new and more efficient algorithm, called Recursive OBF (OBFR), to solve the decomposition problem. We
also report on a thorough experimental study to evaluate the new algorithm. It shows that it is possible to perform SCC
decomposition in parallel efficiently and that OBFR, if properly implemented, is the best choice in most cases.
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1 Introduction

The problem of finding strongly connected components (SCCs), known also as SCC decomposition,
is one of the basic graph problems that finds its applications in many research fields, even beyond
the scope of computer science. An efficient algorithmic solution to this problem is due to Tarjan [25],
who showed that, given a graph with n vertices and m edges, it is possible to identify and list all
SCCs of the graph in O(n+m) time and O(n) space.

Among many applications, the algorithm may be used also for the analysis of computer
systems. In particular, algorithms for SCC decomposition find their application in distributed formal
verification tools such as CADP [18], DiVinE [2], DUPPAAL [5], LiQuor [12], µCRL [6], etc.
Namely, they allow the tools to verify quantitative properties of probabilistic systems, compute
τ -confluence [8], form a pre-processing step for branching bisimulation reduction, or verify systems
with fairness constraints or properties given by extensions of Büchi automata.

Unfortunately, graphs modelling complex computer systems tend to be very large, which makes
it hard to handle them on a single machine. One way to tackle this problem is to distribute the graph
across a cluster of workstations and employ a distributed algorithm to decompose the partitioned
graph. However, Tarjan’s algorithm (and all other linear algorithms for SCC decomposition,
e.g. Kosaraju’s algorithm also known as Double DFS [15]) strongly rely on the depth-first search
post-ordering of vertices, whose computation is known to be P-complete [23], and thus, difficult to
be computed in parallel. Therefore, different approaches have been used to design parallel algorithms
for solving the problem.
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A parallel algorithm based on matrix multiplication was described in [19] and further improved
in [1, 14]. The algorithm works in O(log2n) time in the worst case. However, to achieve this low time
complexity it requires O(n2.376) parallel processors. As typical graphs that we are interested in
contain millions of vertices the algorithm is practically unusable and is only interesting from a
theoretical point of view. Another parallel algorithm for finding SCCs was given in [17]. It exploits
the fact that it is possible to efficiently compute the set of vertices reachable from a certain vertex
or set of vertices in parallel. The general idea of the algorithm is to repeatedly pick a vertex of the
graph and identify the component to which it belongs, by using a forward and a backward parallel
reachability procedure. The algorithm proved to be efficient enough in practice, which resulted
in several theoretical improvements of it [20, 22]. The worst-time complexity of the algorithm is
O(n ·(n+m)). Nevertheless, the algorithm exhibits O(m ·logn) expected time [17].Another algorithm
was introduced in [22]. That algorithm is more involved, but still, its basic building block is a simple
parallel value iteration technique.

In this article, which can be viewed as a full version of [3, 4], we summarize a number of known
procedures used for distributed SCC decomposition. Moreover, we present a new algorithm based on
re-arranging these procedures, and extensively compare its implementation with existing algorithms.
The rest of the article is organized as follows. We recapitulate basic terms and definitions in Section 2,
describe known techniques and algorithms for solving SCC decomposition in Section 3. The new
algorithm based on recursive application of OBF [3, 4] is described in Section 4. Compared with
[3], we added full proofs for the correctness and the complexity claims. Results of experiments are
in Section 5. In particular, we compare our new algorithm with the algorithms from [17, 22], and we
measure the effect of decomposing sub-graphs one by one, or in parallel. Contributions of the article
are summarized and future work is outlined in Section 6.

2 Preliminaries

2.1 Directed graphs

A (directed) graph G is a pair (V, E), where V is a set of vertices, and E ⊆V ×V is a set of (directed)
edges. If (u,v)∈E, then v is called (immediate) successor of u and u is called (immediate) predecessor
of v. The indegree of a vertex v is the number of immediate predecessors of v. GT = (V ,ET ), the
transposed graph of G= (V ,E), is the graph G with all edges reversed, i.e. ET ={(u,v) | (v,u)∈E}.

Let G= (V ,E) be a directed graph. Let E∗ be a transitive and reflexive closure of E and s,t ∈V
two vertices. We say that vertex t is reachable from vertex s if (s,t)∈E∗. If sk is reachable from s0,
then there is a sequence of vertices s0,...,sk , s.t. (si,si+1)∈E for all 0≤ i<k. We call this sequence a
path. A path is simple if it contains no duplicated vertices. The length of the path is k, i.e. the number
of edges. A graph is rooted if there is an initial vertex s0 ∈V such that all vertices in V are reachable
from s0. Given a graph G, we use n, m and l, to denote the number of vertices and edges, and the
length of the longest simple path between any two vertices in G, respectively.

A set of vertices C ⊆V is strongly connected, if for any vertices u,v∈C, we have that v is reachable
from u. A strongly connected component (SCC) is a maximal strongly connected C ⊆V , i.e. such
that no C′ with C �C′ ⊆V is strongly connected. A maximal SCC C is trivial if C is made of a single
vertex c and (c,c) /∈E, and is non-trivial otherwise. Henceforward, an SCC is also referred to simply
as a component.

Let WG be the set of all SSCs of graph G= (V ,E). The quotient graph of graph G is a directed graph
SCC(G)= (WG,HG), where HG ={(w1,w2) | (∃u1,u2 ∈V )(u1 ∈w1 ∧u2 ∈w2 ∧(u1,u2)∈E)}, i.e. there
is an edge between SCCs if and only if there is an edge between some members of the SCCs in the
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original graph. Note that the quotient graph of any directed graph is acyclic. Given a graph G, we
denote by N , M and L, the number of vertices and edges, and the length of the longest (simple) path
in the quotient graph of G, respectively. An SCC is leading if it has no predecessors in the quotient
graph. A set S ⊆V is SCC-closed if each SCC in the graph is either completely inside the set or
completely outside the set; such S is also referred to as an independent sub-graph.

For v∈W ⊆V , the forward closure of v in W is the set of reachable states from v in the graph
(V ,EW ), where EW ={(x,y) | (x,y)∈E∧x,y∈W}. If W is not specified, the whole graph is meant.
The forward closure of S ⊆W in W is the union of forward closures of all vertices from S in W .
Finally, the backward closure of v (or S) in W is the forward closure of v (or S) in W in the graph GT .

2.2 Graph representation

A directed graph can be given in many ways. We restrict ourselves to explicit vertex representations,
excluding symbolic representations, e.g. based on binary decision diagrams.

Beside the standard representations by adjacency lists or an adjacency matrix we also mention
graphs that are given implicitly (do not confuse with symbolic representation, this is still an explicit
vertex representation). A rooted graph is given implicitly if it is defined by its initial vertex and a
function returning immediate successors of an arbitrary vertex. Within the context of implicitly given
graphs there are some restrictions that algorithms have to follow. If an algorithm requires any piece
of information that cannot be concluded from the implicit definition of the graph, it has to compute
the information first. For example, there is no way to directly identify immediate predecessors of a
given vertex from the implicit definition of the graph. If the algorithm needs to enumerate immediate
predecessors, then the predecessors must be stored, while enumerating the whole graph first. Similarly,
in order to number the vertices of an implicitly given graph, one must enumerate all its vertices first.
For numbering the vertices of implicitly given graphs a parallel procedure was introduced in [18].
Note that all vertices of an implicitly given graph are reachable from the initial vertex by definition.

The reason for dealing with implicitly given graphs comes from practice. In many cases, the
description of rules according to which the graph can be generated is more space efficient than
the enumeration of all vertices and edges. The difference might be quite significant. For example,
in the context of model checking [13], the implicit definition of the graph is up to exponentially
more succinct compared with the explicit one. This is commonly referred to as the state explosion
problem [13]. However, it turns out that, in the situation where the graph has to be traversed more
than once, which is the case for all parallel SCC decomposition algorithms, it is advantageous to
first generate the whole graph and store it in an explicit form. All subsequent computations are then
performed using the explicit representation. We save the time for repeated generation of successors
and since the graphs we are interested in are mainly sparse, the needed memory is proportional to
the number of vertices only.

3 Known algorithms

Before describing individual parallel algorithms, we describe the basic techniques that the later
algorithms will use. This allows us to describe the algorithms and analyse their behaviour in a more
compact and clearer way.

All parallel algorithms presented in this article build on the same basic principle. The graph to
be decomposed is divided into independent (SCC-closed) sub-graphs. These are further divided into
smaller independent sub-graphs until they become SCCs. All the algorithms take advantage of the
fact that computation on separate independent sub-graphs can be done in parallel.



[10:30 17/2/2009 exp003.tex] LogCom: Journal of Logic and Computation Page: 4 1–22

4 Distributed Algorithms for SCC Decomposition

3.1 Reachability relation

Computation of the reachability relation is the core procedure used in all the algorithms. The task
of the procedure is to identify all vertices that are reachable from a given vertex, i.e. to compute its
forward closure. The standard breadth-first or depth-first traversals of the graph can be employed to
do so using O(n) space and O(n+m) time.

The reachability procedure is the first place where parallelism comes into play in the algorithms.The
parallelization of a reachability procedure has by now become a standard technique [10, 11, 21, 24].
A so called partition function is used to assign vertices to processors. Each processor is responsible
for the exploration of the vertices assigned to it by the partition function. Each processor maintains
its own set of already visited vertices and its own list of vertices to be explored. If a vertex has been
visited previously (it is in the set of visited vertices), then its re-exploration is omitted. Otherwise,
its immediate successors are generated and distributed into lists of vertices, to be explored according
to the partition function.

The algorithms described in the next section use the notion of backward reachability, in addition
to the notion of forward reachability. The task of a backward reachability procedure is to identify all
vertices that a given vertex can be reached from. The procedure for backward reachability mimics
the behaviour of the procedure for the forward reachability except it uses immediate predecessors
instead of immediate successors during graph traversal.

Note that in many cases, the forward and backward reachability procedure are restricted to a
particular independent sub-graph of the original graph. This can be achieved by an additional marking
of that sub-graph, or simply by deleting edges that leave that sub-graph.

3.2 Pivot selection

In several algorithms, there is a point at which a certain vertex (called pivot) must be selected from
the current independent sub-graph to start the decomposition of that sub-graph. Pivot selection plays
a significant role in the complexity of the algorithms. Imagine, we always pick a pivot belonging
to a component that has no descendant components in the component graph of the sub-graph being
decomposed. Due to the acyclicity of the component graph such a component always exists. Having
such a pivot, all vertices belonging to the corresponding component can be identified using only a
single forward reachability initiated at the pivot. Decomposing the graph to SCCs in this manner
results in a linear-time procedure. Unfortunately, to pick pivots so that the condition above is satisfied
means to pick pivots in the depth-first search post-ordering, which is, as stated in the Section 1,
difficult to be done in parallel. Since the optimal pivot selection is difficult, pivots are typically
selected randomly.

3.3 Trivial SCCs

This sub-section presents an efficient technique for the elimination of leading and terminal trivial
(LT and TT, respectively) components from any independent sub-graph. Use of this technique can
significantly speed up all the SCC decomposition algorithms, since they are not that efficient on
detecting trivial components.

Every vertex that has zero predecessors must be a trivial component and as such it can be
immediately removed (along with all incident edges) from the graph. Removing such a vertex may,
however, produce new vertices without predecessors that can be removed in the same way. We refer
to this recursive elimination technique as One-Way-Catch-Them-Young (OWCTY) elimination [16].
The technique can be applied in an analogous way to vertices without successors (Reversed OWCTY)
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Figure 1. Component detection, identified sub-graphs and trivial components

as well. An improved version of the basic parallel algorithm that performs OWCTY elimination
before selection of the pivot was described in [20]. We stress that only LT and TT components may
be identified in this way. Trivial components in between non-trivial SCCs will not be identified. These
components, however, may become leading or terminal when the graph is further divided. The graph
depicted in Figure 1 contains all three types of trivial components: LT, TT and trivial components
that are neither leading nor terminal (T).

Having described the basic techniques, we can now present individual algorithms.All pseudocodes
listed below describe the core parts of the algorithms. We neither list the initial reachability procedure
that must be performed in order to compute the explicit representation from the implicit one, nor the
many technical details related to implementation, parallelization, distribution, etc.

3.4 FB

The FB algorithm [17] is the basic algorithm, outlined in Section 1. We illustrate the basic principle of
this algorithm. Figure 1 shows the basic step of the algorithm. First, a vertex (called pivot) is selected
at random from an independent sub-graph (the whole graph in this situation) that is not known to be
a single SCC yet. Second, the forward and the backward closure of the pivot are computed; these
are depicted by shaded regions. This procedure divides the graph into four independent sub-graphs.
The vertices that are both in the forward and the backward closure form the SCC of pivot and need
not be further processed. The other three sub-graphs are: vertices in the forward closure but not in
the backward closure, vertices in the backward closure but not in the forward closure and vertices
that are neither in the forward nor in the backward closure. These three sub-graphs have to be further
decomposed. They can be decomposed independently and hence in parallel. Recursive application
of the basic step is used to do it.

The pseudocode of the algorithm is in Figure 2. A pivot is selected using procedure PIVOT and its
forward and backward closures are computed using parallel reachability procedures FWD and BWD.
Both reachability procedures have two parameters. Besides the vertex or vertices to start from, each
reachability procedure is also given a set of vertices that its exploration is limited to. This ensures
that given a sub-graph, the procedure will explore only immediate successors or predecessor of
vertices within the sub-graph. The sets of vertices as computed by forward and backward reachability
procedures are referred to as F and B, respectively. Having computed both sets F and B, a new
component is identified as the intersection of F and B, and recursive calls for three new subgraphs
are made. As stated in Section 1, the time complexity of the algorithm is O(n ·(n+m)).



[10:30 17/2/2009 exp003.tex] LogCom: Journal of Logic and Computation Page: 6 1–22

6 Distributed Algorithms for SCC Decomposition

Figure 2. FB algorithm
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Figure 3. Sub-graphs identified with maximal predecessors

3.5 Colouring/heads-off

The colouring algorithm was introduced in [22]. It uses a totally ordered set of colours. Initially,
each vertex has its own colour. The colours are repeatedly propagated to successors with a smaller
colour, until all edges are non-decreasing. A forward reachability procedure augmented to propagate
maximal visited colours can be used for this task. Note that a vertex can be re-coloured several times,
which results in time complexity of O(n ·m) [9]. The final colour of a vertex is the colour of its
maximal predecessor, i.e. predecessor with maximal colour. Here a predecessor does not necessarily
mean an immediate predecessor (as in the rest of this article), but here it means any vertex in the
backward closure. After colouring, all vertices in a single SCC have the same colour. This is because
all vertices in a single SCC share the same set of predecessors. So all edges between vertices of
different colours can be removed. This technique is able to divide the graph into more than four parts,
as opposed to the technique presented in Sub-section 3.4. Unfortunately, we do not know how to do
this in linear time. A graph division obtained after colouring is depicted in Figure 3.

In the second step, one takes as roots those vertices that kept their initial colour. The SCC of each
root consists of those vertices that are backward reachable (within the same colour) from it. These
SCCs are removed (heads-off) and the algorithm proceeds with the remaining sub-graph and with
the original colour assignment.

The pseudocode of the algorithm is in Figure 4. Computation of maximal predecessors is done by
the procedure FWD-MAXPRED, which returns the list of roots as PredList. It also computes for each
k ∈PredList the set Vk of vertices with maximal predecessor k. The SCCs of the roots are identified
by the standard procedure BWD, which performs backward reachability. The removal of these SCCs
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Figure 4. Colouring/heads-off (CH) algorithm

Figure 5. OBF algorithm

on line 8 was referred to as heads-off in the previous paragraph. Edges are not removed there. Instead,
separate recursive calls of the main procedure restricted to the appropriate sub-graphs are used.

The time complexity of the algorithm is O((L+1)·n ·m)), where O(n ·m) comes from the
complexity of the FWD-MAXPRED procedure. The total complexity follows from the fact that
every time a recursive call is invoked, it is on a graph with strictly shorter longest path in the quotient
graph.

3.6 OBF

This algorithm is based on a recent technique OWCTY-BWD-FWD (OBF) [3, 4] which gave name
to the whole algorithm. It identifies a number of independent sub-graphs (called OBF slices) in
O(n+m) time. The slices are then decomposed using the FB algorithm. This algorithm assumes the
input graph to be rooted, i.e. we have an initial vertex from which all other vertices are reachable.

The OBF technique repeatedly employs OWCTY elimination, succeeded with backward and
forward reachability. Each iteration identifies one OBF slice. The pseudocode of the algorithm is
in Figure 5. A graph and two steps of the technique performed on the graph are depicted in Figure 6.
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We simultaneously describe the figure and the pseudocode. We start with the initial vertex (the
vertex with no predecessors in the figure, the vertex v in the pseudocode). The OWCTY elimination
procedure (line 5 in pseudocode) eliminates all LT components (the set Eliminated in the pseudocode)
and visits some vertices of all components immediately reachable from the eliminated trivial ones.
Visited but not eliminated vertices are shown as vertices with a little cross (the set Reached). A
backward reachability (BWD()) performed from vertices with the little cross identifies the first
OBF slice (the set B). Note that the slice contains exactly all SCC immediately reachable from the
eliminated trivial components. The decomposition of the slice is initiated as an independent parallel
procedure (line 10). Then a forward reachability procedure that stops on immediate successors of
vertices in the slice is executed (FWD-SEEDS()). These successors (vertices with the little circle in
the figure, Seeds on line 12 in the pseudocode) are used to start the next iteration of OBF. The time
complexity of the algorithm is O(n ·(n+m)), the same as for the FB algorithm.

4 Recursive OBF

As shown in [4], OBF performs better than FB in a number of experiments. Note that in OBF the
graph is split into slices in linear time. On each slice, algorithm FB is applied. But, as OBF is better
than FB, we now propose to recursively apply OBF to the slices.

However, the slice may not be rooted, so we must:

− repeatedly pick a vertex from the slice and compute its forward closure within the slice; we
call this a ‘rooted chunk’. Subsequently run OBF on each rooted chunk within the slice;

− add a termination criterion in case the whole slice is one SCC.

Adding a termination criterion is easy. No special work has to be done. We simply count the vertices
visited during the first backward search in the first rooted chunk (The ‘B’ part of OBF). If the slice
consists of exactly one SCC there will be only one rooted chunk in it; O will not eliminate any vertex,
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Figure 7. OBFR

and so B will be started from the root and explores the whole slice. Conversely, if B starting from
the root of the first chunk explores the whole slice, the slice is one SCC, for it is both the forward
and the backward closure of the root. We now describe Recursive OBF (OBFR) in more detail.

The pseudocode of OBFR is in Figure 7. The suffix ‘-P’ in the name of the procedure means that
it runs in parallel on independent subgraphs. The term OBFR without any suffixes is used to refer to
Recursive OBF as such, without specifying the degree of parallelism (see Sub-section 4.1).

We start with the whole graph. Vertices in recognized SCCs are removed from the ‘working’ set
V until we end up with an empty set at which point all SCCs have been identified.

Initially, we assume that we do not have a vertex from which all other vertices are reachable (initial
vertex). To start OBF we need such a vertex, so we pick one vertex (line 3) and compute its forward
closure Range in V using procedure FWD() (line 4). OBF is then applied on Range. Vertices from
V \Range will be processed in the next iterations of the main while-loop (lines 2–24).

Before OBF is started on Range, Range is saved into OriginalRange, this will enable us to determine
if a slice found by OBF is an SCC. Of course, in the actual implementation we only store the size of
OriginalRange. On line 9, there is an invariant ‘(The forward closure of Seeds in Range) = Range’.
In the first iteration of the while-loop on lines 8–23 the invariant holds trivially, because Seeds
contains just one vertex and Range was computed as a forward closure of that vertex. Procedure
OWCTY() eliminates LT components by repeatedly removing indegree 0 vertices reachable from
Seeds. Eliminated vertices are returned as the set Eliminated, and subsequently removed from Range.
Vertices at which OWCTY() stops (they have positive indegree) are returned as the set Reached.
The forward closure of Reached in Range equals Range, since any path that leads from Seeds to a
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non-eliminated vertex has to contain some vertex from Reached. All elements from Eliminated are
trivial SCCs. Now a backward search is started from vertices in Reached. This search is implemented
by procedure BWD(). Backward closure of Reached in Range is returned as the set B. This is the
first SCC-closed slice found by OBF. If the set B equals the set OriginalRange, it means that all
vertices in the SCC-closed set OriginalRange are reachable from the same single vertex (note that
B=OriginalRange is only possible in the first iteration of the while-loop 8–23) and so B is indeed
an SCC. Consequently, Range\B is the empty set and the while-loop finishes.

If B �=OriginalRange we run OBFR-P() on B recursively. Moreover, note that the nested procedure
can be run in parallel, which increases parallelism. Seeds for the next iteration of the while-loop 8–23
are computed by the procedure FWD-SEEDS, which simply returns all vertices from Range that are
immediate successors of vertices in B but not in B. Since all paths that reach vertices in Range\B
from B must contain some vertex from Seeds, after we subtract B from Range, the invariant of line 9
is satisfied. When Range=∅, the while-loop 8–23 finishes and we handle the remaining vertices in V .

We now formally prove the correctness of the algorithm. The key point is the invariant on line 9.
It ensures that the whole graph is eventually processed. As argued earlier, it trivially holds in the first
iteration of the while-loop on lines 8–23. Thus, it remains to show that, if the invariant holds in iteration
i, then it holds also in iteration i+1. Together with the fact than Range gets smaller in every iteration,
it implies that the whole rooted chunk computed on line 4 is processed on lines 8–23. Another
important point is that the set B computed on line 13 is an independent (SCC-closed) sub-graph.
This implies partial correctness. Since line 18 is executed only if B is smaller than OriginalRange,
finite depth of recursion and thus termination of the algorithm is ensured. All the statements in this
paragraph are proved below.

We sometimes use a set of vertices to refer to the graph induced by that set. To prove the invariant,
we need to strengthen it a bit. In addition to the fact that the forward closure of Seeds in Range is
equal to Range, we argue that Range is an independent sub-graph of OriginalRange. Since initially
Range=OriginalRange, the strengthened invariant holds in the first iteration of the while-loop.

The following lemmata analyse one iteration of the while-loop on lines 8–23. In the whole iteration
Range is used to refer to the set Range on line 9, i.e. at the very beginning of the iteration. The same
goes for Seeds. The set Range computed on line 11 is referred to as Range′. The set Range computed
on line 22 is referred to as Range′′. The set Seeds computed on line 20 is referred to as Seeds′.
Lemma 1
Vertices eliminated by OWCTY() (the set Eliminated on line 10) are trivial SCCs of OriginalRange.

Proof. Let us suppose, for the sake of contradiction, that OWCTY() eliminates a vertex v such that
there is a vertex v′ such that there is a path in OriginalRange from v to v′ and vice versa. Range is an
independent sub-graph of OriginalRange. It follows, that Range contains a cycle c= (v0,v1,...,vk)
with v0 =vk =v. At the moment when v was eliminated it must have had indegree 0, which means
that vertex vk−1 must have been eliminated earlier, since there is an edge from vk−1 to v. By repeating
this argument, we get that all vertices vk−2,vk−3,...,v0 were eliminated before v and since v0 =v, it
means that v was eliminated before v. An obvious contradiction. �
Lemma 2
Let Reached be the set of vertices at which OWCTY() stops (cf. line 10; these are the non-eliminated
vertices from Seeds and the non-eliminated successors of the eliminated vertices). Then the forward
closure of Reached in Range′ is equal to Range′.
Proof. Since the forward closure of Seeds in Range is equal to Range, for each v∈Range′ there is
w∈Seeds such that there is a path p= (v0,v1,...,vk), where v0 =w, vk =v and k ≥0. Since OWCTY()



[10:30 17/2/2009 exp003.tex] LogCom: Journal of Logic and Computation Page: 11 1–22

Distributed Algorithms for SCC Decomposition 11

eliminates only indegree 0 vertices, there is j≥0 such that vertices v0,...,vj−1 were eliminated and
vertices vj,...,vk were not, and vertex vj is in the set Reached. It follows that v is reachable from vj
in Range′. Therefore, the forward closure of Reached in Range′ is Range′. �
Lemma 3
The set B computed on line 13 (The backward closure of Reached in Range′) is an independent
sub-graph of Range′. (No SCC has vertices both in B and Range′ \B).

Proof. It is sufficient to show that there is no edge from Range′ \B to B. However, that is obvious
for the existence of such edge (w,v) would imply that w∈B, which is impossible since, according to
the assumption, w∈Range′ \B. �
Lemma 4
Let Seeds′ be the successors of the vertices in B which are in Range′′ = Range′ \B. Then the forward
closure of Seeds′ in Range′′ is Range′′.
Proof. Since Reached ⊆B, the forward closure of B in Range′ is Range′ by Lemma 2. Therefore,
for each vertex v∈Range′′ there is w∈B such that there is a path p= (v0,v1,...,vk), where v0 =w,
vk =v and k ≥1. Let j be the greatest index with the property that vj ∈B, then vj+1 ∈Seeds′ and the
path p′ = (vj+1,...,vk) is a path in Range′′. Thus v is reachable from vj+1 in Range′′. It follows that
the forward closure of Seeds′ in Range′′ is equal to Range′′. Together with the fact that Range′′ is
Range without some independent sub-graphs (Lemmas 1 and 3) it implies that if Range′′ �=∅, then
the strengthened invariant is satisfied in the next iteration. �

So far, we proved the strengthened invariant of line 9 by analysing one iteration of the while-loop
on lines 8–23. It follows that the whole set OriginalRange computed on line 4 is eventually processed
and divided into independent subgraphs by the while-loop. To prove the correctness of the algorithm,
we still need to show that it correctly identifies an SCC when it sees it and that it never creates a
sub-graph that is not independent, part of which was already shown.

Lemma 5
If the set OriginalRange on line 7 is an independent sub-graph of the whole input graph
then OriginalRange is an SCC of the whole input graph if and only if, for an arbitrary
vertex v∈OriginalRange, the forward closure of v in OriginalRange is equal to OriginalRange,
OWCTY({v},OriginalRange) does not eliminate any vertex, and the backward closure of v in
OriginalRange is equal to OriginalRange.

Proof. Forward implication. If OriginalRange is an SCC, then for each pair of vertices z,w∈
OriginalRange there is a path from z to w in OriginalRange. The statements for the forward and
the backward closures follow directly. There is a vertex w∈OriginalRange such that there is a path
from w to v in OriginalRange, so indegree(v)>0, and so OWCTY() started from v cannot eliminate
any vertex.

Backward implication. For each pair of vertices z,w∈OriginalRange there is a path from z to w
in OriginalRange, which follows from the assumption about the forward and the backward closures.
(There is a path from z to v and a path from v to w). Since OriginalRange is an independent sub-graph
of the whole input graph (Lemma 3), OriginalRange is an SCC of the whole input graph. �
Lemma 6
Let G= (V ,E) be an arbitrary graph. For arbitrary vertex v∈V , the forward closure of v in V , denoted
by A, is an independent sub-graph of G.

Proof. Similar to the proof of Lemma 3. (There is no edge from A to V \A.) �
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Theorem 1
The algorithm in Figure 7 correctly identifies all SCCs in the input graph.

Proof. In the while-loop on lines 2–24 the graph is correctly divided into independent sub-graphs by
repeated application of lines 3 and 4 (Lemma 6). The sub-graphs that are SCCs are correctly identified
by Lemma 5. The sub-graphs that are not SCCs are divided into smaller independent sub-graphs by
Lemmas 1–4. To these smaller sub-graphs, the procedure is applied recursively. The only case when
the recursive application is not executed is the case when B=OriginalRange, which can happen only
in the first iteration of the while-loop on lines 8–23. This is exactly the case when OriginalRange is
one SCC, again by Lemma 5. The rest follows from the fact that the relation ‘being an independent
subgraph of’ is transitive. �

Lemma 7
The overall time complexity of Recursive OBF is O((r+1)·(m+n)), where r is the maximal depth
of recursion (r =0 if no recursive calls are executed).

Proof. Two distinct OBFR procedures on the same depth of recursion operate on disjoint parts of
the graph, so at most O(m+n) work is done for each recursion depth. Thus the overall complexity
is O((r+1)·(m+n)). �

Theorem 2
The depth of recursion of Recursive OBF is at most L (the length of the longest path in the quotient
graph of the whole graph).

Proof. The proof proceeds by induction on L.
Induction basis. If L=0, then the whole graph is one SCC. This is detected on the recursion level
zero, so the maximal depth of recursion is 0.
Induction step. It is sufficient to show that application of the procedure in Figure 7 (not counting
recursive calls) to a graph with L=k >0 divides it into sub-graphs with L at most k−1. There are
two possible cases.

Case 1
The SCC of the vertex v selected on line 3 is not the first vertex of any of the longest paths in the
quotient graph. Then, obviously, the forward closure of v is an independent sub-graph the quotient
graph of which does not contain paths longer than k−1. The same goes for all independent sub-graphs
into which it might be further divided in the while-loop on lines 8–23.

Case 2
The SCC of the vertex v selected on line 3 is the first vertex of one of the longest paths in the quotient
graph. Then at least one of the longest paths is in the quotient graph of the forward closure of v.
The important point is that all longest paths in the quotient graph of the forward closure must have
the SCC of v as their first vertex. (The path not containing the SCC of v can be extended, because the
SCC of v is a leading SCC). If the SCC of v is trivial, it is eliminated by OWCTY. If it is non-trivial,
it is equal to the first OBF slice. In both cases, the SCC of v is removed in the first iteration of the
while-loop on lines 8–23. Which leaves us with a graph with L less than k. The rest follows easily.

�

Corollary 1
The overall time complexity of Recursive OBF is O((L+1)·(m+n)).
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0 3124 5

Figure 8. Example for lower bound of OBFR

The upper bound cannot be tightened as shown by the following example. Define Gk = (Vk,Ek) as
follows. Let

V ′
0 ={0}

V ′
i+1 =V ′

i ∪{2i+1,2i+2}
E′

0 ={(0,0)}
E′

i+1 =E′
i ∪{ (2i+1,2i+1),(2i+2,2i+2),

(max(2i−1,0),2i+1),(2i+2,2i),(2i+2,2i+1)}
for i∈{0,...,k}. Now

Vk =V ′
k ∪{2k+1}

Ek =E′
k ∪{(2k+1,2k+1),(max(2k−1,0),2k+1)}

Figure 8 shows G2. Note that Gk has 2k+2 vertices and 5k+3 edges. One possible behaviour of
OBFR on Gk is as follows. Suppose OBFR picks the vertex 2k first. All vertices of Gk are reachable
from 2k so the first rooted chunk is the whole graph. OBF is then run on this rooted chunk. No
vertex is eliminated by OWCTY(), for 2k has a predecessor (itself). The first OBF slice is then {2k}
which is identified as an SCC by subsequent recursive call to OBFR. The first OBF then continues
on successors of {2k}, these are 2k−2 and 2k−1. Again, OWCTY() does not eliminate anything.
Then a backward reachability is started from {2k−2,2k−1} and explores the whole remaining graph
except for the vertex 2k+1. So, the second OBF slice is equal to the graph Gk−1 and OBFR is called
recursively to process it.

We have shown that maximal recursion depth of OBFR on Gk is k+1. At recursion depth i, a
graph with at least 2(k−i)+2 vertices and at least 5(k−i)+3 edges is explored at least once. So by
Corollary 1, the overall time complexity of OBFR on Gk is �(n ·(n+m)).

4.1 Increasing the degree of parallelism

In [4], it was noticed that OBF has a better worst-case running time than CH, mainly due to possible
re-colouring. Still, our initial experiments (cf. Figure 11) showed that CH performs better on graphs
with many small SCCs. We attribute this to the higher degree of parallelism in CH, which outweighs
the extra costs due to re-colouring in this case.

There is room to increase parallelism in OBFR-P() too. The pseudocode of this ‘more parallel’
version is in Figure 9. It exploits the fact that, after we pick a vertex in V and identify its forward
closure Range in V , we can run OBF on Range in parallel and without waiting for its completion we
can pick another vertex from V and start computing its closure.

So we essentially have three versions of OBFR varying in the ‘degree of parallelism’. This is
illustrated in Figure 10. Each diagram starts with a bold vertical axis, where the downward direction
represents the progression of time. The numbered columns represent independent parallel procedures.
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Figure 9. OBFR with increased parallelism

An arrow from column i to column j indicates that procedure i starts procedure j. For simplicity, the
figure does not show recursive calls of OBF.

Assume we have a graph whose vertices are partitioned into the following disjoint sets according
to how OBFR works on the graph: V =B11 ∪B12 ∪B13 ∪B21 ∪B31 ∪B32. B1(1−3) =B11 ∪B12 ∪B13 is
the closure (Range) of the first picked vertex (first rooted chunk) and the individual sets are the slices
identified by OBF in the closure. Similarly B2(1) =B21 is the closure of the second picked vertex
(second rooted chunk) and B3(1−2) =B31 ∪B32 is the closure of the third picked vertex (third rooted
chunk). For simplicity, we assume there are no trivial components eliminated by OWCTY.

The leftmost diagram in Figure 10 illustrates the operation of the basic OBFR when no parallel
procedures are executed. SCCs are processed one by one (delete lines 17 and 19 from Figure 7).

The middle diagram in Figure 10 illustrates the operation of OBFR in Figure 7. Each time a new
slice is identified by OBF, a new parallel procedure is started to process the slice. The algorithm
first picks a vertex, identifies the set B1(1−3), then the slices B11, B12 and B13. Only then it can pick
another vertex from the unexplored part of the graph, identify B2(1), ...

The rightmost diagram in Figure 10 illustrates the operation of the ‘more parallel’OBFR in Figure 9.
It does slicing of B1(1−3), B2(1) and B3(1−2) in separate parallel procedures. This allows it to get to
B2(1) and B3(1−2) much faster.
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Figure 10. Three versions of OBFR different in degree of parallelism

5 Experimental evaluation

The experiments were carried out on a cluster of eight workstations interconnected with 1 Gbps
Ethernet. Each workstation was equipped with AMD AthlonTM 64 3500+ Processor and 1 GB RAM.
We used the LAM/MPI library for message passing. Our implementation is a distributed memory one.
The graph is partitioned into a number (in our case 8) of disjoint parts. Each workstation owns one
part. Each workstation runs the same code and communicates with other workstations via the message
passing library only. The computation at each workstation proceeds sequentially (the execution of
independent parallel procedures is serialized) meaning that no additional threads are executed. This
is achieved by maintaining an appropriate piece of information about each procedure in an ‘array
of procedures’ and iterating over its elements repeatedly to let each procedure perform some work.
Note that a single procedure runs in parallel over different partitions of the graph.

We observed that OBFR suffers from the amount of synchronization points among individual
procedures. However, the amount of synchronization points may be significantly reduced if
independent procedures are started as soon as all data they depend on are ready. Starting independent
procedures can be viewed as an implementation detail, however, it has proven to have significant
impact on the performance. The three different versions presented in the previous section are
recapitulated in the following.

OBFR-S No procedures are executed in parallel. When OBF identifies a slice
it waits for the complete computation on the slice to finish before
continuing.

OBFR-P OBF identifies the slices, and starts a parallel procedure on each slice as
soon as the slice is identified.

OBFR-MP Does the same as the previous one, but additionally, within a slice, it
starts a parallel procedure as soon as a new forward chunk (forward
closure of a picked vertex in a possibly not-rooted slice) within a slice
is found.

Our experiments show that indeed the total running time of the algorithm decreases by adding
more parallelism, despite the extra overhead (e.g. running various termination detection procedures
in parallel), and despite the fact that a single reachability computation is already parallel.
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We compare OBFR with three other algorithms. Namely FB [17], OBF + FB [4] and CH
(colouring [22]). Like OBFR, FB and OBF + FB can be implemented with different degrees of
parallelism. For the comparisons we implemented only the most parallel versions of these algorithms,
which give the best results. These implementations are denoted by FB-Pand OBF-FB-P. CH processes
SCCs inherently in parallel; we reused the code from [22] and all experiments are carried out in the
same software/hardware environment.

5.1 Measurements

For the evaluation, we used synthetic graphs with a regular structure and fixed size SCCs. The aim
was to find out how the algorithms work as the SCC size changes. We used two types of graphs. The
first type of graph, called LmLmTn was of the form Loop(m) || Loop(m) || Tree(n), where Loop(m)
is a cycle with m states, Tree(n) is the binary tree of depth n and || denotes the Cartesian product of
graphs. This graph has 2n+1 −1 components of size (m+1)2. Its quotient graph is a binary tree.

The second type of graph, called LimLon, uses Line(m), being a sequence of m states. It is of the
form Line(m) || Line(m) || Loop(n) || Loop(n) and consequently has m2 components of size n2. The
quotient graph of the second type is a square mesh with edges oriented right and down. In the second
type, there are many paths of the same length to the same vertex.

We also experimented with graphs that arise as state spaces in real model checking applications.
The names of these graphs are prefixed with ‘cwi’, ‘vasy’ and ‘swp’. The former two are taken
from the VLTS Benchmark Suite [7]1 The swp-graph, called swp_dmwnqp, models the behaviour
of a sliding window protocol with m distinct data elements, window size 2n, and queue size p. The
complete list is in Tables 1 and 2.

The size of the graphs is relatively small and in principle they could be decomposed on a single
machine, but they are large enough for experiments with distributed algorithms to provide insight.

The results for synthetic graphs are in Table 3. The results for real graphs are in Table 4. All run-
times are in seconds, ‘n/a’ means that the run-time exceeded 36 000 s (10 h). Graphs of dependency
of run-time on SCC size are in Figure 11 and 12. We measured this dependency for synthetic graphs
only. Figure 11 does not contain results for all graphs of type 1 since numbers of vertices of some
of these graphs differ too much. Only graphs with ∼ 3000000 vertices were chosen. The graphs of
type 2 have all approximately ∼ 4000000 vertices, so Figure 12 contains results for all of them.

5.2 Evaluation

There is one important issue concerning space complexity. To implement a reachability analysis in
linear time, we need a way to determine whether a vertex has been already visited or not in constant
time. This is usually accomplished by allocating an array of booleans with n elements, one for each
vertex. Algorithms that perform many reachabilities in parallel must have such an array for each of
them. Our implementations that fall into this category are FB-P, OBF-FB-P, OBFR-P, OBFR-MP.
There is no problem with reachabilities in the same depth of recursion. Since they operate on disjoint
parts of the graph, one array of size n is enough. But for procedures in different depths we need
separate arrays. And so the space complexity is O(m+n ·(maximum depth of recursion)).

Although the maximum depth of recursion can be as high as n, in our experiments the algorithm
we are mainly interested in, OBFR, reached maximum depth of 15. This makes us believe that

1Note that we consider the graph of all transitions, while [22] considered only (invisible) τ -transitions.
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Table 1. Synthetic graphs used in experiments

State space Number of SCCs Size of one SCC States Transitions

L10L10T10 2047 121 247 687 742 940
L100L100T4 31 10 201 316 231 938 492
L15L15T10 2047 256 524 032 1 571 840
L4L4T16 131 071 25 3 276 775 9 830 300
L20L20T12 8191 441 3 612 231 10 836 252
L80L80T8 511 6561 3 352 671 10 051 452
L350L350T4 31 123 201 3 819 231 11 334 492
L1750L1750T0 1 3066 001 3 066 001 6 132 002
L1750L1750T1 3 3066 001 9 198 003 24 528 008

Li200Lo10 40 000 100 4 000 000 15 960 000
Li125Lo16 15 625 256 4 000 000 15 936 000
Li100Lo20 10 000 400 4 000 000 15 920 000
Li80Lo25 6400 625 4 000 000 15 900 000
Li67Lo30 4489 900 4 040 100 16 039 800
Li50Lo40 2500 1600 4 000 000 15 840 000
Li40Lo50 1600 2500 4 000 000 15 800 000
Li30Lo67 900 4489 4 040 100 15 891 060
Li25Lo80 625 6400 4 000 000 15 680 000
Li20Lo100 400 10 000 4 000 000 15 600 000
Li16Lo125 256 15 625 4 000 000 15 500 000
Li10Lo200 100 40 000 4 000 000 15 200 000

Table 2. Real graphs used in experiments

State space Number of SCCs Maximum SCC size States Transitions

cwi_2165_8723 47 926 423 505 2 165 446 8 723 465
cwi_2416_17605 2 150 392 6 2 416 632 17 605 592
cwi_7838_59101 1 7 838 608 7 838 608 59 101 007
vasy_11026_24660 10 074 720 910 11 026 932 24 660 513
vasy_1112_5290 160 061 71 968 1 112 490 5 290 860
vasy_12323_27667 11 214 774 910 12 323 703 27 667 803
vasy_2581_11442 274 690 26 796 2 581 374 11 442 382
vasy_4220_13944 2398 982 49 151 4 220 790 13 944 372
vasy_4338_15666 828 412 26 796 4 338 672 15 666 588
vasy_6020_19353 2 041 6 013 920 6 020 550 19 353 474
vasy_6120_11031 4 638 059 1902 6 120 718 11 031 292
vasy_8082_42933 323 629 7 054 752 8 082 905 42 933 110
swp_d2w2q2.s 1 1 429 676 1 429 676 6 704 544
swp_d2w2q3.s 1 5 323 836 5 323 836 25 236 056
swp_d3w2q2.s 1 5 168 596 5 168 596 24 615 576

space complexity is not a problem of OBFR. However, the FB algorithm exceeded depth 200 in
our experiments. It did not prevent the algorithm from successful computation of SCCs, because
our graphs are relatively small. Nevertheless, this high-recursion depth kills the benefit of having
accumulated memory of a cluster of workstations. If we add that FB is much slower if independent
sub-graphs are not processed in parallel, we can conclude that FB is not a very good distributed
algorithm. On the other hand, OBF + FB reached maximum recursion depth of 17. It seems that the
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Table 3. Run-times for synthetic graphs (in seconds)

State space FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CH

L10L10T10 10 128 25 8 8 75
L100L100T4 13 19 13 11 5 145
L15L15T10 16 118 56 16 17 142
L4L4T16 2743 6603 671 309 297 325
L20L20T12 224 575 287 74 71 456
L80L80T8 94 107 110 34 45 795
L350L350T4 83 91 88 38 45 1583
L1750L1750T0 34 31 43 17 16 1021
L1750L1750T1 148 138 166 87 82 6533
Li200Lo10 1982 1964 1131 76 58 9317
Li125Lo16 1105 975 740 61 52 5827
Li100Lo20 754 588 520 65 51 4513
Li80Lo25 548 465 454 57 77 3560
Li67Lo30 510 356 484 58 44 3080
Li50Lo40 357 236 163 48 48 3350
Li40Lo50 286 175 126 50 43 2628
Li30Lo67 174 127 110 43 44 2364
Li25Lo80 140 102 103 46 46 2972
Li20Lo100 176 88 80 43 40 2782
Li16Lo125 106 77 115 71 38 2148
Li10Lo200 81 58 90 62 45 1895

Table 4. Runtimes for real graphs (in seconds)

State space FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CH

cwi_2165_8723 21 43 30 29 22 49
cwi_2416_17605 76 8791 942 51 56 126
cwi_7838_59101 65 58 107 102 72 227
vasy_11026_24660 3387 n/a 3391 416 827 471
vasy_1112_5290 168 5611 399 73 73 365
vasy_12323_27667 4483 n/a 3942 500 1016 509
vasy_2581_11442 169 6182 2084 64 109 276
vasy_4220_13944 531 8348 976 347 1987 151
vasy_4338_15666 209 14352 4445 107 110 310
vasy_6020_19353 60 147 93 51 34 130
vasy_6120_11031 888 26611 1483 282 299 592
vasy_8082_42933 162 440 640 455 407 280
swp_d2w2q2.s 12 9 12 16 6 44
swp_d2w2q3.s 55 13 28 55 18 102
swp_d3w2q2.s 38 16 42 35 15 70
Total run-time 10324 >142621 18572 2583 5051 3702

uppermost OBF is so successful in slicing the whole graph, that the amount of work left for FB that
processes the slices is relatively small.

And now for some comments on the measured run-times. First, for the synthetic graphs. As one
can see from Table 3, OBFR-MP and OBF-FB-P together are clear winners. Their run-times are
practically the same because most of the decomposition was done by the first OBF which is the same
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Figure 11. Dependency of run-time on SCC size, type 1 synthetic graphs (log. scale)

Figure 12. Dependency of run-time on SCC size, type 2 synthetic graphs (log. scale)

for both algorithms. The slices identified by the OBF were then processed in parallel. It did not matter
if OBF or FB was used for them because of the structure of the slices.

FB, OBFR-S and OBFR-P worked quite well on graphs with large SCCs, but they require a long
time to decompose a graph with many small components. OBFR-P was the best of them, but its
performance on graphs with many small components is still poor. The reason for the big difference
between OBFR-P and OBFR-MP is that some slices identified by the first OBF contained many parts
with no edges between them and waiting for OBF to finish on one part before moving to next part
affects the performance considerably.
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Figure 13. Dependency of run-time on SCC size, comparison of OBFR-S and CH, type 1 synthetic
graphs (log. scale)

Interestingly enough, for the synthetic graphs of type 1, unlike most of the other algorithms,
especially OBFR-S, the CH algorithm worked better on graphs with many small components
(Figure 13). We attribute this to the high degree parallelism in CH which outweighs the extra costs
due to re-colouring in this case. However, it was not confirmed on type 2 graphs (Figure 12), on
which CH has extremely poor performance. This is explained by many paths of the same length
leading to the same vertex, which causes frequent re-colouring.

The experiments on real graphs (Table 4) have only one winner, OBFR-MP. Yet, its victory was
not as clear as the victory for synthetic graphs. In particular, CH turned out to be successful. We
included total run-times for all real graphs to allow for better comparison.

The structure of the graphs was not regular, so OBFR had to go deeper to decompose the graph.
Since the decomposition was not done by the first OBF, the FB algorithm had much more work in
OBF + FB than for synthetic graphs, which resulted in poor behaviour for some graphs, especially
vasy_12323_27667 and vasy_4220_13944.

6 Conclusion

In this article, we listed and compared known distributed algorithms for the decomposition of
directed graphs into their SCCs. We also proposed a new algorithm, called OBFR, based on recursive
application of the OBF technique introduced in [4]. The correctness of the new algorithm was proven
formally. We also report on an extensive experimental study we did to evaluate the new algorithm.
OBFR outperformed all the other algorithms in most cases.

Our experiments show that the way the algorithm is implemented influences its performance a
great deal. In particular, the best implementation turned out to be the one with the highest degree of
parallelism, that is the one which starts another parallel procedure every time a part of the graph that
can be processed independently has been identified.

There is one type of graphs where the CH algorithm [22] may be the best choice. These are
graphs consisting of many unconnected islands. Such graphs arise for instance when considering



[10:30 17/2/2009 exp003.tex] LogCom: Journal of Logic and Computation Page: 21 1–22

Distributed Algorithms for SCC Decomposition 21

only (invisible) τ -transitions as a pre-processing step to branching bisimulation reduction. CH starts
working on all islands simultaneously, but all the other algorithms process them one by one unless
they contain indegree 0 vertices. If these islands are small enough, re-colouring is not a problem and
CH is very fast. This suggests an aim for future work: to improve OBFR to work better on graphs
with many unconnected islands.

OBFR is also suitable for multi-core shared-memory architectures that are going to be the standard
in the near future. Implementing and evaluating OBFR on such architectures is another aim for
future work.
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