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Abstract
We study distributed state-space generation on a cluster of workstations. It is explained why state-space partitioning by a
global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive
data types. Our solution is to introduce a database which maintains a global numbering of state values. We also describe
tree compression, a technique of recursive state folding, and show that it is superior to manipulating plain state vectors. This
solution is implemented and linked to the µCRL toolset, where state values are implemented as maximally shared terms
(ATerms). However, it is applicable to other models as well, e.g. PROMELA or LOTOS models. Our experiments show the
trade-offs between keeping the database global, replicated or local, depending on the available network bandwidth and latency.
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1 Introduction

We study distributed explicit state-space generation on a cluster of workstations in the presence of
recursive data types, like lists and trees. Recursive data types allow natural modelling of data needed
in complicated protocols and distributed systems, e.g. the current knowledge of an intruder in security
protocols. Such systems can be analysed by finite state model checkers, when the scenario is limited
to a fixed number of participants. However, an upper bound on the size of the data terms is not known
a priori.

Finite state model checking suffers from state-space explosion, which can be alleviated by various
techniques, such as partial-order reduction, data abstraction and symmetry reduction. In this article,
we focus on distributed model checking, which attacks the state-space explosion by using the
combined memory and CPU time of a cluster of workstations.

We show that the basic scheme for distributed state-space generation based on a shared hash
function is limited (see Section 2.2). It breaks down in the presence of state-space generators that
produce recursive data types. Implementing them as acyclic pointer structures works well on one
computer but sharing pointer structures over a number of workstations is non-trivial.
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Our solution (see Section 3) is to introduce a database (basically an indexed set) that maintains
a global numbering of values that occur in state vectors. Instead of exchanging vectors of
(serialized) pointer structures, the workers now exchange vectors of indices. In addition, workers
must communicate with the database in order to agree on the semantics of these indices.

We improve this basic solution in several steps. In Section 3.2, we replicate the database and
introduce piggybacking to reduce synchronization points, thus decreasing the dependency on network
latency.

Afurther improvement (see Section 3.3) is to recursively fold states using a tree of tables. Each node
in this tree represents a set of sub-vectors. The leaf tables store sets of individual state components,
while the root tables represents a set of full state vectors by pairs of integers. This so-called tree
compression reduces the memory needed to store a set of states.

In Section 3.4, tree compression is distributed. The leaf database must be maintained globally for
consistency reasons, however, the root tables cannot be maintained globally because its size equals
the number of reached states. Therefore, each worker keeps a local root database for its own states.
The intermediate tables, however, can be kept either local or (replicated) global. In the latter case,
workers can exchange shorter folded vectors, thus saving on the bandwidth needed to exchange states
across the network.

This solution is implemented and linked to the µCRL toolset [6], where state values are
implemented as maximally shared terms (ATerms) [7]. However, it is applicable to other models
as well. We compare our solution with related work in Section 5.

We implemented several versions (see Section 6), in order to measure the effects of recursive
state folding, and the effects of organizing the intermediate tables globally or locally. We report an
interesting trade-off for organizing the (intermediate) tables locally or globally, depending on the
available bandwidth and latency of the underlying network.

2 Distributed state-space generation

In the following, we briefly outline the currently prevailing approach to distributed state-space
generation, which is based on the partitioning of the closed set (the set of visited states) across
processors with a hash function. We highlight the silently assumed conditions under which this
approach is usually implemented, and in Section 2.2 we make clear why this simple setup is
insufficient not only for µCRL, but also more generally for state generators for any language that
allows unbounded recursive data types (such as lists, trees), implemented by pointer structures.

2.1 The traditional partitioning approach

The traditional approach to state-space generation, as introduced in [10, 21], is illustrated by the
straightforward algorithm below. Algorithms 1 and 2 are supposed to run concurrently (either in
parallel or interleaved). They synchronize on shared data structures.

In these algorithms, the state space is partitioned over the memory of W workers by a hash function.
Each worker Wi keeps its own part of the explored state space in Closed|Wi . The states that still have
to be explored are kept in the set Open|Wi . The Explore thread picks an open state, calculates the
hash of all its successors in order to put them into the local Queue of the right owners. The Receive

thread picks states from the local Queue, checks if they are new by consulting Closed|Wi , and if so,
adds the state to both the Closed set (to avoid duplicate exploration) and the Open set (to be explored
by Explore).
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Algorithm 1: ExploreWi

Data: Open,Closed,Queue
while not terminated do1

Pick s from Open|Wi ;2

forall transitions s→s′ do3

Calculate h=Hash(s′);4

Add s′ to Queue|Wh ;5

Result: Open=Queue=∅, Closed contains all reachable states

Algorithm 2: ReceiveWi

Data: Open,Closed,Queue
while not terminated do1

Pick s from Queue|Wi ;2

if s /∈Closed|Wi then3

Insert s into Closed|Wi ;4

Insert s into Open|Wi ;5

We note that this basic scheme relies on a number of assumptions for its correctness and efficiency,
which are usually not spelled out explicitly. First, for correctness it must be assumed that states have
a globally unique representation, otherwise a worker cannot interpret the states it receives from other
workers. Typically, a state consists of a vector of values for locations and state variables. Second, the
hash function must be globally known, agreed upon by all workers, and stable over time (unless we
take costly rehashing schemes into account), otherwise different workers would add the same state
to different owners, leading to exploring states more than once. While this might even be tolerable
for simple reachability questions, it is not for other verification algorithms.

For efficiency reasons, it must be assumed that state vectors are small, otherwise local memory
and network bandwidth are wasted, and are stored in a contiguous memory area, in order to avoid
(de)serialization costs.

These requirements are met in specification languages with ‘simple’ data types, like SPIN [17],
NIPS [23] and Petri Nets [2]. Here, data consists of bounded integers, structures and fixed size
arrays. However, for languages that allow unbounded recursive data types, these assumptions are
problematic, as we will see in the next section.

2.2 Special Requirements for µCRL

The µCRL state generator represents state vectors as ATerms [7]. Through ATerms, µCRL allows
the use of recursive data types in its specifications, which enables a more natural representation of
models in many cases, e.g. models of intruder knowledge in security protocols and network routing
protocols utilizing dynamic tables [3]. This convenience does not come for free, however.

In a nutshell, ATerms are constructor terms, consisting of a head symbol, and a variable number of
parameters, which are ATerms themselves. The leaves of the term structure are constant symbols with
no arguments, which includes integers. Internally, the collection of all ATerms present is represented
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as a maximally shared forest, i.e. equal sub-terms are only ever stored once, but possibly referenced
many times. Unreferenced ATerms are automatically garbage-collected. Maximal sharing allows for
a compact representation of ATerm forests, and has other benefits, too.1

succ

succ

succ

zero

succ

cons

cons

cons

nil

For example, equality checking of potentially large terms, which would entail a full traversal, now
reduces to a (constant-time) pointer comparison, due to maximal sharing. In a sequential setting,
this obviates the need for a hash function for fast look-up. The figure on the right shows a particular
representation of two 4-variable states 〈4,[3,1,2],2,[2]〉 and 〈3,[1,2],2,[2]〉 as anATerm forest. Note
how vectors 〈x1,x2,x3,x4〉 get replaced by trees •(•(x1,x2),•(x3,x4)); how numbers are built from
zero and successor and how lists are built from cons and nil. Also note how the resulting sub-terms
are shared. In particular, note how the second part of the two states is shared.

One of the biggest drawbacks for distributed computing with ATerms is their representation as a
pointer data structure. They are obviously not transportable from one computer to another. Cheap
equality checking of ATerms only works locally on the computer they are stored, thus we would need
a globally known hash function for fast comparison again. Such a function would require traversing
the entire ATerm. This is moderately expensive, but because the same computation is done many
times, it is possible to use memoization techniques to overcome the computation time problem, at
the expense of memory for the memoization table.

The other problem is that in order to transmit a state across the network it has to be serialized into
a flat binary form. Serializing an array of integers is very efficient. Serializing an array of ATerms,
however, is a serious problem: the printed version of a single ATerm often takes 40 bytes or more,
because typically the sharing gets lost. This means that it is factor 10 larger than the pointer we started
with. It becomes infeasible, if we consider that a state consists of a vector of such ATerms.

In principle, it would be possible to use buffering to exploit sharing between successively
transmitted states, thus reducing the space and time costs of serialization somewhat. But this does not
scale up to larger numbers of workers: because the hash function is supposed to be evenly distributed,
scaling up can be expected to reduce sharing.

We note that other state generators suffer from the issues described here, e.g. Distributor from
the CADP toolset [12, 14] (version: 2006 ‘Edinburgh’):

The current version of Distributor does not handle LOTOS programs containing dynamic data
types (such as lists, trees, etc.) implemented using pointers [...]2

1Implementing decision diagrams on top of ATerms is rather trivial: sharing comes for free, only canonicalization rules
have to be added.

2http://www.inrialpes.fr/vasy/cadp/man/distributor.html

http://www.inrialpes.fr/vasy/cadp/man/distributor.html
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We are aware that a solution which lifts this restriction is being worked on for CADP. Other tools,
e.g. SPIN and NIPS could benefit as well, as explained in Section 5.

3 A centralized database

In the following sections, we show how the conditions for hash-based state-space partitioning can
be recreated by introducing a global database for state parts. We will also see that this setup comes
with additional benefits: it allows various schemes of (network-wide) compression of states, thus
reducing memory and bandwidth requirements.

3.1 Distributed state compression

We consider states which are not opaque, but instead have some identifiable structure which we
exploit. Thus, a state vector si =〈pi1 ,pi2 ,...,pi�〉SV is a sequence of state parts, here denoted as
pij . In the case of µCRL these are data terms, representing control locations or data values. Other
possibilities for state parts include channels and processes, and their variables. For example, this is
the case for states of SPIN and NIPS.

For now, we focus on a static structure that is the same across all states. Furthermore, we assume
that the chosen parts exhibit locality, i.e. for the majority of transitions s→s′ of a state space, most
of the parts of state s remain unchanged in s′. This assumption is valid in particular for interleaving
semantics of the underlying model. The size of the state space is largely due to the combination
of state parts, thus we can assume the number of parts slots � and also number of parts pij to be
small.

For a basic solution, we first consider a globally accessible, indexed table which maps state parts to
indices, and vice versa. For reasons which will become apparent later, we call this the leaf database.
Through the database, we obtain now a second unique representation of a state vector si, in terms of
the indices of its parts: s̄i =〈i1,i2,...,i�〉IV. Depending on the size of the state parts, the index vector
representation s̄i is in general an order of magnitude or more smaller than si, so we may think of this
scheme as a simple table compression method.

We note that an index vector by itself is not useful for a state-space generator which can only
operate on ‘uncompressed’ state vectors. Thus, if we choose index vectors for storing states, we
continuously need to map back and forth between two representations.

If we adapt the algorithms from Section 2.1 to take the leaf database into account, we can consider
three phases.

Exploration: first, for new states the following steps have to be taken,

1. Explore an uncompressed state s by calculating its successors s0,...,sk .
2. For each si =〈pi1 ,pi2 ,...,pi�〉SV:

2.1. Resolve all state parts pij against the (global) leaf database.
• Map each state part to its index: pij �→ ij, add pij to database, if not already present.
• This results in index vector s̄i =〈i1,i2,...,i�〉IV for si.

2.2. Calculate h=Hash(s̄i), add s̄i to Queue|Wh

For every state, we are now required to look up its state parts in the leaf database which entails
additional communication. This also means that still we have to serialize all of the state (although in
parts) when adding them to the database. However, on the plus side, we can now calculate the hash
value of a state (which determines its ‘owner’) cheaply over a vector of integers s̄i instead, no matter
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what state parts look like. The global uniqueness of state parts can now be locally guaranteed by the
leaf database.

Furthermore, we can communicate the (compressed) index vectors to other workers W . This
reduces bandwidth demands between workers, however we must keep in mind their additional
communication to the database. We will return to this point in Section 3.2.

Queue Management: next, we consider a state s̄i arriving in the work queue Queue|Wh of some worker
Wh (h=Hash(s̄i)),

1. Pick s̄i from Queue|Wh .
2. Check whether s̄i ∈Closed|Wh .
3. If yes, s̄i has been visited before, hence drop it.
4. Else, add s̄i to Closed|Wh and also Open|Wh , so that it will be explored eventually.

We note that in this phase, we are dealing with index vectors (s̄i) exclusively. Thus, Open set,
Closed set and the work queues are storing index vectors.

Decompressing States: in the last phase, before exploration of a new state, we must resolve the index
vector representation and rebuild the original state,

1. Pick next state s̄i =〈i1,i2,...,i�〉IV from Open|Wb .
2. Resolve all ij against the leaf database.

• Map indices to state parts ij �→pij (all parts are in the table already, thus look-ups will not
fail).

• We obtain back the original state si =〈pi1 ,pi2 ,...,pi�〉SV.
• Explore new state si as detailed in the first phase.

To summarize, with this new scheme, we seemingly have not won much. While resolving indices
to state parts, we cause extra communication and costly serialization, for each transition even! What
we did achieve, however, is better storage efficiency on each worker, as only compressed states are
stored in various data structures. We note that due to the small number of state parts, the leaf database
is small and not in any concrete danger of exhausting a worker’s memory. In addition, workers among
themselves now communicate index vectors, and only with the database they exchange state parts.

We can now leverage existing knowledge how to increase database query performance. We will
get to this in the following section.

3.2 Database replication

Using a central database helped us to overcome the problem of hashing states of the µCRL
state generator, but the costly serialization of states remains. We also introduced extra network
communication due to round-trips to the leaf database while resolving state parts. In this section, we
fix these issues by replicating the tables of the global leaf database on each worker. The additional
storage requirements pose no problems to the workers because these tables are small compared with
other data structures, like open and closed sets.

During the course of state-space generation, the leaf database is updated with new state parts,
hence we cannot easily replicate it in one go. Therefore, we describe a protocol which updates the
local replicas incrementally. A simple approach would cache the query result for each state part when
the answer arrives at a worker. This would lead to at most one query per state part per worker. We
can improve this by piggybacking each answered query with all the state parts that are not already
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in the local replica. This only requires replacement of the ‘Resolve’ step in the scheme outlined in
Section 3.1:

(a) Try resolving all state parts pij in the local leaf table replica. If found, we have pij �→ ij without
communication with the global leaf database.

(b) Else, update replica with new parts pij : send current highest index max of local replica, in
addition to all unresolved parts U ={pij |pij not locally resolvable} to the leaf database.

(c) The global database replies with the state parts needed to bring the replica up-to-date:

(max′−max,pmax+1,pmax+2,...,pmax′ )

In particular, max{ij |pij ∈U}≤max′. We can then resolve all pij ∈U with the updated local
replica.

The above scheme is simple, but effective. We draw from the fact that state parts in the leaf database
are only ever added, and never updated or deleted.

We are still requiring the (costly) serialization of all state parts during state-space generation, but
now in the worst case only once per worker, and once for each worker during a reply to update its
local replica of the leaf database. Due to the piggybacking of replica updates, the mentioned worst
case is unlikely to occur. When a worker requests a state part, it might well be the case that it is
already in its local replica due to an earlier update.

We note that in the specific case of the µCRL toolset, the use of ATerms makes the comparison
of state parts pij in step (3.2) very cheap: a pointer comparison suffices, as explained in Section 2.2.
The hidden cost attached to this efficiency is paid when ATerms are deserialized. However, as we
mentioned above, we have limited the number of times this is actually needed, and the remaining
deserializations are amortized over the vastly larger number of expected look-ups.

The search-related data structures maintained on each worker remain unchanged from the
replication introduced here. As in Section 3.1, the open and closed set as well as the queues store
states as index vectors. Communication between workers happens in terms of index vectors as well.
Network bandwidth requirements are reduced drastically.

3.3 Tree compression

We have explained how we can transform a vector of variable sized objects into a vector of integers.
The length of the vectors (the number of state parts) is typically in the range from 50 to 100 for
µCRL.

In order to compress states further, we now introduce a datastructure that can map (long) vectors
of indices to single indices, and back. We could use a simple hash table, but then we would have to
store a copy of every vector. This would be a waste of memory because large parts of many vectors
will probably be identical. Instead of storing long vectors in one table, we could use a main table and
two auxiliary tables. The auxiliary tables map the first and second half of the vector to numbers. The
main table maps the pair of numbers to a number. If there are many vectors, but few distinct halves
then the auxiliary tables remain small and we save a lot of memory on the main table.

When we recursively apply this splitting method to the auxiliary tables the result is a tree of
tables, hence the name tree compression. In Algorithm 3, we provide pseudo (ML) code for tree
compression. To initialize, the user must call newtree with the number of elements which will create
a tree with internal nodes containing indexed sets, and leaves containing indices of the array to be
folded and unfolded. Function NEWINDEXEDSET creates an empty indexed set. This data structure
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Algorithm 3: Tree Compression

1 type tree = Node of IndexedSet ∗ tree ∗ tree | Leaf of int ;

2 fun newtree(size : int ): tree = build(0, size−1);

3 fun build( first : int , last : int ): tree =

4 if first =last then Leaf(first )

5 else let middle = (first+last) div 2

6 in Node(newIndexedSet, build(first,middle), build(middle+1,last));

7 fun fold(t : tree , vec : int array): int = case t of

8 Leaf(i) ⇒ vec[i]

9 Node(table, left , right ) ⇒ PairToIndex(table, (fold(left,vec),fold(right ,vec )));

10 proc unfold(t: tree ,index: int ,vec : int array):unit = case t of

11 Leaf(i) ⇒ vec[i] := index

12 Node(table, left , right ) ⇒ let (i1,i2) = IndexToPair(table,index)

13 in unfold( left , i1 ,vec ); unfold( right , i2 ,vec );

supports two operations: PAIRTOINDEX(table,(i1,i2)), which inserts pair (i1,i2) in the table if it is
not yet present, and always returns its index; and IndexToPair(table,index) which returns the pair
referred to by index. Once a tree is initialized a vector can be folded into a single index, and an index
can be unfolded to its original vector. We note that the tables in the tree can be extended by fold and
that unfold writes its result into the vector provided as last argument.

In Figure 1, we have illustrated the result of building a tree for a vector of length 6 and inserting
〈1,0,0,0,0,1〉IV into it. The first picture shows the state after newtree(6). To insert 〈1,0,0,0,0,1〉IV,
we traverse the tree reaching the bottom left binary node. There we visit the leaves and retrieve the
contents of the vector (second picture). We insert the pair 〈1,0〉 into the table and return 0 because it
is that table’s first entry3 (third picture). Backtracking, we fetch the third element of the vector and
insert 〈0,0〉 yielding 0 (fourth picture). We repeat for the right branch, inserting 〈0,0〉 at the top and
returning 0 (last picture).

In Figure 2, we compare the result of inserting 9 vectors into both a normal table and into the tree.
On the left, an array of 9 index vectors of length 6 each uses 54 units of memory; on the right, a tree
of indexed sets uses 42 units of memory to represent the same data. The elements of the main table at
the top of the tree are called folded vectors 〈...〉FV. The original full length vector is denoted 〈...〉IV.

Next, we analyse the best and worst cases of the memory complexity of tree compression. The idea
behind tree compression is that when we look at the sub-vectors of a set of vectors, many of these
sub-vectors occur more than once. Thus, by storing each sub-vector once and then using a reference
we can save memory. For example when restricting the table in Figure 2 to the first three columns,
only three distinct sub-vectors occur. If the sets of distinct first and second sub-vectors of a large
set of vectors are much smaller than the full set, then the amount of memory used for storing them
separately becomes negligible in comparison to the memory needed for the main table.

3subsequent table entries would get the next free index.
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Figure 1. Tree evolution during the execution of fold (newtree(6),〈1,0,0,0,0,1〉IV). Grey boxes
show progress on the input vector and where vector elements are stored in the tree. Slanted numbers
refer to slots in the vector.
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Figure 2. An example for tree (de)compression. Vector 〈0,0,1,0,1,0〉IV is represented as 〈2,1〉FV,
where index 2 is looked up in the next table to the left, and index 1 to the right, yielding another
two pairs of indices. Grey boxes are leaves, and not looked up further. The so selected fringe of grey
boxes corresponds to the original index vector if read from left to right.

The worst case for tree compression is that the amount of memory needed increases by a factor of 2.
This can happen if for a certain set S, we try to store vectors of � identical elements {〈s,··· ,s〉 |s∈S}.
In this case each of the tables will have length |S|. Because we have �−1 tables of width 2, we need
(�−1)·2·|S| units of memory compared with the �·|S| units needed for storing the vectors directly.
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Table 1. Average space usage (in units per vector) for N vectors of length �.

Vector Tree

Perfect top Worst case

Data � 2+ 2(�−2)√
N

2(�−1)

Hash table ≤2 ≤2+ 2(�−2)√
N

≤2(�−1)

Total ≤�+2 ≤4+ 4(�−2)√
N

≤4(�−1)

A much better case is a Cartesian product. To store V ×V , where V ⊆S�, we need a table with |V |2
entries for the top node plus the tables to store the |V | possibilities for the left and right sub-vectors. So
we need 2 ·|V |2 units for the top node and (using the previously computed worst-case upper bound)
less than (�−1)·2·|V | units for each of the sub-vectors for a total of 2 ·|V |2 +4·(�−1)·|V | units
compared with 2�·|V |2 for the direct solution. That is, with a perfect balance for the top node the
space needed to store N vectors of length � is at most 2N +4( �

2 −1)
√

N , meaning 2+ 2(�−2)√
N

units on

average per vector. Note that we counted just the memory needed for data. However, for the reverse
mapping we also need a hash table. If we also count its usage with a minimum utilization of 50%
then we arrive at the numbers in Table 1.

In the example and in our implementation, we chose to split the vector in half each time. This is
a reasonable assumption if one does not have additional knowledge about the vector. But in some
cases, we know in advance that one of the vector positions is going to have a lot of different elements.
In that case it would be useful to split the vector in a short and a long part where the element with
many different values is in the short part. Permuting the vector can also have large effects. We leave
research in this direction for future work.

From the analysis, one might draw the conclusion that just splitting the vector into two parts once
and then using a hash table for the components has practically the same performance. We identify two
reasons why this is not true in practice. First, it might happen that the top node does not split perfectly,
but the second node does. So using the same trick recursively improves our chances of getting good
performance. Second, in the distributed setting, tree compression can be used to influence bandwidth
requirements as well as memory requirements.

3.4 Distributed tree compression

Tree compression can be used to further reduce the communication bandwidth needs of a distributed
state-space generator. Instead of sending and receiving index vectors as a whole, we fix a part of the
tree as local and the remainder as global. Note that the root table has as many entries as the total
number of states. So the top node must be a local node on each worker, storing only those states
that it owns. Furthermore, the parent of a local node must be local. That is, the local nodes are a
non-empty prefix of the whole tree. Local nodes are stored in hash tables which are unique to a
worker. Global nodes use tables which are kept synchronized across all workers just like the leaf
database in Section 3.2. This allows us to compress in two steps. In the first step, we apply all global
tables to get an intermediate folded vector. In the second step, we apply the local tables. Because the
intermediate vector is computed using globally known tables, we can transmit intermediate folded
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Figure 3. Data flow between tool components (configuration with two workers)

vectors rather than index vectors to other workers. The length of the intermediate vectors is one more
than the number of local tables. The fully folded vectors are used for storage on the workers.

We have implemented two strategies: local in which both the root and intermediate tables are
local and global in which the root table is the only local table. To transmit N vectors of length �

in local mode, we need to send �·N integers. In global mode, we need 2 ·N integers for the real
messages plus 3·W ·T integers for replicating the global tables (assuming W workers, sending a
query and getting response of together 3 integers for each of the T entries of the global tables).
If T <

(�−2)N
3W then the global method has a bandwidth advantage over the local method. With

perfect balancing, T can be as small as 2
√

N . In practice, we have seen pathological cases with
T ≈ 1

2 N , which with �>50 and W =16 should still give a gain. However, it also comes with a
latency penalty: each of the T look-ups might require a round-trip to the database. Again, we
can use the piggybacking principle explained in Section 3.2 to alleviate the influence of latency
somewhat.

4 Implementation

For implementation purposes, the tool is divided into several components. Figure 3 depicts a
configuration with only two workers.

A worker is divided into a stepper and a store. The store contains all closed states assigned to
this worker. The stepper component processes this worker’s part of the open set, and adds states to
the queue (next level). States in the queue are sent to the store of the worker that owns them. Thus,
steppers implement the Exploration and Decompression phases as described in Section 3.1.

The store component receives queued states from all steppers, matches them against its part of the
closed set, and adds them to the open set if they are new. This corresponds to the Queue Management
phase from Section 3.1.

We have chosen this setup for its flexibility. Usually, the store and stepper of one worker are on
one machine. But it is for instance possible to run all the stores on a (well-connected) computer with
large amount of RAM, and the steppers on fast machines with less memory.
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4.1 ‘Global’ mode

Each stepper communicates with the database to map state parts to indices and vice versa, as well as
indices to pairs for tree compression. The central database component stores the master copy of all
mappings (leaf tables and intermediate tables), and each stepper replicates them fully.

Each store’s data structures work in terms of indices only, hence there is no need to access or
replicate the central database.

4.2 ‘Local’ mode

In ‘local’mode, the components remain the same as in the ‘global’mode, however, they have slightly
different responsibilities. Each stepper replicates the leaf database to be able to compress states to
index vectors, but no intermediate tables for global tree compression. Instead, index vectors of the
states in the open set and the queue are compressed locally per stepper. The resulting intermediate
tables are stored in the open set trees. They accumulate information for states belonging to a worker,
but also information of their successor states (which are ultimately sent to another worker). In order
to avoid this pollution and the resulting extra storage overhead, it is important to flush the open set
trees regularly, e.g. after every BFS level.

Since index vectors are exchanged between all components, the store needs to maintain its own
compression tables for the closed set, stored in closed set trees. The separation also facilitates the
mentioned flushing.

The global database is responsible only for the mapping between indices and state parts, hence
also does not store intermediate tables anymore.

5 Related work

The classical approach of state-space partitioning in the setting of Petri Nets dates back to at least
the work of Ciardo et al. [10]. For in-depth explanations and variations we refer to Ciardo [9].

The database and state compression approach presented here is based on earlier work of Blom
et al. [5, Section 4] on file formats for distributed state-space generation. As a follow-up, we focus
here on the changes needed to integrate µCRL with classical state-space partitioning: we introduce
a global database and several query and update protocols. We also provide measurements to show
the trade-offs between several of these protocols depending on the hardware used.

We utilize loss-less state compression schemes for efficient storage and network transmission,
and regard lossy compression as out of scope. The simple index table compression which is crucial
for µCRL works essentially in the same way as SPIN’s initial Collapse method [17, 22], and
was probably pioneered in Xesar [15]. Holzmann describes recursive indexing for the Revised
Collapse method, however, despite the name this is actually only a two-level approach (variables
and processes). More importantly, decompression is never needed in the case of SPIN, and there
are no provisions to keep the indices unique in a distributed setting. In contrast, our state folding
method indeed aggregates state parts recursively, and is designed for a distributed setting, which also
requires decompression.

In typical PROMELAmodels, a state is represented as vector of 50–500 bytes. It consists of around
10 parts: processes, channels and a block of global variables. Depending on how this byte vector is
compressed into an index vector by Revised Collapse, we can obtain an index vector of length 10.
Storing these in an indexed set still costs a lot of memory. Hence, we believe that our recursive tree
folding could be profitable for model checkers with flat data, such as SPIN and NIPS as well.
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Ciardo et al. [11] consider multi-valued decision diagrams (MDDs) for efficient storage of state
sets. A distributed version is described in [8]. These solutions use a single MDD that branches on the
value of state variables to store a set of states. In contrast, we use a tree for every state. These trees
branch on the position of variables in the state vector. One might say that our tree structures are a
specialized implementation of multi-terminal binary decision diagrams (MTBDDs).

To the best of our knowledge, currently no other distributed state-space generator can handle
recursive data types.

6 Measurements

The µCRL toolset has been used in a number of case studies [3], yet the benefits and trade-offs of
the different state representations we have presented here, have not been assessed before. To fill this
gap, we experimented with five models (size information can be found in Table 3):

Lift5 describes an elevator system with five legs for lifting large vehicles [16].
SWP is a version of the sliding window protocol [1].
CCP33 describes an instance of the cache coherence protocol Jackal for Java programs with three

processes and three threads [19].
1394fin describes the physical layer service of the 1394 or firewire protocol and also the link layer

protocol entities [18, 20]. We use an instance with three links and one data element.
Franklin53 describes a leader election protocol for anonymous processes along a bidirectional ring

of asynchronous channels, which terminates with probability one [13]. We chose an instance
with 5 nodes and 3 identities.

We considered three implementations. All three implementations utilize a global (but replicated)
leaf database which is used to map states to index vectors, but they differ in the following
characteristics:

vector: workers store and exchange full index vectors.
local: workers exchange full index vectors, but store them compressed. This requires local

intermediate tables on each worker.
global: workers exchange and store only compressed vectors of indices. This requires a global (but

replicated) database with intermediate tables.

We performed the experiments on two clusters:

CWI: the Spin cluster at the CWI, using 16 nodes with AMD Athlon™ 64 3500+ 2.2 GHz processors
and 1 GB RAM each, all interconnected with Gigabit switched Ethernet.

TUE: the Sandpit cluster at the TU Eindhoven, again with 16 nodes, each equipped with a 32-bit
Intel Pentium 3.06 GHz processor and 2 GB RAM, also interconnected with Gigabit switched
Ethernet.

Next, we will describe the three sets of tests we ran.4

The first set of experiments was to compare the first two case studies for two data structures on
both clusters using version 2.17.13 of the µCRL toolset. In Table 2, we present run times and memory
use5 of these experiments.

4Additional details can be found at http://www.cwi.nl/˜mcrl/pdmc-2007/.
5The total memory usage is higher, as we omitted open set and buffers here.

http://www.cwi.nl/~mcrl/pdmc-2007/.
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Table 2. Measurements for the ‘vector’ and the
‘local’ implementations

Run time (sec) Memory

TUE CWI

Lift5

vector 81 160 561.1M

local 96 160 301.9M

SWP

vector 294 387 2.0G

local 248 372 417.1M

Proc. Average Run Time [sec.]

TUE CWI

2 51,593.33 (OOM)

4 26,422.67 56,056.00

8 13,450.00 31,792.00

16 6,905.33 14,752.67

28 N/A 7,502.00

32 N/A 6,458.50

Figure 4. Speed-up measurements performed with CCP33 and the ‘global’ implementation. With
only two processors assigned, the CWI cluster runs out of memory (TUE cluster machines have more
RAM installed). The log–log plot of the data reveals a close to linear speed-up for up to 32 processors.

The second set of experiments was a speedup-test for the CCP33 problem on both clusters. The
results can be found in Figure 4. For these measurements we scaled the number of processors from 2
to the maximum available to us (16 on the TUE cluster, 32 on the CWI cluster.) Run times are
averaged over three runs, and vary very little on the TUE cluster, as evident from the small error bars
in the plot. On the CWI cluster, variation is slightly more visible due to interference from other users
of the cluster.

The third set of experiments is a comparison of local and global for all five models on both
clusters. The results can be found in Table 3. Note that these results were produced with the improved
version 2.18.1 of the toolset. The ‘wall time’ column contains the time in seconds elapsed until job
completion. Under column ‘Messages to DB’, one finds a count of queries to the global database and
the average round-trip time per query (including not only network transmission but also processing).
The memory use is split over 5 (4) columns for local (global). In each column, we account for the
sum of the memory used in all 16 workers. The first three columns show the memory used for the
root tables of the open set, the queue and the closed set. In local mode, we have separate intermediate
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Table 3. Measurements for the comparison of local (L) and global (G) modes

Mode Wall Messages to DB Set Memory Tree Memory Transfer

Cluster Time (s) Count Latency (ms) Open Queue Closed Open/Queue Closed Size Time (s)

Lift5: 103 levels 2,165,446 states 8,723,465 transitions

TUE L 102 1,252 2.60

1.4M 11.1M 32.5M

6.8M 26.1M 2.3G 219

TUE G 91 251,347 0.25 285.0M 267.0M 133

CWI L 172 1,247 11.28 6.8M 26.1M 2.3G 256

CWI G 257 254,319 5.16 285.0M 267.0M 109

SWP: 61 levels 19,466,100 states 93,478,264 transitions

TUE L 255 895 1.52

12.6M 121.2M 276.5M

20.2M 55.9M 11.1G 608

TUE G 225 420,932 0.23 172.9M 2.7G 151

CWI L 364 860 6.22 20.1M 55.3M 11.1G 640

CWI G 469 421,736 5.23 172.9M 2.7G 168

1394fin: 170 levels 88,221,818 states 152,948,696 transitions

TUE L 6,339 1,955 1.07

64.1M 245.2M 1.1G

31.6M 211.5M 39.3G 1,913

TUE G 5,517 1,313,124 0.22 252.3M 4.5G 356

CWI L 9,010 1,977 5.87 31.4M 211.8M 39.3G 1,919

CWI G 9,111 1,311,443 5.89 252.3M 4.5G 353

Franklin53: 82 levels 84,381,157 states 401,681,445 transitions

TUE L 1,782 1,079 1.44

39.8M 385.1M 1.1G

278.7M 1.6G 91.2G 5,382

TUE G 2,066 38,647,751 0.33 7.8G 11.9G 456

CWI L 2,003 1,109 2.33 287.3M 1.6G 91.2G 4,336

CWI G 11,506 38,644,914 3.89 7.8G 11.9G 374

CCP33: 298 levels 97,451,014 states 1,061,619,779 transitions

TUE L 8,569 2,928 0.46

17.8M 391.3M 1.2G

121.1M 850.1M 407.3G 21,421

TUE G 7,067 14,780,196 0.23 2.7G 31.6G 1,141

CWI L 12,562 2,945 5.36 126.6M 1,019.8M 407.3G 21,746

CWI G 15,800 14,815,199 5.12 2.7G 31.6G 1,048

tables in the stepper (storing the open set and the queue) and in the store (storing the closed set).
In global mode, all workers share one database which is then replicated. The memory used by these
tables is listed in the ‘Tree Memory’columns. The final two columns list how much data is transferred
between workers and how much time it takes. These columns are also sums over all workers.

Table 2 is the relevant part of the first data set in our earlier PDMC paper [4]. The data in Fig. 4
is new. The measurements in Table 3 are redone with a new implementation, and extended by two
models.

6.1 Evaluation

First, we observe in Table 2 that the ‘vector’ implementation uses much more memory than the
‘local’ implementation (e.g. 2.0 GB versus 417.1 MB for SWP in Table 2). This is explained by the
compression due to sharing: ‘vector’ stores the open and closed sets as arrays of vectors of integers,
while ‘local’ stores them as short vectors, plus local tree compression tables. Larger models, like
CCP33, could not even be generated in the vector implementation. Moreover, contrary to what one
would expect, the ‘vector’ method is not significantly faster than the ‘local’ method.
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Next, we compare keeping the intermediate tables ‘local’ or ‘global’ (but replicated). As expected,
the local tables reduce the communication of workers with the global database drastically (Table 3,
column ‘Messages to DB’). It is only needed for leaves, and mainly during the initial phase of a run.
However, network traffic between workers is much higher, for the models presented here around
factor 5–13. For example, running the ‘local’ implementation on CCP33 caused a data exchange of
407.3 GB in total between workers, whereas in the ‘global’ version only 31.6 GB were exchanged.
This is due to the fact that with ‘local’ tables, workers exchange long index vectors, while with
‘global’ tables they can exchange small folded vectors.

Surprisingly, the winner in overall time (Table 3, first column) depends on the actual cluster: the
‘local’ implementation is faster than the ‘global’ implementation on the CWI cluster, but slower on
the TUE cluster (except franklin53). We attribute this to the difference in database latency between
the clusters (Table 3, column 5), for the models used here by a factor of up to 23. Note that the
traffic between workers is asynchronous (latency hiding through buffering), while the traffic with
the database is synchronous. High network latency mainly influences database traffic, while low
available bandwidth affects the communication between workers. The fact that local is faster on both
clusters for the Franklin model is due to the fact that the amount of messages sent is larger than for
any other model.

Considering the approximately similar networking hardware of both clusters, the latency difference
is unexpected. Indeed, on both clusters the fastest queries are almost instantaneous, and despite some
fluctuation there is no alarming difference between the slowest queries. However, looking at the
distribution of query latencies we found that for SWP and CCP33 models, consistently 95% of the
time spent on database communication is due to the slowest 2% of all queries, on both clusters. The
rest of the messages are negligibly (and equally) fast. That is, on the TUE cluster, the slowest 2% of
all messages account for around 3,171 s cumulated time over all workers, while on the CWI cluster,
the slowest 2% of all messages need 74,257 s. Eventually, the slow queries could be traced to the
CWI cluster’s suboptimal handling of buffers within the network stack when dealing with dropped
packets. The same situation happens on the TUE cluster, but it is handled much faster.

Another unexpected result is that the tree compression tables for the closed set (column ‘tree
memory’) require more memory in the ‘global’ version than both sets of compression tables in the
‘local’ version combined. The difference is that the ‘global’ version contains a full replica of the
global database, while ‘local’ contains only entries for state parts which have been encountered
locally (when storing states permanently due to ownership). Apparently, the assumption that all
workers need nearly all entries of the intermediate tables of the global database is wrong. We may
have been too optimistic for tables higher up in the folding trees, that represent longer sub-vectors.

7 Conclusion and future work

We enhanced the basic scheme of distributed state-space generation with a global database, in order
to provide a globally unique representation of values from recursive data types. The round-trip costs
are lowered by using database replication and a piggybacking scheme. Furthermore, we introduced
tree compression to reduce the storage size of state spaces by recursive state folding. Local and
global (but replicated) implementations of index databases have been implemented and their effect
on latency and throughput was measured.

We see three lines of future research regarding tree compression. So far, we only experimented
with exchanging long index vectors (no tree compression) or index vectors of length 2 (full tree
compression). Intermediate solutions are possible too. It would be interesting to experimentally
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establish an optimal cut-off point for state vector compression, or even build an adaptive tool that
dynamically finds the optimum w.r.t. a given model and cluster.

Our experiments so far were restricted to relatively small cluster sizes. We could imagine that
hundreds of workers could bring down the central database. Once we confirm this as a bottleneck
with actual experiments, we would like to try out existing database technology to deal with the
problem, e.g. striping the global tables across several servers, etc., instead of a home-brewn solution.

Finally, another interesting possibility is to adapt our scheme to heterogeneous systems, where
several clusters of workstations are connected by a high-latency, high-bandwidth network to form
a grid. In such settings, databases could be local to a cluster, providing indices that are unique
within a cluster. This would allow to exchange compressed vectors within a cluster, while across
clusters uncompressed vectors have to be exchanged in order to contain the effects of latency. The
worker–worker traffic is not affected because it is asynchronous.
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