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Abstract

Capitalising on the graph-theoretic account of fibring proposed in [31],
we show that fibring preserves the finite model property under mild con-
ditions. Illustrations are provided for modal, deontic, paraconsistent and
linear logics.
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1 Introduction

It is well know that in favorable conditions the finite model property (in short
fmp) can be used for establishing that a logic is decidable1. For this reason,
the preservation of fmp by mechanisms for combining logics has been in the
foreground of those working on the field. Using the so called surrogates tech-
nique [18], fmp was shown to be preserved by fusion of modal logics. Fusion is
a special case of fibring [12], but the preservation of fmp by fibring in general
was not established.

Herein, also using the surrogates technique, we are able to extend this trans-
ference result to the fibring of a much wider class of logics by taking advantage
of a novel feature of the graph-theoretic semantics of fibring proposed in [31]:
every model of the logic obtained by fibring L1 and L2 is roughly the Carte-
sian product of a model of L1 and a model of L2. Previous semantics of fib-
ring [13, 29, 34, 32, 8] did not share this essential ingredient of our proof of
the fmp transference. Observe also that the graph-theoretic account of fibring
encompasses a much wider universe of logics, including paraconsistency and

1For instance, if the logic is finitely axiomatizable, then decidability is an immediate corol-
lary of fmp. Furthermore, if the logic is axiomatizable and its models are defined independently
of its axioms, again decidability follows from fmp. However, there are examples of axioma-
tizable logics with fmp that are not decidable, like the one provided by Urquhart [33]. That
logic is not finitely axiomatizable and its models are the normal Kripke models that satisfy
the axioms.
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substructurality, thanks to using an abstraction map from the semantic uni-
verse to the language, instead of the traditional interpretation map from the
latter to the former.

The reader is expected to be conversant with the concepts and main results
of the graph-theoretic account of fibring given in [30, 31], but for convenience
we provide a very brief summary in Section 2, together with a straightforward
extension to the case of constrained fibring (allowing the sharing of symbols).
Graph-theoretic examples of logics with fmp are given in Section 3. The main
result is proved in Section 4 and illustrated in Section 5 for establishing the
fmp for logics obtained by fibring the logics with fmp discussed in Section 3.

2 Preliminaries on graph-theoretic fibring

Signatures and interpretation structures of logics are seen as m-graphs in the
graph-theoretic account of logics and their fibrings proposed in [30, 31].

An m-graph, is a tuple G = (V,E, src, trg) such that V is a set (of vertexes
or nodes), E is a set (of m-edges), src : E → V + and trg : E → V are maps (the
source and the target, respectively), where, as usual, V + denotes the set of all
finite non-empty sequences of V . We may write e : s → v or e ∈ G(s, v) when
e ∈ E, src(e) = s and trg(e) = v.

2.1 Language

A signature is an m-graph Σ = ({π, ♦}, E, src, trg) such that no m-edge has ♦ as
target. Node π is the formula sort and node ♦ is the concrete sort. The m-edges
play the role of constructors for building formulas. For instance, the connective
¬ is represented by the edge ¬ : π → π. A propositional symbol q is seen as an
edge q : ♦→ π.

From an m-graph G we can (canonically) generate a category C(G) with
finite products (for details see [30]). The objects of the category are non-
empty sequences of nodes. The morphisms are the paths over the m-graph. We
represent the product of nodes s1, s2 as s1s2. Among the morphisms we have
projections of the form ps1s2i : s1s2 → si and pairings of the form 〈h1, h2〉 : w →
s1s2 whenever hi : w → si.

The formulas over Σ are the morphisms of the category C(Σ) with target
π. The underlying path identifies the constructors of the formula. We say
that a formula is concrete whenever the sort π does not occur in the source,
hence the name for node ♦. This notion corresponds to the traditional (set-
theoretic) notion of language of formulas over Σ. For instance, the concrete
formula (¬ q1) ⊃ q2, where q1 and q2 are propositional symbols, is represented
by the morphism:

⊃ ◦ 〈¬ ◦q1, q2〉 : ♦→ π

in C(Σ). We may write ⊃(¬(q1), q2) for ⊃ ◦ 〈¬ ◦q1, q2〉. We say that a formula
is schematic if only part of their structure is known (or determined). More
concretely, by a schema formula we mean a morphism in C(Σ) with target π
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and with a source where π occurs. For instance, the morphism

⊃ ◦ 〈⊃ ◦ 〈pππ1 , pππ2 〉, pππ2 〉

is a schema formula with two schema variables, usually written (ξ1 ⊃ ξ2) ⊃ ξ2.
When looking at formulas as morphisms, projections play the role of schema
variables. From now on we stick to the categorical notation.

Observe that ⊃ ◦ 〈⊃ ◦ 〈q1, q2〉, q2〉 is an instance of ⊃ ◦ 〈⊃ ◦ 〈pππ1 , pππ2 〉, pππ2 〉,
that is,

⊃ ◦ 〈⊃ ◦ 〈q1, q2〉, q2〉 = ⊃ ◦ 〈⊃ ◦ 〈pππ1 , pππ2 〉, pππ2 〉 ◦ 〈q1, q2〉.

The set of formulas, i.e. the language over Σ, is denoted by L(Σ). The
main constructor of a formula is the last edge of the path. The set SF(ϕ) of
subformulas of a formula ϕ is inductively defined as follows:

• SF(ϕ) = {ϕ} if either ϕ : ♦ → π or ϕ is pπ
n

i for every n ≥ 1 and i =
1, . . . , n;

• SF(ϕ) = ∪kj=1SF(ϕj)∪{ϕ} assuming that ϕ is c◦〈ϕ1, . . . , ϕk〉 where c ∈ E
is an edge.

Letting ϕ be the formula ⊃ ◦ 〈⊃ ◦ 〈pππ1 , pππ2 〉, pππ2 〉 we have:

SF(ϕ) = {ϕ, 〈⊃ ◦ 〈pππ1 , pππ2 〉, pππ2 〉,⊃ ◦ 〈pππ1 , pππ2 〉, pππ1 , pππ2 }.

We denote by Σn the set of all the n-ary constructors, that is, the m-edges
from πn to π in signature Σ, and we denote by Σ+

n the set of all morphisms from
πn to π in category C(Σ). The elements of Σ+

n are known as derived constructors
of arity n, while the elements of Σn are called primitive constructors of arity n.

2.2 Semantics

For the semantics we need the notion of m-graph morphism. An m-graph mor-
phism h : G1 → G2 is a pair of maps hv : V1 → V2 and he : E1 → E2 such that
src2 ◦ he = hv ◦ src1 and trg2 ◦ he = hv ◦ trg1.

An interpretation structure I over a signature Σ is a triple

(G′, α,D)

where G′ is an m-graph (the operations graph), α : G′ → G is an m-graph
morphism (the abstraction morphism), ∅ ( D ( (αv)−1(π) is a non-empty set
and (αv)−1(♦) = {�}. The set V ′ of nodes of the operations graph is called the
universe of values. Observe that V ′ is partitioned by α: we denote by V ′v the
domain (αv)−1(v) of values for each sort v. The elements of V ′π are the truth
values and the element � of V ′♦ is the concrete value. The elements of the set D
are the distinguished truth values. We say that an interpretation structure I is
finite whenever V ′ is a finite m-graph, that is, when V ′π and E′ are both finite.
Observe that α can be extended to a functor from C(G′) to C(Σ), mapping
projections to projections. We refer to this functor also as α.
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In order to prove our main result, we need to introduce some notions related
with local satisfaction by a path and global satisfaction by a set of paths.

Let ϕ : πn♦
m → π where n > 0 and m ≥ 0 be a schema formula and I an

interpretation structure both over signature Σ. We say that w′ : u1 . . . un�
m → d

in C(G′) is a path for ϕ in I if w′ ∈ α−1(ϕ). When w′ is a path for ϕ in I and
its target is in D we write

I, w′ 
 ϕ

and say that path w′ of I satisfies formula ϕ. Given a set W ′ of paths for ϕ in
I, we say that ϕ is W ′-path satisfiable in I, denoted by

I,W ′ 
∃ ϕ,

whenever there exists a path w′ ∈ W ′ such that I, w′ 
 ϕ. We say that W ′ of
I satisfies ϕ, denoted by I,W ′ 
∀ ϕ or, simply, by

I,W ′ 
 ϕ,

if I, w′ 
 ϕ for every path w′ ∈ W ′. Finally, we say that W ′ of I falsifies ϕ
whenever I,W ′ 6
 ϕ.

We say that ϕ is path satisfiable in I, denoted by

I 
∃ ϕ,

whenever I, α−1(ϕ) 
∃ ϕ. We say that I satisfies ϕ, denoted by I 
∀ ϕ or
simply, as usual, by

I 
 ϕ,

if I, α−1(ϕ) 
 ϕ. Finally, we say that I falsifies ϕ whenever I 6
 ϕ.
The denotation of a formula ϕ over I is

[[ϕ]]I = {trg(w′) : α(w′) = ϕ}.

Clearly, [[ϕ]]I ⊆ D iff I 
 ϕ.
In the sequel we also need the following notions and notations concerning

paths with selected sources for a given schema formula. Given a formula ϕ over
Σ and s a sequence of values, we denote by WI

sϕ the set of all paths for ϕ with
source s in I. Then s is said to be a socket for ϕ in I. Moreover, we denote by
WI
ϕ the set of all paths for ϕ whenever ϕ is a formula but not a schema formula.

Finally, given a path w′ for ϕ and a subformula δ of ϕ, we denote by

w′|δ

the subpath of w′ such that α(w′|δ) = δ.
In order to deal with logics, we need to work with classes of interpretation

structures over the same signature. An interpretation system is a pair (Σ, I)
where Σ is a signature and I is a class of interpretation structures over Σ.

A formula ϕ is falsifiable in an interpretation system (Σ, I) if there is I ∈ I
such that I falsifies ϕ.
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2.3 Fibring of interpretation systems

For introducing the notion of constrained fibring (sharing some constructors), it
is convenient to make use of signature morphisms for specifying which symbols
are to be shared. As expected, by a signature morphism we understand an
m-graph morphism with the identity map on {π, ♦} as the vertex component.

But let us start first with the notion of unconstrained fibring (no constructor
is shared). At the signature level, unconstrained fibring amounts to the disjoint
union of the two given signatures. In the category of signatures introduced
in [31], this construction is a co-product. Let Σ1 and Σ2 be signatures. Their
unconstrained fibring or disjoint fibring, denoted by

Σ1 ] Σ2

is the signature ({π, ♦}, E, src, trg) endowed with injections i1 and i2 such that:

• E = E1 ] E2 = ie1(E1) ∪ ie2(E2);

• src and trg are such that src ◦ iej = srcj and trg ◦ iej = trgj .

At the semantic level things are a bit more involved even in the case of
unconstrained fibring. Let (Σ1, I1) and (Σ2, I2) be interpretation structures.
Given v′1 ∈ V ′1π and v′2 ∈ V ′2π, we say that v′1 and v′2 agree, written v′1 ≈ v′2, if
they are both distinguished or both non distinguished. This notion is pointwise
extended to sequences of the same length. The unconstrained fibring or disjoint
fibring of interpretation structures (Σ1, I1) and (Σ2, I2), denoted by

(Σ1, I1) ] (Σ2, I2),

is the co-product of (Σ1, I1) and (Σ2, I2) in the category of interpretation struc-
tures introduced in [31]. More concretely, it is the interpretation structure
(Σ1 ] Σ2, I1 ] I2) where I1 ] I2 = ((V ′, E′, src′, trg′), α,D) with:

• V ′ = (D1 ×D2) ∪ ((V ′1π \D1)× (V ′2π \D2)) ∪ {(�1, �2)};

• E′ is composed of

– each ie1(e1)e′1,u′,v′ with e1 ∈ E1, e
′
1 ∈ E′1, u′ ∈ V ′2

+, v′ ∈ V ′2 such that{
e1 = αe

1(e′1)

u′ ≈ src′1(e′1) and v′ ≈ trg′1(e′1),

– each ie2(e2)u′,v′,e′2 with e2 ∈ E2, u
′ ∈ V ′1

+, v′ ∈ V ′1 , e′2 ∈ E′2 such that{
e2 = αe

2(e′2)

u′ ≈ src′2(e′2) and v′ ≈ trg′2(e′2);

• src′ is such that {
src′(ie1(e1)e′1,u′,v′) = (src′1(e′1), u′)

src′(ie2(e2)u′,v′,e′2) = (u′, src′2(e′2));
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• trg′ is such that {
trg′(ie1(e1)e′1,u′,v′) = (trg′1(e′1), v′)

trg′(ie2(e2)u′,v′,e′2) = (v′, trg′2(e′2));

• α is such that
αv((u′1, u

′
2)) =

{
♦ if (u′1, u

′
2) = (�1, �2)

π otherwise

αe(ie1(e1)e′1,u′,v′) = ie1(e1)

αe(ie2(e2)u′,v′,e′2) = ie2(e2);

• D = D1 ×D2.

It is worthwhile to comment upon the nature of the above construction. The
unconstrained fibring of two interpretation structures is roughly their Cartesian
product, although presented as a co-product in order to follow the combination
at the signature level where it is a disjoint union. Clearly, the set V ′ of the
vertexes of G′ is roughly the Cartesian product of V ′1 and V ′2 (respecting typing
and distinguishedness). Less obviously, the set E′ of the edges of G′ also has
a product nature. In this case the edges of G′1 are paired with all compatible
‘mute’ edges in G′2 and vice versa. By a ‘mute’ edge we mean a virtual edge
that is not mapped to the signature. The relevance of this notion suggests the
use of partial abstraction functions instead of abstraction maps, partial on the
edge component, but the categorical development of this idea is outside the
scope of this paper.

In the case of constrained fibring (when some constructors are shared), we
use signature morphisms for specifying which symbols are to be shared. Let
h1 : Σ0 → Σ1 and h2 : Σ0 → Σ2 be injective signature morphisms. Given such
a source diagram, we say that constructors e1 and e2 are shared if there is a
constructor e in Σ0 such that e1 = he1(e) and e2 = he2(e). Furthermore, we say
that Σ1 and Σ2 share Σ0 via h1 and h2.

The constrained fibring of signatures Σ1 and Σ2 sharing Σ0 via h1 and h2,
denoted by

Σ1 ]Σ0
h1h2

Σ2

is the target of the push-out of h1 and h2. Equivalently, it is the target of the
co-equalizer

q : Σ1 ] Σ2 → Σ1 ]Σ0
h1h2

Σ2

of i1 ◦ h1 and i2 ◦ h2. More concretely, it is the signature ({π, ♦}, E∗, src∗, trg∗)
with:

• E∗ = ie1(E1) ∪ (ie2(E2) \ ie2(he2(E0)));

• src∗ and trg∗ are such that src∗ ◦ iej = srcj and trg∗ ◦ iej = trgj .
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The constrained fibring of interpretation structures (Σ1, I1) and (Σ2, I2)
sharing Σ0 via h1 and h2, denoted by

(Σ1, I1) ]Σ0
h1h2

(Σ2, I2),

is the co-Cartesian lifting by the forgetful functor (from the category of inter-
pretation structures to the category of signatures) of q on the interpretation
structure

(Σ1, I1) ] (Σ2, I2) = (Σ1 ] Σ2, ((V
′, E′, src′, trg′), α,D)).

More concretely, it is the interpretation structure (Σ1]Σ0
h1h2

Σ2, I1]Σ0
h1h2

I2) where

I1 ]Σ0
h1h2

I2 = ((V ∗′, E∗′, src∗′, trg∗′), α∗, D∗) with:

• V ∗′ = V ′;

• E∗′ is composed of

– each ie1(e1)e′1,u′,v′ with e1 ∈ E1, e
′
1 ∈ E′1, u′ ∈ V ′2

+, v′ ∈ V ′2 such that{
e1 = αe

1(e′1) 6∈ he1(E0)

u′ ≈ src′1(e′1) and v′ ≈ trg′1(e′1),

– each ie2(e2)u′,v′,e′2 with e2 ∈ E2, u
′ ∈ V ′1

+, v′ ∈ V ′1 , e′2 ∈ E′2 such that{
e2 = αe

2(e′2) 6∈ he2(E0)

u′ ≈ src′2(e′2) and v′ ≈ trg′2(e′2),

– each ie1(he1(e))e′1,e′2 with e ∈ E0, e
′
1 ∈ E′1, e′2 ∈ E′2 such that{

αe
1(e′1) = he1(e) and αe

2(e′2) = he2(e)

src′1(e′1) ≈ src′2(e′2) and trg′1(e′1) ≈ trg′2(e′2);

• src∗′ is such that
src∗′(ie1(e1)e′1,u′,v′) = (src′1(e′1), u′)

src∗′(ie2(e2)u′,v′,e′2) = (u′, src′2(e′2))

src∗′(ie1(he1(e))e′1,e′2) = (src′1(e′1), src′2(e′2));

• trg∗′ is such that
trg∗′(ie1(e1)e′1,u′,v′) = (trg′1(e′1), v′)

trg∗′(ie2(e2)u′,v′,e′2) = (v′, trg′2(e′2))

trg∗′(ie1(he1(e))e′1,e′2) = (trg′1(e′1), trg′2(e′2));
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• α∗ is such that 
α∗v = αv

α∗e(ie1(e1)e′1,u′,v′) = ie1(e1)

α∗e(ie2(e2)u′,v′,e′2) = ie2(e2)

α∗e(ie1(he1(e))e′1,e′2) = ie1(he1(e));

• D∗ = D.

It is worthwhile to notice that operation edges mapped to a shared construc-
tor are paired only with the operation edges of the other graph mapped to that
shared constructor. Only the operation edges that are mapped to unshared
constructors are paired with the ‘mute’ edges of the other graph.

Observe also that if (Σ1, I1) and (Σ2, I2) are both finite then so is their
(unconstrained or constrained) fibring.

Contrarily to previous approaches to fibring, the graph-theoretic account
provides very simple notions of unconstrained and constrained fibring of inter-
pretation systems, once these notions are established for interpretation struc-
tures. The unconstrained fibring of interpretation systems (Σ1, I1) and (Σ2, I2),
denoted by

(Σ1, I1) ] (Σ2, I2),

is the interpretation system (Σ1 ] Σ2, I1 ] I2) where:

I1 ] I2 = {I1 ] I2 : I1 ∈ I1, I2 ∈ I2}.

The constrained fibring of (Σ1, I1) and (Σ2, I2) sharing Σ0 via h1 and h2,
denoted by

(Σ1, I1) ]Σ0
h1h2

(Σ2, I2),

is the interpretation system (Σ1 ]Σ0
h1h2

Σ2, I1 ]Σ0
h1h2

I2) where:

I1 ]Σ0
h1h2

I2 = {I1 ]Σ0
h1h2

I2 : I1 ∈ I1, I2 ∈ I2}.

3 Finite model property

An interpretation system (Σ, I) is said to have the finite model property, ab-
breviated by fmp, if for every formula ϕ falsifiable in (Σ, I) there is a finite
interpretation J in I such that J falsifies ϕ. The next section is dedicated to
proving a sufficient condition for preservation of the fmp by fibring. Here, we
introduce a couple of useful notions and provide graph-theoretic accounts of
logics with fmp that are used in the sequel for illustration purposes.

An interpretation system (Σ, I) is said to have strong negation if there is
either a primitive or a derived unary constructor ¬ : π → π such that, for every
interpretation structure I in I:

• I,WI
sϕ 
∃ ϕ iff I,WI

s¬ϕ 6
 ¬(ϕ) whenever ϕ is a schema formula and s is
a socket for it;

8



• I,WI
ϕ 
∃ ϕ iff I,WI

¬ϕ 6
 ¬(ϕ) whenever ϕ is a concrete formula.

An interpretation system (Σ, I) is said to have disjunction if there is either
a primitive or a derived binary constructor ∨ : ππ → π such that

I 6
 ∨(ϕ1, ϕ2) iff I 6
 ϕ1 and I 6
 ϕ2

for every interpretation structure I in I. The following result is used later on.

Proposition 3.1 An interpretation system (Σ, I) with disjunction has the fmp
iff, for any finite set of formulas {ϕ1, . . . , ϕn}, if there is I in I such that I 6
 ϕi
for i = 1, . . . , n then there is a finite J in I such that J 6
 ϕi for i = 1, . . . , n.

3.1 Modal logic

The first example concerns normal modal logic (for details see [10] and [6]) en-
dowed with semantics given by modal algebras. Let Π1 be a set of propositional
symbols. Consider the modal signature Σ1 with the following m-edges:

• p1 : ♦→ π for each p1 in Π1;

• ¬1 : π → π;

• ⊃1 : ππ → π;

• �1 : π → π.

Let A = (A,u,t,−,⊥,>,�) be a modal algebra (see [20, 21] and also [10] for
a more recent presentation and completeness proofs) for a normal modal logic
ML, either K or an enrichment of K, with signature Σ1, and v a valuation over
the algebra (that is, a map from Π1 to A). The (graph-theoretic) interpretation
structure I1(A, v) = (G′1, α1, D1) over Σ1 induced by A and v is as follows:

• G′ is such that:

– V ′1 = A ∪ {�};
– E′1 is composed by the following edges:

∗ p′1 : �→ v(p1) for p1 ∈ Π1;

∗ ¬1a : a→ −a for each a in A;

∗ ⊃1a1a2 : a1 a2 → ((−a1) t a2) for each a1 and a2 in A;

∗ �1a : a→ �a for each a in A.

• α : G′ → G is such that:

– αv
1(a) = π for each a ∈ A;

– αv
1(�) = ♦;

– αe
1(p′1) = p1 for each p1 ∈ Π1;

– αe
1(¬a) = ¬1;

– αe
1(⊃a1a2) = ⊃1;
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– αe
1(�a) = �1.

• D1 = {>}.

It is not hard to prove the following result, where by A, v 
 ϕ we mean that
the modal algebra A and the valuation v satisfy ϕ.

Proposition 3.2 A, v 
 ϕ iff I1(A, v) 
 ϕ.

The (graph-theoretic) interpretation system for modal logic ML is the pair
composed by the signature Σ1 and the class I1 of the interpretation structures
induced by the modal algebras for ML and the valuations over them. It is
straightforward to verify that the following results hold.

Proposition 3.3 Let ϕ be a modal formula. Then, ϕ is a theorem of ML iff
I 
 ϕ for every I ∈ I1.

Proof: Since every normal modal logic is complete with respect to the algebraic
semantics (see Theorems 7.2 and 7.43 of [10]) we conclude that I 
 ϕ for every
I ∈ I1. QED

Proposition 3.4 If modal logic ML has the fmp with respect to the algebraic
semantics then (Σ1, I1) also has the fmp.

It should be stressed that a normal modal logic has the fmp with respect
to the algebraic semantics iff it has the fmp with respect to Kripke frames (the
interested reader can see Theorem 17 of [20] where the correspondence between
finite Kripke frames and finite modal algebras is established). Thus, the result
also holds when we consider modal logic ML endowed with Kripke semantics.

These results are easily extended to multimodal logics. Later on, we shall
need to work with bimodal logics for dealing with fusions of (mono)modal logics.

3.2 Paraconsistent logic

Consider now the paraconsistent logic mbC (see [9]). Let Π2 be a set of propo-
sitional symbols. The mbC signature Σ2 has the following m-edges2:

• p2 : ♦→ π for each p2 in Π2;

• ¬2,�2 : π → π;

• ⊃2,∧2,∨2 : ππ → π.

Let M = (T,D,O) be the non deterministic matrix for mbC, where T =
{t, I, f}, D = {t, I} and O is the set of three-valued truth-tables for the con-
nectives (for details see [4]). We refrain from giving these truth-tables, but the
reader will be able to recover them from the graph-theoretic denotation of the
connectives provided below. Let v : Π2 → T be a map. The interpretation
structure I2(v) = (G′2, α2, D2) over Σ2 induced by v is as follows:

2In order to avoid confusion with composition, we use � for the consistency operator.
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• G′2 is such that:

– V ′ = {t, I, f} ∪ {�};
– E′ is composed of the following m-edges:

∗ p′2 : �→ v(p2) for p2 ∈ Π2;

∗ ¬u′1u′2 : u′1 → u′2 where u′1 is in {I, f} and u′2 is in D2;

∗ ¬tf : t→ f ;

∗ �u′1u′2 : u′1 → u′2 where u′1 is in {t, f} and u′2 is in V ′π;

∗ �If : I→ f ;

∗ ⊃u′1u′2v′ : u′1 u
′
2 → v′ where u′1 is f or u′2 is in D2, and v′ is in D2;

∗ ⊃v′ff : v′ f → f for v′ is in D2;

∗ ∧u′1u′2v′ : u′1 u
′
2 → v′ where u′1, u′2 and v′ are in D2;

∗ ∧u′1u′2f : u′1 u
′
2 → f where u′1 is f or u′2 is f ;

∗ ∨u′1u′2v′ : u′1 u
′
2 → v′ where u′1 or u′2 are in D2, and v′ is in D2;

∗ ∨fff : f f → f .

• α2 : G′ → G is such that:

– αv
2(u′) = π with u′ in {t, I, f};

– αv
2(�) = ♦;

– αe
2(p′2) = p2 for each p2 ∈ Π2;

– αe
2(¬u′1u′2) = ¬2 for every ¬u′1u′2 in E′;

– αe
2(�u′1u′2) = �2 for every �u′1u′2 in E′;

– αe
2(⊃u′1u′2b) = ⊃2 for every ⊃u′1u′2b in E′;

– αe
2(∧u′1u′2b) = ∧2 for every ∧u′1u′2b in E′;

– αe
2(∨u′1u′2b) = ∨2 for every ∨u′1u′2b in E′.

• D2 = {t, I}.

The interpretation system for paraconsistent logic mbC is the pair composed
by the signature Σ2 and the class I2 of all interpretation structures I2(v) for
every map v : Π2 → T .

Observe that in this case, it is possible to have in I2(v) more than one path
mapped by α2 into the same formula. For instance, assuming that p′2 : � → I,
the paths ¬II p

′
2 and ¬It p

′
2 are both denotations of ¬ p2.

In order to prove that mbC is weakly sound and complete for (Σ2, I2), we
need to state a previous result. Let v : L(Σ2) → T be a legal valuation over
M (see [4]). We will denote by v̄ : Π2 → T the restriction of v to the set Π2.
By the very definition of (Σ2, I2) and M, it is not hard to prove the following
result:

Proposition 3.5
(i) For every map v′ : Π2 → T , every formula ϕ ∈ L(Σ2) and every d ∈ [[ϕ]]I2(v′),
there exists a legal valuation v : L(Σ2) → T over M such that v̄ = v′ and
v(ϕ) = d.
(ii) For every legal valuation v : L(Σ2) → T over M and every formula ϕ ∈
L(Σ2), v(ϕ) ∈ [[ϕ]]I2(v̄).
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Using this and the soundness and completeness of mbC with respect to the
non deterministic semantics M we can prove that:

Proposition 3.6 ϕ is a theorem of mbC iff ϕ is valid in I2.

Proof: Suppose that ϕ is not valid in I2. Then, I2(v′) 6
 ϕ for some map

v′ : Π2 → T . That is, there exists d ∈ [[ϕ]]I2(v′) such that d 6∈ D2. Thus, by
Proposition 3.5(i), there exists a legal valuation v over M such that v(ϕ) = d,
that is, such that v(ϕ) 6∈ D2, and so ϕ is not valid in M. Since mbC is sound
with respect to the non deterministic semantics M, it follows that ϕ is not a
theorem of mbC.

Conversely, suppose that ϕ is not a theorem of mbC. Then, by completeness
of mbC with respect to the non deterministic semanticsM, there is some legal
valuation v such that v(ϕ) 6∈ D2. Since v(ϕ) ∈ [[ϕ]]I2(v̄) (by Proposition 3.5(ii))
it follows that I2(v̄) 6
 ϕ and so ϕ is not valid in I2. QED

Proposition 3.7 The interpretation system (Σ2, I2) has the fmp.

The result above is an immediate consequence of the fact that mbC has the
fmp with respect to the three-valued nondeterministic semantics. This fact is
an immediate corollary of the lemma of absent propositional symbols that is
known to hold in mbC (see [4]).

3.3 Deontic logic

Consider now the deontic logics DPM (see [15]). These are in fact two logics
DPM.1 and DPM.2 having the same kind of neighborhood semantics but each
with specific properties. From this point on, we use DPM to refer to any of
them because they behave in an analogous way for the properties we have in
mind.

Let F = (W,O) be a neighborhood frame for DPM where W is a non-empty
set and O = {Ow}w∈W is a family where Ow ⊆ ℘W . Let v be a valuation in
F , that is, a map from Π3 to ℘W . The interpretation structure I3(F , v) =
(G′3, α3, D3) over Σ1 induced by v is as follows:

• G′3 is such that:

– V ′ = ℘W ;

– E′ is composed of the following m-edges:

∗ p′3 : �→ v(p3) for p3 ∈ Π3;

∗ ¬U : U →W \ U for U ∈ ℘W ;

∗ ⊃U1U2 : U1U2 → U where U = (W \ U1) ∪ U2 for U1, U2 ∈ ℘W ;

∗ �U1 : U1 → U2 where U2 = {w ∈W : U1 ∈ Ow} for U1 ∈ ℘W .

• α3 : G′ → G is such that:

– αv
3(U) = π with U ∈ ℘W ;

– αv
3(�) = ♦;
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– αe
3(p′3) = p3 for each p3 ∈ Π3;

– αe
3(¬U ) = ¬1 for every ¬U in E′;

– αe
3(⊃U1U2) = ⊃1 for every ⊃U1U2 in E′;

– αe
3(�U ) = �1 for every �U in E′.

• D3 = W .

It is not hard to prove the following result, where by F , v 
 ϕ we mean that
the denotation [[ϕ]](F ,v) of ϕ is W .

Proposition 3.8 F , v 
 ϕ iff I3(F , v) 
 ϕ.

The (graph-theoretic) interpretation system for deontic logics DPM is the
pair composed by the signature Σ3 and the class I3 of the interpretation struc-
tures induced by the neighborhood frames for DPM and the valuations over
them. Using the completeness of DPM with respect to the neighborhood se-
mantics F , the following result holds:

Proposition 3.9 Formula ϕ is a theorem of DPM iff I 
 ϕ for every I ∈ I3.

The logics DPM have the fmp with respect to the neighborhood semantics
(see, for instance, [15]). Then, the following result holds:

Proposition 3.10 The interpretation system (Σ3, I3) also has the fmp.

3.4 Fragment of linear logic

Consider now the HL fragment (see [3]) of linear logic (introduced in [14]), in-
cluding as primitives only the additive conjunction, the multiplicative negation,
the multiplicative implication and the multiplicative disjunction.

Let Π4 be a set of propositional symbols. The HL signature Σ4 is a m-graph
with sorts π and ♦ and the following m-edges:

• p4 : ♦→ π for each p4 in Π4;

• ¬4 : π → π;

• ⊃4,∧4,+4 : ππ → π.

Let A = (A,u,t,−,+, 0) be a *-autonomous lattice (see [27, 28]) and let v
be a valuation over the algebra (that is, a map from Π4 to A). That is, A is
such that:

• (A,+, 0) is an Abelian monoid;

• (A,−,u,t) is an involutive lattice;

• −0 ≤ −a+ b iff a ≤ b;

13



where ≤ is the order induced by the lattice.
The interpretation structure I4(A, v) = (G′4, α4, D4) over Σ4 induced by A

and v is as follows:

• G′ is such that:

– V ′4 = A ∪ {�};
– E′4 is composed by the following edges:

∗ p′4 : �→ v(p4) for p4 ∈ Π4;

∗ ¬a : a→ −a for each a in A;

∗ ⊃a1a2 : a1 a2 → ((−a1) + a2) for each a1 and a2 in A;

∗ ∧a1a2 : a1a2 → a1 u a2 for each a1, a2 in A;

∗ +a1a2 : a1 + a2 for each a1, a2 in A.

• α4 : G′ → G is such that:

– αv
4(a) = π4 for each a ∈ A;

– αv
4(�) = ♦;

– αe
4(p′4) = p1 for each p4 ∈ Π4;

– αe
4(¬a) = ¬4;

– αe
4(⊃a1a2) = ⊃4;

– αe
4(∧a1a2) = ∧4;

– αe
4(+a1a2) = +4.

• D4 = {>}.

It is straightforward to verify that the following results hold where by A, v 

ϕ we mean that the *-autonomous algebra and the valuation satisfy ϕ.

Proposition 3.11 A, v 
 ϕ iff I4(A, v) 
 ϕ.

The (graph-theoretic) interpretation system for the HL logic is the pair
composed by the signature Σ4 and the class I4 of the interpretation structures
induced by the *-autonomous algebras for HL and the valuations over them.
Hence, using the completeness of HL as proved in [3] with respect to the alge-
braic semantics it follows:

Proposition 3.12 Formula ϕ is a theorem of HL iff I 
 ϕ for any I ∈ I4.

The logic HL has the fmp with respect to the phase semantics [19]. Since,
HL is complete with respect to both phase and ∗-autonomous lattice semantics
(see [3]) we conclude that HL has the finite model property with respect to
∗-autonomous lattice semantics.

Proposition 3.13 The interpretation system (Σ4, I4) has the fmp.
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4 Preservation of fmp

The problem can be stated as follows. Assume that we have two interpretation
systems (Σ1, I1) and (Σ2, I2) that have the fmp. We will establish a sufficient
condition for the interpretation system (Σ1],Σ1, I1 ] I2) to have the fmp. We
need some preliminary notions and results.

We start by defining an encoding of each formula in Σ1 ] Σ2 in either a
formula in Σ1 or a formula in Σ2 using projections. The encoding map

τ1 : L(Σ1 ] Σ2)→ L(Σ1)

is inductively as follows:

• τ1(ϕ) = idπ : π → π for either ϕ = c ∈ E2 or ϕ = c ◦ 〈ϕ1, . . . , ϕn〉 with
c ∈ E2;

• τ1(q) = q : ♦→ π for every q : ♦→ π ∈ E1;

• τ1(puk) = puk : u→ uk;

• τ1(ϕ) = c ◦ 〈τ1(ϕ1) ◦ pu1...unu1 , . . . , τ1(ϕn) ◦ pu1...unun 〉 : u1 . . . un → π for
ϕ = c ◦ 〈ϕ1, . . . , ϕn〉, assuming that:

– c : πn → π ∈ E1;

– uj is a sequence of sorts for j = 1, . . . , n;

– τ1(ϕj) : uj → π for j = 1, . . . , n.

The encoding map τ2 : L(Σ1 ] Σ2)→ L(Σ2) is defined in a similar way.

Example 4.1 Let γ be the formula

¬1 ◦ ∨2 ◦ 〈q1,¬2 ◦ q2〉 : ♦
2 → π

in Σ1 ] Σ2. Then

• τ1(γ) = ¬1 ◦ idπ : π → π;

• τ2(∨2(q1,¬2(q2))) = ∨2 ◦ 〈pπ♦
1 ,¬2 ◦ q2 ◦ pπ♦

2 〉 : ♦π → π. .

Let
SFi(ϕ)

be the set of all subformulas of ϕ whose main constructor is in Σi. Then
SF(ϕ) = SF1(ϕ) ∪ SF2(ϕ). For each ψ ∈ SF(ϕ) and i = 1, 2, we denote by ψi

the formula τi(ψ).
The next result says that from a path for a formula in Σ1 ]Σ2 it is possible

to extract a path for the encoding in Σi of each of its subformulas preserving
the satisfaction of the subformula, for i = 1, 2.

Lemma 4.2 Let ϕ ∈ L(Σ1 ]Σ2), I1 ∈ I1, I2 ∈ I2 and w a path in I1 ] I2 such
that α(w) = ϕ. Then for each ψ ∈ SFi(ϕ) and i = 1, 2 there a path wiψ in Ii
such that:
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• αi(wiψ) = ψi;

• trg(w1
ψ) ∈ D1 iff trg(w2

ψ) ∈ D2;

• I1 ] I2, w|ψ 
 ψ iff I1, w
1
ψ 
 ψ1, I2, w

2
ψ 
 ψ2;

• If trg(w|ψ) = (a1, a2) then trg1(w1
ψ) = a1 and trg2(w2

ψ) = a2.

Proof:
Let ψ be a subformula of ϕ. We prove the result by induction on the structure
of ψ.
Base case: ψ is e : ♦→ π ∈ E1.
Then ψ1 is e and ψ2 is idπ. Assume that w|e : � → (a1, a2). Take w1

ψ : � → a1

and w2
ψ = ida2 . Then

a1 ∈ D1 iff a2 ∈ D2

and
I1 ] I2, w|e 
 e iff (a1, a2) ∈ D

iff a1 ∈ D1 and a2 ∈ D2

iff I1, w
1 
 e and I2, w

2 
 pπ1 .

Induction step: ψ is e ◦ 〈ψ1, . . . , ψk〉.
Then, by the induction hypothesis, there are paths w1

ψj
and w2

ψj
such that, for

every j = 1, . . . , k:

• α1(w1
ψj

) = ψ1
j and α2(w2

ψj
) = ψ2

j ;

• I1 ] I2, w|ψj

 ψj iff I1, w

1
ψj


 ψ1
j , I2, w

2
ψj


 ψ2
j ;

• if trg(ψj) = (a1j , a2j) then trg1(w1
ψj

) = a1j and trg2(w2
ψj

) = a2j .

Hence,

• I1 ] I2, w|ψj
6
 ψj iff I1, w

1
ψj
6
 ψ1

j , I2, w
2
ψj
6
 ψ2

j .

Assume that w|ψ : � → (a1, a2). Then edge e′ such that α(e′) = e is e′ :
(a11, a21) . . . (a1n, a2n) → (a1, a2). Assuming that e ∈ E1 then there is e′1 :
a11 . . . a1n → a1 in I1 such that α1(e′1) = e. Take

w1
ψ = e′1 ◦ 〈w1

ψ1
◦ pb1...bkb1 , . . . , w1

ψk
◦ pb1...bkbk

〉 : b1 . . . bk → a1

assuming that src(w1
ψj

) = bj for j = 1, . . . , k. On the other hand, w2
ψ = ida2 .

Then

a1 ∈ D1 iff a2 ∈ D2

and
I1 ] I2, w|ψ 
 ψ iff (a1, a2) ∈ D

iff a1 ∈ D1 and a2 ∈ D2

iff I1, w
1
ψ 
 ψ1 and I2, w

2
ψ 
 ψ2.
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Moreover,

α1(w1) = e ◦ 〈α1(w1
ψ1
◦ pb1...bkb1

), . . . , α1(w1
ψk
◦ pb1...bkbk

)〉

= e ◦ 〈α1(w1
ψ1

) ◦ α1(pb
1...bk

b1
), . . . , α1(w1

ψk
) ◦ α1(pb1...bkbk

)〉

= e ◦ 〈ψ1
1 ◦ pu

1...uk
u1 , . . . , ψ1

k ◦ pu1...ukuk
〉

= τ1(ψ) = ψ1.

The proof is similar when e ∈ E2. QED

Given a formula ϕ ∈ L(Σ1 ] Σ2) with main constructor in E1, the sequence

{δk}k=1,...,m

of its decodings is inductively defined as follows:

• δ0 = ϕ1;

• δk+1 =

δk ◦ 〈idu1 , . . . , idu`1−1
, ψ2

`1
, . . . , ψ2

`j
, idu`j+1

, . . . , idu|u|〉 if k even

δk ◦ 〈idu1 , . . . , idu`1−1
, ψ1

`1
, . . . , ψ1

`j
, idu`j+1

, . . . , idu|u|〉 otherwise

assuming that

– δk : u→ π;

– pu`i for i = 1, . . . , j are the projections in δk with target π;

– there exists a subformula γi of ϕ, for i = 1, . . . , j, such that:

∗ τ1(γi) = pu`i and τ2(γi) = ψ2
`i

, for k even;

∗ τ2(γi) = pu`i and τ2(γi) = ψ1
`i

, for k odd.

We say that δk+1 is the direct decoding of δk via ψ1
`1
, . . . , ψ1

`j
. Observe that each

decoding is a formula in Σ1 ] Σ2 and, moreover,

δk+1 : [u]
u`1 ...u`j
src(ψm`1

)...src(ψm`j
) → π.

Example 4.3 Consider formula ¬1 ◦∨2 ◦〈q1,¬1 ◦q2〉 : ♦
2 → π in Σ1]Σ2. Then

• δ0 is ¬1 : π → π;

• δ1 is ¬1 ◦ ∨2 ◦ 〈pππ1 , pππ2 〉 : ππ → π;

• δ2 is ¬1 ◦ ∨2 ◦ 〈q1 ◦ p♦π
1 ,¬1 ◦p♦π

2 〉 : ♦π → π;

• δ3 is ¬1 ◦ ∨2 ◦ 〈q1,¬1 ◦ q2〉 : ♦♦→ π. .

We need some notation. Given a path w1 in I1 we denote by

w1?

the quasi-path in I1 ] I2 obtained from w1 as follows:
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• for each edge e : u1 . . . uk → u in the operation graph of I1 we add an
edge e : (u1, ?1) . . . (uk, ?k)→ (u, ?) in w1? such that

each ?i has to be a distinguished truth value whenever ui is distin-
guished and not distinguished otherwise,

? has to be a distinguished truth value whenever u is distinguished
and not distinguished otherwise,

and each ?i has to be the concrete value whenever ui is the concrete
value;

• for each projection pu1...unj : u1 . . . un → uj in I1 we add the morphism
pu1...unj : (u1, ?1) . . . (un, ?n)→ (uj , ?j).

It is a quasi-path since the sources and the targets of the morphisms are not
fully defined. Analogously, the quasi-path ?w2 in I1 ] I2 is defined from a path
w2 in I2.

The following result is somehow the reverse of Lemma 4.2. It states how to
get a path for a formula out of the paths of the encodings of its subformulas.

Lemma 4.4 Let ϕ ∈ L(Σ1 ] Σ2), I1 ∈ I1, I2 ∈ I2. Assume that for each
subformula ψ of ϕ in SFi(ϕ):

• there is a path w′
ψi

in Ii for i = 1, 2;

• trg1(w′ψ1) ∈ D1 iff trg2(w′ψ2) ∈ D2.

Then there is a path w′ϕ in I1 ] I2 such that α(w′ϕ) = ϕ and

I1 ] I2, w
′
ϕ 
 ϕ iff Ii, w

′
ϕi 
 ϕi

where i = 1 if the main constructor of ϕ is in E1 and i = 2 otherwise.

Proof:
Assume without loss of generality that the main constructor of ϕ is in E1.
Let δ0, . . . , δm be the sequence of decodings of ϕ. Consider the sequence of
quasi-paths

{qw′δk}k=1,...,m

in I1 ] I2 inductively defined as follows:

• qw′δ0 = w′ϕ1?;

• qw′δk+1
= qw′δk ◦〈idu
′
1
, . . . , idu′`1−1

, (?qw′
ψ2
`1

)+, . . . , (?qw′
ψ2
`j

)+, idu`j+1
, . . . , idu|u|〉 k even

〈idu1 , . . . , idu`1−1
, (qw′

ψ1
`1

?)+, . . . , (qw′
ψ1
`j

?)+, idu`j+1
, . . . idu|u|〉 k odd

assuming that

– qw′δk : u′ → v′;
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– pu
′
`i

for i = 1, . . . , j are the projections in qw′δk ;

– there exists a subformula ψi of ϕ, for i = 1, . . . , j, such that:

∗ α1(pu
′
`i

) = ψ1
i , for k even;

∗ α2(pu
′
`i

) = ψ2
i , for k odd;

– (?qw′
ψ2
`i

)+ is the quasi-path

[
?qw′ψ2

`j

]trg2(?qw′
ψ2
`j

) src1(pu
′
`i

)

(trg1(pu
′
`i

),trg2(qw′
ψ2
`i

)) (trg1(pu
′
`i

),trg2(qw′
ψ2
`i

))

and similarly for (qw′
ψ1
`1

?)+.

Note that qw′δk is a quasi-path since the definition of the vertexes is yet to be

completed. Moreover, (?qw′
ψ2
`i

)+ is well defined since, by hypothesis, trg1(pu
′
`i

) ∈
D1 iff trg2(w′

ψ2
`i

) ∈ D2. Moreover

trg(qw′δk+1
) = trg(qw′δk).

Define the sequence of paths

{w′δk}k=1,...,m

in I1 ] I2 by completing each quasi-path qw′δk as follows: replace each node
(v′1, ?) by (v′1, v

′
2) where v′2 is any vertex in I2 such that α2(v′2) = π and such

that v′2 ∈ D2 whenever v′1 ∈ D1 and v′2 /∈ D2 whenever v′1 /∈ D1 and replace
each node (?, v′2) by (v′1, v

′
2) where v′1 is any vertex in I1 such that α1(v′1) = π

and such that v′1 ∈ D1 whenever v′2 ∈ D2 and v′1 /∈ D1 whenever v′2 /∈ D2.

Observe that w′δk is a path for δk and, moreover, w′δm is a path for ϕ.

We now show that

I1 ] I2, w
′
δk


 δk iff Ii, w
′
ϕi 
 ϕi

and that
α(w′δk) = δk

by induction on k.
Base case: The thesis follows directly from the choice of w′δ0 .

Induction step: Assume that I1 ] I2, w
′
δk


 δk iff Ii, w
′
ϕi


 ϕi and that

α(w′δk) = δk. Then

α(w′δk+1
) = α(w′δk) ◦ 〈idsrc(α(w′δk

))|1
, . . . , idsrc(α(w′δk

))|`1−1
, ψ2

`1
, . . . , ψ2

`j
, . . . 〉

= δk ◦ 〈idsrc(α(w′δk
))|1
, . . . , idsrc(α(w′δk

))|`1−1
, ψ2

`1
, . . . , ψ2

`j
, . . . 〉

= δk+1.
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Moreover,

I1 ] I2, w
′
δk+1


 δk+1 iff α(w′δk+1
) = δk+1 and trg(w′δk+1

) ∈ D1 ×D2

iff . . . and trg(w′δk) ∈ D1 ×D2

iff I1, w
′
ϕi


 ϕ1.

Thus, the result holds for ϕ since ϕ1 is δm. QED

The idea behind the preservation of the fmp in the present context is as
follows. Suppose that I 6
 ϕ where I is in I1 ] I2. By definition of fibring,
I = I1 ] I2 for some I1 ∈ I1 and I2 ∈ I2. Then we are able to find formulas
ϕ1 ∈ Σ1 and ϕ2 ∈ Σ2 such that I1 6
 ϕ1 and I2 6
 ϕ2. The fmp property for
I1 and I2 introduces finite interpretation structures J1 ∈ I1 and J2 ∈ I2 such
that J1 6
 ϕ1 and J2 6
 ϕ2 and so J1 ] J2 6
 ϕ.

Theorem 4.5 Let (Σi, Ii) be an interpretation system with disjunction ∨i and
strong negation ¬i for i = 1, 2. Then (Σ1, I1) ] (Σ2, I2) has the fmp provided
that both (Σ1, I1) and (Σ2, I2) have the fmp.

Proof:
Let ϕ be a formula in L(Σ1 ] Σ2) and I ∈ I1 ] I2 an interpretation structure
over Σ1 ] Σ2 such that I 6
 ϕ. Assume, without loss of generality, that the
main constructor in ϕ belongs to Σ1. Let I1 ∈ I1 and I2 ∈ I2 be such that
I = I1 ] I2. Then there is a path w in I1 ] I2 such that:

• α(w) = ϕ;

• trg(w) /∈ D1 ×D2.

That is, I, w 6
 ϕ. Hence, by Lemma 4.2, for each ψ ∈ SFi(ϕ), i = 1, 2, of ϕ
there a path wiψ in Ii such that:

• αi(wψi) = ψi;

• I1 ] I2, w|ψ 
 ψ iff I1, w
1
ψ 
 ψ1, I2, w

2
ψ 
 ψ2;

• I1 ] I2, w|ψ 6
 ψ iff I1, w
1
ψ 6
 ψ1, I2, w

2
ψ 6
 ψ2;

• If trg(w|ψ) = (a1, a2) then trg1(w1
ψ) = a1 and trg2(w2

ψ) = a2.

Let ψ̂i be defined as follows:

ψ̂i =

{
ψi if Ii, w

i
ψ 6
 ψi

¬i ψi if Ii, w
i
ψ 
 ψi

where ¬i is the strong negation of (Σi, Ii) for i = 1, 2. Then

Ii, ŵ
i
ψ 6
 ψ̂i, for every ψ ∈ SF(ϕ) and i = 1, 2

where

ŵiψ =

{
wiψ when ψ̂i = ψi

w′iψ otherwise
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where w′iψ is a path for ¬i ψi with the same source as wiψ. So

Ii 6
 ψ̂i, for every ψ ∈ SF(ϕ) and i = 1, 2

Hence, by Proposition 3.1 and the fact that (Σi, Ii) has the fmp, there is a finite
interpretation structure J = J1 ] J2 ∈ I1 ] I2 such that

Ji 6
 ψ̂i, for every ψ ∈ SF(ϕ) and i = 1, 2.

That is, there is a path w′
ψ̂i

for each ψ ∈ SF(ϕ), such that

Ji, w
′
ψ̂i
6
 ψ̂i

with i = 1, 2. Since (Σi, Ii) has strong negation, there is a path w′′
ψi

with the

same socket for each ψ ∈ SF(ϕ) with ψ̂i = ¬i ψi such that

Ji, w
′′
ψi 
 ψ̂i.

Therefore, {
Ji, w

′
ψi
6
 ψ̂i whenever Ii, wψi 6
 ψi

Ji, w
′′
ψi


 ψ̂i whenever Ii, wψi 
 ψi

for every ψ ∈ SF(ϕ) and i = 1, 2. In particular

Ji, w
′
ψi 6
 ϕ̂i.

Thus, by Lemma 4.4, we conclude that there is a path w′ϕ such that

J1 ] J2, w
′
ϕ 
 ϕ iff Ji, w

′
ϕi 
 ϕi

where i = 1 if the main constructor of ϕ is in E1 and i = 2 otherwise. Since
Ji, w

′
ϕi
6
 ϕi then

J1 ] J2, w
′
ϕ 6
 ϕ

and so J1 ] J2, 6
 ϕ. QED

We now give a detailed example of the construction in the proof of Theo-
rem 4.5.

Example 4.6 Let ϕ be the mixed formula

∧1(∨1(¬2(p2), p1),⊃2(¬1(∨2(p1,¬2(p2))), p2))

where the subscript i refers to symbols from the signature Σi for i = 1, 2.
Suppose that I = I1 ] I2 is such that I 6
 ϕ.

Consider a path w in I such that I, w 6
 ϕ. Then w has the form described in
Figure 1, where we use for the denotation of a constructor the same name as
for the constructor (we use graphical notation for paths in order to make easier
the building process):
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(�1,�2)
p2 // (u8, v8)

¬2 // (u4, v4)

∨1 // (u2, v2)

(�1,�2)
p1 // (u5, v5)

(�1,�2)
p1 // (u10, v10)

∧1 // (u1, v1)

∨2 // (u9, v9)
¬1 // (u6, v6)

(u12, v12)
¬2 // (u11, v11)

⊃2 // (u3, v3)

(�1,�2)

p2

OO

(�1,�2)
p2 // (u7, v7)

Figure 1: Path w for ϕ in I1 ] I2.

u4�1u3

p
u4�1u3
1 // u4

∨1 // u2

u4�1u3

p1p
u4�1u3
2 // u5

∧1 // u1

u4�1u3

p
u4�1u3
3 // u3

Figure 2: Path w1
ψ1

for ψ1
1 in I1.

Since I, w 6
 ϕ then (u1, v1) is not distinguished and so u1 6∈ D1 and v1 6∈ D2.
Observe that SF1(ϕ) = {ψ1, ψ2, ψ3, ψ4} and SF2(ϕ) = {δ1, δ2, δ3, δ4} where

ψ1 = ϕ δ1 = ⊃2(¬1(∨2(p1,¬2(p2))), p2)

ψ2 = ∨1(¬2(p2), p1) δ2 = ∨2(p1,¬2(p2))

ψ3 = ¬1(∨2(p1,¬2(p2))) δ3 = ¬2(p2)

ψ4 = p1 δ4 = p2.
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(a) Encoding of all formulas in SF1(ϕ) and SF2(ϕ).

ψ1
1 = ∧1(∨1(pπ♦π

1 , p1p
π♦π
2 ), pπ♦π

3 ) δ2
1 = ⊃2(pπ♦

1 , p2p
π♦
2 )

ψ1
2 = ∨1(pπ♦

1 , p1p
π♦
2 ) δ2

2 = ∨2(pπ♦
1 ,¬2(p2)pπ♦

2 )

ψ1
3 = ¬1 δ2

3 = ¬2(p2)

ψ1
4 = p1 δ2

4 = p2.

On the other hand, ψ2
i = idπ and δ1

i = idπ for i = 1, . . . , 4.

v6�2

p
v6�2
1 // v6

⊃2 // v3

v6�2

p2p
u6�2
2 // v7

�2

p2 // v8
¬2 // v4

Figure 3: Path w2
δ1

for δ2
1 and path w2

δ3
for δ2

3 in I2.

u′4�1u
′
3

p
u′4�1u′3
1 // u′4

∨1 // u′2

u′4�1u
′
3

p1p
u′4�1u′3
2 // u′5

∧1 // u′1

u′4�1u
′
3

p
u′4�1u′3
3 // u′3

v′6�2

p
v′6�2
1 // v′6

⊃2 // v′3

v′6�2

p2p
v′6�2
2 // v′7

�2

p2 // v′8
¬2 // v′4

Figure 4: Paths w′1ψ1
for ψ1

1 in J1, w′2δ1 for δ2
1 and w′2δ3 for δ3

2 in J2.

(b) Path for ψ1
i in I1 and path for δ2

i in I2 for i = 1, . . . , 4 using Lemma 4.2.

Path w1
ψ1
1

for ψ1
1 : π♦π → π is described in Figure 2 using the socket u4�u3.

Observe that:
I1, w

1
ψ1
6
 ψ1

1 and I2, w
2
ψ1
6
 idπ

where w2
ψ1

: v1 → v1. Path w2
δ21

for δ2
1 : π♦→ π and path w2

δ23
for δ2

3 : ♦→ π are

depicted in Figure 3. Then

I2, w
2
δ1 6
 δ2

1 and I1, w
1
δ1 6
 idπ
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if (u3, v3) /∈ D1 ×D2 and w1
δ1

: u3 → u3. Moreover,

I2, w
2
δ3 6
 δ2

3 and I1, w
1
δ3 6
 idπ

if (u4, v4) /∈ D1 ×D2 and w1
δ3

: u4 → u4.

(u′4, ?)(�1,�2)(u
′
3, ?)

p1231 // (u′4, ?)

∨1 // (u′2, ?)

(u′4, ?)(�1,�2)(u
′
3, ?)

p1p
123
2 // (u′5, ?)

∧1 // (u′1, ?)

(u′4, ?)(�1,�2)(u
′
3, ?)

p1233 // (u′3, ?)

Figure 5: Quasi-path qw1
ψ1

? for ψ1
1 in J1 ] J2.

Then there are finite interpretation structures J1 and J2 such that

• J1, w
′1
ψ1
6
 ψ1

1 and J2, w
′2
ψ1
6
 idπ;

• J2, w
′2
δ1
6
 δ2

1 and J1, w
′1
δ1
6
 idπ;

• J2, w
′2
δ3
6
 δ2

3 and J1, w
′1
δ3
6
 idπ.

(c) Path for ϕ in J1 ] J2 using Lemma 4.4.
Assume that the path in J1 for ψ1

1 and the paths in J2 for δ2
1 and δ2

3 are as
depicted in Figure 4. The next step is to transform the paths above in quasi-
paths in J1]J2. In Figure 5 we provide the quasi-path for ψ1

1 where projection

p
(u′4,?)(�1,�2)(u′3,?)
i is abbreviated as p123

i .
In Figure 6 we introduce quasi-paths for δ2

1 and δ2
3 in J1 ] J2 corresponding

to the paths for the same formulas in J2 introduced in Figure 4.

(?, v′6)(�1,�2)
p
(?,v′6)(�1,�2)

1 // (?,v′6)

⊃2 // (?, v′3)

(?,v
′
6)(�1,�2)

p2p
(?,v′6)(�1,�2)

2 // (?, v′7)

(�1,�2)
p2 // (?, v′8)

¬2 // (?, v′4)

Figure 6: Quasi-path ?qw2
δ1

for δ2
1 and path ?qw2

δ3
for δ2

3 in J1 ] J2.
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(�1,�2)
p2 // (?, v′8)

¬2 // (u′4, v′4)

∨1 // (u′2, ?)

(�1,�2)
p1 // (u′5, ?)

∧1 // (u′1, ?)

(�1,�2)(?, v
′
6)

p2p
v′6�
1 // (?, v′6)

⊃2 // (u′3, v′3)

(�1,�2)(?, v
′
6)

p2p
v′6�
2 // (?, v′7)

Figure 7: Quasi-path qw′δ1 for δ1 in J1 ] J2.

In Figure 7, we depict the quasi-path qw′δ1 for

δ1 = ∧1(∨1(¬2(p2), p1)),⊃2(pπ♦
1 , p2p

π♦
2 ).

Let w′δ1 be a path obtained from qw′δ1 by filling in ? with arbitrary truth val-

ues in such a way that in each pair both are distinguished or both are not
distinguished. Then

J1 ] J2, w
′
δ1 
 ∧1(∨1(¬2(p2), p1)),⊃2(pπ♦

1 , p2p
π♦
2 ).

Continuing with this process we obtain a path for ϕ in J1 ] J2 whose target is
a non-distinguished truth value, as required.

Theorem 4.5 can be extended to constrained fibring (with some sharing of
constructors). Thus, we have the following result.

Theorem 4.7 Let (Σi, Ii) be an interpretation system with disjunction ∨i and
strong negation ¬i for i = 1, 2 and let hi : Σ0 → Σi be a signature morphisms
for i = 1, 2. Then (Σ1, I1)]Σ0

h1h2
(Σ2, I2) has the fmp provided that both (Σ1, I1)

and (Σ2, I2) have the fmp.

5 Examples

In this section, we discuss preservation of the fmp by several combinations of
the logics described in Section 3. Theorem 4.5 can be applied in all these cases
because the logics at hand have both disjunction and strong negation.
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Modal paraconsistent logic

Herein, we combine a normal modal logic ML, as described in Subsection 3.1,
with the paraconsistent logic mbC, as introduced in Subsection 3.2 (the impor-
tance of combining modal logics with paraconsistent logics is discussed in [24]).

Proposition 5.1 A modal paraconsistent logic (Σ1, I1)](Σ2, I2) has the finite
model property, providing that modal logic ML has the fmp.

Proof: The interpretation system (Σ1, I1) has strong negation and disjunction.
Additionally, it is possible to define a strong negation as a derived constructor
in mbC as follows:

∼≡abv ⊃2〈pπ1 ,∧2〈�2,∧2〈pπ1 ,¬2p
π
1 〉〉〉.

On the other hand, ∨2 is a disjunction in our sense. Hence (Σ2, I2) also has
strong negation and disjunction. Therefore, by Theorem 4.5, (Σ1, I1)] (Σ2, I2)
has the finite model property. QED

Hence ML can be instantiated with any normal modal logic with the fmp
(see [7, 16] for several examples). But, it is worthwhile to point out that, as
shown in [23, 11], not all normal logics have the fmp. A Hilbert calculus can
be given for modal paraconsistent logic by taking the axioms and the rules of
both ML and mbC. Then, the following results hold.

Corollary 5.2 The modal paraconsistent logic (Σ1, I1)] (Σ2, I2) is decidable,
providing that the modal logic (Σ1, I1) has the fmp.

Proposition 5.3 The modal paraconsistent logic (Σ1, I1) ] (Σ2, I2) is weakly
complete, assuming that ML is weakly complete.

Proof: By Theorem 7.7 of [31] we conclude the weak completeness by observing
that the canonical model of ML is in I1 (the Lindenbaum-Tarski algebra — see
Section 5.2 of [6]) and the canonical model of mbC is in I2 (the latter is an easy
consequence of the canonical model in the proof in [4] and Proposition 3.5).
QED

Deontic paraconsistent logic

Consider now the combination of the paraconsistent logic mbC, as introduced
in Subsection 3.2, with the deontic logic DPM, as described in Subsection 3.3.

Proposition 5.4 The deontic paraconsistent logic (Σ2, I2) ] (Σ3, I3) has the
finite model property.

Proof: It is clear from the definition that (Σ3, I3) has strong negation ¬1

and disjunction ∨1. On the other hand, (Σ2, I2) also has strong negation and
disjunction as shown in the proof of Proposition 5.1. Hence, by Theorem 4.5,
(Σ2, I2) ] (Σ3, I3) has the finite model property. QED
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A Hilbert calculus can be given for deontic paraconsistent logic just by using
the axioms and the inference rules of DPM and mbC. Then the following results
hold:

Corollary 5.5 The deontic paraconsistent logic (Σ2, I2)](Σ3, I3) is decidable.

Proposition 5.6 The deontic paraconsistent logic (Σ2, I2)] (Σ3, I3) is weakly
complete.

Proof: By Theorem 7.7 of [31] we conclude the weak completeness by observing
that the canonical model of DPM is in I3 (using the proof in [15]) and the
canonical model of mbC is in I2. QED

Modal linear logic

Herein, we focus on the combination of a modal normal logic ML, as described
in Subsection 3.1, with the fragment HL of linear logic, as presented in Subsec-
tion 3.4.

Proposition 5.7 A modal linear logic (Σ1, I1) ] (Σ4, I4) has the finite model
property, providing that ML has the fmp.

Proof: From [27] we conclude that (Σ4, I4) has strong negation ¬4 and dis-
junction ∨4. Moreover, in [19] it was proven that the HL logic has the fmp.
Hence, by Theorem 4.5, (Σ1, I1)] (Σ4, I4) has the finite model property. QED

Decidability of HL was firstly established in [22] using other techniques.
In [3] a Hilbert calculus is presented for HL. Hence, a Hilbert calculus can be
given for modal linear logic just by using the axioms and the inference rules of
ML and HL. Hence, the following results hold:

Corollary 5.8 A modal linear logic (Σ1, I1) ] (Σ4, I4) is decidable, providing
that ML has the fmp.

Proposition 5.9 A modal linear logic (Σ1, I1) ] (Σ4, I4) is weakly complete,
providing that ML is weakly complete.

Proof: By Theorem 7.7 of [31] we conclude the weak completeness by observing
that the canonical model of HL is in I4 (using the proof in [3]) and the canonical
model of ML is in I1. QED

Deontic modal logics

Consider the combination of a modal normal logic ML, as described in Subsec-
tion 3.1, with the deontic logic DPM, as discussed in Subsection 3.3 (several
combinations of deontic, modal and tense operators are of utmost interest in
normative contexts, see, for instance, [2]).

Proposition 5.10 A deontic modal logic (Σ1, I1)](Σ3, I3) has the finite model
property, providing that ML has the fmp.

Corollary 5.11 A deontic modal logic (Σ1, I1)] (Σ3, I3) is decidable, provid-
ing that ML has the fmp.
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Fusion of normal modal logics

Let MLa and MLb be two normal modal logics endowed with algebraic se-
mantics. Let (Σ1, I

a
1) and (Σ1, I

b
1) be interpretation systems, as described in

Subsection 3.1, for MLa and MLb, respectively. Furthermore, let MLa ⊕MLb

be the fusion of MLa and MLb, a bimodal logic.
Let (Σ, I) = (Σ1, I

a
1) ⊕ (Σ1, I

b
1) be the interpretation system induced by

MLa ⊕MLb as hinted in Subsection 3.1. Satisfaction in (Σ, I) coincides with
satisfaction in MLa ⊕MLb (the multimodal variant of Proposition 3.2).

Thanks to [18] we know that if MLa and MLb have the fmp then so has
their fusion. We recover now this result as a special case of the transference of
fmp by fibring.

To this end, observe first that the signature Σ of the fusion coincides with
Σ1]Σ0

ha,hb
Σ1 with ha : Σ0 → Σ1 and hb : Σ0 → Σ1 where Σ0 is the signature with

edges p : ♦→ π, ¬ : π → π and ⊃ : ππ → π. Clearly, the propositional symbols
and connectives are shared while we keep the two boxes apart, as intended in
fusion.

Moreover, it is straightforward to verify that satisfaction in (Σ, I) coincides
with satisfaction in (Σ1, I

a
1) ]Σ0

ha,hb
(Σ1, I

b
1). In consequence, we have:

Proposition 5.12 The fusion MLa ⊕MLb has the finite model property, pro-
vided that both MLa and MLb have the fmp.

Proof: Again we apply Theorem 4.5 since modal logics have both disjunc-
tion and strong negation and fusion coincides satisfaction-wise with the fibring
described above. QED

Hence, as expected, the transference of fmp by fibring subsumes the preser-
vation of fmp by fusion of modal logics.

6 Outlook

In this paper, we established sufficient conditions for the preservation by fibring
of the finite model property for a large class of logics. We took advantage of a
novel feature of the graph-theoretic semantics of fibring proposed in [31]: every
model of the logic obtained by fibring (Σ1, I1) and (Σ2, I2) is, roughly speaking,
the Cartesian product of a model of I1 and a model of I2. Observe also that the
graph-theoretic account of fibring encompasses a much wider universe of logics,
including paraconsistency and substructurality, thanks to using an abstraction
map from the model to the language instead of the traditional interpretation
map from the language to the model.

Our preservation result of the finite model property covers a wide class of
logics: we require only the additional assumption of availability of disjunction
and strong negation (either primitive or as abbreviations). It should be noted
that intuitionistic logic does not satisfy these requirements. It is our intention
to investigate preservation of the fmp when one of the logics is intuitionistic
logic by exploring the encoding of intuitionistic logic in the S4 modal logic.
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We would like to extend our results to fibring of logics involving fragments
of first order logic that have the finite model property such as the ∀∗∃ (see [17]),
GF (see [1]) and FO2 (see [25], among many others). Indeed, the graph-theoretic
account of logics is rich enough to deal with quantification logics.

Another topic of interest would be to explore the relationship between fib-
ring and the algebraic Gentzen systems when used to prove the finite model
property (see [5], as well as the work in [19, 26]).
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