
A Logic for Coalitions with Bounded Resources∗

Natasha Alechina Brian Logan Nguyen Hoang Nga Abdur Rakib

School of Computer Science
University of Nottingham

Nottingham, UK
{nza,bsl,hnn,rza}@cs.nott.ac.uk

Abstract

Recent work on Alternating-Time Temporal Logic
and Coalition Logic has allowed the expression of
many interesting properties of coalitions and strate-
gies. However there is no natural way of express-
ing resource requirements in these logics. This pa-
per presents a Resource-Bounded Coalition Logic
(RBCL) which has explicit representation of re-
source bounds in the language, and gives a com-
plete and sound axiomatisation of RBCL.

1 Introduction

Recent work on Alternating-Time Temporal Logic ATL and
Coalition Logic CL (for example, [Pauly, 2001; Goranko,
2001; Pauly, 2002; Alur et al., 2002; Wooldridge et al.,
2007]) has allowed the expression of many interesting proper-
ties of coalitions and strategies. However, there is no natural
way of expressing resource requirements in these logics.

The motivation for this work is in verifying problems of
the following form: can a set of agents C achieve a state
of the world satisfying φ under the given resource bound b.
Essentially, this is the successful coalition under resource
bound problem from [Wooldridge and Dunne, 2006]. Un-
like Wooldridge and Dunne [2006], we consider multi-shot
games where the agents need to perform a sequence of ac-
tions to achieve the goal. As a motivating example, con-
sider a system of distributed reasoning agents as described in
[Alechina et al., 2008], whose actions involve inferring new
clauses from their knowledge bases and communicating re-
sults to other agents. Clearly these activities require resources
such as time (which can be identified with the number of in-
ference steps), memory (the space required to store premises
in reasoning, and any intermediate lemmata, which can be
measured as the number of clauses in the agents memory at
any one time) and communication bandwidth (which can be
measured as the number of communicated clauses). Proper-
ties of interest for such systems include ‘the set of reasoners
A can derive the clause [p] under the resource bound 10 for
time, 3 for memory and 2 for communication’. In general,
we would like to be able to express any properties of systems

∗This work was supported by the Engineering and Physical Sci-
ences Research Council [grant number EP/E031226/1.]

where abilities of individual agents and coalitions of agents
are constrained by available resources in a non-trivial way,
and the properties relating to resource bounds are important.

In this paper, we propose a logic in which we can de-
scribe systems of agents specified in terms of the resources
required to perform actions. First we introduce a simple for-
malism RBCL1 which describes single-step strategies and
is based on Coalition Logic [Pauly, 2002] extended with re-
source bounds. We then motivate multi-step strategies and
introduce a more complex logic RBCL which can express
multi-step strategies (in a sense corresponding to the Ex-
tended Coalition Logic of [Pauly, 2001]). We give a sound
and complete axiomatisation of RBCL.

2 Formalising Single Step Strategies

We assume a set of agents A = {1, . . . , n} and a set of re-
sources R = {1, . . . , r}. Agents can perform actions from
a set Σ = ∪i∈AΣi, where Σi is the set of actions agent
i can perform. Each action a ∈ Σ has an associated cost
Res(a), which is a vector of costs (assumed to be natu-
ral numbers) for each resource in R. A coalition C ⊆ A
can execute a joint action aC , where aC is a tuple of ac-
tions (a1, . . . , ak) (we assume for simplicity unless otherwise
stated thatC = {1, . . . , k} for some k ≤ n). For the moment,
let us stipulate that the cost of a joint action aC corresponds
to the vector sum of costs of actions in aC (we will generalise
the way to combine costs for different resources later). We
compare vectors of resources using pointwise vector compar-
ison ≤, e.g., for b = (b1, . . . , br) and d = (d1, . . . , dr), b ≤ d
iff for each j ≤ r, bj ≤ dj .

The language of RBCL1 is defined relative to the sets A
and R and a set of propositional variables Prop. A formula
is defined as follows:

p | ¬φ | φ ∧ ψ | [Cb]φ

where p ∈ Prop, C ⊆ A, and b ∈ N
r. The intuitive meaning

of [Cb]φ for C �= ∅ is that coalition C can force the outcome
ψ under resource bound b, or in other words C has a strategy
costing at most b which enables them to achieve a φ-state no
matter what the other agents C̄ = A \ C do. For the empty
coalition, [∅b]φ means that if the grand coalition A executes
any joint action which together costs at most b, then the sys-
tem will end up in a φ state; that is, φ is unavoidable if A acts
within resource bound b.

659

We define models of RBCL1 as transition systems, where
in each state agents execute some actions in parallel which
determines the next state. These are essentially the same as
the models for coalition logic, with the addition of costs of ac-
tions. First we define action frames which underlie the mod-
els:

Definition 1. A resource-bounded action (RBA) frame F is a
tuple (A,R,Σ = ∪i∈AΣi, S, T, o,Res) where:

A is a non-empty set of agents,

R is a non-empty set of resources,

Σ is the set of actions agents can perform,

S is a non-empty set of states,

T : S × A → ℘(Σi) assigns to each state the set of actions
available to agent i in this state; this set is always non-
empty as it contains an action noop with Res(noop) =
0̄ = (0, . . . , 0),

o is the outcome function which takes a state s and a joint
action aA and returns the state resulting from the execu-
tion of aA by the agents in s,

Res : Σ → N
r is the resource requirement function.

In the case of joint actions, we generalise the function T as
follows: a joint action aC ∈ T (s, C) iff ai ∈ T (s, i) for all
i ∈ C. By Res(aC) we denote the vector sum of Res(ai) for
i ∈ C.

Definition 2. A single-step resource-bounded action model
M is a pair (F, V) where F is an RBA frame, and V : S →
℘(Prop) is an assignment function.

The truth definition for single-step RBA models is as fol-
lows:

• M, s |= p iff p ∈ V (s)
• M, s |= ¬φ iff M, s �|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= [Cb]φ for C �= ∅ iff there is aC ∈ T (s, C)
with Res(aC) ≤ b such that for every joint action
aC̄ ∈ T (s, C̄) by the agents not in C, the outcome of
the resulting tuple of actions executed in s satisfies φ:
M,o(s, (aC , aC̄)) |= φ

• M, s |= [∅b]φ iff the outcome of any joint action aA ∈
T (s,A) with Res(aA) ≤ b executed in s satisfies φ:
M, o(s, aA) |= φ.

The notions of satisfiability and validity are standard. Let
us call the set of all formulas valid in single-step RBA models
RBCL1 (where 1 refers to considering only one-step strate-
gies, as in Coalition Logic).

Theorem 1. RBCL1 is completely axiomatised by the fol-
lowing set of axiom schemas and inference rules:

A0 All propositional tautologies

A1 [Cb]�
A2 ¬[Cb]⊥
A3 ¬[∅b]ϕ→ [Ab]¬ϕ
A4 [Cb](ϕ ∧ ψ) → [Cb]ϕ

A5 [Cb]ϕ→ [Cd]ϕ where d ≥ b if C �= ∅ or d ≤ b if C = ∅
A6 [Cb]ϕ ∧ [Dd]ψ → [(C ∪D)b+d](ϕ ∧ ψ)
MP � ϕ, � ϕ→ ψ ⇒ � ψ
Equivalence � ϕ↔ ψ ⇒ � [Cb]ϕ↔ [Cb]ψ

The notions of derivability and consistency are standard.
Note that if we erase the resource superscript in the axiomati-
sation above, we get the complete axiomatisation of Coalition
Logic as given in [Pauly, 2002], and a trivial formula resulting
from A5. The rule of monotonicity (RM) is derivable, as in
Coalition Logic, that is if � ϕ→ ψ, then � [Cb]ϕ→ [Cb]ψ.

We omit the completeness proof here as it is a special case
of completeness proof of RBCL given below.

As an illustration, we state a property of the first example
given in [Wooldridge and Dunne, 2006], that the coalition
of agents 1 and 2 can achieve g1 within the resource bound
(3, 2). This can be expressed in RBCL1 as [{1, 2}(3,2)] g1.

3 Formalising Multi-step Strategies and

Arbitrary Resource Combinators

In what follows, we generalise the logic described above in
two ways. First, we consider multi-step strategies, as in Ex-
tended Coalition Logic with the [C∗] operator [Pauly, 2001],
or as in ATL. The reason for this is as follows. We are inter-
ested in the costs of strategies which involve multiple steps.
For example, suppose a coalitionC can enforce their goal φ in
three steps: [Cb1][Cb2][Cb3]φ. We can deduce from this that
the agents have a strategy to achieve φ which costs at most
b1 +b2 +b3. However expressing the fact in this way is rather
clumsy. Even worse, to say that ‘C has some strategy which
achieves φ in three steps which costs at most b’, we have to
use a disjunction over all possible vectors of natural numbers
b1, b2, b3 which sum up to b: ∨b1+b2+b3=b[Cb1][Cb2][Cb3]φ.
Hence we extend the set of actions, or strategies, with sequen-
tial compositions of actions.

The second direction of generalisation involves the way we
calculate the resource requirements of complex actions. We
argue that not all resource costs should be combined using
simple addition. For example, if one of resources is time and
the agents execute their actions concurrently, then if each in-
dividual action costs one unit of time, the parallel combina-
tion of those actions also costs one unit of time. If one of the
resources is memory, one can argue that if action a1 requires
n units of memory and action a2 requires m units of mem-
ory, then executing actions a1 and a2 sequentially requires
max(n,m) units of memory. For generality, we introduce
two cost combinators to express how amounts of resources
are combined in parallel and sequentially. If two actions a1

and a2 are performed in parallel, then the cost of executing
them is Res(a1) ⊕ Res(a2) and the cost of executing them
sequentially is Res(a1) ⊗ Res(a2) (where ⊕ and ⊗ may be
sum for some resources, and max or some other combinator
for others).

In the rest of the paper, we assume that the set of resources
R always includes time, that every action costs exactly one
unit of time, and that the time cost is the last component of
every cost vector. The cost of the noop action is redefined as
(0, . . . , 0, 1). We denote by t(b) the time component of cost

660

vector b. In particular, t(Res(a)) = 1 for any a ∈ Σ. In the
language, only operators [Cb] with t(b) ≥ 1 are allowed.

3.1 Strategies and Multi-step RBA Models

Given an RBA frame F = (A,R,Σ, S, T, o,Res), a strategy
for an agent i ∈ A is a function fi : S+ → Σi from finite
non-empty sequences of states to actions, such that fi(λs) =
a ∈ T (s, i), where λs is a sequence of states ending in state
s. Intuitively, fi says what action agent i should perform in
state s given the previous history of the system. A strategy
for a coalition C is a set FC = {f1, . . . , fk} of strategies for
each agent.

For a sequence λ = s0s1 . . . ∈ Sω, we denote λ[i] = si

and λ[i, j] = si . . . sj .
The set of possible computations generated by a strategy

FC from a state s0, out(s0, FC), is
{λ | λ[0] = s0 ∧ ∀j > 0 : λ[j+1] ∈ o∗(λ[j], (fi(λ[0, j]))i∈C)}
where o∗(s, aC) = {o(s, (aC , aC̄)) | aC̄ ∈ T (s, C̄)}.
Now we define the cost of a multi-step strategy. Let λ ∈
out(s0, FC). The cost of FC over a prefix λ[0,m] where
m > 0 is defined inductively as follows:
Res(λ[0, 1], FC) = ⊕i∈CRes(fi(λ[0])) (where

Res(fi(λ[0])) is the cost of the action by agent i
in λ[0], and ⊕i∈C is the operator for combining the
costs of actions executed in parallel by the agents in C)

Res(λ[0,m], FC) = Res(λ[0,m − 1], FC) ⊗ (⊕i∈CRes
(fi(λ[0,m− 1]))) for m > 1 (this is the cost of the pre-
vious m− 1 steps in the strategy combined sequentially
with the cost of the mth step).

Definition 3. A multi-step resource-bounded action modelM
is a pair (F, V) where F is an RBA frame, and V : S →
℘(Prop) is an assignment function, and the truth definition
for the [Cb] modality is

• M, s |= [Cb]φ for C �= ∅ iff there is a strategy FC such
that for all λ ∈ out(s, FC), there exists m > 0 such that
Res(λ[0,m], FC) ≤ b and M,λ[m] |= φ,

• M, s |= [∅b]φ iff for all strategies FA, computations λ ∈
out(s, FA), and m > 0 such that Res(λ[0,m], FA) ≤
b, M,λ[m] |= φ.

The set of all formulas valid in multi-step RBA models will
be denoted by RBCL.

3.2 Effectivity Structures

For proving completeness of RBCL, it is easier to work with
an alternative semantics, given not in terms of multi-step
RBA models, but in terms of effectivity structures. These are
closely related to RBA models, and we will show that effec-
tivity structures satisfying some natural properties give rise to
an alternative semantics for RBCL.

Let ℘(A)B = {Cb | C ⊆ A, b ∈ N
r, t(b) ≥ 1}. Intu-

itively, this is the set of all possible coalitions with all possi-
ble resource allocations. An effectivity structure is a function
E : S → (℘(A)B → ℘(℘(S))) which describes, for each
state in S, which subsets of S a coalition C can force under
resource bound b.

Given an RBA frame F, the effectivity structure corre-
sponding to F is defined as follows:

• For C �= ∅, X ∈ E(s)(Cb) iff there exists a strategy
FC such that for all λ ∈ out(s, FC), there exists m > 0
such that Res(λ[0,m], FC) ≤ b and λ[m] ∈ X .

• X ∈ E(s)(∅b) iff for all strategies FA, compu-
tations λ ∈ out(s, FA), and m > 0 such that
Res(λ[0,m], FA) ≤ b, we have λ[m] ∈ X .

In other words, X ∈ E(s)(Cb), where C is not the empty
coalition, means that the coalition C has a strategy to bring
about X within the bound b. X ∈ E(s)(∅b) means that what-
ever the grand coalition does under the cost b, the system al-
ways goes to a state in X , i.e. it cannot avoid X .

3.3 Characterising Effectivity in RBA Frames

Every RBA frame gives rise to an effectivity structure, but
the reverse does not hold. In this section, we characterise
properties which an effectivity structure should satisfy to be
an effectivity structure corresponding to an RBA frame. Fol-
lowing Pauly in [Pauly, 2002], we call such effectivity struc-
tures playable (RB-playable, where RB stands for resource-
bounded).

Below we state some useful properties of RB-playable ef-
fectivity structures. These are very similar (apart from the
resource bound) to the properties of playable effectivity struc-
tures listed in [Pauly, 2002] and are given the same names:

An effectivity structure E is outcome monotonic iff
X ∈ E(s)(Cb) ⇒ X ′ ∈ E(s)(Cb) for all X ′ ⊇ X

An effectivity structure E is coalition monotonic iff
X ∈ E(s)(Cb) ⇒ X ∈ E(s)(Db) for all D ⊇ C

An effectivity structure E is A-maximal iff
X /∈ E(s)(∅b) ⇒ X ∈ E(s)(Ab)

An effectivity structure E is A-minimal iff
X ∈ E(s)(Ab)∧Y /∈ E(s)(Ab) ⇒ X \Y ∈ E(s)(Ab)
(this property is not listed in [Pauly, 2002], but its ana-
logue is derivable there)

An effectivity structure E is regular iff
forC = ∅ orC = A,X ∈ E(s)(Cb) ⇒ X /∈ E(s)(C

b
)

for all other C, X ∈ E(s)(Cb) ⇒ X /∈ E(s)(C
b′

) for
all t(b) = t(b′) = 1.

An effectivity structure E is super-additive iff the following
holds, for all t(b) = t(d) = 1, C ∩D = ∅:
- if C �= ∅ and D �= ∅, X1 ∈ E(s)(Cb) and
X2 ∈ E(s)(Dd) ⇒ X1 ∩X2 ∈ E(s)((C ∪D)b⊕d).
- if C = ∅, X1 ∈ E(s)(∅d) and X2 ∈ E(s)(Dd) ⇒
X1 ∩X2 ∈ E(s)(Dd).

Note that super-additivity applies only to effectivity functions
corresponding to single-step strategies (with the time com-
ponent of the bound equal to 1). Since effectivity functions
correspond to multi-step strategies, we need to extend super-
additivity to more than single-step strategies, that is to the
case when the time component is greater than 1:
An effectivity structure E is general super-additive iff it is

super-additive and X1 ∈ E(s)(∅b) and X2 ∈ E(s)(Cb)
⇒ X1 ∩X2 ∈ E(s)(Cb).

We also need properties corresponding to sequential compo-
sition of strategies:

661

An effectivity structure E is super-transitive iff the follow-
ing holds for all C �= ∅: {s′ ∈ S | X ∈ E(s′)(Cb2)} ∈
E(s)(Cb1) ⇒ X ∈ E(s)(Cb1⊗b2) (if a set of states
where X is obtainable under b2 can be enforced under
b1, then X can be enforced by the combined strategy
under b1 ⊗ b2).

An effectivity structure E is transitive iff for any b with
t(b) > 1 and C �= ∅: X ∈ E(s)(Cb) ⇒ ∃b′ < b : X ∈
E(s)(Cb′) (X can be achieved under a tighter bound
b′) or ∃b1 ⊗ b2 = b : {s′ ∈ S | X ∈ E(s′)(Cb2)} ∈
E(s)(Cb1) (X can be achieved by combining two strate-
gies costing b1 and b2 such that b1 ⊗ b2 = b).

Finally, the following property is specific to resource bounds:
An effectivity structure E is bound-monotonic iff

X ∈ E(s)(Cb) ⇒ X ∈ E(s)(Cd) for all d ≥ b if
C �= ∅ or d ≤ b if C = ∅.

Bound-monotonicity is a very natural property: if a non-
empty coalition can achieve something under the bound b,
then it can achieve it with a more generous resource al-
lowance. For C = ∅, this property means that if an outcome
cannot be avoided when the grand coalition is restricted to
strategies which cost at most b, then it cannot be avoided if A
uses fewer resources (hence has fewer strategies available).

It is easy to prove that the properties above are true for any
effectivity structure obtained from a RBA frame. Conversely,
RB-playable effectivity structures defined below are effectiv-
ity structures of an RBA frame.
Definition 4. An effectivity structure E : S → (℘(A)B →
℘(℘(S))) is RB-playable iff, for every s ∈ S, E has the fol-
lowing properties:

1. For all Cb ∈ ℘(A)B, S ∈ E(s)(Cb)
2. For all Cb ∈ ℘(A)B, ∅ /∈ E(s)(Cb)
3. Outcome-monotonicity
4. A-maximality
5. Super-additivity
6. Super-transitivity
7. Transitivity
8. Bound-monotonicity
It can be shown that RB-playability implies the other prop-

erties listed above.
Lemma 1. Let E be a RB-playable effectivity structure, then
E has the following properties:

1. Coalition monotonicity
2. A-minimality
3. Regularity
4. General super-additivity
The proof is omitted due to lack of space. First, general

super-additivity is proved by induction on resource bounds
using super-additivity, and the proof for other properties uses
general super-additivity.
Theorem 2. An effectivity structure is RB-playable iff it is the
effectivity structure of some RBA frame.

Proof. It is easy to check that effectivity structures obtained
from RBA frames satisfy all properties of RB-playability. For
the other direction, given an RB-playable effectivity struc-
tureE, we will construct a RBA frame such that its effectivity
structure is E.

Let E be RB-playable. The construction of the RBA frame
is similar to that in Coalition Logic extended with costs for
actions. First, we define the set of possible actions for each
agent at each state s ∈ S with their associated costs Res.
Then, the construction is completed by defining the outcome
function o.

For i ∈ A and b such that t(b) = 1, we denote Cb
i =

{Cd | i ∈ C ∧ t(d) = 1 ∧ d ≥ b} the set of all coalitions that
imay participate in while contributing b amount of resources.
Note that for all actions t(b) is always 1.

For s ∈ S, we define

Γ(s, i) = {gb
i (s) : Cb

i → ℘(S) | gb
i (s)(C

d) ∈ E(s)(Cd)}
Γ(s, i) is the set of option functions for an agent i at state
s. Each option function in Γ(s, i) is a mapping gb

i (s) which
determines the outcome if agent i agrees to participate in a
coalition. How an agent agrees to participate in a coalition
will be specified later when we define the outcome function.

Let H = {h : ℘(S) → S|h(X) ∈ X} be the set of choice
functions, that is if an agent has the power to decide the out-
come, it will use some h function to do that. Then, we define
the set of available actions for an agent i at a state s as fol-
lows:

T (s, i) = Γ(s, i) × N ×H

Each action is a triple (gb(s), t, h) consisting of an option
function gb, an index t (a natural number) and a choice func-
tion h. Informally, option functions will determine how the
agents group together to form coalitions and then which out-
come options they will choose. The index determines which
agent has the power to decide the outcome based on its associ-
ated h function. For now, we assign thatRes((gb(s), t, h)) =
b.

Let Σi =
⋃

s∈S T (s, i). We now define the outcome of
a joint action σ ∈ ΣA at a state s. Assume that σ =
{(gbi

i (s), ti, hi)|i = 1, . . . , n} in which t(bi) = 1 for all
i ∈ A. Let bC = ⊕i∈Cbi, g = (gbi

i (s))i∈A. We denote
P (f, C) the coarsest partition 〈C1, . . . , Cm〉 of C such that:

∀l ≤ m ∀i, j ∈ Cl : gbi
i (Cl

bCl) = g
bj

j (Cl
bCl)

We define how coalitions are formed based on g as follows:

P0(g) = 〈A〉
P1(g) = 〈P (g,A)〉 = 〈C1,1, . . . , C1,k1〉
P2(g) = 〈P (g, C1,1), . . . , P (g, C1,k1)〉

= 〈C2,1, . . . , C2,k2〉
...

Pη(g) = 〈Cη,1, . . . , Cη,kη 〉
As A is finite, the above computation reaches some η such

that Pη(g) = Pη+1(g). Let P (g) = Pη(g) which shows how
agents are grouped into coalitions.

For technical convenience, let Eo(s)(Ab) denote the col-
lection of minimal sets in E(s)(Ab). By A-minimality, it

662

is easy to show that Eo(s)(Ab) contains only singletons.
In other words, by outcome-monotonicity, we have X ∈
E(s)(Ab) if and only if X ⊇ Xo for some Xo ∈ Eo(s)(Ab).
By regularity, we have X ∈ E(s)(∅b) if and only if X ⊇
∪Eo(s)(Ab).

Assume that P (g) = 〈C1, . . . , Cm〉. For convenience, let
g(Cl) = gbi

i (Cl
bCl) for some i ∈ Cl where l ≤ m.

We defineG(g) =
⋂

l≤m

g(Cl)∩(∪Eo(s)(AbA)). By super-

additivity and the fact that ∅ /∈ E(s)(AbA) as E is RB-
playable, it is straightforward to show that G(f) �= ∅.

Let t0 = (
∑

i∈A ti mod n) + 1. The outcome function
is defined as follows: o(s, σ) = ht0(G(g)). Let EF be the
effectivity structure of the frame constructed above. We claim
that E = EF .

Firstly, we show the left-to-right inclusion by induction on
bounds. In the base case, assume X ∈ E(s)(Cb) in which
t(b) = 1. Choose the actions for agents in C as follows,

a1 = (gb
1, t1, h1)

a2 = (g0
2 , t2, h2)

...
ak = (g0

k, tk, hk)

where gb
1(D

d) = g0
i (Dd) = X for all i = 2, . . . , k,

D ⊇ C, d ≥ b. Notice that the choices of gb
1,

g0
2 , . . ., g0

k must exist because of bound-monotonicity and
coalition-monotonicity. Moreover, the choices of ti and
hi, where i = 1, . . . , k, are arbitrary. Let σC =
{(gb

1, t1, h1), (g0
2 , t2, h2), . . . , (g0

k, tk, hk)}.
Let σC be an arbitrary joint action forC. Let σ = (σC , σC)

and let g be the set of the option functions from σ. By the
choice of σC , C must be a subset of a partition Cl in P (g).
Then, we have

o(s, σ) = ht0(G(g)) ∈ G(g) ⊆ g(Cl) = X

Hence, X ∈ EF (s)(Cb).
For the induction step, let X ∈ E(s)(Cb) in which t(b) >

1. If X ∈ E(s)(Cb′), by the induction hypothesis, we have
X ∈ EF (s)(Cb′). Therefore, bound-monotonicity implies
that X ∈ EF (s)(Cb).

If X /∈ E(s)(Cb′) for any b′ < b, by transitivity there are
b1 ⊗ b2 = b such that

{s′ | X ∈ E(s′)(Cb2)} ∈ E(s)(Cb1)

By the induction hypothesis, we have

{s′ | X ∈ E(s′)(Cb2)} ∈ EF (s)(Cb1)

and
{s′ | X ∈ E(s′)(Cb2)}
⊆ {s′ | X ∈ EF (s′)(Cb2)}

By outcome-monotonicity, we have

{s′ | X ∈ EF (s′)(Cb2)} ∈ EF (s)(Cb1)

Hence, by super-transitivity X ∈ EF (s)(Cb).

For the other direction, we consider two cases in which
C = A and C ⊂ A.

Assume that X /∈ E(s)(Ab). By A-maximality, we obtain
X ∈ E(s)(∅b). However, the previous proof implies that
X ∈ EF (s)(∅b). As EF is RB-playable, by regularity we
have X ∈ EF (s)(Ab).

For the case of C ⊂ A, the proof is done by induction on
bounds. Assume that X /∈ E(s)(Cb) in which t(b) = 1 and
C ⊂ A, i.e. there is i0 ∈ A\C. Let σC = {(gbi

i (s), ti, hi)|i ∈
C} be an joint action for C such that Res(σC) ≤ b. We
choose a strategy for C σC = {(gbi

i (s), ti, hi)|i ∈ C} such
that:

• bi = 0 for all i > k

• gbi
i (s)(Dd) = S for all i ∈ C, D ⊇ C, d ≥ bi

• (
∑

i∈A ti mod n) + 1 = i0

• hi for i �= i0 is arbitrary, we will select hi0 shortly
As before, let σ = (σC , σC) and g the collection of option
functions in σ. We use notation bD = ⊕i∈Dbi for any D ⊆
A.

By the choice of option functions in σC , it follows that
C is the subset of some partition Cl of P (g). For other
partitions, super-additivity shows that G(g) ∈ E(s)(Cl

bCl).
By coalition-monotonicity and bound-monotonicity, we have
that G(g) ∈ E(s)(Cb). As X /∈ E(s)(Cb), it follows that
G(g) �⊆ X by outcome-monotonicity, i.e. there is some
s0 ∈ G(g) \X . Select hi0 such that hi0(G(g)) = s0, then

o(s, σ) = hi0(G(g)) = s0 /∈ X

Hence, X /∈ EF (s)(Cb).
In the induction step, assume that X /∈ E(s)(Cb) where

t(b) > 1. Bound-monotonicity shows that for all b′ ≤ b, X /∈
E(s)(Cb′) and super-transitivity implies that for all b1⊗b2 =
b,

{s′ | X ∈ E(s′)(Cb2)} /∈ E(s)(Cb1)
By the induction hypothesis, we have that for all b′ < b, X /∈
EF (s)(Cb′) and for all b1 ⊗ b2 = b,

{s′ | X ∈ E(s′)(Cb2)} /∈ EF (s)(Cb1)

and {s′ | X ∈ E(s′)(Cb2)} = {s′ | X ∈ EF (s′)(Cb2).
Then, {s′ | X ∈ EF (s′)(Cb2)} /∈ EF (s)(Cb1). Therefore,
transitivity implies that X /∈ EF (s)(Cb).

4 Axiomatisation of RBCL

In this section we define models based on playable effectivity
structures, and give a complete axiomatisation for the set of
validities in those models.
Definition 5. A resource-bounded effectivity model M =
(S,E, V) is a triple consisting of a non-empty set of states,
a RB-playable effectivity structure and a valuation function
V : Prop → ℘(S). The truth definition for [Cb] modalities
is as follows:

• M, s |= [Cb]ϕ iff ϕM ∈ E(s)(Cb) where ϕM =
{s′ |M, s′ |= ϕ}

663

Theorem 3. The sets of formulas valid in multi-step RBA
models and in resource-bounded effectivity models are equal.

This follows from the correspondence between RBA
frames and RB-playable effectivity structures, and the cor-
respondence between the two truth definitions. Therefore the
next result also provides an axiomatisation for RBCL.
Theorem 4. The following set of axiom schemas and infer-
ence rules provides a sound and complete axiomatisation of
the set of validities over all resource-bounded effectivity mod-
els:

A0-A5, MP and Equivalence given above
A6 [Cb]ϕ∧[Dd]ψ → [(C∪D)b⊕d](ϕ∧ψ) whereC∩D = ∅,

t(b) = t(d) = 1 and b = d if either C or D is empty
A7 [Cb1][Cb2]ϕ→ [Cb1⊗b2]ϕ for C �= ∅
A8 [Cb]ϕ → ∨

b′<b[C
b′]ϕ ∨ ∨

b1⊗b2=b[C
b1][Cb2]ϕ for all

C �= ∅
Proof. The proof of soundness is straightforward. We con-
centrate on proving completeness. We prove completeness by
constructing a canonical model. Let us denote by �Λ deriv-
ability in the axiom system above. Let SΛ be the set of all
Λ-maximally consistent sets. For any formula ϕ, we denote
ϕ̃ = {s ∈ SΛ | ϕ ∈ s}. Then, we define the canonical
valuation function V Λ(p) = p̃.

We define the canonical effectivity structure EΛ by induc-
tion on b as follows:

• For all b such that t(b) = 1 andC �= A,X ∈ EΛ(s)(Cb)
iff ∃ϕ̃ ⊆ X : [Cb]ϕ ∈ s. X ∈ EΛ(s)(Ab) iff X /∈
EΛ(s)(∅b).

• For all b such that t(b) > 1 and C �= ∅, X ∈ EΛ(s)(Cb)
iff X ∈ EΛ(s)(Cb′) for some b′ < b or there are
b1 ⊗ b2 = b such that {s′ | X ∈ EΛ(s′)(Cb2)} ∈
EΛ(s)(Cb1). X ∈ EΛ(s)(∅b) iff X /∈ EΛ(s)(Ab).

The following property (∗) is crucial for the proof:

(∗) ϕ̃ ∈ EΛ(s)(Cb) iff [Cb]ϕ ∈ s

We prove it by induction on the bounds. In the base case,
assume that ϕ̃ ∈ EΛ(s)(Cb) for some t(b) = 1. For C �= A,
ϕ̃ ∈ EΛ(s)(Cb) iff ∃ψ̃ ⊆ ϕ̃ : [Cb]ψ ∈ s iff [Cb]ϕ ∈ s (by
�Λ ψ → ϕ and RM). If C = A, we have ϕ̃ ∈ EΛ(s)(Ab) iff
¬̃ϕ /∈ EΛ(s)(∅b) iff ¬[∅b]¬ϕ ∈ s (as just proved) iff [Ab]ϕ ∈
s (by axiom A3).

For the induction step, assume that ϕ̃ ∈ EΛ(s)(Cb) where
t(b) > 1. For C �= ∅, there are two cases to consider. (1) ϕ̃ ∈
EΛ(s)(Cb′) for some b′ < b. By the induction hypothesis,
we have [Cb′]ϕ ∈ s. Then, axiom A5 implies that [Cb]ϕ ∈ s.
(2) There are b1 ⊗ b2 = b such that

{s′ | ϕ̃ ∈ EΛ(s′)(Cb2)} ∈ EΛ(s)(Cb1).

By the induction hypothesis, we have ˜[Cb2]ϕ ∈ EΛ(s)(Cb1),
so [Cb1][Cb2]ϕ ∈ s. Therefore, by axiom A7 [Cb]ϕ ∈ s.

If C = ∅, we have ϕ̃ ∈ EΛ(s)(∅b) iff ¬̃ϕ /∈ EΛ(s)(Ab) iff
¬[Ab]¬ϕ ∈ s (as just proved) iff [∅b]ϕ ∈ s (by axiom A3).

The proof that EΛ is RB-playable is straightforward given
the property (∗), definition of EΛ and the axioms of Λ.

Since we have already shown (*), the truth lemma
(MΛ, s |= ϕ iff ϕ ∈ s) is also straightforward.

As an illustration, we can state a property from [Alechina
et al., 2008] that two reasoners can derive an empty clause
within resource bounds 4 for memory, 1 for communication,
and 5 for time: [{1, 2}(4,1,5)] B2⊥.

5 Conclusions and Further Work

We have proposed a complete and sound logic RBCL where
we can express costs of (multi-step) strategies and hence
coalitional ability under resource bounds in multi-shot games.
The logic is expressive enough to formalise decision prob-
lems of Coalitional Resource Games [Wooldridge and Dunne,
2006] and properties of resource-bounded communicating
reasoners from [Alechina et al., 2008]. RBCL is related to
both Coalition Logic and ATL. The [Cb] operators (without
resource bounds) in RBCL correspond to the [C∗] operator
in Extended Coalition Logic which stands for a finite iteration
of [C] modalities [Pauly, 2001], or to the 〈〈C〉〉F operator of
ATL [Alur et al., 2002].

In future work, we plan to investigate automated verifi-
cation of properties of RBCL using model-checking. The
model-checking algorithm for ATL given in [Alur et al.,
2002] can be modified to produce a model-checking algo-
rithm for RBCL without increase in complexity. We antic-
ipate that we may also be able to exploit resource bounds
to optimise the model-checking algorithm or to use bounded
model-checking for some properties.

References

[Alechina et al., 2008] N. Alechina, B. Logan, Nguyen H.
N., and A. Rakib. Verifying time, memory and commu-
nication bounds in systems of reasoning agents. In Proc.
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), pages 736–743. IFAAMAS, 2008.

[Alur et al., 2002] R. Alur, T. Henzinger, and O. Kupfer-
man. Alternating-time temporal logic. J. of the ACM,
49(5):672–713, 2002.

[Goranko, 2001] V. Goranko. Coalition games and alternat-
ing temporal logics. In Proc. 8th Conf. on Theoretical
Aspects of Rationality and Knowledge (TARK VIII, pages
259–272. Morgan Kaufmann, 2001.

[Pauly, 2001] M. Pauly. Logic for Social Software. Ph.D.
thesis, ILLC, University of Amsterdam, 2001.

[Pauly, 2002] M. Pauly. A modal logic for coalitional power
in games. J. Log. and Comp., 12(1):149–166, 2002.

[Wooldridge and Dunne, 2006] M. Wooldridge and P. E.
Dunne. On the computational complexity of coalitional
resource games. Artif. Intel., 170(10):835–871, 2006.

[Wooldridge et al., 2007] M. Wooldridge, T. Ågotnes, P. E.
Dunne, and W. van der Hoek. Logic for Automated Mech-
anism Design – A Progress Report. In Proc. 22nd AAAI
Conf. on Artificial Intelligence, pages 9–16. AAAI Press,
2007.

664

