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Abstract

This paper formalises and compares two different styles of reasoning with inductively
defined predicates, each style being encapsulated by a corresponding sequent calculus proof
system.

The first system, LKID, supports traditional proof by induction, with induction rules
formulated as rules for introducing inductively defined predicates on the left of sequents.
We show LKID to be cut-free complete with respect to a natural class of Henkin models;
the eliminability of cut follows as a corollary.

The second system, LKIDω, uses infinite (non-well-founded) proofs to represent argu-
ments by infinite descent. In this system, the left-introduction rules for inductively defined
predicates are simple case-split rules, and an infinitary, global condition on proof trees is
required in order to ensure soundness. We show LKIDω to be cut-free complete with respect
to standard models, and again infer the eliminability of cut.

The infinitary system LKIDω is unsuitable for formal reasoning. However, it has a
natural restriction to proofs given by regular trees, i.e. to those proofs representable by
finite graphs, which is so suited. We demonstrate that this restricted “cyclic” proof system,
CLKIDω, subsumes LKID, and conjecture that CLKIDω and LKID are in fact equivalent,
i.e., that proof by induction is equivalent to regular proof by infinite descent.

1 Introduction

Many concepts in mathematics are most naturally formulated using inductive definitions. Thus
proof support for inductive definitions is an essential component of proof assistants and theo-
rem provers. Often, libraries are provided containing collections of useful induction principles
associated with a given set of inductive definitions, see e.g. [28, 15, 33]. In other cases, mecha-
nisms permitting “cyclic” proof arguments are used, with intricate conditions imposed to ensure
soundness, see e.g. [44, 32, 14]. These conditions can be broadly construed as versions of the
well-known mathematical principle of infinite descent originally formalised by Fermat [22]. In
this article we develop proof-theoretic foundations for this infinite descent style of inductive
reasoning, and compare them with the corresponding (but quite different) foundations for proof
by explicit induction.

In the case of classical first-order logic, Gentzen’s sequent calculus LK provides an elegant
proof system that is well suited to the goal-directed approach to proof construction employed in
many proof assistants. Each logical constant is specified by two types of basic rule, introducing
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the constant on the left and on the right of sequents respectively. Gentzen’s well-known cut-
elimination theorem for LK implies that direct proofs, using these rules alone, are sufficient to
derive any valid sequent [12]. In addition to its theoretical elegance, this has implications for
proof search, with the locally applicable proof rules thereby constrained by the logical constants
appearing in the current goal.

In this paper, we present sequent calculus proof systems that canonically embody two stan-
dard approaches to reasoning with inductively defined predicates: (i) explicit rule induction over
definitions; and (ii) infinite descent, employing a generalisation of Fermat’s original natural num-
ber principle to general inductively defined predicates. In each case, we establish appropriate
completeness and cut-eliminability theorems for our proof systems. These theorems constitute
the main technical contribution of this article. Aside from their intrinsic technical interest, our
results demonstrate our calculi as being canonical ones embodying the two aforementioned styles
of inductive reasoning. We hope that this article will help to stimulate wider interest in such
systems.

In §3 we present our sequent calculus for induction, LKID, which extends Gentzen’s LK
with left- and right-introduction rules for inductively defined predicates. The right-introduction
rules for an inductively defined predicate P simply reflect the closure conditions in the definition
of P , while the left-introduction rules embody the natural induction principle associated with
P . A closely related precursor is Martin-Löf’s natural deduction system for intuitionistic logic
with (iterated) inductive definitions [23], in which induction rules are included as elimination
rules for inductively defined predicates. As is well known, elimination rules in natural deduction
serve the same purpose as left-introduction rules in sequent calculus. Nonetheless, it is only
relatively recently that sequent calculus counterparts of Martin-Löf’s system have been explicitly
considered, by McDowell, Miller, Momigliano and Tiu [24, 25, 40]. LKID is a natural classical
analogue of these intuitionistic systems.

For LKID, we prove soundness and completeness relative to a natural class of “Henkin
models” for inductive predicates. In fact, completeness is established for the cut-free fragment
of LKID, and so the eliminability of cut follows as an immediate corollary. These results serve to
endorse the canonicity of LKID: completeness shows that no proof principles are missing, and
cut-eliminability vindicates the formulation of the proof rules. The eliminability of cut in LKID
holds in opposition to the not uncommon belief that full cut-elimination results are impossible
in the presence of inductive definitions. In fact, the real limitation is not the impossibility
of cut-elimination, but rather that the subformula property is not achievable [20], and indeed
the subformula property does not hold for cut-free proofs in LKID. In fact, the possibility of
obtaining a full cut-elimination result is not surprising if one is familiar with the aforementioned
literature on intuitionistic systems with inductive definitions, where similar normalization/cut-
elimination results appear [23, 24, 40]. The proofs of normalization/cut-elimination for the
intuitionistic systems, in the literature, are all based on Tait’s “computability” method, which
does not easily adapt to a two-sided classical sequent calculus like LKID. Compared with such
proofs, however, our semantic approach suffers from the weakness of not establishing that any
particular cut-elimination strategy terminates. Of course, the use of such semantic methods to
establish cut-eliminability is not new. For example, the original proof of Takeuti’s Conjecture
(the eliminability of cut in second-order logic) was semantic [38, 13]. However, compared with
the semantic proof of Takeuti’s Conjecture, the class of Henkin models we consider seems a
natural class of structures, and our completeness result is thus of interest in its own right. We
give our completeness proof for LKID in §4.

The remainder of the paper covers in detail our formalisation of infinite descent. For natural
numbers, infinite descent exploits the fact that, since there are no infinite strictly decreasing
sequences of numbers, any case in a proof that furnishes such a sequence can be ignored as con-
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tradictory. This technique can be extended to general inductively defined predicates: any case
of a proof which yields an infinite sequence of “unfoldings” of some inductively defined predicate
can be similarly dismissed by appealing to the well-foundedness of its chain of approximants. In
§5, we formulate a proof system, LKIDω, in which this principle is implemented. In LKIDω, the
induction rules of LKID are replaced by simple “case-split” rules (which unfold inductively de-
fined predicates on the left of sequents), and proofs are allowed to be infinite (non-well-founded)
derivation trees, as opposed to the usual finite derivations. In general, such infinite derivations
are not sound, so we impose a global trace condition on infinite derivation trees (similar to
conditions employed in infinitary µ-calculus proof systems, e.g. [27]) that qualifies such trees
as bona fide proofs. Informally, this condition states that, for every infinite branch in the tree,
some inductively-defined predicate must be unfolded infinitely often along the left-hand side
of the sequents on the branch. The precise technical formulation is given in §5. Whereas the
soundness proof for LKID, of §3, was relative to a class of Henkin models, the soundness proof
for LKIDω is relative to the subclass of ordinary “standard” models of the inductively defined
predicates. This restriction is essential. We show that LKIDω is complete relative to standard
models, and hence strictly stronger than LKID. Once again, our completeness argument estab-
lishes completeness for cut-free proofs, and so the eliminability of cut for LKIDω follows. The
proof of completeness is given in §6.

The infinitary system LKIDω, is unsurprisingly not suitable for practical formal reasoning.
In particular, it is impossible to recursively enumerate a complete set of LKIDω proofs. Nev-
ertheless, LKIDω does have a natural subsystem that is suitable for formal reasoning, namely
the restriction of LKIDω to regular proofs, i.e., to those infinite derivation trees that are repre-
sentable by a finite (cyclic) graph. We call such proofs “cyclic proofs”. In §7, we formally define
the system CLKIDω of cyclic proofs. The suitability of CLKIDω for formal reasoning is assured
by the fact that the global trace condition is decidable over the graphs generating cyclic proofs.
As a result of this, the completeness property of LKIDω is necessarily lost in the restriction to
cyclic proofs: CLKIDω is unavoidably weaker than LKIDω.

Since LKID and CLKIDω are alternative proof systems for formal reasoning about inductive
definitions, it is natural to consider the relationship between them. We show that any sequent
provable in LKID is also provable in CLKIDω. Thus cyclic proof subsumes proof by induction
for inductively defined predicates. Although we have not been able to establish the converse
implication, we conjecture that LKID and CLKIDω are actually equivalent in power. If one
accepts that LKID and CLKIDω are canonical embodiments of, respectively, proof by induction
and regular proof by infinite descent, then the conjecture can be understood as a formal assertion
of the equivalence of these two proof styles. We end the paper by stating this conjecture and
commenting on the apparent difficulties its proof poses.

Briefly, the structure of the paper is as follows. Section 2 introduces the first-order logic with
inductive definitions, FOLID, that we shall use throughout the paper. Section 3 presents the
sequent calculus for induction, LKID, and Section 4 provides its completeness proof. Section 5
presents the infinitary sequent calculus for infinite descent, LKIDω, and Section 6 gives its
completeness proof. Section 7 presents the cyclic subsystem CLKIDω of LKIDω. Section 8
concludes. Readers who are not interested in the details of the completeness proofs are advised
to skip the technical Sections 4 and 6. Appendix A presents technical details from the soundness
proof for LKID.

Earlier incarnations of the results in this paper were outlined in two conference papers [3, 7],
and appear in the first author’s PhD thesis [4]. We are grateful to the two anonymous referees
for comments that have helped to improve the journal presentation of this work.
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2 Syntax and semantics of first-order logic with inductive
definitions (FOLID)

In this section we give the syntax and semantics of classical first-order logic with inductively
defined predicates, FOLID. Of the many possible frameworks for inductive definitions, we choose
to work with ordinary (mutual) inductive definitions, specified by simple “productions” in the
style of Martin-Löf [23]. This choice keeps the logic relatively simple, while encompassing many
important examples.

The languages we consider are the standard (countable) first-order languages, except that we
designate finitely many of the predicate symbols of the language as inductive. A predicate symbol
not designated as inductive is called ordinary. For the remainder of this paper we consider a
fixed language Σ with inductive predicate symbols P1, . . . , Pn. Terms of Σ are defined as usual;
we write t(x1, . . . , xm) for a term all of whose variables are contained in {x1, . . . , xm}.

The interpretation of the elements of Σ is as usual given by a first-order structure M with
domain D; we write αM to denote the interpretation of the Σ-symbol α in M . If t(x1, . . . , xm) is
a term we write tM : Dm → D for the function obtained by replacing each function symbol f in t
by its interpretation fM . Variables are interpreted as elements of D by an environment ρ (which
is simply a total function from variables to D); we extend ρ to all terms of Σ in the standard
way and write ρ[x 7→ d] for an environment defined exactly as ρ except that ρ[x 7→ d](x) = d.
The formulas of FOLID are the usual formulas of first-order logic with equality. We then write
M |=ρ F for the standard semantic satisfaction relation for formulas of FOLID.

Our proof systems will be interpreted relative to only those structures in which induc-
tive predicates have their intended meanings, as specified by definition sets for the predicates,
adapted from [23].

Definition 2.1 (Inductive definition set). An inductive definition set Φ for Σ is a finite set of
productions, where a production is a pair

〈 {Q1(u1), . . . , Qh(uh), Pj1 (t1), . . . Pjm
(tm)}, Pi(t) 〉

of a finite set of atomic formulas together with an atomic formula, where j1, . . . , jm, i ∈ {1, . . . , n},
Q1, . . . , Qh are ordinary predicate symbols, and the bold vector notation abbreviates sequences
of terms of appropriate length to match the arities of the predicate symbols. Following [23], we
depict such a production

Q1(u1) . . . Qh(uh) Pj1(t1) . . . Pjm
(tm)

Pi(t)
(1)

We call the formulas above the line the premises of the production, and the formula below the
line the conclusion. Often, we shall omit brackets, writing, e.g., Q1u1 for Q1(u1). Sometimes
it will be convenient to make explicit the variables occurring in a production, and so we shall
write formulas as, e.g., Q1u1(x) (where x is a vector of variables).

Example 2.2. We define the predicates N ,E and O via the productions:

N0

Nx

Nsx E0

Ex

Osx

Ox

Esx

In structures in which all “numerals” sk0 for k ≥ 0 are interpreted as distinct elements, the
predicates N , E and O correspond to the properties of being a natural, even and odd number
respectively.
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One possible generalisation of Definition 2.1 would be to systems of iterated inductive defi-
nitions as considered, e.g., by Martin-Löf [23]. In such schemas, logically complex formulas are
allowed to occur in the premises of productions, subject to a suitable stratification of predicate
symbols into “levels” which is necessary to ensure monotonicity of the resulting definitions.

From this point onwards we consider an arbitrary fixed inductive definition set Φ for Σ and,
when we need to consider an arbitrary production in Φ, will always use the explicit format of
(1) above.

The standard interpretation of the inductive predicates (cf. [1]) is obtained as usual by
considering prefixed points of a monotone operator constructed from the definition set Φ. It is
standard that the least prefixed point of this operator can be constructed in iterative approximant
stages, indexed by ordinals.

Definition 2.3 (Definition set operator). Let M with domain D be a first-order structure for
Σ, and for each i ∈ {1, . . . , n}, let ki be the arity of the inductive predicate symbol Pi. Partition
Φ into disjoint subsets Φ1, . . . , Φn ⊆ Φ by:

Φi = {φ ∈ Φ | Pi is the inductive predicate symbol in the conclusion of production φ}

Let each rule set Φi be indexed by r with 1 ≤ r ≤ |Φi|, and for each rule Φi,r of the form (1) in
Definition 2.1, define a corresponding function ϕi,r : P(Dk1) × . . . × P(Dkn) → P(Dki), where
P(·) is powerset, by:

ϕi,r(X1 . . . , Xn) = {ρ(t) | QM
1 (ρ(u1)), . . . , QM

h (ρ(uh)),
ρ(t1) ∈ Xj1 , . . . , ρ(tm) ∈ Xjm

, ρ an environment}

where environments ρ are applied pointwise on vectors of terms. (Note that if t(x) is a vector
of terms each with variables in x then we have ρ(t(x)) = tM (ρ(x)).) Then define the function
ϕi for each i ∈ {1, . . . , n} by:

ϕi(X1, . . . , Xn) =
⋃

r

ϕi,r(X1, . . . , Xn)

whence the definition set operator for Φ is the operator ϕΦ, with domain and codomain P(Dk1)×
. . . × P(Dkn), defined by:

ϕΦ(X1, . . . , Xn) = (ϕ1(X1, . . . , Xn), . . . , ϕn(X1, . . . , Xn))

Henceforth, we write πn
i for the ith projection function given by πn

i (X1, . . . , Xn) = Xi, and we
extend union and subset inclusion to the corresponding pointwise operations on n-tuples of sets.

Definition 2.4 (Approximants). Let M with domain D be a first-order structure for Σ, and
let ϕΦ be the definition set operator for Φ. Define an ordinal-indexed set (ϕα

Φ ⊆ P(Dk1) ×

. . .×P(Dkn))α≥0 by ϕα
Φ =

⋃

β<α ϕΦ(ϕβ
Φ) (note that this implies ϕ0

Φ = (∅, . . . , ∅)). Then the set

πn
i (ϕα

Φ) is called the αth approximant of Pi, written as Pα
i .

A prefixed point of ϕΦ is a tuple (X1, . . . , Xn) satisfying ϕΦ(X1, . . . , Xn) ⊆ (X1, . . . , Xn).
It is a standard result for inductive definitions that the least prefixed point of ϕΦ is given by
⋃

α ϕα
Φ, the union of the approximants of the inductive predicates (P1, . . . , Pn).

Definition 2.5 (Standard model). A first-order structure M is said to be a standard model for
(Σ, Φ) if PM

i =
⋃

α Pα
i for all i ∈ {1, . . . , n}. 1

1For the form of production considered, we have
⋃

α P α
i

= P ω
i

, i.e. the closure ordinal of our inductive
definitions is at most ω. However, we shall never exploit this fact.
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Definition 2.5 fixes a standard interpretation of the inductive predicates. However, we shall
also be interested in non-standard Henkin models of FOLID in which the least fixed point of
the definition set operator ϕΦ is constructed with respect to a chosen class of sets of tuples
over the domain of interpretation. This approach is based on the well-known idea of Henkin for
obtaining completeness theorems for higher-order calculi by considering validity with respect to
a more general notion of model [17]. Our application in §3 is similar.

Definition 2.6 (Henkin class). Let M with domain D be a structure for Σ. A Henkin class
for M is a family of sets H = {Hk ⊆ P(Dk) | k ∈ N} such that, for each k ∈ N:

(H1) {(d, d) | d ∈ D} ∈ H2;

(H2) if Q is any predicate symbol of arity k then {(d1, . . . , dk) | QM (d1, . . . , dk)} ∈ Hk;

(H3) if R ∈ Hk+1 and d ∈ D then {(d1, . . . , dk) | (d1, . . . , dk, d) ∈ R} ∈ Hk;

(H4) if R ∈ Hk and t1(x1, . . . , xm), . . . , tk(x1, . . . , xm) are terms then:
{(d1, . . . , dm) | (tM1 (d1, . . . , dm), . . . , tMk (d1, . . . , dm)) ∈ R} ∈ Hm;

(H5) if R ∈ Hk then R = Dk \ R ∈ Hk;

(H6) if R1, R2 ∈ Hk then R1 ∩ R2 ∈ Hk;

(H7) if R ∈ Hk+1 then {(d1, . . . , dk) | ∃d. (d1, . . . , dk, d) ∈ R} ∈ Hk.

The following lemma demonstrates that our Henkin classes contain enough sets of tuples to
interpret any formula of FOLID.

Lemma 2.7. If H = {Hk | k ∈ N} is a Henkin class for a structure M , ρ is an environment
for M , F is a formula of FOLID and x1, . . . , xk are distinct variables, then:

{(d1, . . . , dk) | M |=ρ[x1 7→d1,...,xk 7→dk] F} ∈ Hk

Proof. The case when {x1, . . . , xk} ⊆ FV (F ) is an induction on the structure of the formula
F . This case can then be straightforwardly lifted to the case when x1, . . . , xk are arbitrary
variables. The full details can be found as Proposition 2.3.3 in [4]. 2

Definition 2.8 (H-point). Let M be a structure for Σ and let H be a Henkin class for M .
Also let ki be the arity of the inductive predicate symbol Pi for each i ∈ {1, . . . , n}. Then
(X1, . . . , Xn) ∈ P(Dk1

1 )×. . .×P(Dkn

n ) is said to be an H-point if Xi ∈ Hki
for each i ∈ {1, . . . , n}.

A prefixed H-point of a definition set operator ϕΦ is simply a prefixed point of ϕΦ which is
also a H-point. The next lemma shows that H-points are closed under definition set operators.

Lemma 2.9. Let H be a Henkin class for a Σ-structure M . If (X1, . . . , Xn) is an H-point then
so is ϕΦ(X1, . . . , Xn).

Proof. Since Henkin classes are easily seen to be closed under union, it suffices to show that
ϕi,r(X1, . . . , Xn) ∈ Hki

, where ϕi,r is the function corresponding to an arbitrary production
Φi,r ∈ Φ and ki is the arity of the predicate Pi in the conclusion of the production. This follows
from the closure conditions on Henkin classes given in Definition 2.6. The full details appear as
Lemma 2.3.6 in [4]. 2
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Definition 2.10 (Henkin model). Let M be a first-order structure for Σ and H be a Henkin
class for M . The data (M,H) comprises a Henkin model for (Σ, Φ) if there exists a least prefixed
H-point µH.ϕΦ of ϕΦ, and for each i ∈ {1, . . . , n}, PM

i = πn
i (µH.ϕΦ). (We remark that µH.ϕΦ,

if it exists, is a fixed point of ϕΦ.)

As mentioned previously,
⋃

α ϕα
Φ is the least prefixed point of ϕΦ in P(Dk1)× . . .×P(Dkn).

Thus a standard model is in particular a Henkin model (with Hk = P(Dk) for each k ∈ N).

3 LKID: a proof system for induction in FOLID

In this section, we formulate a proof system, LKID, formalising the usual notion of proof by
induction for FOLID. We then prove soundness and cut-free completeness of LKID with respect
to the Henkin semantics of FOLID given in the previous section, and infer from these results the
eliminability of cut in LKID.

We write sequents of the form Γ ⊢ ∆ where Γ, ∆ are finite sets of formulas, and use the
notation Γ[θ] to mean that the substitution θ of terms for free variables is applied to all formulas
in Γ.

For first-order logic with equality, we use the (standard) sequent calculus rules, given in
Figure 1. By the principal formula of a rule instance, we mean the distinguished formula that
is introduced by the rule into its conclusion. We remark that we read the comma in sequents
as set union, so that contraction rules are unnecessary. For example, we need not delete the
principal formula of a rule instance when applying the rule backwards. Somewhat unusually, we
include a rule for explicit substitution, and rules for equality (cf. [11]). Although these rules are
inessential inclusions in LKID, they will prove useful in our infinitary proof systems for infinite
descent in FOLID, introduced later. To the rules in Figure 1 we add rules for introducing atomic
formulas involving inductive predicates on the left and right of sequents.

First, for each production Φi,r ∈ Φ, each necessarily in the format of (1),

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm
tm(x)

Pit(x)

we include a corresponding sequent calculus right introduction rule for Pi:

Γ ⊢ Q1u1(u), ∆ . . . Γ ⊢ Qhuh(u), ∆
Γ ⊢ Pj1t1(u), ∆ . . . Γ ⊢ Pjm

tm(u), ∆
(PiRr)

Γ ⊢ Pit(u), ∆

Here u is assumed to be a vector of terms of the same length as the vector x of variables explicitly
identified as occurring in the production, and the occurrences of u in the rule above represent
the substitution [u/x].

The left-introduction rules for inductively defined predicates manifest themselves as induc-
tion rules. In order to formulate these rules correctly and without redundant premises, we
first need to define mutual dependency between predicates arising from their definitions, as
used in [23] (although our formulation slightly improves the notion used there by eliminating
redundant premises from some induction rules).

Definition 3.1 (Mutual dependency). Define the binary relation Prem on the inductive predi-
cate symbols of Σ as the least relation satisfying: whenever Pi occurs in the conclusion of some
production in Φ, and Pj occurs amongst the premises of that production, then Prem(Pi, Pj)
holds. Also define Prem∗ to be the reflexive-transitive closure of Prem. Then two predicate
symbols Pi and Pj are mutually dependent if both Prem∗(Pi, Pj) and Prem∗(Pj , Pi) hold.

7



Structural rules:

Γ ∩ ∆ 6= ∅ (Axiom)
Γ ⊢ ∆

Γ′ ⊢ ∆′

Γ′ ⊆ Γ
∆′ ⊆ ∆

(Wk)
Γ ⊢ ∆

Γ ⊢ F, ∆ Γ, F ⊢ ∆
(Cut)

Γ ⊢ ∆

Γ ⊢ ∆
(Subst)

Γ[θ] ⊢ ∆[θ]

Logical rules:

Γ ⊢ F, ∆
(¬L)

Γ,¬F ⊢ ∆

Γ, F ⊢ ∆
(¬R)

Γ ⊢ ¬F, ∆

Γ, F ⊢ ∆ Γ, G ⊢ ∆
(∨L)

Γ, F ∨ G ⊢ ∆

Γ ⊢ F, G, ∆
(∨R)

Γ ⊢ F ∨ G, ∆

Γ, F, G ⊢ ∆
(∧L)

Γ, F ∧ G ⊢ ∆

Γ ⊢ F, ∆ Γ ⊢ G, ∆
(∧R)

Γ ⊢ F ∧ G, ∆

Γ ⊢ F, ∆ Γ, G ⊢ ∆
(→L)

Γ, F → G ⊢ ∆

Γ, F ⊢ G, ∆
(→R)

Γ ⊢ F → G, ∆

Γ, F [t/x] ⊢ ∆
(∀L)

Γ,∀xF ⊢ ∆

Γ ⊢ F, ∆
x /∈ FV (Γ ∪ ∆) (∀R)

Γ ⊢ ∀xF, ∆

Γ, F ⊢ ∆
x 6∈ FV (Γ ∪ ∆) (∃L)

Γ,∃xF ⊢ ∆

Γ ⊢ F [t/x], ∆
(∃R)

Γ ⊢ ∃xF,∆

Γ[u/x, t/y] ⊢ ∆[u/x, t/y]
(=L)

Γ[t/x, u/y], t = u ⊢ ∆[t/x, u/y]
(=R)

Γ ⊢ t = t, ∆

Figure 1: Sequent calculus proof rules for classical first-order logic with equality.
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Now to obtain an instance of the left-introduction rule for any inductive predicate Pj , we first
associate with every inductive predicate Pi a tuple zi of ki distinct variables (called induction
variables), where ki is the arity of Pi. Furthermore, we associate to every predicate Pi that is
mutually dependent with Pj an arbitrary formula (called an induction hypothesis) Fi, possibly
containing (some of) the induction variables zi. Next, define the formula Gi for each i ∈
{1, . . . , n} by:

Gi =

{

Fi if Pi and Pj are mutually dependent
Pi(zi) otherwise

We write Gi(t), where t is any tuple of ki terms, to mean Gi[t/zi] (and similarly for Fi). Then
an instance of the induction rule for Pj has the following schema:

minor premises Γ, Fj(u) ⊢ ∆
(Ind Pj)

Γ, Pj(u) ⊢ ∆

where the premise Γ, Fj(u) ⊢ ∆ is called the major premise of the rule instance, and for each
production of Φ having in its conclusion a predicate Pi that is mutually dependent with Pj , say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm
tm(x)

Pit(x)

there is a corresponding minor premise:

Γ, Q1u1(y), . . . , Qhuh(y), Gj1t1(y), . . . , Gjm
tm(y) ⊢ Fit(y), ∆

where y is a vector of distinct variables of the same length as the vector x of variables explicitly
identified in the production, and y 6∈ FV (Γ ∪ ∆ ∪ {Pju}) for all y ∈ y (FV (·) being the usual
free variable function on sets of formulas).

The induction rule for a predicate Pj can be seen to embody the natural principle of rule
induction over the productions defining Pj .

Example 3.2. The induction rule for the “natural number” predicate N defined in Example 2.2
is:

Γ ⊢ F0, ∆ Γ, Fx ⊢ Fsx, ∆ Γ, F t ⊢ ∆
(Ind N)

Γ, Nt ⊢ ∆

where x is fresh and F is the induction hypothesis associated with the predicate N . This is one
way of writing the usual induction scheme for N in sequent calculus style.

Example 3.3. The induction rule for the “even number” predicate E defined in Example 2.2
is:

Γ ⊢ FE0, ∆ Γ, FEx ⊢ FOsx, ∆ Γ, FOx ⊢ FEsx, ∆ Γ, FEt ⊢ ∆
(Ind E)

Γ, Et ⊢ ∆

where x is fresh and FE and FO are the induction hypotheses associated with the (mutually
dependent) predicates E and O respectively.

Definition 3.4 (Henkin validity / Validity). Let (M,H) be a Henkin model for (Σ, Φ). A
sequent Γ ⊢ ∆ is said to be true in (M,H) if, for all environments ρ, whenever M |=ρ J for all
J ∈ Γ then M |=ρ K for some K ∈ ∆. A sequent is said to be Henkin valid if it is true in all
Henkin models. A sequent is said to be valid if it is true in all standard models.
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Since every standard model is a Henkin model, it is clear that Henkin validity implies validity.
By a derivation tree, we mean a tree of sequents in which each parent sequent is obtained as

the conclusion of an inference rule with its children as premises. As usual, a proof in LKID is a
finite derivation tree all of whose branches end in an axiom (i.e. a proof rule with no premises).

Proposition 3.5 (Henkin soundness of LKID). If there is an LKID proof of Γ ⊢ ∆ then Γ ⊢ ∆
is Henkin valid.

Proof. Soundness follows as usual from the local soundness of each proof rule. The proofs of
local soundness are straightforward in all cases except that of the induction rules. For this case,
although the proof goes through roughly as expected, dealing correctly with possible mutual
dependency between predicates is delicate, and we therefore include the details as Appendix A
of this paper. Full details of all cases appear as Lemma 3.2.2 in [4]. 2

We say that a sequent Γ ⊢ ∆ is cut-free provable iff there is an LKID proof of Γ ⊢ ∆ that
does not contain any instances of the cut, weakening or substitution rules. Our main result
about LKID is the following.

Theorem 3.6 (Cut-free Henkin completeness of LKID). If Γ ⊢ ∆ is Henkin valid, then it is
cut-free provable in LKID.

The detailed proof of Theorem 3.6 is postponed to §4.

Corollary 3.7 (Eliminability of cut for LKID). If Γ ⊢ ∆ is provable in LKID then it is cut-free
provable.

Proof. If Γ ⊢ ∆ is provable in LKID, it is Henkin valid by soundness (Proposition 3.5), and
hence cut-free provable in LKID by Theorem 3.6. 2

Although cut is eliminable, LKID does not enjoy the subformula property because of the
induction rules. This is an unavoidable phenomenon, and corresponds to the well-known need
for generalising induction hypotheses in inductive arguments (an issue which causes serious
trouble for theorem provers [8]). Nevertheless, cut-eliminability for LKID is potentially a useful
property for constraining proof search; see [24] for related discussion in the intuitionistic case.

There are two natural questions arising from our completeness and cut-eliminability results
for LKID. The first is whether LKID might be complete with respect to standard validity,
rather than Henkin validity. The second is whether a syntactic proof of cut-elimination would
be feasible, as opposed to our semantic proof. As we show below, it is possible to encode true
arithmetic as sequents which are valid with respect to standard models (of a suitably chosen
arithmetical language and inductive definition of the natural numbers). It thus follows from
Gödel’s incompleteness theorem that LKID is incomplete with respect to standard models, as
indeed is any effective proof system for inductive definitions. We also show that the eliminability
of cut in LKID implies the consistency of Peano Arithmetic, so there can be no straightforward
combinatorial proof of Corollary 3.7.

Definition 3.8 (Peano Arithmetic / True Arithmetic). Let ΣPA be the first-order language
consisting of the constant symbol 0, unary function symbol s, and binary function symbols ·
and +. Then Peano Arithmetic (PA) is the theory in the language ΣPA axiomatized by the usual
six Peano axioms (PA1)–(PA6), plus the induction schema; see, e.g., [13]). True Arithmetic is
given by the theory of the first-order structure N for ΣPA whose domain is the natural numbers
N and in which 0, s, + and · have their standard arithmetical interpretations.
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Definition 3.9 (TA-model). Let Σ′
PA be the language obtained by extending ΣPA with a unary

inductive predicate symbol N , and let ΦN be the inductive definition set consisting of the
“natural number” productions for N defined in Example 2.2. A TA-model is a standard model
for (Σ′

PA, ΦN) which satisfies the first six Peano axioms (PA1)–(PA6).

Note that in any TA-model M we have NM ∼= N (to simplify notation, we henceforth assume
equality), since NM = {(sM )n0M | n ∈ N} by the fact that M is a standard model of (Σ′

PA, ΦN ),
whence the first two Peano axioms ensure that all the elements of NM are distinct.

Definition 3.10. Define the function p−q from ΣPA-formulas to Σ′
PA-formulas by relativising

the quantifiers so that they range over the interpretation of the inductive predicate N , explicitly:

pt = uq = t = u
p¬Fq = ¬pFq

pF1 ∗ F2q = pF1q ∗ pF2q (∗ ∈ {∧,∨,→})
p∀xFq = ∀x(Nx → pFq)
p∃xFq = ∃x(Nx ∧ pFq)

Lemma 3.11. Let M be a TA-model with domain D, and let ρ be an environment for N (and
thus also for M since N ⊆ D by our observation above). Then, for any ΣPA-formula F , we have
M |=ρ pFq iff N |=ρ F .

Proof. A straightforward structural induction on F . 2

Lemma 3.12. A ΣPA-formula F with FV (F ) ⊆ {x1, . . . , xk} is a statement of true arithmetic
iff the sequent:

(PA1), . . . , (PA6), Nx1, . . . , Nxk ⊢ pFq

is valid with respect to standard models of (Σ′
PA

, ΦN ).

Proof. By definition, F is in true arithmetic iff N |=ρ F for all N -environments ρ. Thus, by
Lemma 3.11, F is in true arithmetic iff M |=ρ pFq for all TA-models M and M -environments
ρ such that ρ(xi) ∈ N for all 1 ≤ i ≤ k. Since NM = N in TA-models, the latter holds iff the
sequent Nx1, . . . , Nxk ⊢ pFq is valid with respect to TA-models. But since (PA1),. . . ,(PA6)
are closed first-order formulas, this is the case exactly if (PA1), . . . , (PA6), Nx1, . . . , Nxk ⊢ pFq

is valid for standard models of (Σ′
PA, ΦN ). 2

Theorem 3.13 (Standard incompleteness of LKID). There are sequents that are valid, but
unprovable in LKID.

Proof. We first note that, since standard models are Henkin models, LKID is sound for standard
models by Proposition 3.5, i.e., any provable sequent is valid. Assuming for contradiction that
LKID is complete for standard models, we then have that a sequent is LKID-provable iff it is
valid.

Now, fixing the language Σ′
PA and definition set ΦN , for any formula F in true arithmetic

with FV (F ) ⊆ {x1, . . . , xk} the sequent:

(PA1), . . . , (PA6), Nx1, . . . , Nxk ⊢ pFq

is valid with respect to standard models of (Σ′
PA, ΦN ) by Lemma 3.12 and hence provable by

completeness. We can clearly recursively enumerate the LKID proofs, so we can construct a re-
cursive enumeration of the sequents that are valid with respect to standard models of (Σ′

PA, ΦN ).
Thus, by discarding any sequents not of the form above, we can obtain a recursive enumeration
of true arithmetic, which is known to be impossible. We conclude by contradiction that LKID
cannot be complete with respect to standard models. 2
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Our next result shows that our embedding of true arithmetic in FOLID also gives an embed-
ding of Peano arithmetic in LKID. To prove the result, we instantiate “provability in PA” as
meaning provability (with respect to the signature ΣPA) in the sequent calculus LKe for first-
order logic with equality given by Figure 1, extended with axiom sequents ⊢ A, for each axiom
A from the Peano axioms (PA1)–(PA6), and for each instance A of the induction schema.

Lemma 3.14. Γ ⊢ ∆ is provable in PA, where FV (Γ ∪ ∆) ⊆ {x1, . . . , xk}, if and only if the
sequent Nx1, . . . , Nxk, pΓq ⊢ p∆q is provable in LKID + (PA1)–(PA6), where the language for
LKID is Σ′

PA
and the inductive definition set is ΦN .

Proof. (⇒) By induction on the height of the PA derivation of Γ ⊢ ∆. For the PA axioms, we
note that for each i ∈ {1, . . . , 6} the sequent (PAi) ⊢ p(PAi)q is derivable in LKID, and that
each instance of the induction schema is provable in LKID using the induction rule (Ind N).
The remaining cases follow straightforwardly by the induction hypothesis; the cases (∃R) and
(∀L) require the use of an auxiliary lemma stating that Nx1, . . . .Nxk ⊢ Nt is provable for any
Σ′

PA-term t whose variables are contained in {x1, . . . , xk}.

(⇐) By induction on the height of the derivation of Nx1, . . . , Nxk, pΓq ⊢ p∆q in LKID+ (PA1)–
(PA6). We note that Γ ⊢ ∆ is essentially obtained from this sequent by reading all formulas of
the form Nt as ⊤ (easily definable in FOLID). Most of the rule cases are then straightforward,
with applications of (Ind N) being translated as uses of the Peano induction axiom. 2

We remark that, by Lemma 3.14 and our completeness result for LKID, PA-derivability cor-
responds to Henkin validity over (Σ′

PA, ΦN ) in the same way that membership of true arithmetic
corresponds to standard validity over (Σ′

PA, ΦN ) (cf. Lemma 3.12). It should also be possible to
prove this via a direct argument.

Theorem 3.15. Eliminability of cut in LKID implies consistency of PA.

Proof. Suppose PA is inconsistent, i.e., there is a proof of the empty sequent ⊢ in PA. By
Lemma 3.14, ⊢ is then provable in LKID+ (PA1)–(PA6). Since (PA1)–(PA6) are closed first-
order formulas, it follows that the sequent (PA1), . . . , (PA6) ⊢ is provable in LKID, and thus
cut-free provable by cut-eliminability in LKID (Corollary 3.7). But every rule of LKID, except
(Cut), having an inductive predicate in one of its premises also has an inductive predicate in its
conclusion. Therefore, since the sequent (PA1), . . . , (PA6) ⊢ contains no inductive predicates,
there are no instances of the rules for inductive predicates occurring anywhere in its cut-free
proof. We thus have a cut-free proof of (PA1), . . . , (PA6) ⊢ in the system LKe, and so ⊢
is derivable in LKe+ (PA1)–(PA6), i.e., the axioms (PA1)–(PA6) are inconsistent. But this
system can be proved consistent by elementary means (see e.g. [13]). Hence we have the required
contradiction and conclude PA is consistent. 2

Corollary 3.16. The eliminability of cut in LKID (Corollary 3.7) is not provable in PA.

Proof. The eliminability of cut in LKID implies the consistency of PA by Theorem 3.15, the
proof of which is evidently itself formalisable in PA. Therefore, were the eliminability of cut
in LKID provable in PA, then the consistency of PA would be provable in PA, contradicting
Gödel’s second incompleteness theorem. 2

4 Proof of Henkin completeness of LKID (Theorem 3.6)

In this section, we present the proof of completeness of LKID with respect to Henkin models
(Theorem 3.6). The proof is an extension of the direct style of completeness proof for Gentzen’s
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LK as given in e.g. [9]. Briefly, supposing that Γ ⊢ ∆ is not cut-free provable in LKID, we
use a uniform proof-search procedure to construct a sequence of underivable sequents Γi ⊢ ∆i,
which can together be used to build a syntactic countermodel to the original sequent. The
required modifications to the standard argument in our case concern the rules for equality and
inductively defined predicates, and also the need to construct a Henkin class over the model.

Definition 4.1 (Schedule). An LKID-schedule element for Σ is defined as any of the following,
where ki is the arity of the inductive predicate symbol Pi for each i ∈ {1, . . . , n}:

• a formula of the form ¬F , F1 ∧ F2, F1 ∨ F2, or F1 → F2;

• a pair of the form 〈∀xF, t〉 or 〈∃xF, t〉 where ∀xF and ∃xF are formulas and t is a Σ-term;

• a tuple of the form 〈Pit, z1, F1, . . . , zn, Fn〉 where Pi is an inductive predicate symbol, t
is a sequence of ki terms of Σ and, for each j ∈ {1, . . . , n}, zj is a sequence of kj distinct
variables and Fj is a formula.

An LKID-schedule for Σ is then an enumeration (Ei)i≥0 of schedule elements of Σ such that
every schedule element of Σ appears infinitely often in the enumeration.

Note that an LKID-schedule for Σ exists since we assume our languages countable. Our
next definition proceeds assuming a given LKID-schedule (Ei)i≥0. Also, we henceforth assume
a fixed sequent Γ ⊢ ∆ that is not cut-free provable.

Definition 4.2 (Limit sequent). We define an infinite sequence (Γi ⊢ ∆i)i≥0 of sequents such
that each Γi ⊢ ∆i is not cut-free provable. We set Γ0 ⊢ ∆0 = Γ ⊢ ∆, so this is trivially the case
for i = 0. Now we assume inductively that we have constructed (Γj ⊢ ∆j)0≤i≤j , and show how
to construct S = Γj+1 ⊢ ∆j+1.

First note that no formula can be in both Γj and ∆j , otherwise Γj ⊢ ∆j would be an axiom
instance and thus cut-free provable. We proceed by case distinction on Ej , the jth element in
the schedule. Let F be the main formula of Ej (i.e. the one occurring leftmost, if Ej is a tuple).
If F 6∈ Γj ∪ ∆j , or if F is of the form Pit and F ∈ ∆j , then we define S = Γj ⊢ ∆j . Otherwise,
we consider the derivation obtained by, if F is non-atomic, applying the sequent rule (−L) or
(−R) as appropriate with principal formula F , where − is the main connective of F , or, if F
is of the form Pit and occurs in Γj , applying the rule (Ind Pi) with F as principal formula.
Where applying the rule requires us to perform an instantiation, we use the extra information
appearing alongside F in the schedule element Ej . As Γj ⊢ ∆j is not cut-free provable, it then
follows that one of the premises of this last rule application is not cut-free provable, and we pick
S to be any such premise. We show some sample cases: the other cases are similar.

• Case Ej = F1 ∧ F2. If F1 ∧ F2 ∈ Γj then by the rule application:

Γj , F1, F2 ⊢ ∆j
(∧L)

Γj , F1 ∧ F2 ⊢ ∆j

it is clear that Γj , F1, F2 ⊢ ∆j is not cut-free provable, since otherwise Γj ⊢ ∆j is cut-free
provable, contradicting the inductive hypothesis. (Note that we have Γj = (Γj , F1 ∧ F2)
since Γj is a set and comma is set union.) We thus define S = Γj , F1, F2 ⊢ ∆j . Otherwise,
if F1 ∧ F2 ∈ ∆j then by the rule application:

Γj ⊢ F1, ∆j Γj ⊢ F2, ∆j
(∧R)

Γj ⊢ F1 ∧ F2, ∆j

it is clear that one of Γj ⊢ ∆j , F1 or Γj ⊢ ∆j , F2, is not cut-free provable. We define S to
be Γj ⊢ ∆j , F1 if Γj ⊢ ∆j , F1 is not cut-free provable and Γj ⊢ ∆j , F2 otherwise.
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• Case Ej = 〈∃xF, t〉. If ∃xF ∈ Γj then by the rule application:

Γj, F [z/x] ⊢ ∆j
(∃L)

Γj , ∃xF ⊢ ∆j

where z 6∈ FV (Γj∪∆j), it is clear that Γj , F [z/x] ⊢ ∆j cannot be cut-free provable and we
thus define S = Γj , F [z/x] ⊢ ∆j . On the other hand, if ∃xF ∈ ∆j then by the inference:

Γj ⊢ F [t/x], ∆j
(∃R)

Γj ⊢ ∃xF, ∆j

it is clear that Γj ⊢ F [t/x], ∆j cannot be cut-free provable and we thus define S = Γj ⊢
F [t/x], ∆j .

• Case Ej = 〈Pit, z1, F1, . . . , zn, Fn〉. If Pit 6∈ Γj we just set S = Γj ⊢ ∆j . If Pit ∈ Γj we
have the inference:

minor premises Γj , Fit ⊢ ∆j
(Ind Pi)

Γj , Pit ⊢ ∆j

where the minor premises are obtained by using (some of) the tuples of variables z1, . . . , zn

as the induction variables and (some of) the formulas F1, . . . , Fn as induction hypotheses
in the instance of (Ind Pi). Again, we pick S to be any of the premises of the instance
that is not cut-free provable (clearly there is at least one).

By construction, we have Γj ⊆ Γj+1 and ∆j ⊆ ∆j+1 for all j ≥ 0. Let Γω =
⋃

j≥0 Γj and
∆ω =

⋃

j≥0 ∆j . Then the limit sequent for Γ ⊢ ∆ is defined to be Γω ⊢ ∆ω. Strictly speaking
Γω ⊢ ∆ω need not be a sequent since the sets Γω and ∆ω may be infinite. When we say that such
an infinite “sequent” is cut-free provable, we mean that some finite subsequent of the infinite
“sequent” is cut-free provable. Clearly, Γω ⊢ ∆ω is not cut-free provable.

Definition 4.3. Define the relation ∼ to be the smallest congruence relation on terms of Σ that
satisfies: t1 ∼ t2 whenever (t1 = t2) ∈ Γω. We write [t] for the equivalence class of t with respect
to ∼, i.e. [t] = {u | t ∼ u}. If t = (t1, . . . , tk) then we shall write [t] to mean ([t1], . . . , [tk]).

Lemma 4.4. If t ∼ u then, for any formula F , it holds that Γω ⊢ F [t/x] is cut-free provable if
and only if Γω ⊢ F [u/x] is cut-free provable.

Proof. By rule induction on the conditions defining t ∼ u. 2

Definition 4.5 (Counter-interpretation). Define a first-order structure Mω for Σ by:

• the domain of Mω is Terms(Σ)/ ∼ =def {[t] | t a Σ-term}, the set of ∼-equivalence classes
of Σ-terms;

• for any function symbol f in Σ of arity k, fMω([t1], . . . , [tk]) = [f(t1, . . . , tk)];

• for any ordinary predicate symbol Q in Σ of arity k, QMω is defined by:

QMω ([t1], . . . , [tk]) ⇔ ∃u1, . . . , uk. t1 ∼ u1, . . . , tk ∼ uk and Q(u1, . . . , uk) ∈ Γω

• for any inductive predicate symbol Pi in Σ of arity ki, PMω

i is defined by:

(PMω

1 , . . . , PMω

n ) = least(X1, . . . , Xn). (ϕΦ(X1, . . . , Xn) ⊆ (X1, . . . Xn) and
(∀i ∈ {1, . . . , n}. Pit ∈ Γω ⇒ [t] ∈ Xi))
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i.e. (PMω

1 , . . . , PMω

n ) is the least prefixed point of ϕΦ whose ith component contains [t]
whenever Pit ∈ Γω. Note that ϕΦ acts on the structure Mω; this is not a circular definition,
since the definition of ϕΦ (cf. Defn. 2.3) only requires the interpretation given to the
constants, function symbols and ordinary predicates of Σ by Mω, which we have already
defined. To see that the least prefixed point (PMω

1 , . . . , PMω

n ) actually exists, first note
that the set (Terms(Σ)/ ∼)n is a prefixed point of ϕΦ whose ith component trivially
contains [t] whenever Pit ∈ Γω. Then observe that, given any two such prefixed points of
ϕΦ, their intersection is also a prefixed point of ϕΦ, of smaller or equal size, and possessing
the same property. Thus (PMω

1 , . . . , PMω

n ) is given by the intersection of all such prefixed
points of ϕΦ.

Also, we define an environment ρω for Mω by ρω(x) = [x] for all variables x. Then (Mω, ρω) is
called the counter-interpretation for Γω ⊢ ∆ω.

Lemma 4.6. For any inductive predicate Pi, if Mω |=ρω
Pit then Γω ⊢ Pit is cut-free provable.

Proof. It can easily be established that ρω(t) = [t], whence we immediately have Mω |=ρω
Pit ⇔

[t] ∈ PMω

i . Define an n-tuple of sets (X1, . . . , Xn) by:

Xi = {[t] | Γω ⊢ Pit cut-free provable} (i ∈ {1, . . . , n})

It is thus immediate that if Pit ∈ Γω then [t] ∈ Xi. As (PMω

1 , . . . , PMω

n ) is the least prefixed
point of ϕΦ satisfying this condition (cf. Defn 4.5), we show that (X1, . . . , Xn) is a prefixed
point of ϕΦ. It then follows that if [t] ∈ PMω

i then [t] ∈ Xi, and so by definition of Xi and
Lemma 4.4, Γω ⊢ Pit is cut-free provable as required.

To see that (X1, . . . , Xn) is indeed a prefixed point of ϕΦ, it suffices to show the inclusion
ϕi,r(X1, . . . , Xn) ⊆ Xi for an arbitrary production Φi,r ∈ Φ. That is, we must show for Φi,r of
the form:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm
tm(x)

Pit(x)

that we have the inclusion:

{[t(x)] | QMω

1 [u1(x)], . . . , QMω

h [uh(x)], [t1(x)] ∈ Xj1 , . . . , [tm(x)] ∈ Xjm
} ⊆ Xi

By the definition of Mω and of (X1, . . . , Xn), and making use of Lemma 4.4, this amounts to
showing the following implication:

Γω ⊢ Q1u1(x), . . . , Γω ⊢ Qhuh(x), Γω ⊢ Pj1t1(x), . . . , Γω ⊢ Pjm
tm(x) all cut-free provable

=⇒ Γω ⊢ Pit(x) cut-free provable

which follows from the fact that cut-free provability from Γω is closed under the right-introduction
rule (PiRr). 2

Lemma 4.7. If F ∈ Γω then Mω |=ρω
F , and if F ∈ ∆ω then Mω 6|=ρω

F .

Proof. By structural induction on the formula F . All the cases apart from those for equality
and inductive predicates follow by the analogous cases in the standard first-order completeness
argument (see e.g. [9]). We show the non-standard cases and a representative selection of the
standard ones.

Case F = Pit, where Pi is an inductive predicate symbol of Σ. If Pit ∈ Γω then [t] ∈ PMω

i by
definition of Mω, i.e. Mω |=ρω

Pit as required. On the other hand, if Pit ∈ ∆ω then we must
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have Mω 6|=ρω
Pit, for otherwise Γω ⊢ Pit would be cut-free provable by Lemma 4.6, and so

Γω ⊢ ∆ω would be cut-free provable, a contradiction.

Case F = (t1 = t2). If t1 = t2 ∈ Γω then we have t1 ∼ t2 and thus [t1] = [t2], i.e. ρω(t1) = ρω(t2)
and so Mω |=ρω

t1 = t2.
Now suppose t1 = t2 ∈ ∆ω, and suppose for contradiction that Mω |=ρω

t1 = t2, i.e.
ρω(t1) = ρω(t2), whence [t1] = [t2] and so t1 ∼ t2. Now, observe that Γω ⊢ t1 = t1 is cut-free
provable via an application of (=R). Hence by Lemma 4.4, Γω ⊢ t1 = t2 is also cut-free prov-
able. But since t1 = t2 ∈ ∆ω , we would then have a cut-free proof of Γω ⊢ ∆ω, which is a
contradiction. Hence Mω 6|=ρω

t1 = t2.

Case F = F1 ∧ F2. If F1 ∧ F2 ∈ Γω then by construction of Γω ⊢ ∆ω, we have F1 ∈ Γω

and F2 ∈ Γω. By induction hypothesis Mω |=ρω
F1 and Mω |=ρω

F2, i.e. Mω |=ρω
F1 ∧ F2

as required. If on the other hand F1 ∧ F2 ∈ ∆ω then by construction we have F1 ∈ ∆ω or
F2 ∈ ∆ω . In the former case we have by induction hypothesis Mω 6|=ρω

F1 whence it is clear
that Mω 6|=ρω

F1 ∧ F2; the other case is similar.

Case F = ∃xF ′. If ∃xF ′ ∈ Γω then by construction of Γω ⊢ ∆ω, we have F ′[z/x] ∈ Γω for some
variable z, whence Mω |=ρω

F ′[z/x] by induction hypothesis and so Mω |=ρω [x 7→ρω(z)] F ′, i.e.
Mω |=ρω

∃xF ′.
Now suppose ∃xF ′ ∈ ∆ω , and observe that by construction of Γω ⊢ ∆ω there is then an

i ≥ 0 such that ∃xF ′ ∈ Γj for all j ≥ i. Now consider an arbitrary term t of Σ and note that the
element 〈∃xF ′, t〉 appears infinitely often on the schedule (Ei)i≥0 according to which Γω ⊢ ∆ω

is constructed. So there is a j ≥ i such that Ej = 〈∃xF ′, t〉 and thus we have F ′[t/x] ∈ ∆ω. As t
was chosen arbitrarily, it follows that for every term t, F ′[t/x] ∈ ∆ω. So by induction hypothesis
Mω 6|=ρω

F ′[t/x] for every term t. Suppose for contradiction that Mω |=ρω
∃xF ′. Then for some

t ∈ Terms(Σ), we would have Mω |=ρω[x 7→[t]] F ′, i.e. Mω |=ρω [x 7→ρω(t)] F ′, and so it follows that
Mω |=ρω

F ′[t/x], which contradicts our induction hypotheses. Hence Mω 6|=ρω
∃xF ′. 2

Definition 4.8 (Henkin counter-class). Define Hω = {Hk | k ∈ N} by:

Hk = {{([t1], . . . , [tk]) | Mω |=ρω
F [t1/x1, . . . , tk/xk]} |

F a formula and x1, . . . , xk distinct variables}

Hω is said to be the Henkin counter-class for Γω ⊢ ∆ω .

Lemma 4.9. The Henkin counter-class for Γω ⊢ ∆ω is indeed a Henkin class for Mω.

Proof. One easily verifies that the closure conditions defining Henkin classes (cf. Definition 2.6)
hold for Hω . A similar verification can be found as Proposition 2.3.4 in [4]. 2

Lemma 4.10. (Mω,Hω) is a Henkin model for (Σ, Φ).

Proof. First, note that Hω is a Henkin class for Mω by Lemma 4.9. We must prove that
(PMω

1 , . . . , PMω

n ) is the least prefixed Hω-point of ϕΦ. It is easily seen to be an Hω-point and
is a prefixed point of ϕΦ by definition. To see it is the least such point, it suffices to show
that an arbitrary prefixed Hω point (X1, . . . , Xn) satisfies the condition in the definition of
(PMω

1 , . . . , PMω

n ), i.e. that Pjt ∈ Γω implies [t] ∈ Xj for each j ∈ {1, . . . , n}.
To see this, first observe that as (X1, . . . , Xn) is an Hω-point, for each i ∈ {1, . . . , n} there

is a tuple of variables zi and a formula Fi such that Xi = {[t] | Mω |=ρω
Fi[t/zi]}. Now assume

that Pjt ∈ Γω; it follows that there is a point in the construction of Γω ⊢ ∆ω at which the
rule (Ind Pj) is applied with principal formula Pjt, induction variables z1, . . . , zn and induction
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hypotheses F1, . . . , Fn. One of the premises of this rule application is thus a subsequent of
Γω ⊢ ∆ω. If it is the major premise, then we have Fjt ∈ Γω and so Mω |=ρω

Fjt by Lemma 4.7,
i.e. [t] ∈ Xj as required. Otherwise, it is a minor premise which, again by Lemma 4.7, must
be false in Mω. But this contradicts the assumed closure of (X1, . . . , Xn) under ϕΦ. The full
details appear as Lemma 3.3.12 of [4]. 2

We now complete the proof of Theorem 3.6. Suppose that Γ ⊢ ∆ is not cut-free provable
in LKID. Letting (Mω, ρω) be the counter-interpretation and Hω be the Henkin counter-class
for the limit sequent Γω ⊢ ∆ω constructed from Γ ⊢ ∆, we have by Lemma 4.10 that (Mω,Hω)
is a Henkin model for (Σ, Φ). By Lemma 4.7, every finite subsequent of Γω ⊢ ∆ω is false in
(Mω,Hω), including Γ ⊢ ∆, so Γ ⊢ ∆ is not Henkin valid.

5 LKIDω: a proof system for infinite descent in FOLID

In this section, we formulate an infinitary proof system, LKIDω, formalising a version of proof by
infinite descent in FOLID. As in the case of LKID, we prove soundness and cut-free completeness
of LKIDω, and thereby infer the eliminability of cut in LKIDω. However, for LKIDω, the
soundness and completeness results are relative to the more natural class of standard models of
FOLID, rather than the wider class of Henkin models.

The proof rules of the system LKIDω are the rules of LKID described in §3, except that
for each inductive predicate Pi of Σ, the induction rule (Ind Pi) of LKID is replaced by the
case-split rule:

case distinctions
(Case Pi)

Γ, Piu ⊢ ∆

where for each production having predicate Pi in its conclusion, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm
tm(x)

Pit(x)

there is a corresponding case distinction:

Γ,u = t(y), Q1u1(y), . . . , Qhuh(y), Pj1t1(y), . . . , Pjm
tm(y) ⊢ ∆

where y is a vector of distinct variables of the same length as x, and y 6∈ FV (Γ ∪ ∆ ∪ {Piu})
for all y ∈ y. The formulas Pj1t1(y), . . . , Pjm

tm(y) occurring in a case distinction are said to
be case-descendants of the principal formula Piu.

Example 5.1. The case-split rule for N from Example 2.2 is:

Γ, t = 0 ⊢ ∆ Γ, t = sx, Nx ⊢ ∆
x 6∈ FV (Γ ∪ ∆ ∪ {Nt}) (Case N)

Γ, Nt ⊢ ∆

The formula Nx occurring in the right-hand premise is the only case-descendant of the formula
Nt occurring in the conclusion.

Example 5.2. The rule for E from Example 2.2 is:

Γ, t = 0 ⊢ ∆ Γ, t = sx, Ox ⊢ ∆
x 6∈ FV (Γ ∪ ∆ ∪ {Et}) (Case E)

Γ, Et ⊢ ∆

The formula Ox occurring in the right-hand premise is the only case-descendant of the formula
Et occurring in the conclusion.
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Our proof system LKIDω will be based upon infinite derivation trees. For convenience, we
distinguish between “leaves” and “buds” in derivation trees. By a leaf we mean an axiom, i.e.
the conclusion of a 0-premise inference rule. By a bud we mean any sequent occurrence in the
tree that is not the conclusion of a proof rule.

Definition 5.3 (LKIDω pre-proof). An LKIDω pre-proof of a sequent Γ ⊢ ∆ is a (possibly
infinite) derivation tree D, constructed according to the proof rules of LKIDω, such that Γ ⊢ ∆
is the root of D and D has no buds.

We remark that LKIDω pre-proofs are not sound in general. For example, there is a pre-proof
of the invalid sequent A ∧ B ⊢ consisting of infinitely many applications of (∧L), and there are
infinitely many pre-proofs of any invalid sequent consisting of nothing but spurious applications
of (Cut). We therefore impose a global condition on pre-proofs which ensures their soundness
by requiring that all infinite paths correspond to well-founded arguments.

As is standard, we define a (finite or infinite) path in a derivation tree to be a sequence
(Si)0≤i<α, for some α ∈ N∪ {∞}, of sequent occurrences in the tree such that Si+1 is a child of
Si for all i + 1 < α.

Definition 5.4 (Trace). Let D be an LKIDω pre-proof and let (Γi ⊢ ∆i)i≥0 be a path in D. A
trace following (Γi ⊢ ∆i)i≥0 is a sequence (τi)i≥0 such that, for all i:

• τi = Pji
ti ∈ Γi, where ji ∈ {1, . . . , n};

• if Γi ⊢ ∆i is the conclusion of (Subst) then τi = τi+1[θ], where θ is the substitution
associated with the rule instance;

• if Γi ⊢ ∆i is the conclusion of (=L) with principal formula t = u then there is a formula
F and variables x, y such that τi = F [t/x, u/y] and τi+1 = F [u/x, t/y];

• if Γi ⊢ ∆i is the conclusion of a case-split rule then either (a) τi+1 = τi, or (b) τi is the
principal formula of the rule instance and τi+1 is a case-descendant of τi. In the latter
case, i is said to be a progress point of the trace;

• if Γi ⊢ ∆i is the conclusion of any other rule then τi+1 = τi.

An infinitely progressing trace is a trace having infinitely many progress points.

Definition 5.5 (LKIDω proof). An LKIDω pre-proof D is an LKIDω proof if it satisfies the
following global trace condition: for every infinite path (Γi ⊢ ∆i)i≥0 in D, there is an infinitely
progressing trace following some tail of the path, (Γi ⊢ ∆i)i≥k, for some k ≥ 0.

Example 5.6. Let N, E and O be the predicates given in Example 2.2. Figure 2 gives the
initial part of an LKIDω pre-proof of the sequent Nx0 ⊢ Ex0, Ox0, with the underlined formulas
showing a trace following the right hand branch of the pre-proof. This trace progresses because
its second element Nx1 is a case-descendant of its first element Nx0. One can easily see that
by continuing the expansion of this derivation, we obtain an infinite tree with exactly one
infinite branch. Furthermore, one can similarly continue the trace along this branch to obtain
an infinitely progressing trace: (Nx0, Nx1, . . . , Nx1, Nx2, . . .). The pre-proof thereby obtained
is thus indeed an LKIDω proof.

The following lemma is a consequence of the local soundness of the proof rules and the fact
that a trace “tracks” case-descendants of an inductive predicate along a path in a derivation
tree.
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(ER1)
⊢ E0, O0

(=L)
x0 = 0 ⊢ Ex0, Ox0

(etc.)
...

(Case N)
Nx1 ⊢ Ex1, Ox1

(OR1)
Nx1 ⊢ Ox1, Osx1

(ER2)
Nx1 ⊢ Esx1, Osx1

(=L)
x0 = sx1, Nx1 ⊢ Ex0, Ox0

(Case N)
Nx0 ⊢ Ex0, Ox0

Figure 2: Portion of an LKIDω proof, with a progressing trace denoted by the underlined
formulas.

Lemma 5.7. Let D be an LKIDω pre-proof of Γ0 ⊢ ∆0, and let M be a standard model such that
Γ0 ⊢ ∆0 is false in M under the environment ρ0. Then there is an infinite path (Γi ⊢ ∆i)i≥0 in
D and an infinite sequence (ρi)i≥0 of environments such that:

1. for all i ≥ 0, Γi ⊢ ∆i is false in M under ρi;

2. if there is a trace (τi = Pji
ti)i≥n following some tail (Γi ⊢ ∆i)i≥n of (Γi ⊢ ∆i)i≥0, then

the sequence (αi)i≥n of ordinals defined by:

αi = least α such that ρi(ti) ∈ Pα
ji

is non-increasing, i.e. αj+1 ≤ αj for all j ≥ n. Furthermore, if j is a progress point of
(τi)i≥n then we have αj+1 < αj.

Proof. We write Γ 6|=ρ ∆ to mean that the sequent Γ ⊢ ∆ is false in the model M under the
environment ρ.

First note that the ordinal sequence (αi)i≥n defined in property 2 of the lemma is well-
defined, for, by the definition of trace (Definition 5.4), we have τi = Pji

ti ∈ Γi for each i ≥ n,
and since Γi 6|=ρi

∆i for all i by property 1 of the lemma we must have M |=ρi
Pji

ti, i.e.
ρi(ti) ∈

⋃

α Pα
ji

, for each i ≥ n. Now ρi(ti) ∈
⋃

α Pα
ji

iff ρi(ti) ∈ Pα
ji

for some ordinal α, and
there is a least such α by the well-ordered property of the ordinals, so αi is defined for each
i ≥ n.

The two properties required by the lemma are trivially true of the 1-element sequences
(Γ0 ⊢ ∆0) and (ρ0). We assume we have sequences (Γi ⊢ ∆i)0≤i≤k and (ρi)0≤i≤k satisfying the
two properties of the lemma and inductively show how to construct Γk+1 ⊢ ∆k+1 and ρk+1.
We always choose Γk+1 ⊢ ∆k+1 to be a premise of the rule instance in D of which Γk ⊢ ∆k

is the conclusion, so that (Γi ⊢ ∆i)i≥0 is an infinite path in D as required. To establish that
property 2 holds of the constructed sequence, it suffices to assume the existence of an arbitrary
trace (τk, τk+1) following the edge (Γk ⊢ ∆k, Γk+1 ⊢ ∆k+1), and show that αk+1 ≤ αk, with the
inequality holding strictly if k is a progress point of the trace. It is clear that this construction
can be iterated infinitely often, thus yielding the required infinite sequences.

We note that since D is an LKIDω derivation tree, the sequent Γk ⊢ ∆k is the conclusion of
an instance of some LKIDω proof rule, which clearly cannot be a rule with no premises, as the
conclusion of every such rule is easily seen to be a valid sequent but Γk 6|=ρk

∆k by the induction
hypothesis. We therefore distinguish a case for each of the remaining proof rules. In all cases
the fact that Γk+1 6|=ρk+1

∆k+1 follows immediately from the local soundness of the proof rule
in question. Furthermore, ρk+1 can always be constructed in a manner consistent with the
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requirement for the second property. We only examine the main interesting case here, which
occurs when Γk ⊢ ∆k is the conclusion Γ, Piu ⊢ ∆ of an application of rule (Case Pi). (The
remaining cases are treated in Lemma 4.2.4 of [4].) As Γ, Piu 6|=ρk

∆ by induction hypothesis,
we have M |=ρk

Piu, i.e. ρk(u) ∈
⋃

α Pα
i . Let α′ be the least ordinal α such that ρk(u) ∈ Pα

i =

πn
i (ϕα

Φ). By Definition 2.4 we thus have ρk(u) ∈ πn
i (

⋃

β<α′ ϕΦ(ϕβ
Φ)). By construction of ϕΦ

(cf. Definition 2.3), there is then a β < α′ and a production Φi,r ∈ Φ such that ρk(u) ∈ ϕi,r(ϕ
β
Φ).

Now Φi,r is a production with Pi in its conclusion,

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm
tm(x)

Pit(x)

Letting l be the length of the vector x appearing in the rule, by definition of ϕi,r we have:

ρk(u) ∈ {tM (d) | QM
1 uM

1 (d), . . . , QM
h uM

h (d),

tM
1 (d) ∈ πn

j1
(ϕβ

Φ), . . . , tM
m (d) ∈ πn

jm
(ϕβ

Φ), d ∈ Dl}

i.e. ∃d ∈ Dl. ρk(u) = tM (d) and QM
1 uM

1 (d), . . . , QM
h uM

h (d),

tM
1 (d) ∈ P β

j1
, . . . , tM

m (d) ∈ P β
jm

(∗)

Now define Γk+1 ⊢ ∆k+1 to be the (case distinction) premise corresponding to Φi,r:

Γ,u = t(y), Q1u1(y), . . . , Qhuh(y), Pj1t1(y), . . . , Pjm
tm(y) ⊢ ∆

where y 6∈ FV (Γ ∪ ∆ ∪ {Piu}) for all y ∈ y, and define ρk+1 = ρk[y 7→ d].
For property 1, we need to show Γk+1 6|=ρk+1

∆k+1. It is clear that we have M |=ρk+1
J for all

J ∈ Γ and M 6|=ρk+1
K for all K ∈ ∆ by the induction hypothesis, since ρk+1 agrees with ρk on

all variables free in Γ∪∆. Also, we have ρk+1(u) = ρk(u) since y 6∈ FV (Piu) for all y ∈ y. Now
ρk+1(t(y)) = tM (ρk+1(y)) = tM (d) = ρk(u) by the definition of ρk+1 and the statement (∗)
above, so we have ρk+1(u) = ρk+1(t(y)), i.e. M |=ρk+1

u = t(y) as required. We then just need
to show each of M |=ρk+1

Q1u1(y), . . . , M |=ρk+1
Qhuh(y), M |=ρk+1

Pj1t1(y), . . . , M |=ρk+1

Pjm
tm(y), which is clear from the statement (∗) above together with the definition of ρk+1.
For property 2, there are two possibilities to consider:

• k is not a progress point of the trace (τk, τk+1) and so, by the definition of trace, we have
τk+1 = τk. Now, since τk = Pjt (say) is a formula occurring in Γk = Γ ∪ {Piu}, and ρk+1

agrees with ρk on variables free in Γ ∪ {Piu}, we have ρk+1(t) = ρk(t) and so ρk(t) ∈ Pα
j

iff ρk+1(t) ∈ Pα
j , i.e. αk+1 = αk and we are done.

• k is a progress point of the trace (τk, τk+1). In that case, τk is the principal formula Piu
of the rule instance and τk+1 is a case-descendant of Piu, i.e. τk+1 is one of the formulas
Pj1t1(y), . . . , Pjm

tm(y). Now we have from (∗) above that there is an ordinal β < α′

such that ρk+1(t1(y)) ∈ P β
j1

, . . . , ρk+1(tm(y)) ∈ P β
jm

, where α′ = αk is the least ordinal α
satisfying ρk(t) ∈ Pα

i . We thus have αk+1 < αk as required.

2

Proposition 5.8 (Soundness). If there is an LKIDω proof of Γ ⊢ ∆ then Γ ⊢ ∆ is valid with
respect to standard models.

Proof. Let D be an LKIDω proof of Γ ⊢ ∆. If Γ ⊢ ∆ is not valid, i.e. false in some standard model
M under some environment ρ0, then we can apply Lemma 5.7 to construct infinite sequences
(Γi ⊢ ∆i)i≥0 and (ρi)i≥0 satisfying properties 1 and 2 of the lemma. As D is a proof, and
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(Γi ⊢ ∆i)i≥0 is an infinite path in D, there is an infinitely progressing trace following some tail
of the path by the global trace condition (Definition 5.5). Thus by the second property of the
lemma we can construct an infinite descending chain of ordinals, which is a contradiction. 2

Note that our use of approximants in Lemma 5.7 means that our soundness argument only
works for standard models. In fact, our main result about LKIDω is that it is complete with
respect to standard models. Thus LKIDω cannot be sound with respect to Henkin models, for
then by standard completeness of LKIDω and Henkin completeness of LKID we would have the
standard completeness of LKID, which contradicts Theorem 3.13. Our completeness result for
LKIDω is very slightly sharpened to recursive LKIDω-provability. A derivation tree is recursive
if it is decidable whether a finite sequence of numbers corresponds to a path up the tree from
the root (each number indicating the choice of rule premise determining the path) and there is
a recursive function mapping each finite path in the tree to a pair consisting of the sequent at
the end node of the path and the rule applied with that sequent as conclusion.

Theorem 5.9 (Cut-free completeness of LKIDω). If Γ ⊢ ∆ is valid with respect to standard
models, then it has a recursive cut-free proof in LKIDω.

We give the proof of this theorem in §6.

Corollary 5.10. LKIDω proves strictly more sequents than LKID.

Proof. Any LKID-provable sequent is Henkin valid by soundness (Proposition 3.5), therefore
valid since every standard model is a Henkin model (see Section 2) and hence LKIDω-provable
by Theorem 5.9. However, LKIDω is complete with respect to standard validity by Theorem 5.9
whereas LKID is necessarily incomplete in this sense by Theorem 3.13. 2

Although the completeness theorem shows that every valid sequent has a proof given by a
recursive derivation tree, the set of valid sequents relative to standard models is non-arithmetic,
since one can encode true arithmetic by Lemma 3.12. Thus there is no way of effectively
enumerating any complete subclass of recursive proofs. Hence LKIDω is, unsurprisingly, not
suitable for formal reasoning.

The closest analogue of Theorem 5.9 we are aware of in the literature appears in [27]. There,
certain refutations are defined, which can be seen as providing an analogous proof system to
LKIDω for Kozen’s propositional µ-calculus [19]. Indeed, refutations are formulated using a
trace-based proof condition very similar to Definition 5.5. (Other similar conditions appear in
[10, 21, 34, 36, 42].) One of the main results of [27] is a completeness theorem for refutations.
Nevertheless, the situations are quite different. In particular, the propositional µ-calculus is
decidable, whereas (standard) validity in FOLID is non-arithmetic. The relationship between
our system and others in the literature is discussed in more detail in Section 8.

Corollary 5.11 (Cut-eliminability for LKIDω). If Γ ⊢ ∆ is provable in LKIDω then it is cut-free
provable.

Proof. If Γ ⊢ ∆ is provable in LKIDω, it is valid with respect to standard models by soundness
(Proposition 5.8), and hence cut-free provable in LKIDω by Theorem 5.9. 2

Note that, unlike in LKID, cut-free proofs in LKIDω are quite constrained: every formula
appearing in a cut-free LKIDω proof is either a subformula of a formula appearing in the root
sequent, or related to such a formula by a finite number of definitional unfoldings.
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6 Proof of standard completeness of LKIDω (Theorem 5.9)

In this section, we present our proof of (recursive) cut-free completeness for LKIDω with respect
to standard models. As is the case in our proof of completeness for LKID (Theorem 3.6), our
proof extends the direct style of completeness argument for Gentzen’s LK (cf. [9]). However, for
LKIDω, the need to consider infinite proofs and the global trace condition imposed upon them
creates some significant complications.

Given an arbitrary sequent Γ ⊢ ∆, we construct a recursive, possibly infinite LKIDω deriva-
tion tree corresponding to an exhaustive search for a cut-free proof of Γ ⊢ ∆. If this tree is not
an LKIDω proof, then either it is not even a pre-proof, i.e. it contains a bud node, or it is a
pre-proof but contains an infinite branch that fails to satisfy the global trace condition. We use
the bud node or infinite branch as appropriate to construct a limit sequent, of which Γ ⊢ ∆ is
a subsequent. This limit sequent is in turn used to define a standard model which falsifies the
limit sequent, and thus also Γ ⊢ ∆. In the case where the tree is a pre-proof but not a proof, the
fact that there is no infinitely progressing trace along the infinite branch is used at two points.
First, it is needed to show that no sequent on the branch is cut-free provable. Second, it is used
to show that the countermodel invalidates the induced limit sequent.

Definition 6.1 (Schedule). An LKIDω-schedule element for Σ is defined as any of the following:

• a formula of the form ¬F , F1 ∧ F2, F1 ∨ F2, or F1 → F2;

• a pair of the form 〈∀xF, t〉 or 〈∃xF, t〉 where ∀xF and ∃xF are formulas and t is a Σ-term;

• a pair of the form 〈Pit, r〉 where Pit is an atomic formula, Pi is an inductive predicate
symbol, and r ∈ N satisfies Φi,r ∈ Φ;

• a tuple of the form 〈t = u, x, y, Γ, ∆〉 where t and u are Σ-terms, x and y are variables,
and Γ and ∆ are finite sets of formulas.

An LKIDω-schedule for Σ is then a recursive enumeration (Ei)i≥0 of schedule elements of Σ
such that every schedule element of Σ appears infinitely often in the enumeration.

Henceforth, we assume a fixed LKIDω-schedule (Ei)i≥0 and sequent Γ ⊢ ∆.

Definition 6.2 (Search tree). We define an infinite sequence of (Ti)i≥0 of derivation trees such
that T0 is the single-node tree Γ ⊢ ∆ and Ti is a subtree of Ti+1 with root Γ ⊢ ∆ for all i ≥ 0.
We inductively assume we have constructed Tj and show how to construct Tj+1. In general
Tj+1 will be obtained by replacing certain bud nodes of Tj with derivation trees, whence it is
clear that Tj+1 is a derivation tree of the required form.

Firstly, we replace any bud of Tj that is an instance of the conclusion of an axiom (0-
premise) rule with the derivation consisting of a single instance of that axiom. Let F be the
formula component of Ej , the jth element in the schedule for Σ. We replace any bud of Tj

that contains F with the derivation obtained by applying the sequent rule (−L) or (−R) as
appropriate with principal formula F , performing any required instantiations using the extra
information in Ej . The rule applications when Ej is of the form ¬F , F1 ∧F2, F1 ∨F2, F1 → F2,
〈∀xF, t〉 or 〈∃xF, t〉 are identical to the corresponding applications in Definition 4.2 in the LKID
completeness proof. We show the cases when Ej is not of one of these forms.

• Case Ej = 〈Piu, r〉. Then Tj+1 is obtained by first replacing every bud Γ′ ⊢ ∆′ in Tj that
satisfies Piu ∈ Γ′ with the derivation:

case distinctions
(Case Pi)

Γ′ ⊢ ∆′
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and then, assuming Φi,r is of the generic form

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm
tm(x)

Pit(x)

and only if we have u = t(u′) for some u′, replacing every bud Γ′ ⊢ ∆′ of the resulting
tree that satisfies Piu ∈ ∆′ with the derivation:

Γ′ ⊢ Q1u1(u′), ∆′ . . . Γ′ ⊢ Qhuh(u′), ∆′

Γ′ ⊢ Pj1t1(u′), ∆′ . . . Γ′ ⊢ Pjm
tm(u′), ∆′

(PiRr)
Γ′ ⊢ ∆′

• Case Ej = 〈t = u, x, y, Γ, ∆〉. Let Γ′ ⊢ ∆′ be a bud node such that t = u ∈ Γ′, Γ′ ⊆
Γ[t/x, u/y] ∪ {t = u} and ∆′ ⊆ ∆[t/x, u/y]. So Γ′ = Γ′′[t/x, u/y] ∪ {t = u} for some
Γ′′ ⊆ Γ and ∆′ = ∆′′[t/x, u/y] for some ∆′′ ⊆ ∆. Then we replace the bud node Γ′ ⊢ ∆′

by the derivation tree:

Γ′′[u/x, t/y], Γ′ ⊢ ∆′, ∆′′[u/x, t/y]
(=L)

Γ′ ⊢ ∆′

Note that the above construction is performed in such way that ensures that each sequent
in the tree is a subsequent of all its premises.

The search tree for Γ ⊢ ∆ is then defined to be Tω, the infinite tree obtained by considering
the limit as i → ∞ of the sequence of (finite) derivation trees (Ti)i≥0. By construction, the
search tree is recursive and cut-free.

Henceforth in the proof, we assume that the search tree Tω is not an LKIDω proof. If Tω is not
even a pre-proof, then it contains some bud to which no schedule element applies (e.g., a sequent
containing only atomic formulas built from ordinary predicates), for which we write Γω ⊢ ∆ω.
Otherwise, Tω is a pre-proof but not a proof (and hence infinite by soundness of LKIDω). In this
case, the global trace condition fails, so there exists an infinite path π = (Γi ⊢ ∆i)i≥0 in Tω such
that there is no infinitely progressing trace following any tail of π. We call this π the untraceable
branch of Tω, and define Γω =

⋃

i≥0 Γi and ∆ω =
⋃

i≥0 ∆i, (noting that we have Γi ⊆ Γi+1 and
∆i ⊆ ∆i+1 by construction of Tω). In either case, we call Γω ⊢ ∆ω the limit sequent. As in
the limit sequent construction in LKID completeness proof (Definition 4.2), the limit sequent
might technically fail to be a sequent since either Γω or ∆ω could be infinite. When we say that
such an infinite “sequent” is cut-free provable, we mean that some finite subsequent is cut-free
provable.

Lemma 6.3. The sequent Γω ⊢ ∆ω is not cut-free provable.

Proof. The case that Γω ⊢ ∆ω is a bud node is easy (if it were cut-free provable some schedule
element would apply to it contradicting it being a bud node). So we assume that Tω is a pre-
proof but not a proof and let π = (Γi ⊢ ∆i)i≥0 be the untraceable branch. It suffices to show
that no Γi ⊢ ∆i has a cut-free proof. So, for contradiction, we assume that T is a cut-free proof
of Γi ⊢ ∆i.

Let Γ′ ⊢ ∆′ be any node in T , let (R) be the rule applied in T with principal formula F
(say) and conclusion Γ′ ⊢ ∆′, and suppose Γ′ ⊆ Γj and ∆′ ⊆ ∆j for some j ≥ i. As F appears
infinitely often on the schedule according to which Tω is constructed, it follows that there is a
k ≥ j such that F is the principal formula of an instance of (R) in Tω with conclusion Γk ⊢ ∆k.
Since the untraceable branch is infinite, it follows that (R) is not an axiom. Therefore, for
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Γ′ ⊆ Γj ⊢ ∆j ⊇ ∆′

...

T
...

. . . Γ′′ ⊢ ∆′′ . . .
(R)

Γ′ ⊢ ∆′

...

π
...

Γ′′ ⊆ Γk+1 ⊢ ∆k+1 ⊇ ∆′′

(R)
Γj ⊆ Γk ⊢ ∆k ⊇ ∆j

Figure 3: Part of the proof of Lemma 6.3. π is the untraceable branch of the search tree Tω,
and T is the assumed proof of some sequent Γi ⊢ ∆i on π.

some premise Γ′′ ⊢ ∆′′ of the considered instance of rule (R) in T , we have Γ′′ ⊆ Γk+1 and
∆′′ ⊆ ∆k+1. This situation is illustrated in Figure 3.

Since Γi ⊆ Γi+1 and ∆i ⊆ ∆i+1 for all i ≥ 0, it follows that if (τ, τ ′) is a (progressing) trace
following the edge (Γ′ ⊢ ∆′, Γ′′ ⊢ ∆′′) in T , then (τ, . . . , τ, τ ′) is a (progressing) trace following
the subpath (Γj ⊢ ∆j , . . . , Γk ⊢ ∆k, Γk+1 ⊢ ∆k+1) of π.

Now since the root of T is Γi ⊢ ∆i and trivially Γi ⊆ Γi and ∆i ⊆ ∆i, we can repeat the
argument in the preceding two paragraphs infinitely often to obtain a path π′ = (Γ′

j ⊢ ∆′
j)j≥0

in T and a sequence k0 < k1 < k2 < . . . of natural numbers, where k0 = i, such that, for all
n ≥ 0, if (τ, τ ′) is a (progressing) trace following the edge (Γ′

n ⊢ ∆′
n, Γ′

n+1 ⊢ ∆′
n+1) in T , then

(τ, . . . , τ, τ ′) is a (progressing) trace following the subpath (Γkn
⊢ ∆kn

, . . . , Γkn+1
⊢ ∆kn+1

) of π
in Tω.

Since T is a proof, there is an infinitely progressing trace following some tail of the constructed
path π′ in T . By piecing together the induced trace segments in Tω defined above, it follows
that there then is an infinitely progressing trace following some tail of the untraceable path π
in Tω. But this contradicts the defining property of π. So there cannot exist a cut-free LKIDω

proof of Γi ⊢ ∆i. 2

We now define the equivalence relation ∼ and the counter-interpretation (Mω, ρω) for Γω ⊢
∆ω exactly as we did in the LKID completeness proof (cf. Definitions 4.3 and 4.5, respectively).
We remind the reader of the interpretation of the inductive predicates P1, . . . , Pn in Mω, since
this is crucial:

(PMω

1 , . . . , PMω

n ) = least(X1, . . . , Xn). (ϕΦ(X1, . . . , Xn) ⊆ (X1, . . . Xn) and
(∀i ∈ {1, . . . , n}. Pit ∈ Γω ⇒ [t] ∈ Xi))

The proofs of the following results are then exactly the same as the proofs of the analogous
lemmas in the LKID case (cf. Lemmas 4.6 and 4.7, respectively).

Lemma 6.4. For any inductive predicate Pi, if Mω |=ρω
Pit then Γω ⊢ Pit is cut-free provable.

Lemma 6.5. If F ∈ Γω then Mω |=ρω
F , and if F ∈ ∆ω then Mω 6|=ρω

F .

As we are considering standard completeness for LKIDω, we do not require to construct a
Henkin class for Mω as we did in the LKID case. Instead, the main remaining proof burden is
to show that our constructed counter-model is indeed a standard model:

Lemma 6.6. Mω is a standard model for (Σ, Φ).
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Proof. We must prove that (PMω

1 , . . . , PMω

n ) is the least prefixed point of ϕΦ. It is already a
prefixed point of ϕΦ by definition. To see it is the least such point, it suffices to show that an
arbitrary prefixed point (X1, . . . , Xn) of ϕΦ must also satisfy the other condition in the definition
of (PMω

1 , . . . , PMω

n ), i.e. that Pit ∈ Γω implies [t] ∈ Xi, for any i ∈ {1, . . . , n}.
Suppose for contradiction that Piu ∈ Γω but [u] 6∈ Xi. By the construction of Tω, it follows

that there is a point along the untraceable branch π at which the rule (Case Pj) is applied with
principal formula Piu, and so one of the case distinction premises of this rule instance, say:

Γ,u = t(y), Q1u1(y), . . . , Qhuh(y), Pj1t1(y), . . . , Pjm
tm(y) ⊢ ∆

is a subsequent of Γω ⊢ ∆ω.
Now since ϕi(X1, . . . , Xn) ⊆ Xi (because (X1, . . . , Xn) is a prefixed point of ϕΦ), and [u] 6∈

Xi by assumption, we must have [u] 6∈ ϕi(X1, . . . , Xn). In particular, [u] 6∈ ϕi,r(X1, . . . , Xn),
where Φi,r is the production used to obtain the case distinction above. That is, we have:

[u] 6∈ {[t(y)] | QMω

1 [u1(y)], . . . , QMω

h [uh(y)], [t1(y)] ∈ Xj1 , . . . , [tm(y)] ∈ Xjm
}

We note that, since u = t(y) ∈ Γω, we have u ∼ t(y) and thus [u] = [t(y)]. Similarly, since
each of Q1u1(y),. . . ,Qhuh(y) is in Γω, each of QMω

1 [u1(y)],. . . ,QMω

h [uh(y)] holds. It follows
that, for some k ∈ {1, . . . , m}, we must have [tk(y)] 6∈ Xjk

(for otherwise we contradict the
non-membership statement above). Furthermore, we can observe that (Piu, . . . , Piu, Pjk

tk(y))
is a progressing trace that follows a finite segment of the untraceable branch π (starting with
the point where Piu first appears on the left of some sequent on the branch and finishing with
the case distinction in which Pjk

tk(y) appears).
But, since we have Pjk

tk(y) ∈ Γ but [tk(y)] 6∈ Xjk
, we can apply the same argument as

was previously applied to Piu and Xi to obtain another case-descendant of Pjk
tk(y) and a

progressing trace segment on π continuing from the first, and so on; and we conclude that there
is an infinitely progressing trace following a tail of π, which gives the required contradiction.
Thus (PMω

1 , . . . , PMω

n ) must indeed be the least prefixed point of ϕΦ, and so Mω is a standard
model for (Σ, Φ), as required. 2

We can now complete the proof of Theorem 5.9. Suppose that Γ ⊢ ∆ is valid, i.e., true
in every standard model of (Σ, Φ), but that the search tree Tω for Γ ⊢ ∆ is not an LKIDω

proof. Let Γω ⊢ ∆ω be the limit sequent for Γ ⊢ ∆ with counter-interpretation (Mω, ρω). By
Lemma 6.5, the sequent Γω ⊢ ∆ω is false in Mω under the environment ρω, and by Lemma 6.6,
Mω is indeed a standard model of (Σ, Φ). Because Γ ⊢ ∆ is a subsequent of every sequent
appearing in Tω by construction, it is a subsequent of Γω ⊢ ∆ω , so Γ ⊢ ∆ is false in Mω, which
is a contradiction. Thus the recursive, cut-free search tree Tω is a LKIDω proof of the sequent
Γ ⊢ ∆. 2

7 CLKIDω: a cyclic subsystem of LKIDω

In this section we investigate a cyclic subsystem, CLKIDω, of LKIDω, which arises naturally by
restricting LKIDω to proofs given by regular trees, i.e. those (possibly infinite) trees with only
finitely many distinct subtrees. For example, although the LKIDω proof of Figure 2 is not regular
(since it contains infinitely many distinct variables x0, x1, x2, . . . ), it is easily transformed into
a regular proof by using the substitution rule to insert a new sequent Nx0 ⊢ Ex0, Ox0 above
the topmost sequent depicted. Concretely, regular LKIDω proofs can be represented as finite
graphs.
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(NR1)
⊢ N0

(=L)
x = 0 ⊢ Nx

Ox ⊢ Nx (†)
(Subst)

Oy ⊢ Ny
(NR2)

Oy ⊢ Nsy
(=L)

x = sy, Oy ⊢ Nx
(Case E)

Ex ⊢ Nx (∗)

(∗) Ex ⊢ Nx
(Subst)

Ey ⊢ Ny
(NR2)

Ey ⊢ Nsy
(=L)

x = sy, Ey ⊢ Nx
(Case O)

(†) Ox ⊢ Nx
(∨L)

Ex ∨ Ox ⊢ Nx

Figure 4: A CLKIDω proof of Ex ∨ Ox ⊢ Nx. The symbols (†) and (∗) indicate the pairing of
companions with buds.

Definition 7.1 (Companion). Let B be a bud of a derivation tree D. An internal node C in D
is said to be a companion for B if C and B are the same sequent.

Definition 7.2 (Cyclic pre-proof). A CLKIDω pre-proof P of Γ ⊢ ∆ is a pair (D,R), where D
is a finite derivation tree constructed according to the rules of LKIDω (cf. §5) and whose root
is Γ ⊢ ∆, and R is a function assigning a companion to every bud node in D.

The graph of P , written GP , is the graph obtained from D by identifying each bud node B
in D with its companion R(B).

By unfolding a cyclic pre-proof to its associated (possibly infinite) tree, it is immediate that
cyclic pre-proofs generate exactly the class of LKIDω pre-proofs given by the regular derivation
trees. (Recall, an infinite tree is regular if it has only finitely many distinct subtrees.)

Definition 7.3 (Cyclic proof). A CLKIDω proof is a CLKIDω pre-proof whose graph satisfies
the global trace condition of Definition 5.5.

It is immediate that cyclic proofs generate exactly the class of regular LKIDω proofs. Thus
CLKIDω can be viewed as the restriction of LKIDω to regular proofs.

Figure 4 shows a CLKIDω pre-proof of the sequent Ex ∨ Ox ⊢ Nx, where N ,E and O are
respectively the “natural”, “even” and “odd” predicates given by Example 2.2. Any infinite
path in the pre-proof has a tail consisting of repetitions of the “figure-of-∞” loop given by the
identification of the buds with their companions, whence there is an infinitely progressing trace
on this tail given by the underlined formulas. Thus this pre-proof is indeed a CLKIDω proof.

Proposition 7.4. It is decidable whether a CLKIDω pre-proof is a proof.

Proof. Since there are only finitely many sequents in a CLKIDω pre-proof P and each sequent is
itself finite (and thus can admit only finitely many possible trace values), one can build a Büchi
automaton B1 accepting exactly those infinite strings of vertices of GP such that an infinitely
progressing trace exists on some suffix of the string, and a second automaton B2 accepting
exactly those strings that are paths in GP . Since Büchi automata are closed under language
complementation and intersection, one can build a third automaton B accepting exactly those
strings which are infinite paths in GP such that there does not exist an infinitely progressing
trace on any tail of the path. P is then a CLKIDω proof exactly if B accepts no strings, which
is a decidable problem (cf. [39]).

The full construction appears in appendix A of [4]. Similar arguments also appear in [27,
34, 21]. 2

We now turn our attention to the question of the relationship between CLKIDω and our
system for induction, LKID. First, we show how to convert an LKID proof into a CLKIDω
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proof. Essentially, as shown in the next lemma, any use of induction over an inductive formula
Pjt in an LKID proof can be replaced by (a) a cut on a formula which states that the minor
premises of the rule together imply the induction hypothesis associated with Pjt, together with
(b) a CLKIDω proof of the aforementioned formula.

Lemma 7.5. Any instance of the LKID induction rule (Ind Pj) for an inductive predicate Pj

is derivable in CLKIDω.

Proof. We recall the construction and associated notations for the induction rules for inductive
predicates given in §3. We show how to derive an arbitrary instance of the induction rule (Ind Pj)
in which the induction hypothesis Fi and the induction variables zi have been associated to the
inductive predicate Pi for each i ∈ {1, . . . , n}:

minor premises Γ, Fjt ⊢ ∆
(Ind Pj)

Γ, Pjt ⊢ ∆

Now define M to be the smallest set of formulas such that for each minor premise of the
considered instance of (Ind Pj), say:

Γ, Q1u1(x), . . . , Qhuh(x), Gj1t1(x), . . . , Gjm
tm(x) ⊢ Fit(x), ∆

we have that a corresponding formula:

∀y.(Q1u1(y) ∧ . . . ∧ Qhuh(y) ∧ Gj1t1(y) ∧ . . . ∧ Gjm
tm(y) → Fit(y))

is in M. Now, consider the following derivation in CLKIDω (we write rule applications with a
double line to indicate that we also apply the rule (Wk)):

M, Pjz ⊢ Fjz
(Subst)

M, Pjt ⊢ Fjt
(∧L)

...
(∧L)

∧

M, Pjt ⊢ Fjt
(→R)

Pjt ⊢
∧

M → Fjt

minor premises
...

{Γ ⊢ M, ∆ | M ∈ M}
(∧R)

...
(∧R)

Γ ⊢
∧

M, ∆ Γ, Fjt ⊢ ∆
(→L)

Γ,
∧

M → Fjt ⊢ ∆
================================================ (Cut)

Γ, Pjt ⊢ ∆

where z is a tuple of appropriately many variables. We remark that obtaining each of the minor
premises of the considered instance of (Ind Pj) from the sequents {Γ ⊢ M, ∆ | M ∈ M} is
simply a matter of decomposing each M ∈ M using the rules (∀R),(→R) and (∧L). It then
remains to provide a CLKIDω proof of the sequent M, Pz ⊢ Fz.

First, we apply the case-split rule (Case Pj) to the sequent M, Pjz ⊢ Fjz, thus generating a
case for each production which has Pj occurring in its conclusion. We show how to treat a case
arising from an arbitrary production, say:

Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm
tm(x)

Pjt(x)

For convenience, we shall use the following abbreviations for sets of formulas:

Q =def Q1u1(y), . . . , Qhuh(y)
P =def Pj1t1(y), . . . , Pjm

tm(y)
G =def Gj1t1(y), . . . , Gjm

tm(y)
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Now, as there is a minor premise Γ,Q,G ⊢ Fjt(y), ∆ corresponding to the production above
in the considered instance of (Ind Pj), we have:

∀y(
∧

Q∧
∧

G → Fjt(y)) ∈ M

We choose to display this formula explicitly in the premise of the application of (=L) in the
following CLKIDω derivation:

other cases . . .

(Ax)
Fjt(y) ⊢ Fjt(y)

(Ax)
{Q ⊢ Qi | Qi ∈ Q}

(∧R)
...

(∧R)
Q ⊢

∧

Q

{M, Pji
z ⊢ Gji

z | 1 ≤ i ≤ m} (†2)
(Subst)

{M, Pji
ti(y) ⊢ Gji

ti(y) | 1 ≤ i ≤ m}
(∧R)

...
(∧R)

M,P ⊢
∧

G
==================================== (∧R)

M,Q,P ⊢
∧

Q ∧
∧

G
============================================== (→L)

M,
∧

Q ∧
∧

G → Fjt(y),Q,P ⊢ Fjt(y)
(∀L)

...
(∀L)

M,∀y.(
∧

Q ∧
∧

G → Fjt(y)),Q,P ⊢ Fjt(y)
(=L)

M, z = t(y),Q,P ⊢ Fjz
(Case Pj)

M, Pjz ⊢ Fjz (†1)

where y is suitably fresh. We have thus far obtained a CLKIDω derivation with root sequent
M, Pjz ⊢ Fjz (†1) and bud nodes {M, Pji

z ⊢ Gji
z | i ∈ {1, . . . , m}} (†2), and we observe that

for each i ∈ {1, . . . , m} there is a progressing trace:

(Pjz, Pji
ti(y), . . . , Pji

ti(y), Pji
z)

following the path in this derivation from the root sequent (†1) to the bud M, Pji
z ⊢ Gji

z. Now
note that, for each i ∈ {1, . . . , m}, if the predicates Pji

and Pj are not mutually dependent, then
Gji

= Pji
, and so we may apply the rule (Ax) to the bud node M, Pji

z ⊢ Gji
z. Thus we need

to consider only the bud nodes M, Pji
z ⊢ Gji

z such that Pji
and Pj are mutually dependent,

and are thus of the form M, Pji
z ⊢ Fji

z. We treat these as follows:

• if Pji
= Pj , then the bud node is identical to the root sequent (†1), and we set the

companion of the bud to be (†1).

• if Pji
6= Pj , then note that as Pji

and Pj are mutually dependent, there is a minor premise
(and corresponding formula in M) for every production which has Pji

occurring in its
conclusion. We thus can repeat the derivation above for the bud node under consideration
to obtain new bud nodes (†3), to which we may assign (†1) or any ancestor node of the
form (†2) as a companion.

We iterate this process as often as required, successively generating bud nodes of the form
(†3), (†4), . . ., noting that any bud node of the form (†k) may potentially be assigned an ancestral
companion of the form (†k′) for any k′ ∈ {1, . . . , k − 1}, and that bud nodes are always assigned
ancestors as companions. This iteration is possible because M contains a formula corresponding
to each production having in its conclusion a predicate that is mutually dependent with Pj and,
since mutual dependency between predicates is transitive, the predicate Pji

occurring on the left
of any bud node (†k) is always mutually dependent with Pj . Also, we observe that the iteration
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process never produces bud nodes of the form (†n + 2) (and so must terminate), because there
are only n distinct inductive predicate symbols.

We thus obtain a CLKIDω derivation tree D with root sequent M, Pjz ⊢ Fjz and a repeat
function R that assigns to every bud node of D an ancestor of the bud as companion, i.e.
(D,R) is a CLKIDω pre-proof. Furthermore, for each bud node B in the tree, there is a trace τi

following the unique path in D from R(B) to B that takes the same value at B and R(B). This
is sufficient to ensure that (D,R) is a CLKIDω proof (for full details see Lemma 7.3.1 of [4]),
which completes the derivation of the considered instance of (Ind Pj) inside CLKIDω . 2

Theorem 7.6. Every LKID proof of Γ ⊢ ∆ can be transformed into a CLKIDω proof of Γ ⊢ ∆.

Proof. Given any LKID proof D of Γ ⊢ ∆ we can obtain a CLKIDω pre-proof P of Γ ⊢ ∆ by
replacing every instance of an induction rule in D with the corresponding CLKIDω derivation
constructed in Lemma 7.5. Furthermore, by inspection it is clear that this process does not
create any new overlaps between the cycles in the inserted derivations. The fact that P is a
CLKIDω proof thus follows immediately from the fact that the derivations replacing induction
rule instances each contain a CLKIDω proof of one branch, and the required minor premises as
the only other bud nodes of the other branches. 2

Interestingly, our translation makes essential use of both the cut and substitution rules in
CLKIDω. Indeed, it seems certain that cut is not eliminable from the system CLKIDω, and it
is at least plausible that neither is substitution (the importance of which is illustrated in the
discussion of Figure 2 at the beginning of this section.) Nevertheless, CLKIDω arises naturally
as the restriction of a complete infinitary proof system to proofs with finite representation. The
main open question relating to it is whether the converse to Theorem 7.6 holds. We strongly
believe this to be the case, and hence present it as a conjecture.

Conjecture 7.7. If there is a CLKIDω proof of a sequent Γ ⊢ ∆ then there is an LKID proof
of Γ ⊢ ∆.

This conjecture does not seem straightforward. For example, the methods applied in [35],
which show, in a different setting, the equivalence of a weaker global proof condition with a
local transfinite induction principle, do not adapt.

An interesting perspective on the conjecture can be obtained by making a comparison with
Kozen’s modal µ-calculus [19]. Because of the use of explicit induction rules, there is an obvious
analogy between proofs in LKID and proofs in Kozen’s axiomatization for the modal µ-calculus.
Also, as we already commented in Section 5, there is an analogy between proofs in LKIDω and
the refutations introduced for the modal µ-calculus by Niwinski and Walukiewicz [27]. This
latter analogy restricts to one between proofs in CLKIDω and regular refutations for the modal
µ-calculus. Given these correspondences, we observe that the analogous result to Conjecture 7.7
does hold for the modal µ-calculus; that is, a formula has a proof in Kozen’s axiomatization if
and only if it is provable via a regular refutation (by which, strictly speaking, we mean that
the negation of the formula has a regular refutation). This equivalence is established by the
following chain of reasoning. By the results in [27], a modal µ-calculus formula is provable via a
regular refutation if and only if it is provable via any refutation if and only if it is valid. Finally,
by Walukiewicz’ celebrated completeness theorem for Kozen’s axiomatization [43], one has that
a formula is valid if and only if it is provable in Kozen’s system.

Unfortunately, the above chain of reasoning is seriously broken in the case of Conjecture 7.7,
where the situation is instead as summarised in Figure 5. One issue is that it is not the case that
provability in CLKIDω and LKIDω coincide; regularity is a real restriction. Similarly, Henkin
validity (which characterises LKID-provability) does not coincide with standard validity (which
characterises LKIDω-provability).
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Nevertheless, we believe that the equivalence between Kozen proofs and regular refutations
for the modal µ-calculus provides weak evidence for Conjecture 7.7 in the following sense. Since it
is the case for the modal µ-calculus that every proof via a regular refutation has a corresponding
proof in Kozen’s axiomatization, it is plausible that it might be possible to prove this by a
combinatorial transformation of one type of proof into the other. If so, it appears likely that
the same combinatorial method would then adapt to establish Conjecture 7.7. Unfortunately, in
spite of intensive effort, we have not been able to get any such combinatorial method to succeed.
An alternative approach to Conjecture 7.7 would be to obtain a proof of soundness for CLKIDω

proofs with respect to Henkin models. However, we also have no idea how to achieve this.

standard validity

Henkin validity

cut-free
LKIDω

provability

cut-free
LKID

provability

CLKIDω

provability

standard models
are Henkin models (§2)

Theorem 5.9

Proposition 5.8

Proposition 3.5 Theorem 3.6

CLKIDω proofs are
LKIDω proofs (§7)
+ Corollary 5.11

Theorem 7.6

Conjecture 7.7

Figure 5: A diagrammatic summary of our developments. The solid arrows are implications,
and the dashed arrow indicates our conjectured implication.

8 Conclusions and discussion

The goal of the present paper has been to develop and compare proof-theoretic foundations for
proof by induction and proof by infinite descent. We have addressed this within the context of
first-order logic with inductively defined predicates, FOLID. Each of the two styles of reasoning
has been formulated as a sequent calculus for which an appropriate cut-free completeness result
has been proved. The proof system LKID, formalizing proof by induction, is complete relative
to a class of Henkin models. The infinitary proof system, LKIDω, formalising proof by infinite
descent, is complete relative to the more restrictive class of standard models, and, as a result,
is strictly more powerful. The infinitary system has a natural subsystem, CLKIDω, consisting
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of cyclic proofs, that is proofs given by regular trees. Cyclic proofs are at least as powerful as
proofs by explicit induction. Our main outstanding conjecture is that they are no more powerful.

It is useful to consider our contributions in comparison to analogous research on propositional
fixed-point logics, such as Kozen’s modal µ-calculus [19]. In the discussion at the end of Section 7,
we commented that the use of explicit induction means that there is an analogy between LKID
and Kozen’s axiomatization of the modal µ-calculus [19]. Likewise, our standard models, in
which fixed-points are obtained via approximants, are analogous to the usual Kripke-frame
models of the modal µ-calculus, also considered in op. cit. Our more general notion of Henkin
model also has an analogue, for the modal µ-calculus, given by the modal µ-frames introduced
in [2, 16]. In these last references, the completeness of Kozen’s axiomatization is established
relative to modal µ-frames, and our Theorem 3.6 can be seen as analogous to these results.2

Independently to our work, Kashima and Okamoto [18] have extended the completeness results
of [2, 16] to a first-order setting, using a notion of general model, which plays a role for the first-
order modal µ-calculus identical to that played by Henkin models in our paper. Compared with
their work, our development differs in being for a different logic, and an additional contribution
of the present paper is the use of completeness to establish cut-admissibility for LKID.

As discussed in Section 5, the refutations of Niwinski and Walukiewicz [27] give a tableau-
based proof system for the modal µ-calculus which is analogous to our infinitary proof system
LKIDω in its use of non-well-founded derivations and a trace-based proof condition. Similarly,
regular refutations are analogous to proofs in our cyclic system CLKIDω. The strong analogy be-
tween our systems and refutations can be further appreciated if the latter are recast in a sequent
calculus format, as has been done explicitly in [10, 36]. Another propositional setting in which
cyclic sequent proof systems have been considered is that of µ-lattices (which model a propo-
sitional logic of linear conjunction and disjunction with fixed points), and of related categories
with fixed points (called Ω-models), both of which have been studied by Santocanale [30, 29].
Two main properties distinguish the aforementioned proof systems for propositional fixed point
logics, influenced by refutations, from the first-order systems of the present paper. First, for all
the propositional systems mentioned above, it holds that cut is admissible over cut-free cyclic
proofs, a situation that we believe not to be the case for our cyclic system CLKIDω (see Sec-
tion 7). Second, for the systems considered in [10, 36, 30], it holds that the cyclic (regular) proof
systems are as powerful as the full infinitary systems, whereas we know that this does not hold
in the first-order setting, since LKIDω is complete for standard validity by Theorem 5.9 but
this cannot be the case for CLKIDω for the same reason as LKID (see Theorem 3.13). The last
distinction has a semantic correlate. For the modal µ-calculus, validity in the modal µ-frames
of [2, 16] is equivalent to validity in standard Kripke frames, as follows from Walukiewicz’ com-
pleteness theorem for Kozen’s axiomatization [43]. Similarly, validity in Santocanale’s µ-lattices
is equivalent to validity in the restricted class of complete lattices [30].3 However, in the setting
of FOLID, validity in Henkin models is strictly weaker than validity in standard models.

Summarising the entire discussion above, for the first-order logic with inductive predicates
considered in the present paper, we have the situation depicted in Figure 5. However, for
propositional logics with fixed-points, there are typically extra identifications, since the distinc-
tion between (the analogues of) Henkin validity and standard validity disappears, as does the
distinction between provability in the infinitary and cyclic systems.

There are many natural directions for future research. One gap to fill is the absence of
syntactic proofs of cut elimination for LKID and LKIDω. In the case of LKID it would be
nice to obtain an elementary proof in primitive recursive arithmetic augmented by quantifier-

2As discussed in Section 7, Walukiewicz’ completeness theorem for Kozen’s axiomatization relative to standard
(Kripke-frame) models [43] has no analogue in our setting since LKID is incomplete for standard models.

3Both these coincidences can be viewed as consequences of the fact that free algebraic structures with fixed-
points can be embedded into corresponding complete lattices, a perspective that is developed in [30, 31].
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free transfinite induction up to ǫ0 (the use of transfinite induction is necessary because cut-
elimination for LKID implies the consistency of PA, as demonstrated by our Theorem 3.15). In
the case of LKIDω, it would be interesting to see if Mints’ “continuous cut elimination” (see,
e.g., [13, [§§6.2.7–11]), which applies to non-well-founded derivation trees, adapts to LKIDω

pre-proofs, and, further, preserves the global trace condition. Also, while on the subject of
alternative proof methods, we wonder if Niwinski and Walukiewicz’ idea of deriving completeness
from determinacy results, [27], can be used to give an alternative proof of completeness for
LKIDω, rather than the direct proof we gave in §5.

In the direction of extending the results obtained here, we wonder whether more liberal
subsystems of LKIDω than CLKIDω might also suitable be for formal proof. For example, one
might restrict to LKIDω proofs generated by pushdown automata or by recursion schemata,
over which the global trace condition should still be decidable. We wonder if such proofs lead
to an increase in power over regular proofs. Further, we wonder if, for some suitably chosen
such class of proofs, the cut rule is eliminable. (A syntactic proof of cut-elimination for LKIDω

would be likely to be indispensible in investigating this question.) In the opposite direction,
one might also consider more restrictive cyclic systems obtained by tightening the global trace
condition to improve its computational complexity (cf. [21, 34, 4]).

We comment that it should be relatively straightforward to extend our proof systems LKID,
LKIDω and CLKIDω (together with the completeness results for the first two) to more general
(co)inductive definition schemas, for example to iterated inductive definitions [23], or to the first-
order µ-calculus, cf. [35]. Indeed, the latter should be naturally accommodated by requiring a
parity-game-style condition to hold of traces along infinite paths (needed to address alternating
least and greatest fixed-points), as in the refutations of Niwinski and Walukiewicz [27] (and in
the various proof systems derived from refutations, discussed above). Another context in which
cyclic proofs might prove useful is in the context of dependent type theory, where cyclic proofs
might be used to justify termination for functions defined by pattern matching (corresponding
to our case-split rules) and general recursion (corresponding to proof cycles). Independently of
the work in this paper, such a system has been implemented for first-order parameterized data
types in Wahlstedt’s 2007 PhD thesis [42].

A practical motivation behind our investigations was to increase and improve our under-
standing of the armoury of proof methods available for inductive theorem proving. In this
regard, we believe our main contribution is in providing a firm foundation for cyclic reasoning.
Currently, cyclic methods are sometimes included in theorem provers, with various heuristic
conditions for guaranteeing soundness, cf. [44, 32, 14]. It would be a worthwhile project to
systematically study such heuristic conditions and to relate them to our trace-based condition,
which we believe to subsume them all.

There are already indications that cyclic reasoning, as formulated in the present paper, does
have potential applications. The style of cyclic reasoning we have developed for FOLID has been
adapted theoretically to the setting of the bunched logic BI [5] and to Hoare-style termination
proofs in separation logic [6], and is also beginning to see practical use in theorem proving
tools [26, 41]. Plausibly, cyclic reasoning is also likely to prove especially useful for demonstrating
properties of mutually defined relations, for which the associated induction principles are often
extremely complex. We hope that our foundational presentation of cyclic proofs here will be of
assistance in future practical developments.
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[41] Răzvan Voicu and Mengran Li. Descente infinie proofs in Coq. In Proceedings of the 1st
Coq Workshop. Technische Universität München, 2009.

[42] David Wahlstedt. Dependent Type Theory with First-Order Parameterized Data Types and
Well-Founded Recursion. PhD thesis, Chalmers University of Technology, 2007.

[43] Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-calculus.
Information and Computation, 157:142–182, 2000.

[44] Claus-Peter Wirth. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1–96,
2004.

A Proof of soundness for LKID induction rules

In this appendix we provide a detailed proof of the crucial case of Proposition 3.5: the Henkin
soundness of the induction rules of LKID.

Consider an arbitrary induction rule instance:

minor premises Γ, Fjt ⊢ ∆
(Ind Pj)

Γ, Pjt ⊢ ∆

and, for each i ∈ {1, . . . , n}, let zi and Gi be, respectively, the induction variables and the
formula associated with Pi in the construction of this instance of (Ind Pj), cf. Section 3. We
write ki for the arity of Pi.

We assume for contradiction that all the premises of the rule instance are Henkin valid
whereas the conclusion is invalid, i.e. false in some Henkin model (M,H). Thus for some
environment ρ we have M |=ρ J for all J ∈ Γ and M |=ρ Pjt, i.e. ρ(t) ∈ πn

j (µH.ϕΦ), but
M 6|=ρ K for all K ∈ ∆.

Next, let y be the fresh variables appearing in the minor premises and let e be a tuple of
arbitrary elements of D such that |y| = |e|. Define an environment ρ′ by ρ′ = ρ[x 7→ e], and
note that since x 6∈ FV (Γ ∪ ∆) for all x ∈ x by the rule side condition, it holds that M |=ρ′ J
for all J ∈ Γ and M 6|=ρ′ K for all K ∈ ∆.

Now define an n-tuple of sets (Y1, . . . , Yn) ∈ P(Dk1) × . . . × P(Dkn) by:

Yi =

{

{d ∈ Dki | M |=ρ′[zi 7→d] Gi} if Prem∗(Pj , Pi)
Dki otherwise

for each i ∈ {1, . . . , n}, where zi is the tuple of ki induction variables for Pi. We assert the
following:
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CLAIM: (Y1, . . . , Yn) is a prefixed H-point of ϕΦ.

Then, since µH.ϕΦ is the least prefixed H-point of ϕΦ, it holds that πn
j (µH.ϕΦ) ⊆ Yj . As

the major premise Γ, Fjt ⊢ ∆ is valid and so true in (M,H), and as M |=ρ′ J for all J ∈ Γ
but M 6|=ρ′ K for all K ∈ ∆, we must have M 6|=ρ′ Fjt. We then have M 6|=ρ′[zj 7→ρ′(t)] Fj ,
i.e. ρ′(t) 6∈ Yj , so also ρ′(t) 6∈ πn

j (µH.ϕΦ). As x 6∈ FV (Pjt) for all x ∈ x by the rule side
condition, i.e. no variable x ∈ x occurs in t, we must have ρ′(t) = ρ(t). But then we have
ρ(t) 6∈ πn

j (µH.ϕΦ), which is a contradiction, as required.
To finish the proof, it suffices to prove the claim above that (Y1, . . . , Yn) is a prefixed H-

point of ϕΦ. First, writing H = {Hk | k ∈ N}, observe that by Lemma 2.7, Yi ∈ Hki
for each

i ∈ {1, . . . , n}, i.e. (Y1, . . . , Yn) is an H-point. It remains to show that (Y1, . . . , Yn) is a prefixed
point of ϕΦ, i.e., that ϕi(Y1, . . . , Yn) ⊆ Yi for each i ∈ {1, . . . , n}. We argue by cases on i as
follows:

1. ¬Prem∗(Pj , Pi) holds. It is then trivial that ϕi(Y1, . . . , Yn) ⊆ Dki = Yi.

2. Prem∗(Pj , Pi) and ¬Prem∗(Pi, Pj) hold. As Pj and Pi are thus not mutually dependent,
Gi = Pizi and we have:

Yi = {d ∈ Dki | M |=ρ′[zi 7→d] Pizi}
= {d ∈ Dki | d ∈ πn

i (µH.ϕΦ)}
= πn

i (µH.ϕΦ)

It suffices to show that ϕi,r(Y1, . . . , Yn) ⊆ Yi = πn
i (µH.ϕΦ) for an arbitrary production

Φi,r, say:
Q1u1(x) . . . Qhuh(x) Pj1t1(x) . . . Pjm

tm(x)

Pit(x)

We are thus required to show:

{tM (d) | QM
1 uM

1 (d), . . . , QM
h uM

h (d),
tM
1 (d) ∈ Yj1 , . . . , t

M
m (d) ∈ Yjm

} ⊆ πn
i (µH.ϕΦ)

Note that for each of the inductive predicates Pjk
appearing in the premises of the pro-

duction Φi,r, Prem∗(Pj , Pjk
) holds (because Prem∗(Pj , Pi) and Prem(Pi, Pjk

) hold), and
¬Prem∗(Pjk

, Pj) holds (because otherwise we would have Prem∗(Pi, Pj), which contra-
dicts the case assumption), and we therefore have Yjk

= πn
jk

(µH.ϕΦ) by a similar argument
to the one above concerning Yi. We can therefore rewrite the statement we need to prove
as:

{tM (d) | QM
1 uM

1 (d), . . . , QM
h uM

h (d),
tM
1 (d) ∈ πn

j1
(µH.ϕΦ), . . . , tM

m (d) ∈ πn
jm

(µH.ϕΦ)} ⊆ πn
i (µH.ϕΦ)

i.e., ϕi,r(µH.ϕΦ) ⊆ πn
i (µH.ϕΦ), which is true since µH.ϕΦ is a prefixed H-point of ϕΦ.

This completes the case.

3. Prem∗(Pj , Pi) and Prem∗(Pi, Pj) both hold, i.e. Pi and Pj are mutually dependent. As
in the previous case, we require to show ϕi,r(Y1, . . . , Yn) ⊆ Yi, i.e.

{tM (d) | QM
1 uM

1 (d), . . . , QM
h uM

h (d),
tM
1 (d) ∈ Yj1 , . . . , t

M
m (d) ∈ Yjm

} ⊆ Yi
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As Pi and Pj are mutually dependent, there is a minor premise of the instance of (Ind Pj):

Γ, Q1u1(y), . . . , Qhuh(y), Gj1t1(y), . . . , Gjm
tm(y) ⊢ Fit(y), ∆

As each minor premise is true in (M,H) by assumption and we have M |=ρ′ J for all
J ∈ Γ and M 6|=ρ′ K for all K ∈ ∆, the following implication holds:

M |=ρ′ Q1u1(y), . . . , M |=ρ′ Qhuh(y),
M |=ρ′ Gj1t1(y), . . . , M |=ρ′ Gjm

t1(y)
=⇒ M |=ρ′ Fit(y)

and by applying the semantic definitions and minor results concerning substitution we
obtain:

Q1u
M
1 (ρ′(y)), . . . , Qhu

M
h (ρ′(y)),

M |=ρ′[zj1 7→tM1 (ρ′(y))] Gj1 , . . . ,

M |=ρ′[zjm 7→tMm (ρ′(y))] Gjm

=⇒ M |=ρ′[zi 7→tM(ρ′(y))] Fi

Note that for each inductive predicate Pjk
appearing in the premises of the production in

question, Prem∗(Pj , Pjk
) holds (since Prem∗(Pj , Pi) and Prem(Pi, Pjk

) hold). Recalling
that ρ′(y) = e, we thus have:

Q1u
M
1 (e), . . . , Qhu

M
h (e),

tM
1 (e) ∈ Yj1 , . . . , t

M
m (e) ∈ Yjm

=⇒ tM (e) ∈ Yi

which, as e was arbitrarily chosen, completes the case and thus the proof. 2
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