
ar
X

iv
:0

80
8.

38
84

v4
 [

cs
.C

C
]

 2
3

A
ug

 2
01

0

The Complexity of Reasoning for Fragments of

Default Logic∗

Olaf Beyersdorff, Arne Meier, Michael Thomas, and Heribert Vollmer

Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz Universität
Appelstr. 4, 30167 Hannover, Germany

{beyersdorff,meier,thomas,vollmer}@thi.uni-hannover.de

Abstract. Default logic was introduced by Reiter in 1980. In 1992, Gottlob
classified the complexity of the extension existence problem for propositional
default logic as Σp

2-complete, and the complexity of the credulous and skeptical
reasoning problem as Σp

2-complete, resp. Πp
2-complete. Additionally, he investi-

gated restrictions on the default rules, i.e., semi-normal default rules. Selman
made in 1992 a similar approach with disjunction-free and unary default rules. In
this paper we systematically restrict the set of allowed propositional connectives.
We give a complete complexity classification for all sets of Boolean functions in
the meaning of Post’s lattice for all three common decision problems for propo-
sitional default logic. We show that the complexity is a hexachotomy (Σp

2-, ∆
p
2-,

NP-, P-, NL-complete, trivial) for the extension existence problem, while for
the credulous and skeptical reasoning problem we obtain similar classifications
without trivial cases.

Key words: computational complexity, default logic, nonmonotonic reasoning,
Post’s lattice

1 Introduction

When formal specifications are to be verified against real-world situations, one
has to overcome the qualification problem that denotes the impossibility of
listing all conditions required to decide compliance with the specification. To
overcome this problem, McCarthy proposed the introduction of “common-sense”
into formal logic [McC80]. Among the formalisms developed since then, Rei-
ter’s default logic is one of the best known and most successful formalisms for
modeling common-sense reasoning. Default logic extends the usual logical (first-
order or propositional) derivations by patterns for default assumptions. These
are of the form “in the absence of contrary information, assume . . .”. Reiter
argued that his logic is an adequate formalization of the human reasoning under
the closed world assumption. In fact, today default logic is used in various areas
of artificial intelligence and computational logic.

What makes default logic computationally presumably harder than propo-
sitional or first-order logic is the fact that the semantics (i.e., the set of conse-
quences) of a given set of premises is defined in terms of a fixed-point equation.
The different fixed points (known as extensions or expansions) correspond to
different possible sets of knowledge of an agent, based on the given premises.

∗ A preliminary version of this paper appeared in the proceedings of the conference SAT’09
[BMTV09b]. This work was supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft) under grants KO 1053/5-2 and VO 630/6-1.

http://arxiv.org/abs/0808.3884v4

In a seminal paper from 1992, Georg Gottlob classified the complexity of
three important decision problems for default logic:

1. Given a set of premises, decide whether it has an extension at all.

2. Given a set of premises and a formula, decide whether the formula occurs
in at least one extension (so called brave or credulous reasoning).

3. Given a set of premises and a formula, decide whether the formula occurs
in all extensions (cautious or skeptical reasoning).

While in the case of first-order default logic, all these computational tasks are
undecidable, Gottlob proved that for propositional default logic, the first and
second are complete for the class Σp

2 , the second level of the polynomial hierar-
chy (Meyer-Stockmeyer hierarchy), while the third is complete for the class Πp

2

(the class of complements of Σp
2 sets).

In the past, various semantic and syntactic restrictions have been proposed
in order to identify computationally easier or even tractable fragments (see, e.g.,
[Sti90,KS91,BEZ02]). This is the starting point of the present paper.We propose
a systematic study of fragments of default logic defined by restricting the set
of allowed propositional connectives. For instance, if we look at the fragment
where we forbid negation and the constant 0 and allow only conjunction and
disjunction, we show that while the first problem is trivial (there always is an
extension, in fact a unique one), the second and third problem become coNP-
complete. In this paper we look at all possible sets B of propositional connectives
and study the three decision problems defined by Gottlob when all involved
formulae contain only connectives from B. The computational complexity of
the problems then, of course, becomes a function of B. We will see that Post’s
lattice of all closed classes of Boolean functions is the right way to study all such
sets B. Depending on the location of B in this lattice, we completely classify
the complexity of all three reasoning tasks, see Figs. 1 and 2. We will show that,
depending on the set B of occurring connectives, the problem of determining
the existence of an extension is either Σp

2-complete, ∆p
2-complete, NP-complete,

P-complete, NL-complete, or trivial, while for the reasoning problems the trivial
cases split up into coNP-complete, P-complete, and NL-complete ones (under
constant-depth reductions).

The motivation behind our approach lies in the hope that identifying frag-
ments of default logic with simpler reasoning procedures may help us to under-
stand the sources of hardness for the full problem and to locate the boundary
between hard and easy fragments. In particular, these procedures may lead to
algorithms for solving the studied problems more efficiently.

This paper is organized as follows. After some preliminary remarks in Sec-
tion 2, we introduce Boolean clones in Section 3. At this place we also provide
a full classification of the complexity of logical implications for fragments of
propositional logic, as this classification will serve as a central tool for subse-
quent sections. In Section 4, we start to investigate propositional default logic.
Section 5 then presents our main results on the complexity of the decision prob-
lems for default logic. Finally, in Section 6 we conclude with a summary and a
discussion.

2

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3
0

S2
00

S3
02 S3

01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3
1

S2
10

S3
12S3

11

S3
10

S1

S12S11

S10

E

E0E1

E2

trivial

NL-complete

P-complete

NP-complete

∆p
2-complete

Σp
2-complete

Complexity of SKEP(B):

Fig. 1. Post’s lattice. Colours indicate the complexity of EXT(B), the Extension Existence
Problem for B-formulae.

2 Preliminaries

In this paper we make use of standard notions of complexity theory. The arising
complexity degrees encompass the classes NL, P, NP, coNP, Σp

2 and Πp
2 . For

a thorough introduction into the field, the reader is referred to [Pap94]. For
the hardness results, we use constant-depth reductions, defined as follows: A
language A is constant-depth reducible to a language B (A ≤cd B) if there
exists a logtime-uniform AC0-circuit family {Cn}n≥0 with unbounded fan-in
{∧,∨,¬}-gates and oracle gates for B such that for all x, C|x|(x) = 1 if and
only if x ∈ A (cf. [Vol99]).

We assume familiarity with propositional logic. The set of all propositional
formulae is denoted by L. For A ⊆ L and ϕ ∈ L, we write A |= ϕ if and only if
all assignments satisfying all formulae in A also satisfy ϕ. By Th(A) we denote
the set of all consequences of A, i.e., Th(A) = {ϕ | A |= ϕ}. For a literal ℓ and

3

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3
0

S2
00

S3
02 S3

01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3
1

S2
10

S3
12S3

11

S3
10

S1

S12S11

S10

E

E0E1

E2

Complexity of SKEP(B):

NL-complete

P-complete

coNP-complete

coNP-complete

∆p
2-complete

Πp
2-complete

Complexity of CRED(B):

NL-complete

P-complete

NP-complete

coNP-complete

∆p
2-complete

Σp
2-complete

Fig. 2. Post’s lattice. Colours indicate the complexity of CRED(B) and SKEP(B), the Cred-
ulous and Skeptical Reasoning Problems for B-formulae.

a variable x, we define ℓ as the literal of opposite polarity, i.e., ℓ := x if ℓ = ¬x
and ℓ := ¬x if ℓ = x. For a formula ϕ, let ϕ[α/β] denote ϕ with all occurrences
of the formula α replaced by the formula β, and let A[α/β] := {ϕ[α/β] | ϕ ∈ A}
for A ⊆ L.

3 Boolean Clones and the Complexity of the Implication

Problem

A propositional formula using only connectives from a finite set B of Boolean
functions is called a B-formula. The set of all B-formulae is denoted by L(B).
In order to cope with the infinitely many finite sets B of Boolean functions, we
require some algebraic tools to classify the complexity of the infinitely many
arising reasoning problems. A clone is a set B of Boolean functions that is
closed under superposition, i.e., B contains all projections and is closed under

4

Name Definition Base

BF All Boolean functions {∧,¬}
R0 {f : f is 0-reproducing} {∧, 6→}
R1 {f : f is 1-reproducing} {∨,→}
M {f : f is monotone} {∨,∧, 0, 1}
S0 {f : f is 0-separating} {→}
S1 {f : f is 1-separating} {6→}
S00 S0 ∩ R0 ∩ R1 ∩M {x∨ (y∧z)}
S10 S1 ∩ R0 ∩ R1 ∩M {x∧ (y∨z)}
S11 S1 ∩M {x∧ (y∨z), 0}
D {f : f is self-dual} {(x∧y) ∨ (x∧z) ∨ (y∧z)}
D2 D ∩M {(x∧y) ∨ (y∧z) ∨ (x∧z)}
L {f : f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {≡}
L2 L ∩ R0 ∩ R1 {x⊕y⊕z}
L3 L ∩ D {x⊕y⊕z,¬}
V {f : f ≡ c0 ∨

∨n

i=1
cixi where the cis are constant} {∨, 0, 1}

V2 [{∨}] {∨}
E {f : f ≡ c0 ∧

∧n

i=1
cixi where the cis are constant} {∧, 0, 1}

E2 [{∧}] {∧}
N {f : f depends on at most one variable} {¬, 0, 1}
N2 [{¬}] {¬}
I {f : f is a projection or a constant} {id, 0, 1}
I2 [{id}] {id}

Table 1. A list of Boolean clones with definitions and bases.

arbitrary composition [Pip97, Chapter 1]. For an arbitrary set B of Boolean
functions, we denote by [B] the smallest clone containing B and call B a base
for [B]. In [Pos41] Post classified the lattice of all clones and found a finite base
for each clone, see Fig. 1. In order to introduce the clones relevant to this paper,
we define the following notions for n-ary Boolean functions f :

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotone if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn implies f(a1, . . . , an) ≤
f(b1, . . . , bn).

– f is c-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = c
implies ai = c, c ∈ {0, 1}.

– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
– f is linear if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ {0, 1} and variables
x1, . . . , xn.

The clones relevant to this paper are listed in Table 1. The definition of all
Boolean clones can be found, e.g., in [BCRV03].

For a finite set B of Boolean functions, we define the Implication Problem
for B-formulae IMP(B) as the following computational task: Given a set A of
B-formulae and a B-formula ϕ, decide whether A |= ϕ holds. The complexity
of the implication problem is classified in [BMTV09a]. The results relevant to
this paper are summarized in the following theorem.

Theorem 3.1 ([BMTV09a, Theorem 4.1]). Let B be a finite set of Boolean
functions. Then IMP(B) is

5

1. coNP-complete if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B], and
2. in P for all other cases.

4 Default Logic

Fix some finite set B of Boolean functions and let α, β, γ be propositional B-
formulae. A B-default (rule) is an expression d = α:β

γ ; α is called prerequisite,
β is called justification and γ is called consequent of d. A B-default theory is a
pair 〈W,D〉, where W is a set of propositional B-formulae and D is a finite set
of B-default rules. Henceforth we will omit the prefix “B-” if B = BF or the
meaning is clear from the context.

For a given default theory 〈W,D〉 and a set of formulae E, let Γ(E) be the
smallest set of formulae such that

1. W ⊆ Γ(E),
2. Γ(E) is closed under deduction, i.e., Γ(E) = Th(Γ(E)), and
3. for all defaults α:β

γ ∈ D with α ∈ Γ(E) and ¬β /∈ E, it holds that γ ∈ Γ(E).

A (stable) extension of 〈W,D〉 is a fix-point of Γ, i.e., a set E such that E =
Γ(E).

The following theorem by Reiter provides an alternative characterization of
extensions:

Theorem 4.1 ([Rei80]). Let 〈W,D〉 be a default theory and E be a set of
formulae.

1. Let E0 =W and Ei+1 = Th(Ei)∪
{

γ




α:β
γ ∈ D,α ∈ Ei and ¬β /∈ E

}

. Then
E is a stable extension of 〈W,D〉 if and only if E =

⋃

i∈NEi.

2. Let G =
{α:β

γ ∈ D


α ∈ E and ¬β /∈ E
}

. If E is a stable extension of
〈W,D〉, then

E = Th(W ∪ {γ | α:β
γ ∈ G}).

In this case, G is also called the set of generating defaults for E.

Observe that, as an immediate consequence of Theorem 4.1, stable exten-
sions possess polynomial-sized witnesses, namely the set of their generating de-
faults. Moreover, note that stable extensions need not be consistent. However,
the following proposition shows that this only occurs if the set W is already
inconsistent.

Proposition 4.2 ([MT93, Corollary 3.60]). Let 〈W,D〉 be a default theory.
Then L is a stable extension of 〈W,D〉 if and only if W is inconsistent.

As a consequence we obtain:

Corollary 4.3. Let 〈W,D〉 be a default theory.

– If W is consistent, then every stable extension of 〈W,D〉 is consistent.
– If W is inconsistent, then 〈W,D〉 has a stable extension.

The main reasoning tasks in nonmonotonic logics give rise to the following
three decision problems:

6

1. the Extension Existence Problem EXT(B)
Instance: a B-default theory 〈W,D〉
Question: Does 〈W,D〉 have a stable extension?

2. the Credulous Reasoning Problem CRED(B)
Instance: a B-formula ϕ and a B-default theory 〈W,D〉
Question: Is there a stable extension of 〈W,D〉 that includes ϕ?

3. the Skeptical Reasoning Problem SKEP(B)
Instance: a B-formula ϕ and a B-default theory 〈W,D〉
Question: Does every stable extension of 〈W,D〉 include ϕ?

The next theorem follows from [Got92] and states the complexity of the
above decision problems for the general case [B] = BF.

Theorem 4.4. Let B be a finite set of Boolean functions such that [B] =
BF. Then EXT(B) and CRED(B) are Σp

2-complete, whereas SKEP(B) is Πp
2-

complete.

Proof. The upper bounds given in [Got92] do not depend on the Boolean con-
nectives allowed and thus hold for any finite set B of Boolean functions. For
Σp
2- and Πp

2-hardness, it suffices to note that if [B] = BF, then there exist B-
formulae f(x, y), g(x, y) and h(x) such that f(x, y) ≡ x ∧ y, g(x, y) ≡ x ∨ y,
h(x) ≡ ¬x and both x and y occur at most once in f , g, and h [Lew79]. Hence,
the hardness results generalize to arbitrary bases B with [B] = BF. �

5 The Complexity of Default Reasoning

In this section we will classify the complexity of the three problems EXT(B),
CRED(B), and SKEP(B) for all choices of Boolean connectives B. We start
with some preparations which will substantially reduce the number of cases we
have to consider.

Lemma 5.1. Let P be any of the problems EXT, CRED, or SKEP. Then for
each finite set B of Boolean functions, P(B) ≡cd P(B ∪ {1}).

Proof. The reductions P(B) ≤cd P(B ∪ {1}) are obvious. For the converse
reductions, we will essentially substitute the constant 1 by a new variable t
that is forced to be true (this trick goes back to Lewis [Lew79]). For EXT, the
reduction is given by 〈W,D〉 7→ 〈W ′,D′〉, where W ′ =W[1/t] ∪ {t}, D′ = D[1/t],
and t is a new variable not occurring in 〈W,D〉. If 〈W ′,D′〉 possesses a stable
extension E′, then t ∈ E′. Hence, E′

[t/1] is a stable extension of 〈W,D〉. On the

other hand, if E is a stable extension of 〈W,D〉, then Th(E[1/t]∪{t}) = E[1/t] is a
stable extension of 〈W ′,D′〉. Therefore, each extension E of 〈W,D〉 corresponds
to the extension E[1/t] of 〈W

′,D′〉, and vice versa.
For the problems CRED and SKEP, it suffices to note that the above re-

duction 〈W,D〉 7→ 〈W ′,D′〉 has the additional property that for each formula
ϕ and each extension E of 〈W,D〉, ϕ ∈ E if and only if ϕ[1/t] ∈ E[1/t]. �

The next lemma shows that, quite often, B-default theories have unique
extensions.

7

Lemma 5.2. Let B be a finite set of Boolean functions. Let 〈W,D〉 be a B-
default theory. If [B] ⊆ R1 then 〈W,D〉 has a unique stable extension. If [B] ⊆ M

then 〈W,D〉 has at most one stable extension.

Proof. For [B] ⊆ R1, every premise, justification and consequent is 1-reproduc-
ing. As all consequences of 1-reproducing functions are again 1-reproducing and
the negation of a 1-reproducing function is not 1-reproducing, the justifications
in D become irrelevant. Hence the characterization of stable extensions from
the first item in Theorem 4.1 simplifies to the following iterative construction:
E0 = W and Ei+1 = Th(Ei) ∪

{

γ




α:β
γ ∈ D,α ∈ Ei

}

. As D is finite, this
construction terminates after finitely many steps, i.e., Ek = Ek+1 for some
k ≥ 0. Then E =

⋃

i≤k Ei is the unique stable extension of 〈W,D〉. For a
similar result confer [BO02, Theorem 4.6].

For [B] ⊆ M, every formula is either 1-reproducing or equivalent to 0. As
rules with justification equivalent to 0 are never applicable, each B-default
theory 〈W,D〉 with finite D has at most one stable extension by the same
argument as above. �

As an immediate corollary, the credulous and the skeptical reasoning prob-
lem are equivalent for the above choices of the underlying connectives.

Corollary 5.3. Let B be a finite set of Boolean functions such that [B] ⊆ R1

or [B] ⊆ M. Then CRED(B) ≡cd SKEP(B).

5.1 The Extension Existence Problem

Now we are ready to classify the complexity of EXT. The next theorem shows
that this is a hexachotomy: the Σp

2-completeness of the general case [Got92] is
inherited by all clones above S1 and D; for monotone sets of connectives the com-
plexity drops to ∆p

2-completeness if ∧, ∨ and 0 are available, and membership in
P otherwise (with this case splitting up into P-completeness, NL-completeness
and triviality); lastly, for affine sets of connectives containing ¬ or 0 the com-
plexity of EXT reduces to NP-completeness.

Theorem 5.4. Let B be a finite set of Boolean functions. Then EXT(B) is

1. Σp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. ∆p
2-complete if S11 ⊆ [B] ⊆ M,

3. NP-complete if [B] ∈ {N,N2, L, L0, L3},

4. P-complete if [B] ∈ {E,E0,V,V0},

5. NL-complete if [B] ∈ {I, I0}, and

6. trivial in all other cases (i.e., if [B] ⊆ R1).

The proof of Theorem 5.4 will be established from the lemmas in this sub-
section.

Lemma 5.5. Let B be a finite set of Boolean functions such that S11 ⊆ [B] ⊆
M. Then EXT(B) is ∆p

2-complete.

8

Algorithm 1 Determining the existence of a stable extension
Require: 〈W,D〉
1: Gnew ←W

2: repeat

3: Gold ← Gnew

4: for all α:β

γ
∈ D do

5: if Gold |= α and β 6≡ 0 then

6: if γ ≡ 0 then

7: return false

8: end if

9: Gnew ← Gnew ∪ {γ}
10: end if

11: end for

12: until Gnew = Gold

13: return true

Proof. We start by showing EXT(B) ∈ ∆p
2 . Let B be a finite set of Boolean

functions such that [B] ⊆ M and 〈W,D〉 be a B-default theory. As the negated
justification ¬β of every default rule α:β

γ ∈ D is either equivalent to the constant
1 or not 1-reproducing, it holds that in the former case ¬β is contained in any
stable extension, whereas in the latter ¬β cannot be contained in a consistent
stable extension of 〈W,D〉. We can distinguish between those two cases in poly-
nomial time. Therefore, using the characterization of Theorem 4.1 (1), we can
iteratively compute the applicable defaults and test whether the premise of any
default with unsatisfiable conclusion can be derived. Algorithm 1 implements
these steps on a deterministic Turing machine using a coNP-oracle to test for
implication of B-formulae. Clearly, Algorithm 1 terminates after a polynomial
number of steps. Hence, EXT(B) is contained in ∆p

2 .
To show the ∆p

2-hardness of EXT(B), we reduce from the ∆p
2-complete

problem SNSAT [Got95a, Theorem 3.4] defined as follows:

Problem: SNSAT

Input: A sequence (ϕi)1≤i≤n of formulae such that ϕi contains the
propositions x1, . . . , xi−1 and zi1, . . . , zimi

Output: Is cn = 1, where ci is recursively defined via ci := 1 if
and only if ϕi is satisfiable by an assignment σ such that
σ(xj) = cj for all 1 ≤ j < i?

Let (ϕi)1≤i≤n be the given sequence of propositional formulae and assume
without loss of generality that ϕi is in conjunctive normal form for all 1 ≤ i ≤ n.
For every proposition xj or zij occurring in (ϕi)1≤i≤n, let x

′
j respectively z

′
ij be

a fresh proposition, and define

ψi := ϕi
[¬x1/x′

1,...,¬xi−1/x′
i−1,¬zi1/z

′
i1,...,¬zimi

/z′imi
] ∧

i−1
∧

j=1

(xj ∨ x
′
j) ∧

mi
∧

j=1

(zij ∨ z
′
ij).

The key observation in the relationship of ϕi and ψi is that, for all c1, . . . , ci−1 ∈
{0, 1}, ϕi

[x1/c1,...,xi−1/ci−1]
is unsatisfiable if and only if for each model σ of

ψi
[x1/c1,...,xi−1/ci−1,x′

1/¬c1,...,x
′
i−1/¬ci−1]

there exists an index 1 ≤ j ≤ mi such that

9

σ sets to 1 both zij and z′ij . We will use this observation to show that the
B-default theory 〈W,D〉 defined below has a stable extension if and only if
(ϕi)1≤i≤n is an instance of SNSAT, that is, ϕn

[x1/c1,...,xi−1/ci−1]
is satisfiable for

c1, . . . , ci−1 recursively defined via

ci := 1 ⇐⇒ ϕi
[x1/c1,...,xi−1/ci−1]

is satisfiable. (1)

Define W := {ψ1, . . . , ψn} and

D :=

{

∨mi

j=1(zij ∧ z
′
ij) ∨

∨i−1
j=1(xj ∧ x

′
j) : 1

x′i

∣

∣

∣

∣

∣

1 ≤ i < n

}

∪

{

∨mn

j=1(znj ∧ z
′
nj) ∨

∨n−1
j=1 (xj ∧ x

′
j) : 1

0

}

.

We will prove the claim appealing to the characterization of stable extensions

from Theorem 4.1 (1). Let E0 := W . If ϕ1 is unsatisfiable then
∨m1

j=1
(z1j∧z′1j):1

x′
1

is

applicable and thus x′1 is added to E1. On the other hand, if ϕ1 is satisfiable
then there exists a model σ of ϕ1. Define σ̂ as the extension of σ defined as
σ̂(z′1j) = ¬σ(z1j) for all 1 ≤ j ≤ m1. By virtue of σ |= ϕ1 and the construction

of σ̂, we obtain that σ̂ |= ψ1 while σ̂ 6|=
∨m1

j=1(z1j ∧ z′1j). Summarizing, ϕ1 is

unsatisfiable if and only if
∨m1

j=1(z1j∧z
′
1j):1

x′
1

is applicable.

Now suppose that Ei is such that for all j < i the proposition x′j is contained

in Ei if and only if ϕj
[x1/c1,...,xj−1/cj−1]

with c1, . . . , cj−1 defined as in (1) is

unsatisfiable. If ϕi
[x1/c1,...,xi−1/ci−1]

is unsatisfiable then any model of the formula

ψi ∧
∧

1≤j<i,
σ(cj)=1

xj ∧
∧

1≤j<i,
σ(cj)=0

x′j (2)

sets to 1 both zij and z′ij for some 1 ≤ j ≤ mi. From (2) and the monotonicity

of ψi, we obtain that for each model σ′ of ψi∧
∧

1≤j<i,σ(cj)=0 x
′
j there must exist

either an index 1 ≤ j < i such that σ′ sets xj and x
′
j to 1, or an index 1 ≤ j ≤ mi

such that σ′ sets zij and z′ij to 1. Consequently,
∨mi

j=1(zij∧z
′
ij)∨

∨i−1
j=1(xj∧x′

j):1

x′
i

is

applicable and x′i ∈ Ei+1. On the other hand, if ϕi
[x1/c1,...,xi−1/ci−1]

is satisfiable

then there exists a model σ that can be extended to σ̂ by σ̂(z′ij) = ¬σ(zij) for

all 1 ≤ j ≤ mi and σ̂(x′j) = ¬σ(xj) for all 1 ≤ j < i such that σ̂ |= ψi and

σ̂ 6|=
∨mi

j=1(zij ∧z
′
ij)∨

∨i−1
j=1(xj ∧x

′
j). Summarizing, ϕi is unsatisfiable if and only

if
∨mi

j=1(zij∧z
′
ij)∨

∨i−1
j=1(xj∧x′

j):1

x′
i

is applicable.

The direction from right to left now follows from the fact that ϕn is satis-

fiable if and only if
∨mn

j=1(zij∧z
′
ij)∨

∨n−1
j=1 (xi∧x

′
i):1

0 is not applicable, which in turn
implies that 〈W,D〉 has a stable extension. Conversely, if ϕn

[x1/c1,...,xn−1/cn−1]

is unsatisfiable with c1, . . . , cn−1 defined as in (1), then any model of ψi ∧
∧

1≤j<i,σ(cj)=0 x
′
j sets to true either xj and x′j for some 1 ≤ j < i or zij and

10

z′ij for some 1 ≤ j ≤ mi. As a result, the default
∨mn

j=1(zij∧z
′
ij)∨

∨n−1
j=1 (xj∧x′

j):1

0 is
applicable and 〈W,D〉 does not possess a stable extension.

Finally, observe that all formulae contained in 〈W,D〉 are monotone. Hence,
〈W,D〉 is a {∧,∨, 0, 1}-default theory. Let B be a finite set of Boolean functions
such that S11 ⊆ [B]. Replacing all occurrences of x∧ y and x∨ y in 〈W,D〉 with
their respective (B∪{1})-representations f∧(x, y) and f∨(x, y), and eliminating
the constant 1 as in the proof of Lemma 5.1 yields a B-default theory 〈WB ,DB〉
that is equivalent to 〈W,D〉. The variables x or y may occur several times in
the body of f∧ or f∨, hence 〈WB,DB〉 might be exponential in the length of
the original input. To avoid this blowup, we exploit the associativity of ∧ and
∨: we insert parentheses such that the conjunctions and disjunctions in each of
the above formulae are transformed into trees of logarithmic depth.

Thus we have established a reduction from SNSAT to EXT(B) for all B
such that S11 ⊆ [B]. This concludes the proof. �

Lemma 5.6. Let B be a finite set of Boolean functions such that [B] ∈ {N,N2,
L, L0, L3}. Then EXT(B) is NP-complete.

Proof. We start by showing EXT(B) ∈ NP for [B] ⊆ L. Given a default theory
〈W,D〉, we first guess a set G ⊆ D which will serve as the set of generating
defaults for a stable extension. Let G′ =W ∪{γ | α:β

γ ∈ G}. We use Theorem 4.1

to verify whether Th(G′) is indeed a stable extension of 〈W,D〉. For this we
inductively compute generators Gi for the sets Ei from Theorem 4.1, until
eventually Ei = Ei+1 (note, that because D is finite, this always occurs). We
start by setting G0 = W . Given Gi, we check for each rule α:β

γ ∈ D, whether

Gi |= α and G′ 6|= ¬β (as all formulae belong to L(B), this is possible by
Theorem 3.1). If so, then γ is put into Gi+1. If this process terminates, i.e.,
if Gi = Gi+1, then we check whether G′ = Gi. By Theorem 4.1, this test is
positive if and only if G generates a stable extension of 〈W,D〉.

To show NP-hardness of EXT(B) for N ⊆ [B], we will ≤cd-reduce 3SAT
to EXT(B). Let ϕ =

∧n
i=1(ℓi1 ∨ ℓi2 ∨ ℓi3) and ℓij be literals over propositions

{x1, . . . , xm} for 1 ≤ i ≤ n, 1 ≤ j ≤ 3. We transform ϕ to the B-default theory
〈W,Dϕ〉, where W := ∅ and

Dϕ :=

{

1 : xi
xi









1 ≤ i ≤ m

}

∪

{

1 : ¬xi
¬xi






1 ≤ i ≤ m

}

∪

{

ℓiπ(1) : ℓiπ(2)

ℓiπ(3)









1 ≤ i ≤ n, π is a permutation of {1, 2, 3}

}

.

To prove the correctness of the reduction, first assume ϕ to be satisfiable. For
each satisfying assignment σ : {x1, . . . , xm} → {0, 1} for ϕ, we claim that

E := Th({xi | σ(xi) = 1} ∪ {¬xi | σ(xi) = 0})

is a stable extension of 〈W,Dϕ〉. We will verify this claim with the help of the
first part of Theorem 4.1. Starting with E0 = ∅, we already get E1 = E by the
default rules 1:xi

xi
and 1:¬xi

¬xi
in Dϕ. As σ is a satisfying assignment for ϕ, each

11

consequent of a default rule in Dϕ is already in E. Hence E2 = E1 and therefore
E =

⋃

i∈NEi is a stable extension of 〈W,Dϕ〉.
Conversely, assume that E is a stable extension of 〈W,Dϕ〉. Because of the

default rules 1:xi

xi
and 1:¬xi

¬xi
, we either get xi ∈ E or ¬xi ∈ E for all i = 1, . . . ,m.

The rules of the type ℓi1:ℓi2
ℓi3

ensure that E contains at least one literal from
each clause ℓi1 ∨ ℓi2 ∨ ℓi3 in ϕ. As E is deductively closed, E contains ϕ. By
Corollary 4.3, the extension E is consistent, and therefore ϕ is satisfiable.

Hence, EXT(B) is NP-complete for every finite set B such that N ⊆ [B] ⊆
L. The remaining cases [B] ∈ {N2, L0, L3} follow from Lemma 5.1, because
[N2 ∪ {1}] = N, [L0 ∪ {1}] = L, and [L3 ∪ {1}] = L. �

Lemma 5.7. Let B be a finite set of Boolean functions such that [B] ∈ {E,E0,
V,V0}. Then EXT(B) is P-complete.

Proof. Let B be a finite set of Boolean functions such that [B] ∈ {E,E0,V,V0}.
Membership in P is is obtained from Algorithm 1, as for these types of B-
formulae, we have an efficient test for implication.

To prove P-hardness for E0 ⊆ [B], we provide a reduction from the comple-
ment of the accessibility problem for directed hypergraphs, HGAP. In directed
hypergraphs H = (V, F), hyperedges e ∈ F consist of a set of source nodes
src(e) ⊆ V and a destination dest(e) ∈ V . Instances of HGAP contain a di-
rected hypergraph H = (V, F), a set S ⊆ V of source nodes, and a target node
t ∈ V . HGAP is P-complete under ≤cd-reductions [SI90], even if restricted to
hypergraphs whose edges contain at most two source nodes.

We transform a given instance (H,S, t) to the EXT({∧, 0, 1})-instance 〈W,D〉
with

W := {ps | s ∈ S}, D :=

{

∧

v∈src(e) pv : 1

pdest(e)

∣

∣

∣

∣

e ∈ F

}

∪

{

pt : 1

0

}

with pairwise distinct propositions pv for v ∈ V . It is easy to verify that
(H, s, t) ∈ HGAP ⇐⇒ 〈W,D〉 /∈ EXT({∧, 0, 1}). Using Lemma 5.1 and re-
placing ∧ by its B-representation, we obtain HGAP ≤cd EXT(B) for all finite
sets B such that E0 ⊆ [B]. As P is closed under complementation, EXT(B) is
P-complete.

For V0 ⊆ [B], set

W :=
{

∨

s/∈S

ps

}

, D :=

{

∨

v∈V \src(e) pv : 1
∨

v∈V \(src(e)∪{dest(e)}) pv

∣

∣

∣

∣

e ∈ F

}

∪

{

∨

v∈V \{t} pv : 1

0

}

.

We claim that this mapping realizes the reduction HGAP ≤cd EXT({∨, 0, 1}).
First suppose that t can be reached from S in H. Then there exists a sequence
(Si)0≤i≤n of sets of nodes such that S0 = S, t ∈ Sn, and for all 0 ≤ i < n, Si+1 is
obtained from Si by adding the destination dest(e) of a hyperedge e ∈ F with
src(e) ⊆ Si. Let (ei)0≤i<n denote the corresponding sequence of hyperedges
used to obtain Si+1 from Si. Then, for all 0 ≤ i < n, the following holds:

src(ei) ⊆ Si ⇐⇒

∨

v∈V \src(e) pv : 1
∨

v∈V \(src(e)∪{dest(e)}) pv
is applicable in Ei,

12

where (Ei)i∈N is the sequence from Theorem 4.1 (1). As
⋃

i∈NEi is guaranteed
to be unique by Lemma 5.2 and t ∈ Sn, we obtain that 0 ∈ En+1. Consequently,
〈W,D〉 does not possess a stable extension.

Conversely, if 〈W,D〉 does not admit a stable extension, then 0 has to be
derivable. Accordingly, there exists a sequence of defaults (di)0≤i≤n such that
the premise of di can be derived from W ∪

{

γ
∣

∣ dj = α:β
γ , 0 ≤ j < i

}

and

dn =
∨

v∈V \{t} pv:1

0 . By construction of 〈W,D〉, this sequence can be translated
into a sequence (Si)0≤i≤n of node sets in the hypergraph such that S0 = S,
t ∈ Sn, and for all 0 ≤ i < n, Si+1 is obtained from Si by adding the destination
dest(e) of a hyperedge e ∈ F with src(e) ⊆ Si. Consequently, t is reachable from
S in H and we conclude that HGAP ≤cd EXT({∨, 0, 1}). Using Lemma 5.1, we
get HGAP ≤cd EXT({∨, 0}).

To see that EXT({∨, 0}) ≤cd EXT(B) for all finite sets B such that V0 ⊆ [B],
we proceed as in the proof of Lemma 5.5 and insert parentheses such that
the disjunctions in each of the above formulae are transformed into tree of
logarithmic depth. Hence, replacing all occurrences of ∨ inW , D and ϕ with its
B-representation yields an EXT(B)-instance of size polynomial in the original
input. Concluding, EXT(B) is P-complete. �

Lemma 5.8. Let B be a finite set of Boolean functions such that [B] ∈ {I, I0}.
Then EXT(B) is NL-complete with respect to constant-depth reductions.

Proof. Let B be a finite set of Boolean functions such that [B] ∈ {I, I0}. We
will first show membership in NL by giving a reduction to the complement of
the graph accessibility problem, GAP.

Let 〈W,D〉 be a B-default theory. Analogously to the proof of Lemma 5.5, it
holds that 〈W,D〉 has a stable extension if and only if either W is inconsistent
or the conclusions of all applicable defaults are consistent. Assume that W is
consistent and denote by D′ ⊆ D those defaults α:β

γ ∈ D with β 6≡ 0. Then a B-

default rule α:β
γ ∈ D′ is applicable if and only if the proposition α is contained

inW or itself the conclusion of an applicable default. Therefore, testing whether
the conclusions of all applicable defaults are consistent is essentially equivalent
to solving a reachability problem in a directed graph. Define G〈W,D〉 as the
directed graph (V, F) with

V := {0, 1} ∪W ∪
{

α, γ
∣

∣

∣

α:β
γ ∈ D

}

,

F := {(1, x) |x ∈W} ∪
{

(α, γ)
∣

∣

∣

α:β
γ ∈ D,β 6≡ 0

}

if W is consistent, and

V := {0, 1},

F := ∅

otherwise. It is easy to see that 〈W,D〉 has a stable extension if and only if there
is no path from 1 to 0 in G〈W,D〉. Thus the function mapping the given B-default
theory 〈W,D〉 to the GAP-instance (G〈W,D〉, 1, 0) constitutes a reduction from

EXT(B) to GAP. As the consistency of W can be determined in AC0, the

13

reduction can be computed using constant-depth circuits. Membership in NL
follows from the closure of NL under complementation.

To show NL-hardness, we establish a constant-depth reduction in the con-
verse direction. For a directed graph G = (V, F) and two nodes s, t ∈ V , we
transform the given GAP-instance (G, s, t) to 〈W,D〉 with

W := {ps}, D :=
{

pu:pu
pv

∣

∣

∣
(u, v) ∈ F

}

∪
{

pt:pt
0

}

Clearly, (G, s, t) ∈ GAP if and only if 〈W,D〉 does not have a stable extension.
As NL is closed under complementation, the lemma is established. �

Proof (Theorem 5.4). For S1 ⊆ [B] ⊆ BF or [B] = D, observe that in both cases
BF = [B∪{1}]. Claim 1 then follows from Theorem 4.4 and Lemma 5.1. Claims
two to five are established in Lemmas 5.5–5.8. For all sets B not captured by
the above, it now holds that [B] ⊆ R1. Thus, the sixth claim follow directly
from Lemmas 5.2, �

5.2 The Credulous and the Skeptical Reasoning Problem

We will now analyse the credulous and the skeptical reasoning problems. For
these problems, there are two sources of complexity. On the one hand, we need
to determine a candidate for a stable extension. On the other hand, we have
to verify that this candidate is indeed a finite characterization of some stable
extension that includes a given formula—a task that requires to test for for-
mula implication. Depending on the Boolean connectives allowed, one or both
tasks can be performed in polynomial time. We obtain the full complexity, i.e.,
Σp
2-completeness for CRED(B) and Πp

2-completeness for SKEP(B), where both
problems EXT(B) and IMP(B) attain their highest complexity. The complexity
reduces to ∆p

2 for clones that allow for an efficient computation of stable exten-
sions but whose implication problem remains coNP-complete. More precisely,
the problem is ∆p

2-complete if 0 ∈ [B] and becomes coNP-complete otherwise.
Conversely, if the implication problem becomes easy but determining an ex-
tension candidate is hard, then CRED(B) is NP-complete, while SKEP(B) is
coNP-complete. This is the case for [B] ∈ {N,N2, L, L0, L3}. Finally, for clones
B that allow for solving both tasks in polynomial time, both CRED(B) and
SKEP(B) are in P.

The complete classification of CRED(B) is given in the following theorem.

Theorem 5.9. Let B be a finite set of Boolean functions. Then CRED(B) is

1. Σp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. ∆p
2-complete if S11 ⊆ [B] ⊆ M,

3. coNP-complete if X ⊆ [B] ⊆ R1 for X ∈ {S00,S10,D2},
4. NP-complete if [B] ∈ {N,N2, L, L0, L3},
5. P-complete if V2 ⊆ [B] ⊆ V, E2 ⊆ [B] ⊆ E or [B] ∈ {L1, L2}, and
6. NL-complete if I2 ⊆ [B] ⊆ I.

The proof of Theorem 5.9 follows from the upper and lower bounds given
in Propositions 5.10 and 5.11 below.

14

Proposition 5.10. Let B be a finite set of Boolean functions. Then CRED(B)
is contained

1. in Σp
2 if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. in ∆p
2 if [B] ⊆ M,

3. in coNP if [B] ⊆ R1,

4. in NP if [B] ⊆ L,

5. in P if [B] ⊆ V, [B] ⊆ E or [B] ⊆ L1, and

6. in NL if [B] ⊆ I.

Proof. Part one follows from Theorem 4.4 and Lemma 5.1.

For [B] ⊆ M, membership in ∆p
2 is obtained from a straightforward exten-

sion of Algorithm 1: first iteratively compute the applicable defaults G while
asserting that 〈W,D〉 has a stable extension using Algorithm 1, and eventually
verify that ϕ is implied by W and the conclusions in G.

For [B] ⊆ R1, the justifications β are irrelevant for computing a stable
extension, as for every default rule α:β

γ ∈ D we cannot derive ¬β (¬β is not
1-reproducing). Hence, a unique consistent stable extension E is guaranteed
to exist by Theorem 5.2. Using Algorithm 1 we can iteratively compute the
generating defaults of E of the unique consistent stable extension of 〈W,D〉
and eventually check whether ϕ is implied by W and the conclusions in of the
generating defaults of E.

For [B] ⊆ L, we proceed similarly as in the proof of part 3 in Theorem 5.4.
First, we guess a set G of generating defaults and subsequently verify that both
Th(W ∪ {γ | α:β

γ ∈ G}) is a stable extension and that W ∪ {γ | α:β
γ ∈ G} |= ϕ.

Using Theorem 3.1, both conditions may be verified in polynomial time.

For [B] ⊆ V, [B] ⊆ E, and [B] ⊆ L1, we again use Algorithm 1. As for these
types of B-formulae we have an efficient test for implication (Theorem 3.1), we
get CRED(B) ∈ P.

For [B] ⊆ I, observe that NL is closed under intersection. Hence, given a
B-default theory 〈W,D〉 and a B-formula ϕ we can first test whether 〈W,D〉
has a stable extension E using Lemma 5.8 and subsequently assert that ϕ ∈ E
by reusing the graph G〈W,D〉 constructed from 〈W,D〉: it holds that ϕ ∈ E if
and only if the node corresponding to ϕ is contained in G〈W,D〉 and reachable
from the node 1. Thus, CRED(B) ∈ NL. �

We will now establish the lower bounds required to complete the proof of
Theorem 5.9.

Proposition 5.11. Let B be a finite set of Boolean functions. Then CRED(B)
is

1. Σp
2-hard if S1 ⊆ [B] or D ⊆ [B],

2. ∆p
2-hard if S11 ⊆ [B],

3. coNP-hard if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B],

4. NP-hard if N2 ⊆ [B] or L0 ⊆ [B],

5. P-hard if V2 ⊆ [B], E2 ⊆ [B] or L2 ⊆ [B], and

6. NL-hard for all other clones.

15

Proof. Part one follows from Theorem 4.4 and Lemma 5.1.

For the second part, observe that the constant 1 is contained in any stable
extension. The second part thus follows from Lemmas 5.1 and 5.5.

For S00 ⊆ [B], S10 ⊆ [B], and D2 ⊆ [B], coNP-hardness is established by a
≤cd-reduction from IMP(B). Let A ⊆ L(B) and ϕ ∈ L(B). Then the default
theory 〈A, ∅〉 has the unique stable extension Th(A), and hence A |= ϕ if and
only if (〈A, ∅〉, ϕ) ∈ CRED(B). Therefore, IMP(B) ≤cd CRED(B), and the
claim follows with Theorem 3.1.

For the fourth part, it suffices to prove NP-hardness for N2 ⊆ [B]. For
L0 ⊆ [B], the claim then follows by Lemma 5.1. For N2 ⊆ [B], we obtain NP-
hardness of CRED(B) by adjusting the reduction given in the proof of item 3
of Theorem 5.4. Consider the mapping ϕ 7→ (〈{ψ},Dϕ〉, ψ), where Dϕ is the
set of default rules constructed from ϕ in Theorem 5.4, and ψ is a satisfiable
B-formula such that ϕ and ψ do not use common variables. By Theorem 5.4,
ϕ ∈ 3SAT if and only if 〈{ψ},Dϕ〉 has a stable extension. As any extension of
〈{ψ},Dϕ〉 contains ψ, we obtain 3SAT ≤cd CRED(B) via the above reduction.

For the fifth part, the cases E2 ⊆ [B] and V2 ⊆ [B] follow similarly from
Lemmas 5.1 and 5.7. It hence suffices to prove the P-hardness for [B] ∈ {L1, L2}
We again provide a reduction from HGAP restricted to hypergraphs whose edges
contain at most two source nodes. To this end, we transform a given instance
(H,S, t) with H = (V, F), to the CRED({x ⊕ y ⊕ z, 1})-instance (〈W,D〉, ϕ),
where

W := {ps | s ∈ S},

D :=

{

psrc(e) : 1

pdest(e)









e ∈ F, |src(e)| = 1

}

∪

{

psrc1(e) : 1

pe
,
psrc2(e) : 1

pe
,
psrc1(e) ⊕ psrc2(e) ⊕ pe : 1

pdest(e)









e ∈ F, |src(e)| = 2

}

,

ϕ := pt,

and {src1(e), src2(e)} denote the source nodes of e. As for the correctness, ob-
serve that if for some e ∈ F with |src(e)| = 2 both variables psrc1(e) and psrc2(e)
can be derived from the stable extension of 〈W,D〉, then pe and consequently
pdest(e) can be derived. Conversely, if src1(e) or src2(e) cannot be derived, then
either none or two of the propositions in psrc1(e)⊕psrc2(e)⊕pe are satisfied. Thus
pdest(e) cannot be derived from the defaults corresponding to e.

Finally, it remains to show NL-hardness for I2 ⊆ [B]. We give a ≤cd-
reduction from GAP to CRED({id}). For a directed graph G = (V, F) and
two nodes s, t ∈ V , we transform the GAP-instance (G, s, t) with G = (V, F) to
the CRED(I2)-instance

W := {ps}, D :=

{

pu : pu
pv









(u, v) ∈ F

}

, ϕ := pt.

Clearly, (G, s, t) ∈ GAP if and only if ϕ is contained in all stable extensions of
〈W,D〉. �

16

This completes the proof of Theorem 5.9.
We will next classify the complexity of the skeptical reasoning problem. The

analysis as well as the result are similar to the classification of the credulous
reasoning problem (cf. also Fig. 2).

Theorem 5.12. Let B be a finite set of Boolean functions. Then SKEP(B) is

1. Πp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

2. ∆p
2-complete if S11 ⊆ [B] ⊆ M,

3. coNP-complete if X ⊆ [B] ⊆ Y , where X ∈ {S00,S10,N2, L0} and Y ∈
{R1,M, L},

4. P-complete if V2 ⊆ [B] ⊆ V, E2 ⊆ [B] ⊆ E or [B] ∈ {L1, L2}, and
5. NL-complete if I2 ⊆ [B] ⊆ I.

Proof. The first part again follows from Theorem 4.4 and Lemma 5.1.
For [B] ∈ {N,N2, L, L0, L3}, we guess similarly as in Theorem 5.4 a set G of

defaults and then verify in the same way whether W and G generate a stable
extension E. If not, then we accept. Otherwise, we check if E |= ϕ and answer
according to this test. This yields a coNP-algorithm for SKEP(B). Hardness
for coNP is achieved by modifying the reduction from Theorem 5.4 (cf. also
the proof of Proposition 5.11): map ϕ to (〈∅,Dϕ〉, ψ), where Dϕ is defined as
in the proof of Theorem 5.4, and ψ is a B-formula such that ϕ and ψ do not
share variables. Then ϕ /∈ 3SAT if and only if 〈∅,Dϕ〉 does not have a stable
extension. The latter is true if and only if ψ is in all extensions of 〈∅,Dϕ〉. Hence
3SAT ≤cd SKEP(B), establishing the claim.

For all remaining clones B, observe that [B] ⊆ R1 or [B] ⊆ M. Hence,
Corollary 5.3 and Theorem 5.9 imply the claim. �

6 Conclusion

In this paper we provided a complete classification of the complexity of the
main reasoning problems for default propositional logic, one of the most com-
mon frameworks for nonmonotonic reasoning. The complexity of the extension
existence problem shows an interesting similarity to the complexity of the satis-
fiability problem [Lew79], because in both cases the hardest instances lie above
the clone S1 (with the exception that instances from D are still hard for EXT,
but easy for SAT). The complexity of the membership problems, i.e., credu-
lous and skeptical reasoning, rests on two sources: first, whether there exists a
unique extension (cf. Lemma 5.2), and second, how hard it is to test for formula
implication. For this reason, we also classified the complexity of the implication
problem IMP(B).

A different complexity classification of reasoning for default logic has been
undertaken in [CHS07]. In that paper, the language of existentially quantified
propositional logic was restricted to so called conjunctive queries, i.e., existen-
tially quantified formulae in conjunctive normal-form with generalized clauses.
The complexity of the reasoning tasks was determined depending on the type of
clauses that are allowed. We want to remark that though our approach at first
sight seems to be more general (since we do not restrict our formulae to CNF),

17

the results in [CHS07] do not follow from the results presented here (and vice
versa, our results do not follow from theirs).

In the light of our present contribution, it is interesting to remark that by re-
sults of Konolige, Gottlob, and Janhunen [Kon88,Got95b,Jan99], propositional
default logic and Moore’s autoepistemic logic are essentially equivalent. Even
more, the translations are efficiently computable. Unfortunately, all of them
require a complete set of Boolean connectives, whence our results do not im-
mediately transfer to autoepistemic logic. It is nevertheless interesting to ask
whether the exchange of default rules with the introspective operator L yields
hitherto unclassified fragments of autoepistemic logic that allow for efficient
stable expansion testing and reasoning.

Acknowledgements

We thank Ilka Schnoor for sending us a manuscript with the proof of the NP-
hardness of EXT(B) for all B such that N2 ⊆ [B]. We also acknowledge helpful
discussions on various topics of this paper with Peter Lohmann.

References

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part I: Post’s lattice with applications to complexity theory. SIGACT News,
34(4):38–52, 2003.

[BEZ02] R. Ben-Eliyahu-Zohary. Yet some more complexity results for default logic. Ar-

tificial Intelligence, 139(1):1–20, 2002.
[BMTV09a] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The complexity of propo-

sitional implication. Information Processing Letters, 109(18):1071–1077, 2009.
[BMTV09b] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The complexity of rea-

soning for fragments of default logic. In Proc. 12th International Conference on

Theory and Applications of Satisfiability Testing, volume 5584 of Lecture Notes

in Computer Science, pages 51 – 64. Springer Verlag, 2009.
[BO02] P. A. Bonatti and N. Olivetti. Sequent calculi for propositional nonmonotonic

logics. ACM Transactions on Computational Logic, 3(2):226–278, 2002.
[CHS07] P. Chapdelaine, M. Hermann, and I. Schnoor. Complexity of default logic on

generalized conjunctive queries. In Proc. 9th International Conference on Logic

Programming and Nonmonotonic Reasoning, volume 4483 of Lecture Notes in

Computer Science, pages 58–70. Springer Verlag, 2007.
[Got92] G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic Com-

putation, 2(3):397–425, 1992.
[Got95a] G. Gottlob. NP trees and Carnap’s modal logic. Journal of the ACM, 42(2):421–

457, 1995.
[Got95b] G. Gottlob. Translating default logic into standard autoepistemic logic. Journal

of the ACM, 42(4):711–740, 1995.
[Jan99] T. Janhunen. On the intertranslatability of non-monotonic logics. Annals of

Mathematics and Artificial Intelligence, 27(1-4):79–128, 1999.
[Kon88] K. Konolige. On the relation between default and autoepistemic logic. Artificial

Intelligence, 35(3):343–382, 1988. Erratum: Artificial Intelligence, 41(1):115.
[KS91] H. A. Kautz and B. Selman. Hard problems for simple default logics. Artificial

Intelligence, 49:243–279, 1991.
[Lew79] H. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems

Theory, 13:45–53, 1979.
[McC80] J. McCarthy. Circumscription – a form of non-monotonic reasoning. Artificial

Intelligence, 13:27–39, 1980.

18

[MT93] V. W. Marek and M. Truszczyński. Nonmonotonic Logic. Artificial Intelligence.
Springer Verlag, Berlin Heidelberg, 1993.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA,
1994.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cam-
bridge, 1997.

[Pos41] E. Post. The two-valued iterative systems of mathematical logic. Annals of

Mathematical Studies, 5:1–122, 1941.
[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
[SI90] R. Sridhar and S. Iyengar. Efficient parallel algorithms for functional dependency

manipulations. In Proc. 2nd International Symposium on Databases in Parallel

and Distributed Systems, pages 126–137. ACM, 1990.
[Sti90] J. Stillman. It’s not my default: The complexity of membership problems in

restricted propositional default logics. In Proc. 8th Conference on Artificial In-

telligence, pages 571–578. ACM, 1990.
[Vol99] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in

Theoretical Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

19

