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Abstract. We study techniques for deciding the computational complexity of infinite-
domain constraint satisfaction problems. For certain fundamental algebraic structures
∆, we prove definability dichotomy theorems of the following form: for every first-order
expansion Γ of ∆, either Γ has a quantifier-free Horn definition in ∆, or there is an element
d of Γ such that all non-empty relations in Γ contain a tuple of the form (d, . . . , d), or all
relations with a first-order definition in ∆ have a primitive positive definition in Γ.

The results imply that several families of constraint satisfaction problems exhibit a
complexity dichotomy: the problems are in P or NP-hard, depending on the choice of the
allowed relations. As concrete examples, we investigate fundamental algebraic constraint
satisfaction problems. The first class consists of all first-order expansions of (Q; +). The
second class is the affine variant of the first class. In both cases, we obtain full dichotomies
by utilising our general methods.

1. Introduction

Constraint satisfaction problems (CSPs) are computational problems that appear in
almost every area of computer science such as artificial intelligence, graph algorithms,
scheduling, combinatorics, and computer algebra. Depending on the type of constraints
that are allowed in the input instances of a CSP, the computational complexity of a CSP
is usually polynomial (we will call these CSPs tractable), or NP-hard. In the last decade,
a lot of progress was made to find general criteria that imply that a CSP is tractable, or
that it is NP-hard. Such results have been obtained for constraint languages over finite
domains [9, 11, 12, 17], but also for constraint languages over infinite domains that are ω-
categorical (for formal definition of these concepts see Section 2). For example, it has been
shown that for every structure Γ with a first-order definition in (Q;<) the problem CSP(Γ)
is in P if it falls into one out of nine classes, and is NP-hard otherwise [6].

Lately, many researchers have been fascinated by a conjecture due to Feder and Vardi [15]
which is known as the dichotomy conjecture. This conjecture says that every CSP with a
finite domain constraint language is either tractable (i.e., in P) or NP-complete. According
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to a well-known result by Ladner [19], there are NP-intermediate computational problems,
i.e., problems in NP that are neither tractable nor NP-complete (unless P=NP). But the
problems that are given in Ladner’s construction are extremely artificial. The question why
there are so few candidates for natural NP-intermediate problems is one of the mysteries in
complexity theory.

Any outcome of the dichotomy conjecture is probably surprising: a negative answer
would finally provide relatively natural NP-intermediate problems, which would be of inter-
est in complexity theory. A positive answer probably comes with a criterion which describes
the NP-hard CSPs (and it would probably even provide algorithms for the tractable CSPs).
But then we would have a rich catalogue of computational problems where the computa-
tional complexity is known. Such a catalogue would be a valuable tool for deciding the
complexity of computational problems in the mentioned application areas: since CSPs are
abundant, one might derive algorithmic results by reducing the problem of interest to a
known tractable CSP, and one might derive hardness results by reducing a known NP-hard
CSP to the problem of interest.

In this article, we study two natural classes of infinite domain constraint languages, and
show that the corresponding CSPs do exhibit a complexity dichotomy. To the best of our
knowledge, this is the first systematic complexity result for classes of structures that are not
ω-categorical. The first class consists of all first-order expansions of (Q; {(x, y, z) | x+ y =
z}) (i.e., we add relations to (Q; {(x, y, z) | x + y = z}) that are first-order definable in
(Q; {(x, y, z) | x + y = z}). The second class is an affine version of the first class, and
consists of all first-order expansions of (Q; {(a, b, c, d) | a− b+ c = d}). That the structures
(Q; {(x, y, z) | x+ y = z}) and (Q; {(a, b, c, d) | a− b+ c = d}) are not ω-categorical follows
immediately from the theorem by Engeler, Ryll-Nardzewski, and Svenonius (cf. Theorem
6.3.1 in [16]). It is even the case that the corresponding CSPs cannot be formulated by any
ω-categorical template; the basic proof idea is presented in [1, Proposition 1]; also see [4].

Our results follow from theorems about primitive positive definability: we show that for
every relation R with a first-order definition in (Q; +), either R has a quantifier-free Horn
definition in (Q; +), or R contains the tuple (0, . . . , 0), or all relations with a first-order
definition in (Q; +) have a primitive positive definition in (Q; +, R). The analogous result
also holds for the affine case. The techniques that we use to prove these two definability
theorems are more general than the two classification results, and they are very different
in nature. One technique applies for structures ‘that have little structure’; to be precise,
for all structures Γ where = and 6= are the only primitive positive definable non-trivial
binary relations (Section 5). In particular, they apply to structures with a 2-transitive
automorphism group. The other technique applies for structures ‘with a lot of structure’;
informally, it applies whenever we can find a primitive positive definition for the line between
two points in Qk (Section 4).

The rest of this paper is organised as follows: in Section 2, we provide some background
material on constraint satisfaction and logic. A tractability result for templates that have a
quantifier-free Horn definition in (Q; +) is presented in Section 3. The classification result
for (Q; +) can be found in Section 4 while the results for the affine case are collected in
Section 5. Finally, a number of open questions and directions for future work can be found
in Section 6.
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2. Preliminaries

Let Γ = (D;R1, . . . , Rn) be a relational structure1 with domain D (which will usually be
infinite) and finitely many relations R1, . . . , Rn. The constraint satisfaction problem for Γ
(short, CSP(Γ)) is the computational problem to decide whether a given primitive positive
sentence Φ involving relation symbols for the relations in Γ is true in Γ. A first-order formula
is called primitive positive if it is of the form

∃x1, . . . , xn.ψ1 ∧ . . . ∧ ψm

where ψi are atomic formulas, i.e., formulas of the form x = y or R(xi1 , . . . , xik) with R
the relation symbol for a k-ary relation from Γ. We call such a formula a pp-formula. The
conjuncts in a pp-formula Φ are also called the constraints of Φ. We also refer to Γ as a
constraint language (it is also often called the template) of CSP(Γ).

We say that a first-formula φ defines a relation R in Γ when φ(a1, . . . , ak) holds in Γ
iff (a1, . . . , ak) ∈ R. If φ is primitive positive, we call R primitive positive definable (pp-
definable) over Γ. The following simple but important result explains the importance of
primitive positive definability for constraint satisfaction problems.

Lemma 2.1. Let Γ be a relational structure and Γ′ be an expansion of this structure by a
pp-definable relation R over Γ. Then CSP(Γ) is polynomial-time equivalent to CSP(Γ′).

Lemma 2.1 will be used extensively in the sequel and we will not make explicit references
to it. Another important class of formulas are Horn formulas; a first-order formula in
conjunctive normal form is Horn if and only if each clause contains at most one positive
literal. A relation R is called quantifier-free Horn definable over Γ if there exists a quantifier-
free Horn formula that defines R in Γ. Note that Lemma 2.1 does not hold if we replace
‘pp-definable’ with ‘Horn definable’.

By choosing an appropriate structure Γ many computational problems that have been
studied in the literature can be formulated as CSP(Γ) (see e.g. [1, 10, 11]). It turns out
very often that the structure Γ can be chosen to be ω-categorical. A structure is called
ω-categorical if the set of all first-order sentences that is true in the structure has only one
countable model, up to isomorphism. A famous example of an ω-categorical structure is
(Q;<). The condition of ω-categoricity is interesting for constraint satisfaction, because
the so-called universal-algebraic approach, which is currently intensively studied for finite
constraint languages, applies—at least in principle—also for ω-categorical structures (see
e.g. [6] for an application of the universal-algebraic approach to CSPs for constraint lan-
guages over infinite domains). In this article, we demonstrate that systematic complexity
classification can be performed for constraint languages over infinite domains even if the
constraint languages are not ω-categorical.

Example. Let Γ denote the structure

(Q; {(x, y, u, v) | (x = 2y ∨ y = u+ v) ∧ x 6= u})

It can be shown that CSP(Γ) cannot be formulated with an ω-categorical template (for
a very similar proof, see [1]; a necessary and sufficient condition about which CSPs can
be formulated with ω-categorical templates can be found in [4]). One can show that the
relations {(x, y) | x 6= y} and {(x, y, z) | x = y + z} have pp-definitions in Γ. It is

1Our terminology is standard; all notions that are not introduced in the article can be found in standard
text books, e.g., in [16].
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now straightforward to determine the computational complexity of CSP(Γ) by combining
Lemma 2.1 and our classification result (Corollary 4.6).

We will sometimes consider the automorphism group Aut(Γ) of a template Γ over a
domain D, i.e., the group formed by the set of all automorphisms2 of Γ with respect to
functional composition. An orbit of Aut(Γ) on D2 is a set of the form {(α(a), α(b)) | α ∈
Aut(Γ)}, for some a, b ∈ D. We note that pairs from the same orbit satisfy the same
first-order formulas.

Let D be an arbitrary infinite set and arbitrarily choose an element d ∈ D. The
complexity of CSP(Γ) where Γ has a first-order definition in (D; =) (so-called equality
languages) has been classified in [5]. We note that if R is first-order definable in (D; =)
and (d, . . . , d) ∈ R, then (d′, . . . , d′) ∈ R for every d′ ∈ D. Thus, the exact choice of d is
irrelevant when stating the following theorem.

Theorem 2.2 (of [5]). Let Γ be a template with a first-order definition in (D; =). Then,
all relations in Γ have a quantifier-free Horn definition in (D; =), or all non-empty relations
in Γ contain the tuple (d, . . . , d), or else every first-order definable relation in (D; =) has a
pp-definition in Γ. In the last case, CSP(Γ) is NP-complete.

Instead of using Theorem 2.2 in its full generality, it will be sufficient to use a simple
corollary. For any set D, the relation SD denotes the relation

{(x, y, z) ∈ D3 | y 6= z ∧ (x = y ∨ x = z)} .

Corollary 2.3. Let D be an infinite set. Every first-order definable relation in (D; =) has
a pp-definition in (D;SD).

Proof. The relation SD has a first-order definition in (D; =) and does not contain the tuple
(d, d, d). It is easy to verify that SD has no quantifier-free Horn definition in (D; =) so every
first-order definable relation in (D; =) has a pp-definition in (D;SD) by Theorem 2.2.

3. Tractability

For all relational structures Γ with a quantifier-free Horn definition in (Q; +), the
problem CSP(Γ) can be solved in polynomial time. This follows from a more general
algorithmic result in [18]. However, the algorithm presented there solves a linear number of
linear programs, and thus the best known algorithms have a rather high worst-case running
time. We present a more efficient algorithm for the special case that is relevant in our paper.
We denote by O∼(f(N)) the class of all functions of asymptotic growth at most f(N) up
to poly-logarithmic factors.

Proposition 3.1. Let Γ be a relational structure whose relations have a quantifier-free
Horn definition in (Q; +). Then there is an algorithm that solves CSP(Γ) in time O∼(N4)
where N is the size of the input.

The algorithm we present in the proof of Proposition 3.1 is a combination of general
techniques in constraint satisfaction [2, 13] and a polynomial implementation of Gaussian
elimination algorithm on rational data. Since the input of CSP(Γ) consists of a primitive

2Isomorphisms between Γ and Γ.
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positive sentence whose atomic formulas are of the form R(x1, . . . , xk) where R is quantifier-
free Horn definable over (Q; +), we can as well assume that the input to our problem consists
of a set of Horn clauses over (Q; +).

We have to make some remarks about the worst-case running time of the Gaussian
elimination algorithm. It is well-known that the Gaussian elimination requires O(n2m)
many arithmetic operations on rational numbers, where m is the number of equations and
n is the number of variables. In our algorithm, we have to solve a linear number of linear
equation systems S1, . . . , Sm; however, system Si+1 is obtained from system Si by adding a
single linear equation. Since the Gaussian algorithm can be presented in such a way that it
computes a system in triangular form, adding successively equation by equation, the overall
costs for solving S1, . . . , Sm equals the cost to solve Sm with Gaussian elimination.

Also recall that the size of the numbers involved when performing the Gaussian elim-
ination algorithm might grow exponentially when implemented without care. However,
when we use the Euclidean algorithm to shorten the coefficients during the elimination
process, the Gaussian elimination algorithm can be shown to be polynomial [14]. We are
only interested in deciding solvability of linear equation systems, and not constructing so-
lutions, and so we even have linear bounds (in the input size) on the representation size
of all numbers involved in deciding solvability for linear equation systems over the rational
numbers with Gaussian elimination (see [22], proof of Theorem 3.3). Finally we remark
that the most costly arithmetic operation that has to be performed on rational numbers
during the elimination process is multiplication, and multiplication can be performed in
time O(s log s log log s), where s denotes the representation size of the two rational num-
bers (in bits). Hence, the overal running time for solving S1, . . . , Sm with the discussed
implementation of the Gaussian elimination algorithm is in O∼(N4).

We will show that our algorithm for CSP(Γ) can be implemented such that it has the
same overall asymptotic worst-case complexity.

Solve(Φ)
// Input: An instance Φ of CSP(Γ)
// where all relations in Γ have a quantifier-free Horn definition in (Q; +)
// Output: yes if Φ is true in Γ, false otherwise
Let C be the set of all Horn-clauses from each constraint in Φ
Let U be the subset of C that only contains clauses with a single positive literal.
Do

For all negative literals ¬φ in clauses from C
If U implies φ delete the negative literal ¬φ from all clauses in C.

If C contains an empty clause then return unsatisfiable.
If C contains a clause with a single positive literal ψ, add {ψ} to U .

Loop until no literal has been deleted
Return satisfiable.

Figure 1: An algorithm for the constraint satisfaction problem where all constraint relations
have a quantifier-free Horn definition in (Q; +).

Proof of Proposition 3.1. We first discuss the correctness of the algorithm shown in Figure 1,
and then explain how to implement the algorithm such that it achieves the desired running
time.



6 MANUEL BODIRSKY, PETER JONSSON, AND TIMO VON OERTZEN

When U logically implies φ then the negative literal ¬φ is never satisfied and can be
deleted from all clauses without affecting the set of solutions. Since this is the only way
how literals can be deleted from clauses, it is clear that if one clause becomes empty the
instance is unsatisfiable.

If the algorithm terminates with yes, then no negation of a disequality is implied by U . If
r is the rank of the linear equation system defined by U , we can use the Gaussian elimination
algorithm as described above to eliminate from all literals in the remaining clauses r of the
variables. Let S be the maximal sum of the absolute values of all coefficients in one of the
remaining inequalities plus one. Then setting the i-th variable to Si satisfies all clauses.

To see this, take any disequality, and assume that i is the highest variable index in this
disequality. Order the disequality in such a way that the variable with highest index is on
one side and all other on the other side of the 6= sign. The absolute value on the side with
the i-th variable is at least Si. The absolute value on the other side is less than Si−S, since
all variables have absolute value less than Si−1 and the sum of all coefficients is less than
S − 1 in absolute value. Hence, both sides of the disequality have different absolute value,
and the disequality is satisfied. Since all remaining clauses have at least one disequality, all
constraints are satisfied.

We finally explain how to implement the algorithm such that it runs in time O∼(N4). To
decide whether U implies an equality φ, we compute in each interation of the main loop the
triangular normal form for the linear equation system determined by U as described before
the statement of the Proposition. The overall costs to do this are in O∼(N4). Moreover,
for each negative literal we maintain an equation where we eliminate as many variables as
possible using the computed triangular normal form. If one of these equations becomes
trivial (i.e. is the form a = a) we conclude that the equation is implied by U . The overall
costs for doing this is also bounded by O∼(N4) by a very similar argument as given before
the statement of the proposition. With appropriate straightforward data structures, the
total costs for removing negated literals ¬φ from all clauses when φ is implied by U is
linearly bounded in the input size since each literal can be removed at most once.

4. The Rational Numbers with Addition

In this section we present the complexity classification for first-order expansions of
(Q; {(x, y, z) | x+ y = z}). We begin in Section 4.1 with a result about the pp-definability
of the disequality relation 6= in first-order expansions of (Q; {(x, y, z) | x+ y = z}). When
the relation 6= is pp-definable, we show that also the relation SQ (defined in Section 2 as the
relation {(x, y, z) ∈ Q3 | x 6= z ∧ (x = y ∨ y = z)}) is pp-definable whenever the constraint
language contains a relation R that is first-order, but not quantifier-free Horn definable in
(Q; +); this is shown in Section 4.2. Finally, Section 4.3 completes the classification for
first-order expansions of (Q; {(x, y, z) | x+ y = z}).

4.1. Definability of Disequality.

Lemma 4.1. For any structure Γ with a first-order definition in (Q; +), the first-order
definable relations in Γ are a subset of {Q,Q \ {0}, {0}, ∅}.

Proof. Let R be a unary relation with a first-order definition in (Q; +). The statement is
clear if R does not contain any element distinct from 0, so let a be from Q\{0}. We have to
show that R = Q or R = Q \ {0}. Observe that for any c ∈ Q, c 6= 0, the mapping x 7→ cx
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is an automorphism of Γ. Hence, for any b 6= 0 there is an automorphism of (Q; +) that
maps a to b. Since automorphisms preserve first-order formulas, so b ∈ R and the claim
follows.

Note that x = 0 is equivalent to x+ x = x and hence the relation {0} is pp-definable
over (Q; +); thus we can use 0 freely as a constant symbol in pp-definitions over Γ.

Proposition 4.2. Let Γ be a first-order expansion of (Q; +) containing a non-empty relation
R such that R(x, . . . , x) is false for any x. Then 6= is pp-definable in Γ.

Proof. Observe that if the set Q \ {0} has a pp-definition φ(u) in Γ, then the pp-formula

∃u, y′. φ(u) ∧ y + y′ = 0 ∧ x+ y′ = u

defines x 6= y over Γ.
Let S be a non-empty pp-definable relation in Γ of minimal arity such that S(x, . . . , x)

defines the empty set. Let k be the arity of S. First, assume that S(x1, x2, . . . , xk)∧x1 = x2
is satisfiable. Then the (k−1)-ary relation S′(x2, . . . , xk) defined by S(x2, x2, . . . , xk) is non-
empty, and S′(x, . . . , x) defines the empty set; this is in contradiction to the choice of S.

Assume next that S(x1, . . . , xk) ∧ x1 = x2 is unsatisfiable. Define the unary relation
T (x) by

∃x3, . . . , xk. S(x, 0, x3, . . . , xk)

and the unary relation U(y) by

∃x1, x3, . . . , xk. S(x1, y, x3, . . . , xk) .

By Lemma 4.1, both T and U are from {Q,Q\{0}, {0}, ∅}. The relation T cannot be equal
to {0} or to Q since this contradicts the assumption that S(x1, x2, . . . , xk) ∧ x1 = x2 is
unsatisfiable. If T is equal to Q \ {0}, then by the initial observation 6= is pp-definable in Γ
and we are done. We conclude that T = ∅ and hence 0 /∈ U . Since U is non-empty, it must
be the case that U = Q \ {0}, and again by the initial observation 6= is pp-definable in Γ.

4.2. Definability of SQ. The rational numbers with addition (and also the real numbers
with addition) admit quantifier elimination, i.e., every relation with a first-order definition in
(Q; +) also has a quantifier-free definition over (Q; +). This follows from the more general
fact that the first-order theory of torsion-free divisible abelian groups admits quantifier
elimination (see e.g. Theorem 3.1.9 in [20]).

The first lemma allows us to freely use certain expressions in pp-definitions over (Q; +).

Lemma 4.3. The relation {(x1, . . . , xl) | r1x1+ . . .+ rlxl = 0} is pp-definable in (Q; +) for
arbitrary r1, . . . , rl ∈ Q.

Proof. First observe that we can assume that r1, . . . , rl are integers, because we can multiply
the equation r1x1 + · · · + rlxl = 0 by the least common multiple of the denominators of
r1, . . . , rl and obtain an equivalent equation. The proof is by induction on l. We first
consider that case that l = 1. If r1 = 0, there is nothing to show. Otherwise, the formula
r1x1 = 0 is equivalent to x1 + x1 = x1. Hence, we can in particular use expressions of the
form x = 0 and x + y = 0 in pp-definitions over (Q; +) with variables x, y. If l = 2, and
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r1 = 0 or r2 = 0, then we can argue as in the case l = 1. If r1 and r2 are both positive or
both negative, then r1x1 + r2x2 = 0 is equivalent to

∃u1, . . . , ur1 , v1, . . . , vr2 .u1 = x1 ∧ v1 = x2 ∧ ur1 + vr2 = 0 ∧

r1−1∧

i=1

x1 + ui = ui+1 ∧
r2−1∧

i=1

x2 + vi = vi+1 .

If r1 and r2 have different signs, we replace the conjunct ur1 + vr2 = 0 in the formula above
by ur1 = vr2 .

Now suppose that l > 2. By the inductive assumption, there is a pp-definition φ1 for
r1x1+r2x2+u = 0 and a pp-definition φ2 for r3x3+. . . rlxl+v = 0. Then ∃u, v.φ1∧φ2∧u+v =
0 is a pp-definition for r1x1 + · · · + rlxl = 0.

In the following, R denotes a relation with a quantifier-free first-order definition φ in
(Q; +). A quantifier-free first-order formula φ in conjunctive normal form is called reduced
if every formula obtained from φ by removing a literal is not equivalent to φ (this concept
was introduced in [3]). Clearly, such a reduced definition of R always exists, because we
can find one by successively removing literals from φ. Note that if l is a literal from φ, then
¬l can be written as a pp-formula over a structure that contains 6= and +.

Lemma 4.4. If R is first-order, but not quantifier-free Horn definable in (Q; +), then SQ
has a pp-definition in (Q;R,+, 6=).

Proof. Let T (x, y) ( Q2 be the binary relation defined by x 6= 0∧ (y = 0∨ x = y). We first
prove that T has a pp-definition in (Q;R,+, 6=). Let φ be a reduced first-order definition
of R, and let C be a clause of φ with two positive literals l1 and l2. Because φ is reduced,
there are p, q ∈ R such that p satisfies l1 and does not satisfy all other literals in C, and q
satisfies l2 but does not satisfy all other literals in C.

We claim that the following pp-formula is logically equivalent to x 6= 0∧(y = 0∨x = y).

∃z1, . . . , zk. x 6= 0 ∧
k∧

i=1

zi = pix+ (qi − pi)y ∧

∧

l∈C\{l1,l2}

¬l ∧ R(z1, . . . , zk)

Let x 6= 0 be arbitrary. Suppose that y = 0. Then the assignment z1 = p1x, . . . , zk = pkx
obviously satisfies the first line in the pp-formula. Recall that p ∈ R and p does not satisfy
all literals in C except for l1. The function f(a) = x · a is in Aut(Q; +) whenever x 6= 0.
Consequently, f ∈ Aut(Q;R), too, and the second line in the formula is satisfied as well.
Now suppose that x = y. Then the assignment z1 = q1x, . . . , zk = qkx obviously satisfies
the first line in the pp-formula. By construction, q ∈ R and q does not satisfy all literals in
C except for l1. Again we conclude that the second line in the formula is also satisfied.

For the opposite direction, suppose that x, y ∈ Q satisfy the pp-formula. Because of
the first line of the formula, x 6= 0. Let z1, . . . , zk be the k elements whose existence is
asserted in the first line of the formula. Note that the equations of the first line imply that
(z1, . . . , zk) lies on the line L ⊂ Qk defined by px and qx. Because the formula contains
the conjunct R(z1, . . . , zk), the clause C in φ is satisfied by z1, . . . , zk. Since z1, . . . , zk also
satisfies the conjunction of all negated literals in C except for the positive literals l1 and l2,
at least one of these two literals l1 and l2 must be satisfied by z1, . . . , zk.
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Suppose first that l1 is satisfied. The line L does not lie completely within the subspace
of Qk defined by l1 (because q does not satisfy l1, and neither does qx). Hence, L intersects
this subspace in at most one point. Because p and hence also px ∈ L satisfies l1, we have
thus shown that (z1, . . . , zk) equals px. Since p 6= q we conclude that y = 0 by the equations
in the second line of the formula. Now, consider the case that l2 is satisfied. Similarly as in
the last case, L intersects the subspace defined by l2 in at most one point. Because q ∈ L
satisfies l2, we have shown that (z1, . . . , zk) equals q. The equations in the second line of
the formula then imply that x = y.

Finally, we prove that SQ(u, v, w) has the following pp-definition in (Q; +, T ):

∃x, y. x+ v = w ∧ y + v = u ∧ T (x, y).

Suppose first that (u, v, w) ∈ SQ. Note that x = w − v is not equal to 0 because v 6= w. If
u = v, then y = 0, and if u = w, then x = w − v = u− v = y so T (x, y) is satisfied.

Conversely, suppose that (x, y) ∈ Q2 satisfies the pp-formula above. The formula
T (x, y) implies that x 6= 0 and hence w 6= v. Moreover, T (x, y) implies that y = 0 or x = y.
If y = 0, then u = v and (u, v, w) ∈ SQ. If x = y, then w − v = u − v and hence u = w.
Again (u, v, w) is in SQ.

4.3. Classification Result. We will now use Lemma 4.4 in order to prove the following
definability result.

Theorem 4.5. Let Γ be first-order expansion of (Q; +). Then, either

• each relation in Γ has a quantifier-free Horn definition in (Q; +), or
• every non-empty relation of Γ contains a tuple of the form (0, . . . , 0), or
• every first-order definable relation in (Q; +) has a pp-definition in Γ.

Proof. Suppose that there is a non-empty k-ary relation R of Γ that does not contain the
tuple (0, . . . , 0). Then the (k + 1)-ary relation R′(x1, . . . , xk+1) defined by R(x1, . . . , xk) ∧
xk+1 = 0 is non-empty, and the relation defined by R′(x, . . . , x) is empty. So we can apply
Proposition 4.2 and find that 6= is pp-definable in (Q; +, R′) and hence also in Γ. So assume
in the following without loss of generality that Γ contains the relation 6=.

Suppose that one of the relations of Γ does not have a quantifier-free Horn definition in
(Q; +). Lemma 4.4 implies that the relation SQ has a pp-definition in Γ, and Corollary 2.3
implies that every relation with a first-order definition in (Q; =) has a pp-definition in Γ.

Let R be a relation with a first-order definition φ in (Q; +). To find a pp-definition for
R in Γ, we introduce a variable u for every atomic formula of the form x+ y = z in φ. For
each atomic formula ψ in φ of the form x+y = z, we replace ψ by uψ = z for a new variable
uψ. The resulting formula consists of a boolean combination of atomic formulas of the form
x = y, which we know has a pp-definition φ′ in Γ. For each atomic formula ψ in φ we add
the conjunct x+ y = uψ to φ′, and finally existentially quantify over all new variables. It is
straightforward to verify that the resulting formula is a pp-definition of R in Γ.

Theorem 4.5 has immediate consequences for the computational complexity of con-
straint satisfaction.

Corollary 4.6. Let Γ be a structure with a finite relational signature and a first-order
definition in (Q; +) that contains the relation {(x, y, z) | x+ y = z}. Then CSP(Γ) is in P
if all relations in Γ have a quantifier-free Horn definition over (Q; +), or if all non-empty
relations contain a tuple of the form (0, . . . , 0), and is NP-hard otherwise.
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Proof. If all relations in Γ have a quantifier-free Horn definition over (Q; +), then Proposi-
tion 3.1 implies that CSP(Γ) is in P. Otherwise, Theorem 4.5 implies that in particular the
relation defined by (x = y ∧ y 6= z) ∨ (x 6= y ∧ y 6= z) is pp-definable in Γ. It follows from
Theorem 2.2 that the constraint satisfaction problem for this ternary relation is NP-hard.

5. Affine Structures over the Rational Numbers

We will now consider affine additive structures over Q. The structure of this section
is very similar to the structure of Section 4: we begin by studying the definability of 6=
(Section 5.1) and of SD (in Section 5.2) and use these results to completely classify the
problem in Section 5.3. The main proof in Section 5.2, however, is very different from the
corresponding proof in Section 4.2.

Let us now formally define the problem at hand: define the operation f : Q3 → Q by
f(a, b, c) = a− b+ c. We study the constraint satisfaction problem for templates Γ with a
first-order definition in (Q; f) that contain the relation {(a, b, c, d) | a− b+ c = d}.

5.1. Definability of Disequality.

Lemma 5.1. Let Γ be a structure with a first-order definition in (Q; f). Then there are
at most four first-order definable binary relations: the empty relation, the full relation, the
relation 6=, and the relation =.

Proof. It suffices to show that Aut(Γ) has precisely two orbits on R2, namely

O1 = {(x, x) | x ∈ Q} and O2 = {(x, y) | x, y ∈ Q, x 6= y} .

These two orbits clearly partition Q2. It is obvious that O1 is an orbit, because for every
c ∈ Q the mapping x 7→ x+ c is an automorphism of (Q; f) and hence of Γ. To see that O2

is an orbit of pairs of reals, we apply linear interpolation: let (a, b) ∈ O2 and (c, d) ∈ O2 be
arbitrary. The mapping x 7→ c−d

a−b (x− a) + c maps (a, b) to (c, d) and it is an automorphism

of (Q; f), and hence of Γ.

In the proof of Lemma 5.1 we have in fact verified that the automorphism group of Γ
is 2-transitive, i.e., that there is only one orbit of pairs of distinct elements with respect to
the componentwise action of the automorphism group of Γ on pairs.

Theorem 5.2 (from [6]). Let Γ be a relational structure with a 2-transitive automorphism
group. If there is no pp-definition of 6=, then there is an element x of Γ such that every
non-empty relation in Γ contains a tuple of the form (x, . . . , x).

5.2. Definability of SD. The central step of the classification is the following result con-
cerning pp-definability.

Lemma 5.3. Let Γ be a relational structure over an infinite domain D such that D2, =, 6=,
and ∅ are the only pp-definable binary relations. Suppose that Γ contains a relation Q such
that there are pairwise distinct 1 ≤ i, j, k, l ≤ n for which the following conditions hold:

(1) Q(x1, . . . , xn) ∧ xi 6= xj is satisfiable;
(2) Q(x1, . . . , xn) ∧ xk 6= xl is satisfiable;
(3) Q(x1, . . . , xn) ∧ xi 6= xj ∧ xk 6= xl is unsatisfiable.
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Then SD has a pp-definition in Γ.

We simplify the proof of Lemma 5.3 by first proving a slightly restricted version:

Lemma 5.4. Let Γ be a relational structure over an infinite domain D such that D2, =,
6=, and ∅ are the only pp-definable binary relations. Suppose that Γ contains a relation Q
such that there are 1 ≤ i, j, k ≤ n for which the following conditions hold:

(1) Q(x1, . . . , xn) ∧ xi 6= xj is satisfiable;
(2) Q(x1, . . . , xn) ∧ xi 6= xk is satisfiable;
(3) Q(x1, . . . , xn) ∧ xi 6= xj ∧ xi 6= xk is unsatisfiable.

Then SD has a pp-definition in Γ.

Proof. The indices i, j, k must be pairwise distinct, so suppose for the sake of notation that
i = 1, j = 2, k = 3. Consider the relation R defined by

R(x1, x2, x3) ≡ ∃x4, . . . , xn.Q(x1, . . . , xn) ∧ x2 6= x3 .

We first note that R is a non-empty relation: Q(x1, . . . , xn) is satisfiable so the only way of
making R empty is that every tuple (s1, . . . , sn) in Q satisfies s2 = s3. This is impossible
since we know that there exists a tuple (s1, . . . , sn) ∈ Q such that s1 6= s2. This implies
s1 6= s3 and contradicts the third condition.

Arbitrarily choose a domain element a. We first show that there always exist elements
y, z ∈ D such that (a, y, z) ∈ R. Let A = {a ∈ D | ∃y, z.R(a, y, z)} and note that A
is pp-definable. We know that A is non-empty since R is non-empty. Now assume that
A ( D. First suppose that |A| = 1. Then

A′(x, y) ≡ A(x) ∧A(y)

is non-empty and a strict subset of the equality relation, a contradiction.
If |A| > 1, then consider the pp-definable relation

A′(x, y) ≡ A(x) ∧A(y) ∧ x 6= y.

We see that ∅ ( A′ ( {(u, v) ∈ D2 | u 6= v} which contradicts the fact that the only
non-trivial binary relations that are pp-definable from Γ are = and 6=. Hence, A = D.

We now continue by considering the tuple (a, y, z) ∈ R. By the third condition, we
see that at least one of y, z must equal a in order to satisfy R. Let us consider the case
R(a, a, z). Note that (a, a, a) 6∈ R due to the literal y 6= z. We now show that R(a, a, z) is
satisfied by any choice of z except a. To see this, assume to the contrary that there is a
domain element b 6= a such that (a, a, b) 6∈ R. Define R′(x, z) ≡ R(x, x, z) and note that
∅ ( R′ ( {(u, v) ∈ D2 | u 6= v} which contradicts the assumption that = and 6= are the
only non-trivial pp-definable binary relations. Similarly, one can show that R(a, y, a) holds
for all y 6= a. Therefore R = SD.

Proof of Lemma 5.3. Assume for notational simplicity that i = 1, j = 2, k = 3, and l = 4.
Define the 4-ary relation R by

R(x1, x2, x3, x4) ≡ ∃x5, . . . , xn.Q(x1, . . . , xn)

and consider the formula φ = R(x, y, x′, y′)∧R(z′, y′, z, y)∧x′ 6= z′.We claim that φ∧x 6= y
and φ ∧ y 6= z are satisfiable while φ ∧ x 6= y ∧ y 6= z is not satisfiable. Then we can apply
Lemma 5.4 and are done. First we make an observation:

Observation 1. Define relation R1 such that
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R1(u, v) ≡ ∃x, y.R(x, y, u, v) ∧ x 6= y.

We know that R(x, y, u, v) ∧ x 6= y is satisfiable so R1 is a non-empty relation. Since
R1(u, v)∧u 6= v is not satisfiable, we conclude that R1 is a non-empty subset of the equality
relation. Consequently, R1 is the equality relation. Analogously, define R2 such that

R2(u, v) ≡ ∃z, y.R(u, v, z, y) ∧ z 6= y

and note that R2 is the equality relation, too.

We now prove that φ ∧ x 6= y ∧ y 6= z is not satisfiable. By using Observation 1, it follows
that any solution s satisfies x′ = y′ and y′ = z′ — this is impossible due to the clause
x′ 6= z′.

Next, we prove that φ ∧ x 6= y is satisfiable; the case φ ∧ y 6= z is symmetric. Consider
the relation

U(u, v) ≡ ∃w.R(w, u, v, v) ∧ w 6= u.

By the conditions on R, we know that U is non-empty. Since U is binary, we also know that
U either is the equality relation, the disequality relation, or the full relation. We conclude
that U is non-empty and symmetric.

By Observation 1, the clause x 6= y has the effect that every solution s must satisfy
x′ = y′. The solution also has to satisfy x′ 6= z′ which implies that y′ 6= z′. Observation 1
now tells us that z = y and we conclude that every solution satisfies x′ = y′ and z = y. We
define

φ′ = R(x, y, x′, x′) ∧R(z′, y′, z, z) ∧ x′ 6= z′ ∧ x 6= y

Thus, φ′ is satisfiable if and only if φ∧x 6= y is satisfiable. We will now construct a concrete
satisfying assignment s to the variables of φ′.

Arbitrarily choose a tuple (a, b) ∈ U and let s(y) = a, s(x′) = b. By the conditions on U ,
there exists an element c such that (c, a, b, b) ∈ R and c 6= a; we let s(x) = c. Furthermore,
we know that s(x′) = s(y′) and s(z) = s(y) so s(y′) = b and s(z) = a. At this point, we see
that the assignment s satisfies the clauses R(x, y, x′, x′) and x 6= y.

We know that (a, b) ∈ U so (b, a) ∈ U , too, and there exists a value d such that
(d, b, a, a) ∈ R and d 6= b. Now, let s(z′) = d and note that R(z′, y′, z, z) is satisfied by s.
Finally, s(x′) = b 6= d = s(z′) so the clause x′ 6= z′ is satisfied and the proof is completed.

5.3. Classification Result. We are now ready to prove the classification result for the
affine case.

Theorem 5.5. Let Γ be a first-order expansion of (Q; f). Then, either

• each relation in Γ has a quantifier-free Horn definition in (Q; f), or
• every non-empty relation of Γ contains a tuple of the form (0, . . . , 0), or
• every first-order definable relation in (Q; f) has a pp-definition in Γ.

Proof. Suppose that there is a non-empty k-ary relation R of Γ that does not contain the
tuple (0, . . . , 0). The proof of Lemma 5.1 shows that Γ is 2-transitive, and hence by the
contraposition of Theorem 5.2 the relation 6= is pp-definable. So assume in the following
without loss of generality that Γ contains the relation 6=.

Let R be a relation in Γ that does not have a quantifier-free Horn definition in (Q; f).
Let φ(x1, . . . , xn) be a reduced definition of R in (Q; f) (see Section 4). Then there must be a
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clause C in φ with at least two positive literals f(xi1 , xi2 , xi3) = xi4 and f(xj1 , xj2 , xj3) = xj4 .
Let Q(x1, . . . , xn, xn+1, xn+2) be the relation defined by

φ(x1, . . . , xn) ∧
∧
l∈C\{l1,l2}

¬l ∧

xn+1 = f(xi1 , xi2 , xi3) ∧ xn+2 = f(xj1 , xj2 , xj3).

This relation Q is clearly pp-definable over (Q;R, f, 6=). We claim that Q satisfies
the conditions of Lemma 5.3 (which is applicable due to Lemma 5.1) with respect to the
arguments indexed by i4, n + 1, j4, and n + 2 (or the conditions of Lemma 5.4 if i4 = j4;
this remark also applies to all other places where we appeal to Lemma 5.3). Since φ is
reduced, there is a tuple t ∈ R that satisfies l2 and does not satisfy all other literals in
φ. Now, the extended tuple t1 = (t[1], . . . , t[n], t[i4], t[j4]) clearly satisfies Q, and we have
t1[i4] 6= t1[n+ 2] as required in the conditions for Lemma 5.4. There is also a tuple t2 ∈ R
that satisfies l1 and does not satisfy all other literals in C, and we can argue similarly to
find a second tuple showing the second condition of Lemma 5.3.

Finally, suppose for contradiction that there is a tuple t3 in Q where t3[i4] 6= t3[n + 1]
and t3[j4] 6= t3[n + 2]. Because this tuple satisfies in particular the clause C from φ, the
conjunct

∧
l∈C\{l1,l2}

¬l implies that either l1 or l2 is satisfied. But then the equalites xn+1 =

f(xi1 , xi2 , xi3) and xn+2 = f(xj1 , xj2 , xj3) imply that t3[i4] = t3[n+1] or t3[j4] = t3[n+2], a
contradiction. Hence, Lemma 5.4 applies, SR is pp-definable over (Q;Q) and therefore also
over (Q;R, f, 6=) and Γ. The result follows from Corollary 2.3.

The next corollary is a direct consequence of Proposition 3.1, Theorem 5.5, and Corol-
lary 2.3.

Corollary 5.6. Let Γ be an expansion of (Q; {(a, b, c, d) | a− b+ c = d}) by finitely many
first-order definable relations. If each relation in Γ has a quantifier-free Horn definition in
(R, f), or if each non-empty relation contains a tuple of the form (0, . . . , 0), then CSP(Γ)
is in P. Otherwise, CSP(Γ) is NP-hard.

6. Concluding Remarks

We have presented classification results for certain algebraic constraint satisfaction
problems, and the results are to a large extent based on dichotomy results for logical defin-
ability. We feel that the results and ideas presented in this paper can be extended in many
different directions. Hence, it seems worthwhile to provide some concrete suggestions for
future work.

The results and proof techniques in Section 4 appear to be generalisable to many dif-
ferent templates defined over various structures. One example is the natural and important
class of structures that are definable in Presburger arithmetics [21], i.e., structures that are
first-order definable over the integers with addition (Z; +). We note that the following can
be obtained by slightly modifying Corollary 4.6.

Corollary 6.1. Let Γ be a relational structure with a quantifier-free first-order definition in
(Z; +) that contains the relation {(x, y, z) | x+ y = z}. Then CSP(Γ) is in P if all relations
in Γ have a quantifier-free Horn definition over (Z; +), or if all non-empty relations contain
a tuple of the form (0, . . . , 0). Otherwise, CSP(Γ) is NP-hard.
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There is an important difference between this result and a full classification result:
we have replaced first-order definability with quantifier-free first-order definability in the
statement of the result, and the reason is that (Z; +) does not admit quantifier elimination.
Is there still a complexity dichotomy if we look at the class of CSPs with an template that
is first-order definable in (Z; +)? This appears to be a difficult question.

The results presented in Section 5 have strong connections with earlier work on the
complexity of disjunctive constraints [8, 13]. We say that 6= is 1-independent with respect
to a τ -structure Γ if and only if for every primitive positive τ -formula φ with free variables
x, y, z, w the following holds: if φ ∧ x 6= y and φ ∧ z 6= w are satisfiable, then so is φ ∧ x 6=
y ∧ z 6= w. Assume that CSP(Γ) is tractable and let Γ′ denote the set of all relations that
can be defined by (quantifier-free) conjunctions of disjunctions over Γ containing at most
one literal that is not of the form x 6= y. The following has been shown in [8, 13]; it does
not imply our result since it only makes a statement about a constraint language Γ′ of the
form described above.

Theorem 6.2 (from [8,13]). Let Γ and Γ′ be defined as above, and assume that P 6= NP.
Then CSP(Γ′) is tractable if and only if 6= is 1-independent with respect to Γ.

We have already mentioned that the structures studied in this paper are in general
not ω-categorical. However, torsion-free divisible abelian groups such as (Q; +) and all
structures first-order definable in such groups are strongly minimal (see e.g. Corollary 3.1.11
in [20]), and hence categorical in all uncountable cardinals. This is interesting from a
constraint satisfaction point of view because of the following preservation theorem.

Theorem 6.3 (of [4]). Let Γ be an uncountably categorical structure with a countable
relational signature and an uncountable domain. Then a first-order definable relation R
has a pp-definition in Γ if and only if R is preserved by all infinitary polymorphisms of Γ.

Note that this theorem is weaker than the corresponding theorem for ω-categorical
structures [7], because we have to assume that R is first-order definable, and that R is not
only preserved by the finitary, but also by the infinitary polymorphisms of Γ. Since our
classification result is purely in terms of primitive positive definability of first-order defin-
able relations, it is an interesting question to describe the polymorphisms that guarantee
tractability for structures Γ with a first-order definition in (Q; +) (Theorem 6.3 shows that
such polymorphisms do exist).
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