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Abstract. Cooperative boolean games are coalitional games with lugls gnd
costs associated to actions, and dependence networks di@albogames are a
kind of social networks representing how the actions of otgents have an
influence on the achievement of an agent’s goal. In this papemtroduce two
new types of dependence networks, calledahstract dependence netwaakd
therefined dependence netwoNoreover, we show that the notion of stability is
complete with respect to the solution concept ofdbeein the case of cooperative
boolean games with costly actions. We present a reductaledcA-reduction

to pass from a cooperative boolean gaf® game(’ without loosing solutions.

1 Introduction

Dunneet al. [5] recently introduced a kind of coalitional games callexbgerative
boolean games, and they characterize the complexity ofaluéi@n concepts of core
and stable sets. Moreover, Bonzon [3, 2] defines stable sétsises dependence net-
works to simplify the computation of the pure Nash equililoni showing that the notion
of stability is complete with respect to the pure Nash eftiiim for actions without
costs. In this paper, we propose a new step to make the cotigpubd the core easier
by means of the dependence networks associated with a @tivpdsoolean game. In
particular, we study the following two questions:

1. Is the notion of stability complete also with respect @& #olution concept of the
core in the case of cooperative boolean games with cosiilyre&

2. How to pass from a cooperative boolean gaii® gameG’ without loosing solu-
tions?

We define two kinds of dependence networks and we show howetthesn to calcu-
late the core. Abstract dependence networks (ADNSs) reptesgtructure based on the
model presented by Bonzon et al. [3] without labels on theeedmd AND-arcs, and
refined dependence networks (RDNs) with AND-arcs labelethbyooolean variables
composing the goals. We use the dependence network to desengames, such as
separating a game into two smaller independent games (vgitbmhected interdepen-
dencies) or isolating an agent requiring the execution ajstlg action useless for all
the other agents. Moreover, we present a number of abstnadthat allow to reduce
the search space by means of a set of criteria principallgcas graphs visit algo-
rithms that are computationally tractable. Moreover, wdarfine a number of hidden



properties in the notion of core showing how, in certain safigs notion is too strict
and, thus, it can lead to counterintuitive results.

The reminder of the paper is as follows. Section 2 providem@oduction to the
framework of cooperative boolean games and their solutimtept, the core. Section
3 defines the dependency relations in the cooperative bogi@aes, defining the two
types of dependence networks. Conclusions end the paper.

2 Cooperative Boolean games

A Cooperative Boolean Game (CBG) [5] consists of a set of &gen..,n, a set
of goals the agents desire to accomplish, the variablesgbeta control, and a cost
function. Goals are represented by a propositional formutaver some set of Boolean
variablesp.

Definition 1 ([5]). A cooperative boolean gandeis a(2n+3)-tupleG = (A, @, cost,
Y1y ooy Vs Py oo, @) WhereA = {1,...,n} is a set of agentsh = {p, q, ...} is a finite
set of boolean variablespst is a cost function defined i® — R, 71, ...,7, are
the boolean formulas ovep representing the goals of the agents abd ..., ®,, is a
partition of @ overn, with the intended interpretation that; is the set of Boolean
variables under the control of agent

The simple action theory works as follows, inspired by diserevent systems. For
each variable € Phi, there is one agent who can set its truth value to true or.false
Setting a variable € ¢ to be T is performing the actiom, and settingg € ¢ to L is
doing nothing only in the former case, the costs of the action are takenantount.

A set of variables C @& (or a strategy) stands for a valuation, in the sense that the
value of the variables belonging tois true and the value of the other ones is false,
and we write¢ = ¢ means that is true under the valuatiof under the standard
propositional semanticsost;(£) denotes the cost to agenof valuationé C @, that

is, costi(§) = > ,e(ena,) cost(v). Agents minimize its costs only when they have
achieved their goal, or cannot achieve their goal. In otherds, if the only way an
agent can achieve its goal is by making all its variables then the agent prefers to do
this rather than not achieve its goal. However, if there #ferént ways to achieve its
goal, then the agent prefers to minimize costs. This is sgmed by a utility function
that is always positive if the valuatignsatisfies the goal of the agerdind otherwise it

is always negative. If. represents the total cost of all variables, the utility fgeat: of

a valuatiorg, u;(€) is defined as follows.

ul(f) = {1 +p— Costi(g) if ¢ ': i

—costi(§) otherwise

The meaning of the fact that coalitian blocksé; throughé, is thatés; could do
better thang; only flipping the value of some of the variables under the druf
D. Here a a coalitiorD C A is a set of agents without represented relationshijp,
denotes the set of variables under the control of some meaibey ¢p = (J,., @i,
and¢; = & mod D means that valuatiofy is the same as a valuatignexcept at most
in the value of variables controlled by, &1 =; &2 iff uw;(&1) > w;i(&2).



Definition 2 (Blocked Valuation [5]). A valuation¢; is blocked by a coalitio C A
through a valuatiory, if and only if:(1)& is a feasible objection by coalitio® which
means that, = & mod D; (2) D strictly prefersés overéy: Vi € D : & =; &7

The core is a fundamental concept in coalitional game théowaluation is in the
core if and only if no coalition has an incentive to defect.

Definition 3 (Core).Given a CBQZ, £ € corg(G) iff itis not blocked by any coalition.

The following example reproduces the classical schemaeoPtiisoner Dilemma,
and illustrates that Definition 3 is a strengthening of thd-keown Nash equilibrium
in non-cooperative game theory [8], usually called StrorastNEquilibrium (SNE).
This form of solution satisfies at the same time some requargsof both the cooper-
ative and non-cooperative game theory. From the solutiberiz developed in cooper-
ative game theory, horrowsefficiency, a strategy cannot be a solution if the agents or
a part of them can obtain better results. From non-coopergiime theory, it assumes
that agents are suspicious and that agreements cannotdreeghfthat is at any time
agents may betray agreements.

Example 1.Let G be a CBG involving two agent®; = {a} and®; = {b}, v1 =
Yo = a Vb, cost(a) = cost(b) = 1. The CBG can be represented by the following
payoff matrix:

a/bl 1 0
11 (1,1) (—1,2)
0 ((2,-1) (0,0)

(0,0) is the only Nash equilibrium in this game, that is not effitias the two agents
collaborating can obtain better resulf$, 1), and hence it is not a SNE. On the other
hand, ag1, 1) is nota Nash equilibrium, itis nota SNE too. Indeedif1) is proposed
as an agreement each agent would unilaterally betray itrobggbetter results.

Note that whether SNE corresponds to the notion of core dépen how a strategic
game is translated into a cooperative game (see [9]). Fanpbea if we use for the
strategic game in Example 1 the minimax representation off@sponding cooperative
game - as introduced by von Neumann and Morgensten - thertrettegy{1, 1} is in
the core. This kind of representation is callgfensivebecause it is assumed that for
a certain coalitionD, the agents il \ D worksin order to minimize the outcomes of
D. On the contrary if we adopt@defensiveepresentation where the primary aim of the
agents is to maximize their own utility, the SNE represemsore of the corresponding
cooperative game. The following example illustrates a nemdd cases in which, in
contrast to Example 1, the core is not empty.

Example 2.Consider a game where we have four agetits- {1,2, 3,4} who want

to go in holidays to the seaside or to the mountains. We reptesith the boolean
variablea to go to the seaside and withto go to the mountains. Ageritgoing to
the seaside is represented by settingp true whereas the holiday to the mountains is
represented by;. For each agent cost(a;) = 2 andcost(b;) = 1. Agent 1 is in love
with agent 2 and he wants to go everywhere with her, thus it igaepresented by



v1 = (a1 N az) V (b1 Abs). Agent 2 is in love with agent 1 but she cannot tolerate the
change of temperature of the mountains thus her goal is a; A as. Agent 3 is in
love with 2 and, as he is jealous of agent 1, he would like tg stith 2 without the
presence of &3 = (az Aaz A—ap) V (ba Abs A —by). Agent 4 is in love with agent 3,
who does not like him, but she is not able to swim thus its gogl i= b3 A bs. Let us
say that agent is satisfied given a valuatiahif ¢ |= ~;, i.e., if i's goal is satisfied. It
can be verified thafa;, as} is in the core.

3 Dependency Relations in CBG

Dependence networks have been developed by Conte and Si¢h&jas a kind of so-
cial network representing how each agent depends on otketstp achieve the goals
he cannot achieve himself. The notion of agent dependercktadefine dependence
networks is related to the concept of social power, intreduby Castelfranchi [4].
Sauro [11, 1] shows how to use dependence networks to disatenamong different
potential coalitions during the coalition formation preseThe authors develop a cri-
terion of admissibility calledio-ut-des propertglescribing a condition of reciprocity.
Moreover, they define another criterion, called the indgoosable do-ut-des property,
establishing which coalitions cannot be formed under tiseiaption that agents are
self-interested. These two criteria have only a qualigatiennotation and thus, they
cannot be directly applied to the solutions developed ingymeory. Moreover, goals
are not structured and they do not represent explicitlyscofthe actions.

The first attempts of use of the dependence networks to reprasad simplify the
computation of the solution concepts for boolean games iges ¢y Bonzon [2] and
Bonzon et al. [3]. Representing these dependencies on h,dhegy show how to com-
pute pure-strategy Nash equilibria without enumeratihg@hbinations of strategies.
This work does not consider costly actions and dependerte@ries are simple graph
without labeled edges.

In this section we present two types of dependence netwatfksad! starting from
a CBG. These networks, on the one hand, explicitly repretheninter-dependencies
among agents according to their goals, on the other handatistract from the quanti-
tative aspects of a game associated to the cost functiotrath®ependence Networks
describe only which agents can play a role in the satisfadfan agent’s goal, there-
fore they abstract from how they can contribute and in paldidf they have to execute
a costly action. As this information may help in the studyted tore and reduces the
search space, we define another type of dependence neth®iRefined Dependence
Networks, which, as the name suggests, refine Abstract Riepee Networks by rep-
resenting how agents contribute to the satisfaction of Agywhwhether this involves a
positive cost (without quantifying it). Starting from thefthed Dependence Networks,
we define a method called — reduction to reduce the admissible strategies and we
prove the completeness of the — reduction with respect to the computation of the
core.



3.1 Abstract Dependence Networks

As in Bonzon et al. [3], in order to correctly establish thgeledencies among agents
we need to define which variables are relevant for the satisfaof the agents’ goal.

A variablep is said irrelevant for a formula in case there exists an equivalent formula
¢’ wherep does not occur. WittRV¢ (i) we represent the set of all variablesc @
that are relevant for;, whereasR A (7) is the set of agents € A such thatj controls

at least one relevant variable af Using the notion of relevant agents, we define a
dependence network where nodes represent agents and afi@dgeo j represents
the dependence aofrom j (j € RAG(7)).

Definition 4 (Abstract Dependence Network).

Given the CBGG = (4, ®, cost, v, ..., Yn, P1, ..., Py, ), the abstractdependence net-
work of G is the directed graph ADN) = (N, R) such that the set of nodéé corre-
sponds to the agents @, N = A, and(i,j) € Riff j € RAg(4).

As in [3] we say that a set of agentsADN(G) is stable in case it islosedunder
the relationR. R(C) is the set of players from whiofi may need some action in order
to be satisfied.

Definition 5 (Stable set) Given a directed grapkV, R), C' C N is stable iffR(C) C
C,i.e.foralli € C, forall j suchthat(i,j) € Rj € C.

Note that the notion of stable set is not related to the grawiterion of the same
name originally introduced by von Neumann and Morgenstedh [

Definition 6 (ADN Projection).

LetG = (A, D, cost,v1,...,Yn, P1,...,P,) be a CBG, ADNG) = (N, R) the corre-
sponding abstract dependence graph atid= {i,...,i,,} C N a stable set, the
projection of G on C is defined byGo = (C, P, coste, Yiys s Vinys Pivy oo, Pi,, )
wherecostc : ¢ — RT is the restriction of:ost on @¢.

As shown in Bonzon et al. [3] the projection of a CBG on a staklas itself a CBG.
Proposition 1. Given a CBG&, if C'is a stable set(7¢ is a cooperative boolean game.

In Bonzon et al. [3] the authors show that by restricting aleaon game to the
projectionG¢ of a stable set’, if a strategy profil€- in G¢ is not a Nash equilibrium,
then all of its extensions it are not a Nash equilibrium. Here we extend this result to
the case of the core in CBG with costly actions.

Proposition 2. Given a stable set’, if £ is in corgG), thené¢ is in corgG¢), where
£ is the projection of on the variables controlled b/, {& = £ N @¢.

Proof. Let ¢ a generic valuation ii6; andéc the projection of on the variables con-
trolled by C. Clearly, for alli € C, cost;(£) = cost;(Ec). Furthermore, aé’ is stable,
foralli € C, RVs(i) = RVg. (i) and hencé = ~; iff ¢ |= +;. This entails that for
two generic valuationg and¢ and for alli € C, u;(€) < w;(€) iff u; () < ui(éc).

Assume that there exists a valuatigin that blockstc, i.e. there exists & C C
such that, = {c mod C" and for alli € C' £, =; {c. Now let{ o = NP\
and{’ = ¢ U&_c¢. Clearly,&’ = £ mod C” and, since for alf € C' u;(§) < u;(&') iff
ui(éc) < u (&), € is blocked byC” throughé’.



Finally, we defineconsistencyuch that given two coalition®; and D», we say that
two relative strategie§p, and¢p, are consistentf and only if for each agent €
D1 N Dy, @ NEp, = P, NEp,. The following two propositions hold - the proof is
straightforward and it is left to the reader.

Proposition 3. Let £ be a strategy blocked by a coalitiah through¢’ and C be a
stable set such that’ = C' N D # 0, then¢ is blocked byC” through¢y..

Proposition 4. Given the stable setS;, ..., C, and relative strategie§q,, ..., &c,,,
if

1. foralll <i<n,¢ € coreGe,);
2. ¢oyy- -+, &, are consistent;
3. A= U?Zl C;,

thenJ"_, & € core(G).

Propositions 2 and 4 provide a way to decompose the probletatefmining the core
of a CBGG into the subgame&¢,, whereC, ..., C,, are stable sets that involve all
the agents inG. Then, once eachore(G;,) is determined, it remains to gather any
union¢ of consistent strategies:, € core(G¢, ), with 1 < i < n. Due to Proposition
4¢ € corg(G), whereas, Proposition 2 ensures that in this way we find alttements
in core(G), indeed if¢" € corg(G), thené, € corg(Ge,), with 1 <4 < n and hence
&’ is the union of consistent solutions in eaGh; .

Example 3 (ContinuedT.he abstract dependence network of the game in Example 2 is
ADN = (N, E), whereN = {1,2,3,4} andR = {(1,2),(2,1),(3,1),(3,2), (4,3)}.
This ADN is depicted in Figure 1-(a) where the edges represent thendepce of
the first agent on a second one for a boolean variable conpitsigoal and the circle
represents the stable €&t Let us consider agents 1 and 2 (see Figure 1-(a)), following
Definition 5 they represent a stable set (all the edges thatugdrom agent 1 enter

in agent 2 and converse), so we can consider first the projeofithe game on them
(Definition 6). We can represent valuationsiag/z € {0, 1}*, whereu represents the
value ofaq, v that ofas, y the value ofb; andz that of b,. Following Definition 6, it
can be found that100 is the only strategy in the core. Due to Propositions 2, aiso i
the complete game all the strategies containing etther b, and not containing one

of a; anda, are blocked.

3.2 Refined Dependence Networks

As seen before, by using stable sets Abstract Dependene®Nstcan be safely used
to split the original problem in subproblems without logssolutions. However, Ab-
stract Dependence Networks may hide some useful informétiat can also be used
to prune some strategies that cannot belong to the core -earatho reduce the search
space. For this reason we define another notion of dependetwerk at a lower level
of abstraction and we call it Refined Dependence Network (RONXese networks



Fig. 1.a)- ADN of Example 3 with the stable set C, b)- RDN of Example)e RDN of Example
6 after theA-reduction

may seem actually equivalent to the boolean game itselgpmxor the cost of vari-
ables. These costs, however, are not a minor point since dwteén games that result
in the same RDN can have different solutions.

A Refined Dependence Network represents how the goals catibfexl by means
of AND-arcs among the agents whose single edges are labdlediterals. Further-
more, costly actions amarkedin a setA.

Definition 7 (Refined Dependence Network).

A Refined Dependence Network is an AND-graph®, A, E, &4, ..., P,,) where N
is the set of node% is the set of boolean variablegy C @ is the subset of costly
variableg, E C N x 2WVxLitt(®)) where Litt($) = ¢ U {-p|p € ¢} and®; C &
wheren is the cardinality ofV.

In the following, given a literal, we denote by [ | the corresponding boolean
variable, that is ift € @, then| [ |= [ whereas ifft = —p, | [ |= p. Furthermore, to
simplify the formalism, we represent an AND-aiic {(j1,11),-- -, (jm,lm)}) as the
set of triples{ (4, j1,11), - - ., (4, jm, Im) }. Of course, a set dg1, 3, p), (3,4, ¢)} has no
meaning in our context.

As already done for Abstract Dependence Networks, we usad&teiDependence
Networks to reveal the structure of interdependencies gnagents. First, we assume
that the goals of the agents do not contain irrelevant veasagind are given in disjunc-
tive normal form, i.eq; = v;, V --- V ;,, where eachy;; is a conjunction of literals.
Note that the deletion of these irrelevant variables is caPplete. We expect that
a goal does not contain irrelevant variables, alternatiitas possible to consider the
whole set of variables occurring in a formula, avoiding iistivay this computational
cost. To simplify again the formalism we describe respetfiv;; as a set ofy;; and
each;; as a set of literals - the empty set has the usual meaningatasgg of L
referred toy; and T referred to they;,. Roughly, each AND-are outgoing the agent
i corresponds to &;, € v;, where each single edge that composéslabeled with a
literal occurring invy;, and reaches the agent that controls the correspondingleria
The setl” consists of the actions that have a strictly positive cost.

! The set of variables with an associated cost.



Definition 8 (From CBGs to RDNS).

Giventhe CBGY = (A, D, cost, V1, ..., Yn, D1, ..., D), the corresponding Refined De-
pendence Network RON) = (N, &, A, E, &y, ..., $, ) issuchthatV = A, A= {p €

¢ | cost(p) > 0} and{(i,j1,11), ..., (¢, Jm,lm)} € Eiff {l1,... I} € 7; and for all
1Sh§m,|lh |E¢jh'

Example 4.Let G be a cooperative boolean game defineddy= {1,2,3,4}, ¢ =
{a,b,c,d,e}, cost(a) = cost(b) = cost(c) = cost(d) = cost(e) = 1, 11 = a,
Yo =cAe y3 =bAc,yu =d, P = {be}, Do = {d}, P3 = {a}, P4 = {c}.
The associated refined dependence netwdtkNg = (A, &, E, &4, ..., D,,), whereE
is composed by the following dependencigg;, 3,a)}, {(3,1,b),
(3.4,0},{(2.1,€), (2,4,0}, {(4.2,d)}.

Given a Refined Dependence Netw®BNG) = (N, P, A, E), we mean with
Rp C N x N the binary relation such thét, j) € Rg justin the case there exists an
AND-arce € E that starts from and reacheg, i.e. for some literal, (i, j, 1) € e. Itis
easy to see th&®DN(G) = (N, Rg) and hencdRDN(G) describes? at a lower level
of abstraction with respect thDN(G).

We want to use Redefined Dependence Networks to impose somsgraiats to
the setcore(G). To this scope some preliminary results are needed. A boeigdable
a € 9; is said to beunfavourablef and only if a € A, i.e.cost(a) > 0, and for each
{li,.. ., Im} € viva & {l1,...,ln}. In the following we denote byi]~ the set of
unfavourable variables of the agent

Proposition 5. Given a cooperative boolean gam&and an agent € A, for each
a € [i]~, & € core(G) impliesa & €.

Proof. a € [i]” means thatost(a) > 0 anda does not occur (positive) iry;. As-
sume that = ~;, then, for some{ly, ..., L.} € v, &€ E {l1,...,ln}. Sincea ¢
{li,...,lm}, thismeans that alsp\ {a} = {l1,...,ln}.

Now it remains to show that if for each ¢ = ~; implies¢ \ {a} = v, then
¢ € core(G) impliesa ¢ £. Assume that € &, clearlyé \ {a} = £ mod {i} asa € &;.
Furthermore, ag; (£ \ {a}) < cost;(€) and by hypothesi§ = ~; impliesé \ {a} = 7,
then¢ <; £\ {a}. But this means that is blocked by: through¢ \ {a}.

Note that according to Proposition 5 it can be easily seerxamiple 4 that, as all the
variables are unfavourable, the core can contain only theyestrategy. We also prove
that a goal depending on an unfavourable variabt&an be reduced into one that do
not depend o without affecting the possible solutions. More preciselg,define the
notion of reduction as follows.

Definition 9. Given a cooperative boolean gareand an unfavourable variable €
[i]~, we say that the cooperative boolean ga@feis a A-reduction ofG just in the
case it is obtained front applying the following steps:

1. remove: from @;;
2. remove from each; any conjunction of typél,...,a,...,l,};
3. replace in eachy; any conjunction of typé€ly, ..., —a, ..., Iy} with{ly,... I, }.



Proposition 6. LetG’ be aA-reduction of a CBG7, corg(G) C core(G’).

Proof. For each valuatiog that does not contain the unfavourable variahli¢ clearly
holds for each ageritthatu;(¢) in G is equal tou;(£) in G'. Therefore, if inG’, & is
blocked byC' through¢}, then the same holds i and henceore(G) C core(G').

Note that the converse does not hold. Consider Example 5:

Example 5.Let G be a cooperative boolean game composed by 3 agents and atich th
&1 = {a}, P2 = {b,c} andPs = {d}, 71 = b, 72 = aV (cAd)andvy; = c A b,
cost(a) = cost(b) = 1 andcost(c) = cost(d) = 2. The boolean variable is an
unfavourable variable then thé&-reduced gamé&” is such thatb; = (), 2 = {b,c}
and®; = {d}, 1 = b, 72 = ¢ Adand~vy; = ¢ A b. The functioncost is the same as in

G. Itis easy to see thdt, d} € core(G’) whereas irG it is blocked by{1, 2} through

{a,b}.

Note that the previous results do not wpeantitativevalues of the cost function
but only the fact that an action has a strictly positive vatherefore they reside in the
level of abstraction of RDNs. We can now define a procedurBBN(G) which uses
unfavourable variables and-reductions to reduce the search space in finding the core.

Definition 10 (Reduction rule).Let RDNG) be a Refined Dependence Network and
letw denoting a boolean formula initially set o, the reduction rule RDNZ) is given
by applying exhaustively the following rule:

Condition: for somea € ®; N A, there does not exist an AND-a¢moutgoing fromi
such that(s, 7, a) € e (i.e.a is unfavourable).

Action: remove any and-are’ such that(j,7,a) € €', a from &; and updatev with
w A —a.

Due to Propositions 5 and 6, the boolean formulae obtain from definition 10 con-
straints the strategies that can be in the cor@ ahat is¢ € core(G) implies¢ = w.

Example 6 (Continue).et us consider again the cooperative boolean game of Ex-
ample 2. In the corresponding RDN all the actions involve sguuositive cost, thus

A = &. The AND-arcs are shown in Figure 1-(b) (without connedidor simplic-

ity of the figure) and all the edges are labeled with the bavoleariable they rep-
resent. By exhaustively applying the rule in the Definitidh 8, satisfies the given
condition, therefore we remove the AND-af¢l, 2, b3), (1,1, 1)} and the AND-arc
{(3,3,b3),(3,2,b2), (3,1,-b1) }. After these deletions, aldg andbs satisfy the con-
dition in Definition 10, and hence also the AND-af¢t, 3, b3), (4,4,b4)} has to be
removed. Finally, alsé, satisfies the condition, therefore as outpus equal to-b; A

—ba A b3 A —by N —ay, therefore the only strategies that can be in the core are the
subsets ofa;, a2}. The RDN of Example 6 after the application of thereduction is
depicted in Figure 1-(c).



4 Conclusion

In this paper we present a new approach to cooperative hogl@aes [5] based on
dependence networks [12]. Differently from Bonzon et &), y& use dependence net-
works to reduce the search space thanks to the applicatigraphs’ visit algorithms
and to argue on the notion of core, showing a number of hiddepepties of this solu-
tion concept. Moreover, we define two different kinds of degence networks, abstract
and refined dependence networks in which, differently fr@ e introduce costly
actions, labeled edges and ADN-arcs. Finally, we presenf\theduction that allows
to reduce the search space to find the strategies in the cthreuvloosing solutions.

Concerning future work, we can address our methodology esdlts to the other
solution concepts, for example instead of Strong Nash ibgiuiin we could represent
the core with a less restrictive notion of stability such las Coalitional-proof Nash
equilibrium. In particular, it has been shown that if a garas oinly one Nash Equilib-
rium, then itis also a Coalitional-proof Nash equilibriukfioreover, we are working on
an algorithmFIND_CORE to search the strategies in the core usingdhe reduction
without loosing solutions.

Finally, we aim at evaluate the implemented algorithm inarete domains - such
as the Grid - which can be represented as exchange netwdrksSidveral game the-
oretical approaches used to model such domains requirerioahi@formation about
private utilities or the degrees of collaboration, howesgch information is generally
not available. Conversely, Cooperative Boolean Games easebup on the base of
known information: the goals that the agents request whepnjtiin an exchange mar-
ket and the costs of the resources they offer.
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