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Abstract

A natural and established way to restrict the constraint satisfaction problem is to fix the relations
that can be used to pose constraints; such a family of relations is called aconstraint language. In this
article, we study arc consistency, a heavily investigated inference method, and three extensions thereof
from the perspective of constraint languages. We conduct a comparison of the studied methods on the
basis of which constraint languages they solve, and we present new polynomial-time tractability results
for singleton arc consistency, the most powerful method studied.

1 Introduction

1.1 Background

The constraint satisfaction problem (CSP) involves deciding, given a set of variables and a set of constraints on the
variables, whether or not there is an assignment to the variables satisfying all of the constraints. Cases of the constraint
satisfaction problem appear in many fields of study, including artificial intelligence, spatial and temporal reasoning,
logic, combinatorics, and algebra. Indeed, the constraintsatisfaction problem is flexible in that it admits a number of
equivalent formulations. In this paper, we work with the formulation as the relational homomorphism problem: given
two similar relational structuresA andB, does there exist a homomorphism fromA to B? In this formulation, one
can view each relation ofA as containing variable tuples that are constrained together, and the corresponding relation
of B as containing the permissible values for the variable tuples [18].

The constraint satisfaction problem is in general NP-hard;this general intractability has motivated the study of
restricted versions of the CSP that have various desirable complexity and algorithmic properties. A natural and well-
studied way to restrict the CSP is to fix the value relations that can be used to pose constraints; in the homomorphism
formulation, this corresponds to fixing the right-hand sidestructureB, which is also known as theconstraint lan-
guage. Each structureB then gives rise to a problemCSP(B), and one obtains a rich family of problems that include
boolean satisfiability problems, graph homomorphism problems, and satisfiability problems on algebraic equations.
One of the primary current research threads involving such problems is to understand for which finite-universe con-
straint languagesB the problemCSP(B) is polynomial-time tractable [9]; there is also work on characterizing the
languagesB for which the problemCSP(B) is contained in lower complexity classes such as L (logarithmic space)
and NL (non-deterministic logarithmic space) [13, 21]. With such aims providing motivation, there have been efforts
to characterize the languages amenable to solution by certain algorithmic techniques, notably, representing solution
spaces by generating sets [19] and consistency methods [22,2, 6], which we now turn to discuss.

Checking forconsistencyis a primary reasoning technique for the practical solutionof the CSP, and has been
studied theoretically from many viewpoints [22, 2, 4, 1, 3, 6, 5]. The most basic and simplest form of consistency is
arc consistency, which algorithmically involves performing inferences concerning the set of feasible values for each
variable. The question of how to efficiently implement an arcconsistency check has been studied intensely, and highly
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optimized implementations that are linear in both time and space have been presented. In general, a consistency check
typically involves running an efficient method that performs inference on bounded-size sets of variables, and which
can sometimes detect that a CSP instance is inconsistent andhas no solution. While these methods exhibit one-sided
error in that they do not catch all non-soluble CSP instances(as one expects from the conjunction of their efficiency
and the intractability of the CSP), it has been shown that, for certain constraint languages, they can serve as complete
decision procedures, by which is meant, they detect an inconsistency if (and only if) an instance has no solution. As an
example,unit propagation, a consistency method that can be viewed as arc consistency specialized to SAT formulas,
is well-known to decide the Horn-SAT problem in this sense.

1.2 Contributions

In this paper, we study arc consistency and three natural extensions thereof from the perspective of constraint lan-
guages. The extensions of AC that we study are look-ahead arcconsistency (LAAC) [12]; peek arc consistency
(PAC) [8], and singleton arc consistency (SAC) [16, 7]. Eachof these algorithms is natural, conceptually simple, read-
ily understandable, and easily implementable using arc consistency as a black box. Tractability results for constraint
languages have been presented for AC by Feder and Vardi [18] (for instance); and for LAAC and PAC in the previously
cited work. In fact, for each of these three algorithms, characterizations of the class of tractable languages have been
given, as we discuss in the paper.

We give a uniform presentation of these algorithms (Section3), and conduct a comparison of these algorithms on
the basis of which languages they solve (Section 4). Our comparison shows, roughly, that the algorithms can be placed
into a hierarchy: solvability of a language by AC or LAAC implies solvability by PAC; solvability by PAC in turn
implies solvability by SAC (see Section 4 for precise statements). We also study the strictness of the containments
shown. We thus contribute to a basic, foundational understanding of the scope of these algorithms and of the situations
in which these algorithms can be demonstrated to be effective.

We then present new tractability results for singleton arc consistency (Section 5). We prove that languages having
certain types of2-semilattice polymorphismscan be solved by singleton arc consistency; and, we prove that any lan-
guage having amajority polymorphismis solvable by singleton arc consistency. The presence of a majority polymor-
phism is a robust and well-studied condition: majority polymorphisms were used to give some of the initial language
tractability results, are known to exactly characterize the languages such that3-consistencyimpliesglobal consistency
(we refer to [20] for definitions and more details), and gave one of the first large classes of languages whose constraint
satisfaction problem could be placed in non-deterministiclogarithmic space [14]. While the languages that we study
are already known to be polynomial-time tractable [20, 10],from the standpoint of understanding the complexity and
algorithmic properties of constraint languages, we believe our tractability results to be particularly attractive for a
couple of reasons. First, relative to a fixed language, singleton arc consistency runs in quadratic time [7], constituting
a highly non-trivial running time improvement over the cubic time bound that was previously known for the studied
languages. Also, in showing that these languages are amenable to solution by singleton arc consistency, we demon-
strate their polynomial-time tractability in an alternative fashion via an algorithm that is different from the previously
used ones; the techniques that we employ expose a different type of structure in the studied constraint languages.

2 Preliminaries

Our definitions and notation are fairly standard. For an integer k ≥ 1, we use the notation[k] to denote the set
containing the firstk positive integers, that is, the set{1, . . . , k}.

Structures. A tupleover a setB is an element ofBk for a valuek ≥ 1 called thearity of the tuple; whent is a tuple,
we often use the notationt = (t1, . . . , tk) to denote its entries. Arelation over a setB is a subset ofBk for a value
k ≥ 1 called thearity of the relation. We useπi to denote the operator that projects onto theith coordinate:πi(t)
denotes theith entryti of a tuplet = (t1, . . . , tk), and for a relationR we defineπi(R) = {πi(t) | t ∈ R}. Similarly,
for a subsetI ⊆ [k] whose elements arei1 < · · · < im, we useπI(t) to denote the tuple(ti1 , . . . , tim), and we define
πI(R) = {πI(t) | t ∈ R}.
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A signatureσ is a set of symbols, each of which has an associated arity. AstructureB over signatureσ consists
of a universeB, which is a set, and a relationRB ⊆ Bk for each symbolR ∈ σ of arity k. (Note that in this paper,
we are concerned only with relational structures, which we refer to simply as structures.) Throughout, we will use the
bold capital lettersA,B, . . . to denote structures, and the corresponding non-bold capital lettersA,B, . . . to denote
their universes. We say that a structureB is finite if its universeB has finite size. Unless stated otherwise, we assume
all structures under discussion in this paper to be finite. Wesay that a structureB has all constantsif for eachb ∈ B,
there is a relation symbolRb with RB

b = {(b)}.
When two structuresA andB are defined over the same signatureσ, we say that they aresimilar. We define the

following notions on similar structures. For similar structuresA andB over a signatureσ, we say thatA is aninduced
substructureof B if A ⊆ B and for everyR ∈ σ of arity k, it holds thatRA = Ak ∩RB. Observe that for a structure
B and a subsetB′ ⊆ B, there is exactly one induced substructure ofB with universeB′. For similar structuresA
andB over a signatureσ, the product structureA × B is defined to be the structure with universeA × B and such
thatRA×B = {((a1, b1), . . . , (ak, bk)) | a ∈ RA, b ∈ RB} for all R ∈ σ. We useAn to denote then-fold product
A× · · · ×A.

We say that a structureB over signatureσ′ is anexpansionof another structureA over signatureσ if (1) σ′ ⊇ σ,
(2) the universe ofB is equal to the universe ofA, and (3) for every symbolR ∈ σ, it holds thatRB = RA. We
will use the following non-standard notation. For any structureA (over signatureσ) and any subsetS ⊆ A, we define
[A, S] to be the expansion ofA with the signatureσ∪{U} whereU is a new symbol of arity1, defined byU [A,S] = S
andR[A,S] = RA for all R ∈ σ. More generally, for a structureA (overσ) and a sequence of subsetsS1, . . . , Sn ⊆ A,
we define[A, S1, . . . , Sn] to be the expansion ofA with the signatureσ ∪ {U1, . . . , Un} whereU1, . . . , Un are new

symbols of arity1, defined byU [A,S1,...,Sn]
i = Si for all i ∈ [n], andR[A,S1,...,Sn] = RA for all R ∈ σ.

Homomorphisms and the constraint satisfaction problem. For similar structuresA andB over the signature
σ, a homomorphismfrom A to B is a mappingh : A → B such that for every symbolR of σ and every tuple
(a1, . . . , ak) ∈ RA, it holds that(h(a1), . . . , h(ak)) ∈ RB. We useA → B to indicate that there is a homomorphism
fromA toB; when this holds, we also say thatA is homomorphic toB. It is well-known and straightforward to verify
that the homomorphism relation→ is transitive, that is, ifA → B andB → C, thenA → C.

The constraint satisfaction problem (CSP)is the problem of deciding, given as input a pair(A,B) of similar
structures, whether or not there exists a homomorphism fromA to B. When(A,B) is an instance of the CSP, we
will also call a homomorphism fromA to B a satisfying assignment; say that the instance issatisfiableif there exists
such a homomorphism; and, say that the instance isunsatisfiableif there does not exist such a homomorphism. We
generally assume that in an instance of the CSP, the left-hand side structureA contains finitely many tuples. For
any structureB (overσ), theconstraint satisfaction problem forB, denoted byCSP(B), is the constraint satisfaction
problem where the right-hand side structure is fixed to beB, that is, the problem of deciding, given as input a structure
A overσ, whether or not there exists a homomorphism fromA to B. In discussing a problem of the formCSP(B),
the structureB is often referred to as thetemplateor constraint language. There are several equivalent definitions of
the constraint satisfaction problem. For instance, in logic, the constraint satisfaction problem can be formulated asthe
model checking problem for primitive positive sentences over relational structures, and in database theory, it can be
formulated as the containment problem for conjunctive queries [11].

Polymorphisms. Whenf : Bn → B is an operation onB and

t1 = (t11, . . . , t1k), . . . , tn = (tn1, . . . , tnk) ∈ Bk

are tuples of the same arityk overB, we usef(t1, . . . , tn) to denote the arityk tuple obtained by applyingf coordi-
natewise, that is,

f(t1, . . . , tn) = (f(t11, . . . , tn1), . . . , f(t1k, . . . , tnk)).

An operationf : Bn → B is a polymorphismof a structureB overσ if for every symbolR ∈ σ and any tuples
t1, . . . , tn ∈ RB, it holds thatf(t1, . . . , tn) ∈ RB. That is, each relationRB is closed under the action off .
Equivalently, an operationf : Bn → B is a polymorphism ofB if it is a homomorphism fromBn toB.
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3 Algorithms

In this section, we give a uniform presentation of the four algorithms under investigation in this paper: arc consistency,
look-ahead arc consistency, peek arc consistency, and singleton arc consistency, presented in Sections 3.1, 3.2, 3.3,
and 3.4, respectively. The results on the first three algorithms come from previous work, as we discuss in presenting
each of these algorithms; for singleton arc consistency, wehere develop results similar to those given for the other
algorithms.

Our treatment of arc consistency, peek arc consistency, andsingleton arc consistency is uniform: for each of these
algorithms, we present a homomorphism-based consistency condition, we show that the algorithm checks precisely
this consistency condition, and we give an algebraic condition describing the structuresB such that the algorithm
solvesCSP(B). These three algorithms give one-sided consistency checks: each either correctly rejects an instance
as unsatisfiable or outputs “?”, which can be interpreted as areport that it is unknown whether or not the instance is
satisfiable. The other algorithm, look-ahead arc consistency, has a somewhat different character. It attempts to builda
satisfying assignment one variable at a time, using arc consistency as a filtering criterion; it either returns a satisfying
assignment, or outputs “?”.

Throughout this section and in later sections, we will make use of a structure℘(B) that is defined for every structure
B, as follows [18, 15]. For a structureB (overσ), we define℘(B) to be the structure with universe℘(B) \ {∅} and
where, for every symbolR ∈ σ of arity k, R℘(B) = {(π1S, . . . , πkS) | S ⊆ RB, S 6= ∅}. Here,℘(B) denotes the
power set of the setB.

3.1 Arc Consistency

We now present the arc consistency algorithm. The main idea of the algorithm is to associate to each elementa ∈ A a
setSa of values which, throughout the execution of the algorithm,has the property that for any solutionh, it must hold
thath(a) ∈ Sa. The algorithm continually shrinks the setsSa in a natural fashion until they stabilize; at this point, if
some setSa is the empty set, then no solution can exist, and the algorithm rejects the instance.

Arc Consistency
Input : a pair(A,B) of similar structures

forall a ∈ A do
setSa := B;

repeat
forall relationsRA of A do

forall tuples(a1, . . . , ak) ∈ RA do
forall i ∈ [k] do

setSai
:= πi(R

B ∩ (Sa1
× . . .× Sak

));
until no setSa is changed;
if there existsa ∈ A such thatSa = ∅ then reject;
else return “?”;

Feder and Vardi [18] have studied arc consistency, under an equivalent formulation in terms of Datalog Programs,
for constraint languages. The results in this section are due to this reference. The connection of the results in Feder
and Vardi with arc consistency was made explicit in Dalmau and Pearson [15].

Definition 1 An instance(A,B) has thearc consistency condition (ACC)if there exists a homomorphism fromA to
℘(B).

Proposition 2 The arc consistency algorithm does not reject an instance(A,B) if and only if the instance has the
ACC.

Definition 3 LetB be a structure. We say that arc consistencysolvesCSP(B) if for all structuresA, the following
holds: (A,B) has the ACC implies that there is a homomorphismA → B.
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Note that the converse of the condition given in this definition always holds: ifh is a homomorphism fromA to
B, then the mapping sending eacha ∈ A to the set{h(a)} is a homomorphism fromA to ℘(B).

Theorem 4 LetB be a structure. Arc consistency solvesCSP(B) if and only if there is a homomorphism℘(B) → B.

3.2 Look-Ahead Arc Consistency

We now present the look-ahead arc consistency algorithm. Itattempts to construct a satisfying assignment by setting
one variable at a time, using arc consistency as a filter to finda suitable value for each variable.

Look-Ahead Arc Consistency
Input : a pair(A,B) of similar structures

forall a ∈ A do
setSa := B;

for i = 1 to |A| do
pick arbitraryai ∈ A with ai 6∈ {a1, . . . , ai−1};
forall b ∈ B do

if Arc Consistency([A, {a1}, . . . , {ai−1}, {ai}], [B, {b1}, . . . , {bi−1}, {b}]) rejectsthen
removeb fromSai

;
if Sai

= ∅ then return “?”;
elsechoosebi ∈ Sai

arbitrarily;
accept;

Look-ahead arc consistency was introduced and studied by Chen and Dalmau [12], and the theorem that follows
is due to them. This algorithm can be viewed as a generalization of an algorithm for SAT studied by Del Val [17].

Definition 5 Let B be a structure. We say that look-ahead arc consistencysolvesCSP(B) if for all structuresA,
the following holds: if there exists a homomorphismA → B, then the look-ahead arc consistency algorithm, given
(A,B), outputs such a homomorphism.

Theorem 6 LetB be a structure. Look-ahead arc consistency solvesCSP(B) if and only if there is a homomorphism
l : ℘(B)×B → B such thatl({b}, b′) = b for all b, b′ ∈ B.

3.3 Peek Arc Consistency

We now present the peek arc consistency algorithm. It attempts to find, for each variablea ∈ A, a valueb ∈ B such
that whena is set tob, the arc consistency check is passed.

Peek Arc Consistency
Input : a pair(A,B) of similar structures

forall a ∈ A do
setSa := B;

forall a ∈ A, b ∈ B do
if Arc Consistency([A, {a}], [B, {b}]) rejectsthen

removeb fromSa;
if there existsa ∈ A such thatSa = ∅ then reject;
else return “?”;

Peek arc consistency was introduced and studied by Bodirskyand Chen [8]; the notions and results that follow
come from them. In their work, the algorithm is shown to solvecertain constraint languages, including some languages
having infinite-size universes; such languages actually gave the motivation for introducing the algorithm. In this
work, it is pointed out that peek arc consistency can be readily parallelized; by invoking the arc consistency checks
independently in parallel, one can achieve a linear parallel running time.
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Definition 7 An instance(A,B) has thepeek arc consistency condition (PACC)if for every elementa ∈ A, there
exists a homomorphismh fromA to ℘(B) such thath(a) is a singleton.

Proposition 8 The peek arc consistency algorithm does not reject an instance(A,B) if and only if the instance has
the PACC.

Definition 9 Let B be a structure. We say that peek arc consistencysolvesCSP(B) if for all structuresA, the
following holds:(A,B) has the PACC implies that there is a homomorphismA → B.

The converse of the condition given in this definition alwaysholds. Suppose thath is a homomorphism fromA
to B; then, the mapping taking eacha ∈ A to the singleton{h(a)} is a homomorphism fromA to ℘(B) and hence
(A,B) has the PACC.

We use the notationSing(℘(B)n) to denote the induced substructure of℘(B)n whose universe contains ann-tuple
of ℘(B)n if and only if at least one coordinate of the tuple is a singleton.

Theorem 10 Let B be a structure. Peek arc consistency solvesCSP(B) if and only if for all n ≥ 1 there is a
homomorphismSing(℘(B)n) → B.

3.4 Singleton Arc Consistency

We now present the singleton arc consistency algorithm. As with arc consistency, this algorithm associates to each
elementa ∈ A a setSa of feasible values. It then continually checks, for pairs(a, b) with a ∈ A andb ∈ Sa, whether
or not arc consistency can be established with respect to thesetsSa and whena is assigned tob; if for some pair(a, b)
it cannot, thenb is removed from the setSa. As with arc consistency, this algorithm’s outer loop runs until the setsSa

stabilize, and the algorithm rejects if one of the setsSa is equal to the empty set.

Singleton Arc Consistency
Input : a pair(A,B) of similar structures

forall a ∈ A do
setSa := B;

denoteA = {a1, . . . , an};
repeat

forall a ∈ A, b ∈ Sa do
if Arc Consistency([A, {a1}, . . . , {an}, {a}], [B, Sa1

, . . . , San
, {b}]) rejectsthen

removeb fromSa;
until no setSa is changed;
if there existsa ∈ A such thatSa = ∅ then reject;
else return “?”;

Singleton arc consistency was introduced by Debruyne and Bessiere [16]. We now give a development of singleton
arc consistency analogous to that of arc consistency and peek arc consistency.

Definition 11 An instance(A,B) has thesingleton arc consistency condition (SACC)if there exists a mapping
s : A → ℘(B) \ {∅} such that for alla ∈ A, b ∈ s(a) there exists a homomorphismha,b : A → ℘(B) where:

• ha,b(a) = {b}, and

• for all a′ ∈ A, it holds thatha,b(a
′) ⊆ s(a′).

Proposition 12 The singleton arc consistency algorithm does not reject an instance(A,B) if and only if the instance
has the SACC.

Proof. Suppose that the singleton arc consistency algorithm doesnot reject an instance(A,B). Let {Sa}a∈A denote
the sets computed by the algorithm at the point of termination, and defines to be the mapping wheres(a) = Sa

6



for all a ∈ A. Let a ∈ A andb ∈ s(a). By the definition of the algorithm, the pair([A, {a1}, . . . , {an}, {a}],
[B, Sa1

, . . . , San
, {b}]) has the ACC, and thus the desired homomorphismha,b exists.

Now, suppose that the instance(A,B) has the SACC, and lets be a mapping with the described properties. We
show that throughout the execution of the algorithm, it holds thats(a) ⊆ Sa for all a ∈ A. First, Sa is initial-
ized withB for everya ∈ A. Next, we show that whena ∈ A andb ∈ s(a), thenb is never removed fromSa

by the algorithm. This is because by definition of SACC, thereexists a homomorphismha,b : A → ℘(B) with
ha,b(a) = {b} such that for alla′ ∈ A, it holds thatha,b(a

′) ⊆ s(a′). Sinces(a′) ⊆ Sa′ by the inductive assumption,
([A, {a1}, . . . , {an}, {a}], [B, Sa1

, . . . , San
, {b}]) has the ACC and hence the algorithm does not removeb from Sa.

�

Definition 13 LetB be a structure. We say that singleton arc consistencysolvesCSP(B) if for all structuresA, the
following holds:(A,B) has the SACC implies that there is a homomorphismA → B.

The converse of the condition given in this definition alwaysholds: suppose thath is a homomorphism fromA to
B. Then, the instance(A,B) has the SACC via the mappings wheres(a) = {h(a)} for all a ∈ A and the mappings
ha,b defined byha,b(a

′) = {h(a′)} for all a′ ∈ A.
We use the notationUnionSing(℘(B)n) to denote the induced substructure of℘(B)n whose universe contains an

n-tuple(S1, . . . , Sn) of ℘(B)n if and only if it holds that
⋃

i∈[n] Si =
⋃

i∈[n],|Si|=1 Si.

Theorem 14 LetB be a structure. Singleton arc consistency solvesCSP(B) if and only if for all n ≥ 1 there is a
homomorphismUnionSing(℘(B)n) → B.

Proof. First we show that if singleton arc consistency solvesCSP(B), then there is a homomorphism from
UnionSing(℘(B)n) to B for all n ≥ 1. Letn ≥ 1; we show that(UnionSing(℘(B)n),B) has the SACC. Then, there
is a homomorphism fromUnionSing(℘(B)n) toB, since the singleton arc consistency algorithm solves CSP(B).

Let s be the mappings(a) :=
⋃

i∈[n] Si for all tuplesa = (S1, . . . , Sn) of UnionSing(℘(B)n). Now let us
consider an arbitrary tuplea = (S1, . . . , Sn) of UnionSing(℘(B)n) and an arbitraryb ∈ s(a). Since

⋃

i∈[n] Si =
⋃

i∈[n],|Si|=1 Si, there is ani ∈ [n] such that{b} = Si. Thus, the homomorphismπi : UnionSing(℘(B)n) → ℘(B)

that projects onto theith coordinate satisfiesπi(a) = {b}, and for all tuplesa′ of UnionSing(℘(B)n), it holds that
πi(a

′) ⊆ s(a′). Hence,(UnionSing(℘(B)n),B) has the SACC.
For the other direction, we show that if there is a homomorphism fromUnionSing(℘(B)n) toB for all n ≥ 1, then

singleton arc consistency solvesCSP(B). Thus, we have to show that there exists a homomorphism fromA to B if
(A,B) has the SACC. Lets be the homomorphism from the definition of SACC, and let us use{h1, . . . , hn} to denote
the set{ha,b | a ∈ A, b ∈ s(a)} of homomorphisms. Further, letg be the homomorphism(h1, . . . , hn) : A → ℘(B)n.
Now, for every elementa ∈ A the imageg(a) = (h1(a), . . . , hn(a)) is a tuple ofUnionSing(℘(B)n): for every
b ∈

⋃

j∈[n] hj(a), it holds thatb ∈ s(a) and thus there exists a homomorphismha,b = hi that mapsa to the singleton
{b}; so, we have

⋃

j∈[n] hj(a) =
⋃

i∈[n],|hi(a)|=1 hi(a). Sinceg is a homomorphism fromA to UnionSing(℘(B)n),
we can composeg and a homomorphism fromUnionSing(℘(B)n) to B, which we know to exist by assumption, to
get a homomorphism fromA toB. Consequently, singleton arc consistency solvesCSP(B). �

4 Strength Comparison

In this section, we investigate relationships among the sets of structures solvable by the various algorithms presented.
We show that for the structures having all constants, AC solves a strictly smaller set of structures than LAAC does;
on the other hand, we show that there is a structure (not having all constants) solvable by AC but not LAAC. We then
show that the structures solvable by AC or LAAC are strictly contained in those solvable by PAC; and, in turn, that the
structures solvable by PAC are strictly contained in those solvable by SAC. We also show that the structures solvable
by SAC (and hence, those solvable by any of the studied algorithms) all fall into the class of structures havingbounded
width; bounded width is a well-studied condition admitting multiple characterizations [18, 22, 6].

Proposition 15 Suppose thatB is a structure having all constants. IfCSP(B) is solvable by AC, then it is solvable
by LAAC.
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Proof. By Theorem 4, there is a homomorphismf : ℘(B) → B. Since the structureB has all constants, for each

b ∈ B there is a relation symbolRb with RB

b = {(b)}. Since({b}) ∈ R
℘(B)
b , it must hold thatf({b}) ∈ RB

b , from
which it follows thatf({b}) = b. The mappingl defined byl(S, b) = f(S) is then a homomorphism of the type
described in Theorem 6.�

Proposition 16 There exists a structureB having all constants such thatCSP(B) is solvable by LAAC but not by AC.

Proof. TakeB to be the relational structure with universe{0, 1} over signature{U0, U1, R(0,0), R(1,1)} where

UB

0 = {0}

UB

1 = {1}

RB

(0,0) = {0, 1}2 \ {(0, 0)}

RB

(1,1) = {0, 1}2 \ {(1, 1)}.

It is straightforward to verify that the mappingl defined byl({0, 1}, b′) = b′, l({0}, b′) = 0, andl({1}, b′) = 1 for
all b′ ∈ {0, 1} is a homomorphism from℘(B) × B to B satisfying the condition of Theorem 6. Hence, the problem
CSP(B) is solvable by LAAC.

To show that the problemCSP(B) is not solvable by AC, letf be an arbitrary mapping from℘(B) \ {∅} toB. We
show thatf cannot be a homomorphism from℘(B) to B, which suffices by Theorem 4. Letb = f({0, 1}). It holds

that({0, 1}, {0, 1}) ∈ R
℘(B)
(b,b) , but(f({0, 1}), f({0, 1})) = (b, b) /∈ RB

(b,b), and we are done.�

Proposition 17 There exists a structureB (not having all constants) such thatCSP(B) is solvable by AC but not by
LAAC.

Proof. TakeB to be the relational structure with universe{0, 1} over signature{R,S} whereRB = {0, 1}3 \
{(0, 1, 1)} andSB = {0, 1}3 \ {(1, 0, 0)}. The mappingp that sends each element of℘(B) \ {∅} to 0 is a homomor-
phism from℘(B) toB, and hence AC solvesCSP(B) by Theorem 4.

To show that the problemCSP(B) is not solvable by LAAC, letf be an arbitrary mapping from(℘(B)\ {∅})×B
to B that satisfiesf({b}, b′) = b for all b, b′ ∈ B. We show thatf cannot be a homomorphism from℘(B) ×B to B,
which suffices by Theorem 6. We consider two cases depending on the value off({0, 1}, 0).

• If f({0, 1}, 0) = 1, then we use the facts that({0}, {0, 1}, {0, 1}) ∈ R℘(B) and that(0, 0, 0) ∈ RB; we have
that (f({0}, 0), f({0, 1}, 0), f({0, 1}, 0)) = (0, 1, 1), which is not contained inRB, implying thatf is not a
homomorphism of the desired type.

• If f({0, 1}, 0) = 0, then we use the facts that({1}, {0, 1}, {0, 1}) ∈ S℘(B) and that(0, 0, 0) ∈ SB; we have
that (f({1}, 0), f({0, 1}, 0), f({0, 1}, 0)) = (1, 0, 0), which is not contained inSB, implying thatf is not a
homomorphism of the desired type.

�

We now proceed to study PAC, and in particular, show that the structures solvable by AC or LAAC are solvable by
PAC.

Proposition 18 LetB be a structure. IfCSP(B) is solvable by AC, then it is also solvable by PAC.

Proposition 18 follows directly from the algebraic characterizations given in Theorems 4 and 10; it can also be
seen to follow from the corresponding algorithm descriptions.

Theorem 19 LetB be a structure. IfCSP(B) is solvable by LAAC, then it is also solvable by PAC.
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Proof. Suppose that look-ahead arc consistency solves CSP(B). By Theorem 6 there exists a homomorphism
l : ℘(B)×B → B such thatl({b}, b′) = b for all b, b′ ∈ B. We want to show that peek arc consistency solves CSP(B)
by using Theorem 10. Thus, we have to show that for alln ≥ 1 there is a homomorphismgn : Sing(℘(B)n) → B.

Let n ≥ 1. Let us consider the mappinggn with

gn(S1, . . . , Sn) = l(S1, l(S2, . . . l(Sn−1, l(Sn, b)) . . .))

defined for all tuplesT = (S1, . . . , Sn) ∈ Sing(℘(B)n) and allb ∈ B. First we want to show thatgn is well defined.
Let b1, b2 ∈ B with b1 6= b2, let (S1, . . . , Sn) ∈ Sing(℘(B)n) and leti ∈ [n] be an index such thatSi is a singleton.
LetSi = {b∗} for a b∗ ∈ B. We obtain that

l(S1, . . . l(Si−1, l(Si, . . . l(Sn−1, l(Sn, b1)) . . .)) . . .)

= l(S1, . . . l(Si−1, l(Si, b
′)) . . .)

= l(S1, . . . l(Si−1, b∗) . . .)

with b′ = l(Si+1, . . . l(Sn−1, l(Sn, b1)) . . .) ∈ B, becausel is applied to the singletonSi = {b∗} andb′. Similarly,
we obtain that

l(S1, . . . l(Si−1, l(Si, . . . l(Sn−1, l(Sn, b2)) . . .)) . . .)

= l(S1, . . . l(Si−1, b∗) . . .)

Consequently,gn is well defined. Next, we prove thatgn is a homomorphism. LetRSing(℘(B)n) be ak-ary relation and
let (T 1, . . . , T k) be a tuple in this relation. DenoteT i = (Si

1, S
i
2, . . . , S

i
n) for all i ∈ [k]; then,S′

j = (S1
j , . . . , S

k
j ) has

to be inR℘(B) for all j ∈ [n]. Further, we know that there exists a tupleb̄ = (b1, . . . , bk) ∈ RB, becauseR℘(B) is not
empty. Sincel is a homomorphism, the tuple

gn(S
′
1, S

′
2, . . . , S

′
n) = l(S′

1, l(S
′
2, . . . l(S

′
n−1, l(S

′
n, b̄)) . . .))

is inRB. Thus,gn is a homomorphism fromSing(℘(B)n) toB. �

Theorem 20 There exists a structureB having all constants such thatCSP(B) is solvable by PAC but not by LAAC
nor AC.

Proof. Let us consider the structure with universe{0, 1, 2} over the signature{U0, U1, U2, R1, R2} where

UB

0 = {(0)}

UB

1 = {(1)}

UB

2 = {(2)}

RB

1 =
(

{0, 1} × {0, 1, 2}
)

\ {(0, 0)}

RB

2 = {(0, 0), (1, 2), (2, 1)}.

First we show that there is no homomorphisml : ℘(B) × B → B such thatl({b}, b′) = b for all b, b′. Let us

assume there is one. Since({0}, {1, 2}) ∈ R
℘(B)
1 and (1, 0) ∈ RB

1 the tuple(l({0}, 1), l({1, 2}, 0)), which is
equal to(0, l({1, 2}, 0)), has to be contained inRB

1 . Thus, l({1, 2}, 0) cannot be equal to0. On the other hand,
({1, 2}, {1, 2}) ∈ R

℘(B)
2 and(0, 0) ∈ RB

2 implies that(l({1, 2}, 0), l({1, 2}, 0)) is in RB
2 . Therefore,l({1, 2}, 0) has

to be0, which is a contradiction. This establishes that the structure is not solvable by LAAC; by Proposition 15, it
follows that the structure is not solvable by AC.
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Next we show that for alln, there exists a homomorphismf from Sing(℘(B)n) to B. Let n be arbitrary and let
(S1, . . . , Sn) be an arbitraryn-tuple ofSing(℘(B)n). Further, leti be the minimal number such thatSi is {1}, {2},
{0, 1} or {0, 2}; if such anSi does not exists, theni = 0. The homomorphismf can be defined as follows:

f(S1, . . . , Sn) =











1 if i > 0 andSi is {1} or {0, 1}

2 if i > 0 andSi is {2} or {0, 2}

0 otherwise.

Let us verify thatf is indeed a homomorphism: First of all, it is easy to see thatf(S1, . . . , Sn) is in UB

i whenever

(S1, . . . , Sn) is in U
Sing(℘(B)n)
i . Next, let us considerR2. Let (S1, . . . , Sn) and(T1, . . . , Tn) be arbitraryn-tuples of

Sing(℘(B)n) such that(Sl, Tl) is in R
℘(B)
2 for all l. Let i be the minimal number such thatSi is {1}, {2}, {0, 1} or

{0, 2}, and letj be the minimal number such thatTj is {1}, {2}, {0, 1} or {0, 2}, and if such anSi or Tj does not
exists, theni = 0 or j = 0 respectively. Ifi > 0, thenTi has to be{1}, {2}, {0, 1} or {0, 2} and hence0 < j ≤ i.
Symmetrically, ifj > 0, then0 < i ≤ j. Therefore,i = j. Now, if i = j = 0, then(f(S1, . . . , Sn), f(T1, . . . , Tn)) =
(0, 0), which is inRB

2 ; if i = j > 0, then(f(S1, . . . , Sn), f(T1, . . . , Tn)) ∈ RB
2 follows directly from(Si, Ti) being

in R
℘(B)
2 . Finally, let us consider two arbitraryn-tuples(S1, . . . , Sn) and (T1, . . . , Tn) of Sing(℘(B)n) such that

(Sl, Tl) is in R
℘(B)
1 for all l. If f(S1, . . . , Sn) = 2, thenSi = {2} or {0, 2} and(Si, Ti) cannot be inR℘(B)

1 . If
f(S1, . . . , Sn) = 1, then(f(S1, . . . , Sn), f(T1, . . . , Tn)) is in {1} × {0, 1, 2} and, thus, inRB

1 . If j = 0, then letk
be an index such thatTk = {0}. Such an index has to exist, because(T1, . . . , Tn) is a tuple ofSing(℘(B)n). Since

(Sk, Tk) is inR
℘(B)
1 , Sk has to be{1}, and hencef(S1, . . . ., Sn) ∈ {1, 2}, and we appeal to one of the first two cases.

The remaining case isi = 0 andj > 0. In this case,(f(S1, . . . , Sn), f(T1, . . . , Tn)) is in {0} × {1, 2} and therefore
in RB

1 . �

We now move on to study SAC; we show that SAC is strictly more powerful than PAC.

Proposition 21 LetB be a structure. IfCSP(B) is solvable by PAC, then it is also solvable by SAC.

Proposition 21 follows directly from the algebraic characterizations given in Theorems 10 and 14; it can also be
seen to follow from the corresponding algorithm descriptions.

Theorem 22 There exists a structureB having all constants such thatCSP(B) is solvable by SAC but not by PAC.

Proof. We will consider a structure that has as a polymorphism the idempotent binary commutative operation∗ defined
on the set{0, 1, 2, 3} by 1 ∗ 2 = 2, 2 ∗ 3 = 3, 3 ∗ 1 = 1, and0 ∗ a = a for all a ∈ {1, 2, 3}. We consider the structure
B with universe{0, 1, 2, 3} over the signature{U0, U1, U2, U3, R1, R2} where we have

UB

0 = {(0)}

UB

1 = {(1)}

UB

2 = {(2)}

UB

3 = {(3)}.

RB

1 = {0, 1, 2, 3}2 \ {(0, 0)},

RB

2 = {(1, 2), (2, 3), (3, 1), (0, 0)}

It is straightforward to verify that this structureB has the operation∗ as a polymorphism. The solvability ofB follows
from Theorem 32, which is proved in the next section; see alsothe discussion in Example 33.

To show that peek arc consistency does not solveCSP(B), we prove that there is no homomorphism from
Sing(℘(B)2) to B, which is sufficient by Theorem 10. Definet1 = ({0}, {1, 2, 3}) and t2 = ({1, 2, 3}, {0}).

It is straightforward to verify that(t1, t2) ∈ R
℘(B)2

1 ; since each of the tuplest1, t2 contains a singleton, it holds

that (t1, t2) ∈ R
Sing(℘(B)2)
1 . Assume, for a contradiction, thath is a homomorphism fromSing(℘(B)2) to B.

It then holds that(h(t1), h(t2)) ∈ RB
1 . Since(0, 0) /∈ RB

1 , we have that one of the valuesh(t1), h(t2) is not
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equal to0. Let us assume thath(t1) is not equal to0; the other case is symmetric. Denoteh(t1) by b; we have

b ∈ {1, 2, 3}. Since each of the two tuples({0}, {0}), ({1, 2, 3}, {1, 2, 3}) is contained inR℘(B)
2 , we have that

(({0}, {1, 2, 3}), ({0}, {1, 2, 3})) ∈ R
Sing(℘(B)2)
2 . It follows that(b, b) ∈ RB

2 , but since no tuple of the form(c, c)
with c ∈ {1, 2, 3} is contained inRB

2 , we have reached our contradiction.�

We close this section by showing that the structures solvable by SAC, and hence those solvable by any of the
algorithms studied here, fall into the class of structures havingbounded width. We begin by defining bounded width.
A partial homomorphismfromA to B is a mappingf : A′ → B, whereA′ ⊆ A, that defines a homomorphism toB
from the substructure ofA induced byA′. Whenf andg are partial homomorphisms we say thatg extendsf , denoted
by f ⊆ g, if Dom(f) ⊆ Dom(g) andf(a) = g(a) for everya ∈ Dom(f).

Definition 23 Letk > 1. A k-strategyfor an instance(A,B) is a nonempty collectionH of partial homomorphisms
fromA toB satisfying the following conditions:

1. (restriction condition) iff ∈ H andg ⊆ f , theng ∈ H ;

2. (extension condition) iff ∈ H , |Dom(f)| < k, anda ∈ A, there isg ∈ H such thatf ⊆ g anda ∈ Dom(g).

WhenH is ak-strategy for(A,B) anda1, . . . , aj ∈ A is a sequence, we defineHa1,...,aj
⊆ Bj to be the relation

{(f(a1), . . . , f(aj)) | f ∈ H,Dom(f) = {a1, . . . , aj}}.

Definition 24 LetB be a structure andk ≥ 1. We say thatCSP(B) haswidth k if for all structuresA the following
holds: if there is a(k + 1)-strategy for(A,B) then there is a homomorphismA → B. We say thatCSP(B) has
bounded widthif it has widthk for somek ≥ 1.

Proposition 25 LetB be a structure. IfCSP(B) is solvable by SAC, thenCSP(B) has bounded width.

Proof. Letr be the maximum of all the arities of the signature ofB, and setk = max(2, r+1). We shall show that for
any instanceA of CSP(B), if H is ak-strategy for(A,B), then the instance(A,B) has the SACC, which suffices.

Let us define the mappings : A → ℘(B) \ {∅} as s(a) = Ha. Furthermore, for everya ∈ A, b ∈ s(a),
defineha,b : A → ℘(B) \ {∅} as the mappingha,b(a

′) = {b′ | (b, b′) ∈ Ha,a′}. Note that the extension property
of H guarantees that, for everya′ ∈ A, ha,b(a

′) is, indeed, nonempty. It follows from the definition ofha,b that
ha,b(a) = {b}, and that for alla′ ∈ A, ha,b(a

′) ⊆ s(a′).
It is only necessary to show thatha,b defines a homomorphism fromA to ℘(B). Let RA be any relation inA,

let (a1, . . . , ai) ∈ RA, and letSj = ha,b(aj) for eachj ∈ [i]. In order to prove that(S1, . . . , Si) ∈ R℘(B) it
suffices to show that for everyj ∈ [i] and everybj ∈ Sj , there exists some(c1, . . . , ci) ∈ RB ∩ (S1 × · · · × Si)
with cj = bj . This is a direct consequence of the properties of the strategy. Indeed, by the definition ofha,b we
know that(b, bj) ∈ Ha,aj

and then, by an iterative application of the extension property, we can show that there exists
an extension(b, c1, . . . , ci) ∈ Ha,a1,...,ai

with cj = bj . The fact thatH contains only partial homomomorphisms
guarantees that(c1, . . . , ci) ∈ RB. Finally, it follows from the restriction condition that for everyl ∈ [i], we have
cl ∈ Sl. �

5 Tractability via singleton arc consistency

5.1 Majority operations

An operationm : B3 → B is amajorityoperation if it satisfies the identitym(x, y, y) = m(y, x, y) = m(y, y, x) = y
for all x, y ∈ B. Relative to a majority operationm : B3 → B, whenI ⊆ J ⊆ B, we say thatI is anidealof J if for
everyx, y, z ∈ J such thatx, z ∈ I we havem(x, y, z) ∈ I. We will establish the following result.

Theorem 26 If B is a structure that has a majority polymorphism, then singleton arc consistency solvesCSP(B).
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The proof is obtained by using a strengthened version of the Prague strategy defined by Barto and Kozik [6].
In this section, for the sake of readability, we will typically use the notationt[i] to denote theith entry of a tuplet.
We introduce the following definitions relative to an instance (A,B) with signatureσ. A patternp of A is a

sequencea1, e1, a2, . . . , em−1, am such thata1, . . . , am are elements ofA and for everyn ∈ [m− 1], we have thaten
is a triple(R, i, j) whereR is a symbol inσ andi, j are indices such that there is a tuplet ∈ RA with t[i] = an and
t[j] = an+1. The lengthof patternp is defined to bem. A pattern is acycleif a1 = am. By aset system, we mean
any mappingH : A → ℘(B) \ {∅}.

A patternq = b1, e
′
1, . . . , e

′
m−1, bm of B having the same length as a patternp of A is arealizationof p if en = e′n

for all n ∈ [m− 1]. The pair(b1, bm) is said to be asupportof p. For a set systemH , if it holds thatbn ∈ H(an) for
all n ∈ [m] then(b1, bm) is said to be a support ofp insideH .

A set systemH is aweak strategyif for every patternp = a1, e1, . . . , em−1, am of A, and everyb1 ∈ H(a1) there
exists somebm ∈ H(am) such that(b1, bm) supportsp insideH . A set systemH is a strong strategyif for every
cyclep = (a = a1, . . . , am = a) in A and everyb ∈ H(a), the pair(b, b) supportsp insideH . Note that every strong
strategy is a weak strategy and that the class of weak strategies remains the same if, in the definition of weak strategy,
one replaces “every patternp = a1, e1, . . . , em−1, am” by “every patternp = a1, e1, . . . , em−1, am of lengthm = 2”.

Observation 1 Every strong strategy is a weak strategy, relative to an instance(A,B).

Proof. For a patternp = a1, e1, . . . , em−1, am of A, one needs only to apply the definition of strong strategy to the
the patterna1, e1, . . . , em−1, am, e−1

m−1, am−1, . . . , e
−1
1 , a1, where(R, i, j)−1 is defined to be(R, j, i). �

Lemma 27 There exists a strong strategy for an instance(A,B) having the SACC.

Proof. Let s : A → ℘(B) \ {∅}, {ha,b} be the mappings witnessing that(A,B) has the SACC. We claim that the set
systemH defined byH(a) = s(a) for all a ∈ A is a strong strategy. Indeed, letp = a1, e1, . . . , am be a pattern ofA
with a1 = am = a and letb ∈ H(a1). We claim that there exists a realizationb1, e1, . . . , bm of p with b1 = bm = b
such that for every1 ≤ n ≤ m, bn ∈ ha,b(an). The realization is constructed in an inductive manner. First, setb1
to b. Assume now thatbn−1 is already set and leten−1 be (R, i, j). There exists a tuple(x1, . . . , xr) ∈ RA such
thatxi = an−1 andxj = an. Sinceha,b is a homomorphism, the subsetS ⊆ Br defined byπlS = ha,b(xl) for
every1 ≤ l ≤ r is a subset ofRB. Frombn−1 ∈ ha,b(xi) it follows that there exists a tuple(y1, . . . , yr) ∈ S with
yi = bn−1. Definebn to beyj . Since, by definition of SACC strategyha,b(a) = {b}, it follows thatbm = b. �

We now prove the following lemma, which, as we explain after the proof, essentially establishes the desired
theorem. In the course of proving this lemma, we establish a number of observations.

By a minimal strong strategy, we mean minimal with respect tothe ordering where for two strategiesH,H ′, we
considerH ⊆ H ′ if H(a) ⊆ H ′(a) for all a ∈ A.

Lemma 28 If the relations ofB are invariant under a majority operationφ andH is a minimal strong strategy then
for everya ∈ A, the setH(a) is a singleton.

Proof. Towards a contradiction assume thatH is a minimal strong strategy anda∗ ∈ A is such thatH(a∗), is not a
singleton. Consider the digraphG whose nodes are of the form(a, C) with a ∈ A andC ⊆ H(a), and there is an edge
from (a, C) to (a′, C′) if there is a patternp = a1, . . . , am with a = a1 anda′ = am in A such that the following
holds:C′ is the set containing allb′ ∈ H(a′) such that(b, b′) is supported byp insideH for someb ∈ C.

Observation 2 Let p = a1, e1, . . . , am be a pattern, let1 < i < m, let q be the patterna1, e1, . . . , ai andr be the
patternai, ei . . . , em. If q defines an edge from(a1, C1) to (ai, Ci) andr defines an edge from(ai, Ci) to (am, Cm)
thenp defines an edge from(a1, C1) to (am, Cm). Hence, the graphG is transitive.

The following observation follows from the definition of strong strategy.

Observation 3 If there is an edge from(a, C) to (a, C′) in G, then necessarilyC ⊆ C′.

Observation 4 If there is an edge from(a, C) to (a′, C′) in G, andC is an ideal ofH(a), thenC′ is an ideal of
H(a′).
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Proof (Observation 4). Let us prove the claim by induction on the lengthm of the pattern that defines the edge.
Assume first thatm = 2. Let a, (R, i, j), a′ be any such pattern. Letx1, x2, x3 ∈ H(a′) and assume that two of

them, sayx1, x3, belong toC′. It follows, by the definition of edge, that for everyn ∈ {1, 3} there exists tupletn ∈ RB

with tn[j] = xn andtn[i] ∈ C. Also, it follows by considering patterna′, (R, j, i), a and from the fact thatH is a
weak strategy that there exists a tuplet2 ∈ RB with t2[i] ∈ H(a) andt2[j] = x2. Consider now tuplet = φ(t1, t2, t3).
SinceC is an ideal ofH(a) we have thatt[i] ∈ C. Hence, we conclude thatφ(x1, x2, x3) = t[j] ∈ C′.

The casem > 2 follows from the inductive hypothesis and Observation 2.�

Now, letG′ be the subgraph ofG induced by all nodes(a, C) such thatC is an ideal ofH(a) andC 6= H(a).
Observe that asH(a∗) is not a singleton, the graphG′ is nonempty, because every singleton is an ideal.

A subsetM of vertices of a directed graph is astrongly connected componentif for every pair (v, w) ∈ M2

there exists a path fromv to w consisting only of vertices inM . It is a maximal strongly connected componentif
additionally, there is no edge(v, w) with v ∈ M andw 6∈ M .

Let M be a maximal strongly connected component ofG′. The following observation is a direct consequence of
Observations 2 and 3.

Observation 5 The maximal strongly connected componentM cannot have two vertices(a, C), (a, C′) withC 6= C′.

We shall construct a new strong strategyH ′ as follows. If(a, C) belongs toM , then setH ′(a) = C otherwise set
H ′(a) = H(a). ClearlyH ′ is strictly smaller thanH .

We shall start by showing thatH ′ is a weak strategy. By the note following the definition of weak strategy it is
only necessary to show that for every patternp = a1, e1, a2 of length2 of A and everyb1 ∈ H ′(a1), there exists a
support(b1, b2) of p insideH ′.

We do a case analysis. If(a2, H ′(a2)) does not belong toM the claim follows from the fact thatH is a weak
strategy. Assume now that(a2, H ′(a2)) belongs toM . Consider the patternp = a2, e

−1
1 , a1 where(R, i, j)−1 =

(R, j, i). This pattern defines an edge (inG) from (a2, H
′(a2)) to a node(a1, C). Observe, that by the definition of

the edges ofG, we know that for every elementb ∈ C there is someb′ ∈ H ′(a2) such that(b, b′) is supported byp
insideH . Hence we only need to show thatH ′(a1) ⊆ C.

If (a1, C) is in G′ then, sinceM is a maximal strongly connected component ofG′, we have that(a1, C) belongs
toM as well and henceC = H ′(a1). If (a1, C) is not inG′ this must be becauseC is not an ideal ofH(a1) or because
C = H(a1). We can rule out the first possibility in the following way: bythe definitions ofG′ andH ′, H ′(a2) is an
ideal ofH(a2). It follows by observation 4 thatC is an ideal ofH(a1). In consequenceC = H(a1) and the proof
thatH ′ is a weak strategy is concluded.

It remains to show thatH ′ is a strong strategy. Letp = a1, e1, . . . , em−1, am be any cycle inA with a1 = am = a
and letb be any element inH ′(a). SinceH ′ is a weak strategy we know that there is a realizationb1, . . . , bm of
p with b1 = b insideH ′. Notice that we do not necessarily havebm = b. Symmetrically, by considering pattern
am, e−1

m−1, . . . , e
−1
1 , a1 we know that there is a realizationdm, e−1

m−1, . . . , e
−1
1 , d1 of p with dm = b insideH ′. Also,

sinceH is a strong strategy we know that there exists a realizationc1, e1, . . . , cm of p such thatc1 = cm = b insideH
(but not necessarily insideH ′). Finally consider the sequencex1, . . . , xm defined byxj = φ(bj , cj , dj), 1 ≤ j ≤ m.
This sequence is a realization ofp. Furthermore, we have thatx1 = xm = b. It remains to show that it is insideH ′.
Indeed, for every1 ≤ j ≤ m, {bj, dj} ⊆ H ′(aj) andcj ∈ H(aj). SinceH ′(aj) is an ideal ofH(aj) the claim
follows.�

Proof. (Theorem 26) Suppose that the instance(A,B) has the SACC and thatB has the majority polymorphismφ.
By Lemmas 27 and 28 there exists a strong strategyH for (A,B) such thatH(a) is a singleton for everya ∈ A.
Consider now the mappingh : A → B that maps everya ∈ A to the only element inH(a). We claim thath is a
homomorphism fromA to B. Indeed, letR be any relation symbol, and(a1, . . . , ar) be any tuple inRA. Fix any
1 ≤ i, j ≤ r and consider patternai, (R, i, j), aj. It follows by the definition of strong strategy that there isa t ∈ RB

such thatt[i] = h(i) andt[j] = h(j). SinceRB is necessarily2-decomposable [20],h is a homomorphism.�

5.2 2-semilattice operations

A 2-semilatticeG = (G, ⋆) consists of a setG, which in this paper we assume to be finite, and a binary operation ⋆
satisfyingx⋆x = x (idempotency),x⋆y = y⋆x (commutativity), andx⋆(x⋆y) = (x⋆x)⋆y (restricted associativity).
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Each 2-semilattice naturally induces a directed graph(G,E) where(a, b) ∈ E if and only if a ⋆ b = b. When
(a, b) ∈ E, we also writea ≤ b. The graph(G,E) is connected, sincea⋆ (a⋆ b) = b ⋆ (a⋆ b) = a⋆ b for anya, b ∈ G,
and therefore,a, b ≤ a ⋆ b. Each 2-semilattice has a unique maximal strongly connected component, that is a strongly
connected component with no outgoing edges, denoted byG. The componentG is also the unique strongly connected
component of(G,E) such that for anya ∈ G, there existsb ∈ G such thata ≤ b. In this section, we will prove that a
certain class of 2-semilattices is tractable via singletonarc consistency. Our treatment of 2-semilattices is inspired and
influenced by the study conducted by Bulatov [10], who provedthat they are polynomial-time tractable.

A 2-semilatticeG = (G, ⋆) is an algebra. By analgebra, we mean a pair(A,O) consisting of a setA, theuniverse
of the algebra, and a setO of operations onA. A congruenceof an algebra is an equivalence relation preserved by the
operation(s) of the algebra, and an algebra issimpleif its only congruences are trivial (that is, if its only congruences
are the equality relation onA andA×A, whereA is the universe of the algebra).

We will begin by proving some general results on singleton arc consistency. In the following discussion, asubal-
gebrais defined, with respect to a relational structureB, as a subsetS ⊆ B that is preserved by all polymorphisms of
B. For an arbitrary subsetT ⊆ B, we use〈T 〉 to denote the smallest subalgebra containingT .

Proposition 29 Suppose thatg1, . . . , gk : A → ℘(B) are homomorphisms, and suppose thatf : Bk → B is a
polymorphism ofB. Then the mapg : A → ℘(B) \ {∅} defined byg(a) = f(g1(a), . . . , gk(a)) for all a ∈ A is a
homomorphismA → ℘(B).

For an operationf : Bk → B and a sequence of subsetsB1, . . . , Bk ⊆ B, by the notationf(B1, . . . , Bk), we
denote the set{f(b1, . . . , bk) | b1 ∈ B1, . . . , bk ∈ Bk}. Regarding this notation, it is easy to verify thatf can be
understood as a polymorphism of℘(B) if f is a polymorphism ofB. Proposition 29 follows straightforwardly from
the definitions.

Proposition 30 Suppose thath : A → ℘(B) is a homomorphism. Then the maph′ defined byh′(a) = 〈h(a)〉 for all
a ∈ A is also a homomorphismA → ℘(B).

Proof. Repeatedly apply Proposition 29 with a polymorphismf andg1 = · · · = gk = h, each time taking the
resultingg and updatingh to beh ∪ g. Note that at each step, the newh is a homomorphismA → ℘(B), since the
union operation∪ is a polymorphism of℘(B). When no changes can be made, the resultingh is the desiredh′. �

Let us say that a CSP instance(A,B) has thesubalgebra SACCif (A,B) has the SACC relative to mappings
s, {ha,b} such that for alla ∈ A, the sets(a) is a subalgebra, and for alla, a′ ∈ A, b ∈ s(a), the setha,b(a

′) is a
subalgebra.

Proposition 31 If a pair (A,B) of similar structures has the SACC, and all polymorphisms ofB are idempotent, then
it has the subalgebra SACC.

Proof. Suppose that(A,B) has the SACC with respect to the mappingss, {ha,b}. Sets′(a) = 〈s(a)〉 for all a ∈ A,
andh′

a,b(a
′) = 〈ha,b(a

′)〉 for all a, a′ ∈ A, b ∈ s(a). Clearly, for all sucha, a′, b we haveh′
a,b(a

′) ⊆ s′(a′), and
also, thath′

a,b is a homomorphismA → ℘(B) (by Proposition 30). Letb be an element ins′(a) \ s(a) for some
a ∈ A. We need to show that there exists a homomorphismh′

a,b that satisfies the two conditions of Definition 11
with respect tos′, and that also satisfies the subalgebra condition. Ass′(a) is defined as〈s(a)〉, it holds thats′(a) =
{f(b1, . . . , bk) | f a polymorphism ofB; b1, . . . , bk ∈ s(a)}; the containment⊇ is clear by definition of subalgebra,
and the containment⊆ follows from the fact that the right hand side is a subalgebra, which in turn follows from the
fact that the set of polymorphisms ofB forms a clone and is closed under composition [23]. Thus, there exists a
polymorphismf of B and elementsb1, . . . , bk ∈ s(a) such thatb = f(b1, . . . , bk). Let g′a,b be the homomorphism
obtained from Proposition 29 withgi = ha,bi andf . Seth′

a,b(a
′) = 〈g′a,b(a

′)〉 for all a′ ∈ A. The homomorphism
h′
a,b has the desired properties.�

We now turn to prove our tractability result. We will now use the term subalgebra to refer to asubalgebraof a
2-semilattice(B, ⋆), that is, a subset ofB preserved by⋆. Note, however, that we will be working with a relational
structureB assumed to have⋆ as a polymorphism, so a subalgebra in the previous sense (that is, with respect toB)
will also be a subalgebra in this sense. An algebra(B, ⋆) having a binary operation isconservativeif for all b, b′ ∈ B,
it holds thatb ⋆ b′ ∈ {b, b′}. The following is the statement of our tractability result.
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Theorem 32 Let (B, ⋆) be a conservative 2-semilattice such that every strongly connected subalgebra is simple. IfB

is a structure having⋆ as a polymorphism, then singleton arc consistency solvesCSP(B).

Example 33 We consider the binary operation∗ on{0, 1, 2, 3} defined by the following table.

* 0 1 2 3
0 0 1 2 3
1 1 1 2 1
2 2 2 2 3
3 3 1 3 3

It is straightforward to verify that this operation is commutative and conservative, and is a 2-semilattice. The graph
induced by this operation has edges(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 1), as well as self-edges on each of the ver-
tices. There is thus just one strongly connected component of size strictly greater than one, namely, the component
{1, 2, 3}. This is a subalgebra of the algebra({0, 1, 2, 3}, ∗)and is readily verified to be simple. Hence, the tractability
via singleton arc consistency of any structure preserved bythe operation∗ follows from Theorem 32.

We will make use of the following results. For our purposes here, asubdirect productof algebrasA1, . . . ,Ak is a
subalgebraS of A1 × · · · ×Ak such that for eachi ∈ [k], it holds thatπiS = Ai.

Lemma 34 Suppose thatS is a subdirect product of 2-semilatticesS1, . . . , Sn. ThenS∩(S1×· · ·×Sn) is a subdirect
product ofS1, . . . , Sn.

Proof. Immediate from [10, Lemma 3.2].�

Definition 35 A relationS ⊆ Bn is almost trivialif there exists a partitionI1, . . . , Ik of [n] such that

• t ∈ S if and only if for all i ∈ [k], it holds thatπIi t ∈ πIiS; and,

• for eachj ∈ [k], it holds thatπIjS has the form{(π1(p), π2(p), . . . , πm(p)) | p ∈ [q]} for someq ≥ 1 and
where each mappingπi is a bijection from[q] to a subset ofB.

Proposition 36 A subdirect product of simple strongly connected 2-semilattices is an almost trivial relation, and is
hence itself strongly connected.

Proof. Immediate from [10, Proposition 3.1].�

Proposition 37 Let (A,B) be an instance that has the SACC with respect tos : A → ℘(B) \ {∅}. If for each tuple
(a1, . . . , ak) ∈ RA, it holds thatRB ∩ (s(a1)× · · · × s(ak)) is almost trivial, then there is a homomorphism fromA
toB.

Proof. Consider the following graphG = (A,E), where{a, b} ∈ E if and only if there is a relationRA in A, and,
if I1, . . . , Ik is its partition regarding almost triviality ofRB ∩ (s(a1) × · · · × s(ak)), there further is anl ∈ [k] and
a tuple(a1, . . . , am) ∈ RA

Il
such that there arei, j with a = ai andb = aj . For each connected componentC of

the graphG arbitarily choosea ∈ C andb ∈ s(a). Since arc consistency can be established whena is set tob and
using the structure of the projected relationsRB

Il
, there exists a unique extension ofa 7→ b to a homomorphism on

C. Because of the first property of Definition 35 the homomorphisms on the single components can be combined to a
homomorphism onA. �

The following is the main result used to prove Theorem 32.

Theorem 38 Suppose thatB satisfies the hypotheses of Theorem 32, and suppose that(A,B) has the subalgebra
SACC vias : A → ℘(B)\{∅}. Then,(A,B) has the SACC via the maps′ : A → ℘(B)\{∅} defined bys′(a) = s(a)
for all a ∈ A.
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Proof. Let a ∈ A andb ∈ s(a). By hypothesis, there exists a homomorphismh : A → ℘(B) whereh(a) = {b} and
for all a′ ∈ A, it holds thath(a′) ⊆ s(a′). We want to show that there exists a homomorphismh′ : A → ℘(B) where
h′(a) = {b} and for alla′ ∈ A, it holds thath′(a′) ⊆ s′(a′). Defineh′(a) ash(a) if h(a) ∩ s′(a) 6= ∅, and ass′(a)
otherwise. Observe that in the first case, we haveh′(a) = h(a) ⊆ s′(a), and that in both cases, the subseth′(a) is a
subalgebra.

We claim thath′ is a homomorphism fromA to ℘(B). Let a ∈ RA be a tuple inA. For the sake of notation,
we assume thata = (a1, . . . , ak+l), I = {1, . . . , k}, J = {k + 1, . . . , k + l}, and thatI contains exactly the
coordinatesi ∈ [k + l] such thath(ai) ∩ s′(ai) 6= ∅, so thath′(ai) = h(ai) for all i ∈ I andh′(aj) = s′(aj) for all
j ∈ J . LetT = (πIR

B ∩ (s(a1)× · · · × s(ak))) ∩ (s(a1)× · · · × s(ak)). By Lemma 34, we have that relationT is a
subdirect product ofs(a1), . . . , s(ak). Further, letW = (RB ∩ (s(a1)× · · · × s(ak+l))) ∩ (s(a1)× · · · × s(ak+l)).
By Lemma 34, we have thatW is a subdirect product ofs(a1), . . . , s(ak+l). Clearly,πIW ⊆ T . We show thatT ⊆
πIW (and hence thatT = πIW ), as follows. Lett be a tuple inT . Letw be a tuple inW (such a tuple can be obtained,
for instance, by⋆-multiplying together all tuples ofRB ∩ (s(a1) × · · · × s(ak+l)), in any order). By our assumption
onB and by Proposition 36, there is a sequence of tuplesu1, . . . , um in T such thatπIw ≤ u1 ≤ · · · ≤ um = t. We
hence have tuplesv1, . . . , vm with vi ∈ RB ∩ (s(a1)× · · · × s(ak+l)) andπIvi = ui for eachi ∈ [m]. The product
(· · · ((w ⋆ v1) ⋆ v2) ⋆ · · · ⋆ vm) gives a tuple inW whose projection ontoI is t.

By Proposition 36, it holds thatW is almost trivial with respect to a partition{Ii}. Remove from theIi any
coordinatesl such thats′(al) has just one element. We now show that the resulting partition {Ii} has the property
that eachIi is a subset of eitherI or J . By the homomorphismh and its subalgebra property, there exists a tuple
(t, x) ∈ RB such thatt ∈ T andxj /∈ s(aj) for all j ∈ J (just multiply all tuples inRB ∩ (h(a1)× · · · × h(ak+l))).
By the fact thatT ⊆ πIW , we have a tuple(t, u) ∈ W . By the strong connectedness ofW (Proposition 36), there is a
tuple(t′, u′) ∈ W that is distinct from(t, u) at each coordinate in∪Ii and such that(t′, u′) ⋆ (t, u) = (t, u). We also
have(t′, u′) ⋆ (t, x) = (t, u′); note thatu′ ⋆ x = u′ by conservativity of⋆. As u andu′ differ at every coordinate in
J ∩ (∪Ii), the claim follows.

As a consequence of this last result, for any tuplet ∈ πIW and any tupleu ∈ πJW , it holds that(t, u) ∈ W .
Further it holds that(πIR

B∩(h(a1)×· · ·×h(ak)))∩(h′(a1)×· · ·×h′(ak)) is a subdirect product ofh′(a1), . . . , h
′(ak)

(Lemma 34), and we have thath′ is a homomorphism fromA to ℘(B). �

Proof. (Theorem 32) Suppose that(A,B) has the SACC. By Proposition 31, the instance(A,B) has the subalgebra
SACC. By Theorem 38,(A,B) has the SACC via a mappings′ where for alla ∈ A, it holds thats′(a) is a strongly
connected subalgebra. By assumption, each suchs′(a) is simple, and it follows from Propositions 36 and 37 that there
is a homomorphism fromA to B. �

6 Discussion

In this work, we performed a systematic study of arc consistency and three simple, natural extensions thereof. We per-
formed a comparison of the studied consistency notions based on constraint languages, and proved positive tractability
results for singleton arc consistency.

Atserias and Weyer [5] gave a uniform treatment of AC, PAC, SAC, and general consistency. Among other results,
they show that it can be decided, given a constraint languageand any pair of the previous consistency methods, whether
it is true that the set of instances that passes one of the consistency tests coincides with the set of instances that passes
the other. Their results combined with the fact that generalconsistency/bounded width is decidable [6] implies that it
can be decided whether or not a given constraint language is solvable by any of the other methods.

We conclude by posing one question for future work. Barto andKozik [6] have recently characterized all languages
solvable by bounded width. Can all such languages be solvable by singleton arc consistency, or are there bounded
width languages not solvable by singleton arc consistency?Resolving this question in the positive would seem to
yield an interesting alternative characterization of the bounded width languages.
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