arXiv:1104.4993v1 [cs.Al] 26 Apr 2011

Arc Consistency and Friends

Hubie ChehVictor Dalmay Berit GruRier
May 15, 2018

Abstract

A natural and established way to restrict the constrairisfs@tion problem is to fix the relations
that can be used to pose constraints; such a family of remi®called econstraint language In this
article, we study arc consistency, a heavily investigatéerence method, and three extensions thereof
from the perspective of constraint languages. We conduongparison of the studied methods on the
basis of which constraint languages they solve, and we pressv polynomial-time tractability results
for singleton arc consistency, the most powerful methodistl

1 Introduction

1.1 Background

The constraint satisfaction problem (CSP) involves degidgiven a set of variables and a set of constraints on the
variables, whether or not there is an assignment to thehlasaatisfying all of the constraints. Cases of the coimgtra
satisfaction problem appear in many fields of study, inclgdirtificial intelligence, spatial and temporal reasoning
logic, combinatorics, and algebra. Indeed, the constgaitisfaction problem is flexible in that it admits a number of
equivalent formulations. In this paper, we work with thenforlation as the relational homomorphism problem: given
two similar relational structured andB, does there exist a homomorphism framto B? In this formulation, one
can view each relation ck as containing variable tuples that are constrained togethd the corresponding relation
of B as containing the permissible values for the variable gIdE].

The constraint satisfaction problem is in general NP-h#rid; general intractability has motivated the study of
restricted versions of the CSP that have various desirangtexity and algorithmic properties. A natural and well-
studied way to restrict the CSP is to fix the value relatiomas tfan be used to pose constraints; in the homomorphism
formulation, this corresponds to fixing the right-hand sitieictureB, which is also known as theonstraint lan-
guage Each structur® then gives rise to a proble@5P(B), and one obtains a rich family of problems that include
boolean satisfiability problems, graph homomorphism prots, and satisfiability problems on algebraic equations.
One of the primary current research threads involving suoblpms is to understand for which finite-universe con-
straint languageB the problemCSP(B) is polynomial-time tractablé [9]; there is also work on dwerizing the
language® for which the problenCSP(B) is contained in lower complexity classes such as L (logarittspace)
and NL (non-deterministic logarithmic space)|[13] 21]. Msuch aims providing motivation, there have been efforts
to characterize the languages amenable to solution byiratgorithmic techniques, notably, representing sohutio
spaces by generating s€ts|[19] and consistency methdd®,[€R,which we now turn to discuss.

Checking forconsistencys a primary reasoning technique for the practical solutbthe CSP, and has been
studied theoretically from many viewpoints [22] 2] 4] 1, 35 The most basic and simplest form of consistency is
arc consistengywhich algorithmically involves performing inferencesnoerning the set of feasible values for each
variable. The question of how to efficiently implement an@nsistency check has been studied intensely, and highly
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optimized implementations that are linear in both time grate have been presented. In general, a consistency check
typically involves running an efficient method that perfermference on bounded-size sets of variables, and which
can sometimes detect that a CSP instance is inconsistetiaant solution. While these methods exhibit one-sided
error in that they do not catch all non-soluble CSP instafae®ne expects from the conjunction of their efficiency
and the intractability of the CSP), it has been shown thatcéotain constraint languages, they can serve as complete
decision procedures, by which is meant, they detect an sistamcy if (and only if) an instance has no solution. As an
exampleunit propagationa consistency method that can be viewed as arc consistpaciazed to SAT formulas,

is well-known to decide the Horn-SAT problem in this sense.

1.2 Contributions

In this paper, we study arc consistency and three naturahsidins thereof from the perspective of constraint lan-
guages. The extensions of AC that we study are look-aheadamsistency (LAAC)[[1R]; peek arc consistency
(PAC) [8], and singleton arc consistency (SAC)I[16, 7]. Eatthese algorithms is natural, conceptually simple, read-
ily understandable, and easily implementable using arsistency as a black box. Tractability results for constrain
languages have been presented for AC by Feder and Vaidiffit8hétance); and for LAAC and PAC in the previously
cited work. In fact, for each of these three algorithms, abtarizations of the class of tractable languages have been
given, as we discuss in the paper.

We give a uniform presentation of these algorithms (Se@jpand conduct a comparison of these algorithms on
the basis of which languages they solve (Sedtlon 4). Our eoisgn shows, roughly, that the algorithms can be placed
into a hierarchy: solvability of a language by AC or LAAC ingd solvability by PAC; solvability by PAC in turn
implies solvability by SAC (see Sectidh 4 for precise staatn). We also study the strictness of the containments
shown. We thus contribute to a basic, foundational undedstg of the scope of these algorithms and of the situations
in which these algorithms can be demonstrated to be eftectiv

We then present new tractability results for singleton amststency (Sectidn 5). We prove that languages having
certain types oR-semilattice polymorphisntan be solved by singleton arc consistency; and, we provetyadan-
guage having anajority polymorphisnis solvable by singleton arc consistency. The presence d@jarity polymor-
phism is a robust and well-studied condition: majority pobrphisms were used to give some of the initial language
tractability results, are known to exactly characterizelinguages such thatconsistencimpliesglobal consistency
(we refer to[[20] for definitions and more details), and gawe of the first large classes of languages whose constraint
satisfaction problem could be placed in non-determinlsti@rithmic space [14]. While the languages that we study
are already known to be polynomial-time tractable [20, 1@n the standpoint of understanding the complexity and
algorithmic properties of constraint languages, we belieur tractability results to be particularly attractive #
couple of reasons. First, relative to a fixed language, stnglarc consistency runs in quadratic tifne [7], constityti
a highly non-trivial running time improvement over the atiime bound that was previously known for the studied
languages. Also, in showing that these languages are amecioadnlution by singleton arc consistency, we demon-
strate their polynomial-time tractability in an alternatifashion via an algorithm that is different from the presty
used ones; the techniques that we employ expose a diffgyanbf structure in the studied constraint languages.

2 Preliminaries

Our definitions and notation are fairly standard. For angeté: > 1, we use the notatiofk] to denote the set
containing the first positive integers, that is, the sft, . . ., k}.

Structures. A tupleover a sef3 is an element oB3* for a valuek > 1 called thearity of the tuple; whert is a tuple,
we often use the notatiah= (¢1, ..., ;) to denote its entries. Aelation over a setB is a subset o3* for a value
k > 1 called thearity of the relation. We use&; to denote the operator that projects onto ithecoordinate:r; (Z)
denotes théth entryt; of a tuplet = (¢4, ..., %), and for a relationz we definer;(R) = {m;(t) | t € R}. Similarly,
for a subsef C [k] whose elements aig < - - - < i,,, we user;(¢) to denote the tuplé;, , ..., t;, ), and we define
F[(R) = {F](f) | tc R}



A signatureos is a set of symbols, each of which has an associated ariggrustureB over signaturer consists
of a universeB, which is a set, and a relatiadR® C B* for each symboR < ¢ of arity k. (Note that in this paper,
we are concerned only with relational structures, which eferrto simply as structures.) Throughout, we will use the
bold capital lettersA, B, . .. to denote structures, and the corresponding non-boldatdeitersA, B, ... to denote
their universes. We say that a structideés finite if its universeB has finite size. Unless stated otherwise, we assume
all structures under discussion in this paper to be finite s#jethat a structurB has all constants for eachb € B,
there is a relation symbadt, with R2 = {(b)}.

When two structuresx andB are defined over the same signatarave say that they argimilar. We define the
following notions on similar structures. For similar sttuesA andB over a signature, we say thatA is aninduced
substructureof B if A C B and for everyR € ¢ of arity k, it holds thatR* = A* N RB. Observe that for a structure
B and a subseB’ C B, there is exactly one induced substructuréBofvith universeB’. For similar structure\
andB over a signature, the product structurd x B is defined to be the structure with univerdex B and such
that RA*B = {((a1,b1),...,(ax,bx)) | @ € RA,b € RB} forall R € 5. We useA™ to denote the:-fold product
Ax- - xA.

We say that a structuB over signatures’ is anexpansiorof another structuré over signature if (1) o’ 2 o,

(2) the universe oB is equal to the universe ok, and (3) for every symbaR € o, it holds thatR® = RA. We
will use the following non-standard notation. For any staue A (over signaturer) and any subsef C A, we define
[A, S] to be the expansion &f with the signature U {U} whereU is a new symbol of arity, defined by 1451 = §
andR™-5] = RA forall R € 0. More generally, for a structur& (overo) and a sequence of subssts. .., S, C A4,
we defing[A, S1,. .., S,] to be the expansion Ak with the signaturer U {Uq, ..., U, } whereUy, ..., U, are new

symbols of arityl, defined by7[*15) — g, for all i € [n], andRIA:51-9] = RA forall R € 0.

Homomorphisms and the constraint satisfaction problem. For similar structuresA and B over the signature
o, ahomomorphisnirom A to B is a mappingh : A — B such that for every symbak of ¢ and every tuple
(a,...,ar) € RA, itholds that(h(ay),. .., h(ax)) € RB. We useA — B to indicate that there is a homomorphism
from A to B; when this holds, we also say thatis homomorphic t@. It is well-known and straightforward to verify
that the homomorphism relation is transitive, that is, ifA — B andB — C, thenA — C.

The constraint satisfaction problem (CSI) the problem of deciding, given as input a pék, B) of similar
structures, whether or not there exists a homomorphism ffota B. When (A, B) is an instance of the CSP, we
will also call a homomorphism from to B a satisfying assignmepngay that the instance satisfiablef there exists
such a homomorphism; and, say that the instancaatisfiabldf there does not exist such a homomorphism. We
generally assume that in an instance of the CSP, the leff-ba@le structureA contains finitely many tuples. For
any structurdB (overo), theconstraint satisfaction problem fd, denoted byCSP(B), is the constraint satisfaction
problem where the right-hand side structure is fixed t®b¢hat is, the problem of deciding, given as input a structure
A overo, whether or not there exists a homomorphism frAnto B. In discussing a problem of the forG5P(B),
the structurdB is often referred to as themplateor constraint languageThere are several equivalent definitions of
the constraint satisfaction problem. For instance, indpiifie constraint satisfaction problem can be formulateti@as
model checking problem for primitive positive sentencesraelational structures, and in database theory, it can be
formulated as the containment problem for conjunctive g€ 1].

Polymorphisms. Whenf : B® — B is an operation o3 and
E: (tlla"'atlk)v"'va: (tnla"'atnk) S Bk

are tuples of the same arityover B, we usef(ty, ..., t,) to denote the arity: tuple obtained by applying coordi-
natewise, that is,

[y t) = (f(tas - tna) - f(fiks - - k).

An operationf : B™ — B is apolymorphisnof a structureB over o if for every symbolR € o and any tuples
t1,...,t, € RB, it holds thatf(#,...,%,) € RB. Thatis, each relatio®®® is closed under the action g¢f.
Equivalently, an operatiofi : B™ — B is a polymorphism oB if it is a homomorphism fronB™ to B.



3 Algorithms

In this section, we give a uniform presentation of the fogoathms under investigation in this paper: arc consistenc
look-ahead arc consistency, peek arc consistency, antgingarc consistency, presented in Sectlonk[3.1[3.2, 3.3,
and(3.4, respectively. The results on the first three algmstcome from previous work, as we discuss in presenting
each of these algorithms; for singleton arc consistencyhere develop results similar to those given for the other
algorithms.

Our treatment of arc consistency, peek arc consistencysiagteton arc consistency is uniform: for each of these
algorithms, we present a homomorphism-based consistemition, we show that the algorithm checks precisely
this consistency condition, and we give an algebraic candilescribing the structurdd such that the algorithm
solvesCSP(B). These three algorithms give one-sided consistency cheelch either correctly rejects an instance
as unsatisfiable or outputs “?”, which can be interpreted @part that it is unknown whether or not the instance is
satisfiable. The other algorithm, look-ahead arc consigtdras a somewhat different character. It attempts to fauild
satisfying assignment one variable at a time, using arcistemgy as a filtering criterion; it either returns a satisy
assignment, or outputs “?".

Throughoutthis section and in later sections, we will maeaf a structurg(B) that is defined for every structure
B, as follows [I8[15]. For a structui® (overs), we definep(B) to be the structure with univergg B) \ {0} and
where, for every symbaR € o of arity k, R®(B) = {(1,S,...,m:5) | S € RB,S # (}. Here,p(B) denotes the
power set of the seB.

3.1 Arc Consistency

We now present the arc consistency algorithm. The main ifi#fgealgorithm is to associate to each element A a
setS, of values which, throughout the execution of the algorithas the property that for any solutiénit must hold
thath(a) € S,. The algorithm continually shrinks the sefs in a natural fashion until they stabilize; at this point, if
some sefS, is the empty set, then no solution can exist, and the algonithects the instance.

Arc Consistency
Input: a pair(A, B) of similar structures

forall a € Ado

setS, := B;
repeat
forall relationsR? of A do
forall tuples(ai, . ..,ax) € R* do

forall i € [k] do
setS,, ;= mi(RB N (Sa, X ... %x S4,));
until no setS,, is changed
if there exista: € A such thatS, = () then reject;
else return“?”;

Feder and Vard[[18] have studied arc consistency, undegaivaent formulation in terms of Datalog Programs,
for constraint languages. The results in this section aeetduhis reference. The connection of the results in Feder
and Vardi with arc consistency was made explicit in Dalmadi Rearsorn [15].

Definition 1 An instancg A, B) has thearc consistency condition (AC@)there exists a homomorphism frafto
p(B).

Proposition 2 The arc consistency algorithm does not reject an insta@eeB) if and only if the instance has the
ACC.

Definition 3 Let B be a structure. We say that arc consistesojvesCSP(B) if for all structures A, the following
holds: (A, B) has the ACC implies that there is a homomorphism-» B.



Note that the converse of the condition given in this definitalways holds: if: is a homomorphism fromA to
B, then the mapping sending eacle A to the sef{h(a)} is a homomorphism fromA to p(B).

Theorem 4 LetB be a structure. Arc consistency sol&P (B) if and only if there is a homomorphispiB) — B.

3.2 Look-Ahead Arc Consistency

We now present the look-ahead arc consistency algorithattdimpts to construct a satisfying assignment by setting
one variable at a time, using arc consistency as a filter todfiswitable value for each variable.

Look-Ahead Arc Consistency
Input: a pair(A, B) of similar structures

forall a € Ado
setsS, := B;
fori=1to|A| do
pick arbitrarya; € Awith a; & {a1,...,a,-1};
forall b € B do
if Arc Consistency[A,{a1},...,{ai—1},{a:}],[B,{b1},...,{bi—1},{b}]) rejectsthen
removeb from S,;;
if S,, = 0 then return “?";
elsechoose); € S,, arbitrarily;
accept

Look-ahead arc consistency was introduced and studied by @hd Dalmau_[12], and the theorem that follows
is due to them. This algorithm can be viewed as a generaiizafian algorithm for SAT studied by Del Val [17].

Definition 5 Let B be a structure. We say that look-ahead arc consisteutyesCSP(B) if for all structuresA,
the following holds: if there exists a homomorphidm— B, then the look-ahead arc consistency algorithm, given
(A, B), outputs such a homomorphism.

Theorem 6 LetB be a structure. Look-ahead arc consistency solft&8(B) if and only if there is a homomorphism
l:p(B) x B— Bsuchthat({b},b') =bforall b,b’ € B.

3.3 Peek Arc Consistency

We now present the peek arc consistency algorithm. It atteiodind, for each variable € A, a valueb € B such
that wheru is set tob, the arc consistency check is passed.

Peek Arc Consistency
Input: a pair(A, B) of similar structures

forall a € Ado
setS, := B;
forall a € A,b € Bdo
if Arc Consistency[A, {a}], [B, {b}]) rejectsthen
removeb from S,;
if there exists € A such thatS, = () then reject;

else return“?”;

Peek arc consistency was introduced and studied by BodaslyChen|[B]; the notions and results that follow
come from them. In their work, the algorithm is shown to salegtain constraint languages, including some languages
having infinite-size universes; such languages actualle gae motivation for introducing the algorithm. In this
work, it is pointed out that peek arc consistency can be hgadrallelized; by invoking the arc consistency checks
independently in parallel, one can achieve a linear paraifeing time.



Definition 7 An instanceg( A, B) has thepeek arc consistency condition (PACICJor every element € A, there
exists a homomorphismfrom A to p(B) such thati(a) is a singleton.

Proposition 8 The peek arc consistency algorithm does not reject an instéA, B) if and only if the instance has
the PACC.

Definition 9 Let B be a structure. We say that peek arc consistesmlyesCSP(B) if for all structures A, the
following holds: (A, B) has the PACC implies that there is a homomorphism> B.

The converse of the condition given in this definition alwhgdds. Suppose thatis a homomorphism fronA
to B; then, the mapping taking eache A to the singleto{ 2(a)} is a homomorphism fromA to o(B) and hence
(A, B) has the PACC.

We use the notatioBing(p(B)™) to denote the induced substructurg4B)™ whose universe contains artuple
of p(B)™ if and only if at least one coordinate of the tuple is a singiet

Theorem 10 Let B be a structure. Peek arc consistency sol¢&®(B) if and only if for alln > 1 there is a
homomorphisrBing(p(B)") — B.

3.4 Singleton Arc Consistency

We now present the singleton arc consistency algorithm. #s arc consistency, this algorithm associates to each
elements € A a setS,, of feasible values. It then continually checks, for p&irsh) with a € A andb € S,,, whether

or not arc consistency can be established with respect &etis§, and wher is assigned té; if for some pair(a, b)

it cannot, therb is removed from the sef,. As with arc consistency, this algorithm’s outer loop runsiithe setsS,
stabilize, and the algorithm rejects if one of the sg{ss equal to the empty set.

Singleton Arc Consistency
Input: a pair(A, B) of similar structures

forall a € Ado

setsS, := B;
denoted = {aq,...,an};
repeat

forall a € A,be S, do
if Arc Consistency[A, {a1},...,{an},{a}],[B,Sa,,---,Sa,,{b}]) rejectsthen

) removeb from S,;
until no setS,, is changed

if there exists € A such thatS, = () then reject;
else return“?”;

Singleton arc consistency was introduced by Debruyne asdiBe([15]. We now give a development of singleton
arc consistency analogous to that of arc consistency arldgree&onsistency.

Definition 11 An instance(A, B) has thesingleton arc consistency condition (SACIE)there exists a mapping
s: A= p(B)\ {0} such that for alla € A, b € s(a) there exists a homomorphigm,;, : A — o(B) where:

o hop(a) = {b}, and
e forall a’ € A, itholds thath, ,(a’) C s(a’).

Proposition 12 The singleton arc consistency algorithm does not rejechatance A, B) if and only if the instance
has the SACC.

Proof. Suppose that the singleton arc consistency algorithm doeject an instanceA, B). Let {S,}.c4 denote
the sets computed by the algorithm at the point of termimatémnd defines to be the mapping whergla) = S,



foralla € A. Leta € A andb € s(a). By the definition of the algorithm, the paffA, {a1},...,{an}, {a}],
B, Say5- - -, Sa,,{b}]) has the ACC, and thus the desired homomorpliismexists.

Now, suppose that the instant&, B) has the SACC, and letbe a mapping with the described properties. We
show that throughout the execution of the algorithm, it kdldats(a) C S, for all a € A. First, S, is initial-
ized with B for everya € A. Next, we show that when € A andb € s(a), thenbd is never removed frong,,
by the algorithm. This is because by definition of SACC, thexists a homomorphisth, , : A — p(B) with
hap(a) = {b} such that for all’ € A, it holds thath, ;(a") C s(a’). Sinces(a’) C S, by the inductive assumption,
([A,{a1},. ... {an}, {a}],[B, Says- - -+ Sa,, {b}]) has the ACC and hence the algorithm does not rerhdram S,,.

O

Definition 13 Let B be a structure. We say that singleton arc consistesutyesCSP(B) if for all structuresA, the
following holds: (A, B) has the SACC implies that there is a homomorphsm» B.

The converse of the condition given in this definition alwhgéds: suppose thatis a homomorphism from to
B. Then, the instanceA, B) has the SACC via the mappingvheres(a) = {h(a)} for all « € A and the mappings
hap defined byh, 1 (a’) = {h(a’)} forall a’ € A.

We use the notatiobnionSing(p(B)™) to denote the induced substructureggB)” whose universe contains an
n-tuple(Sy,..., Sy) of p(B)™ if and only if it holds thatl J,c ,,; Si = Ui (n,js,/=1 Si-

Theorem 14 Let B be a structure. Singleton arc consistency solg8®(B) if and only if for alln > 1 there is a
homomorphisnUnionSing(p(B)™) — B.

Proof. First we show that if singleton arc consistency solN&#(B), then there is a homomorphism from
UnionSing(p(B)™) to B for alln > 1. Letn > 1; we show thafUnionSing(p(B)™), B) has the SACC. Then, there
is @ homomorphism frortnionSing(p(B)™) to B, since the singleton arc consistency algorithm solves BEP(

Let s be the mapping(a) := ;¢ 5: for all tuplesa = (S1,...,S,) of UnionSing(p(B)"). Now let us
consider an arbitrary tuple = (51, ...,Sy,) of UnionSing(p(B)") and an arbitrary € s(a). SincelJ;c(,, Si =
Uiepny,|s:=1 S there is ani € [n] such thaf{b} = S;. Thus, the homomorphism : UnionSing(p(B)") — p(B)
that projects onto thé&h coordinate satisfies;(a) = {b}, and for all tuples:’ of UnionSing(p(B)™), it holds that
mi(a") C s(a’). Hence,(UnionSing(p(B)™), B) has the SACC.

For the other direction, we show that if there is a homomanpHromUnionSing(p(B)™) to B for all n > 1, then
singleton arc consistency solv€SP(B). Thus, we have to show that there exists a homomorphism foim B if
(A, B) has the SACC. Let be the homomorphism from the definition of SACC, and let us{éise. . ., h,, } to denote
the set{h,, | a € A,b € s(a)} of homomorphisms. Further, lgtbe the homomorphisifh, ..., h,): A — (B)".
Now, for every element € A the imageg(a) = (hi(a),...,hs(a)) is a tuple ofUnionSing(p(B)™): for every
b € Ujepm hia), itholds thath € s(a) and thus there exists a homomorphisin, = h; that maps: to the singleton
{v}; so, we have ., 1ij(a) = Uiepn, n;(a) =1 hi(a). Sinceg is a homomorphism fromA to UnionSing(p(B)"),
we can compose and a homomorphism frofdnionSing(p(B)™) to B, which we know to exist by assumption, to
get a homomorphism from to B. Consequently, singleton arc consistency soV&8(B). O

4 Strength Comparison

In this section, we investigate relationships among the sestructures solvable by the various algorithms preskente
We show that for the structures having all constants, ACesoby strictly smaller set of structures than LAAC does;
on the other hand, we show that there is a structure (not alirtonstants) solvable by AC but not LAAC. We then
show that the structures solvable by AC or LAAC are strictiptined in those solvable by PAC; and, in turn, that the
structures solvable by PAC are strictly contained in thadeable by SAC. We also show that the structures solvable
by SAC (and hence, those solvable by any of the studied #hguos) all fall into the class of structures havingunded
width; bounded width is a well-studied condition admitting mpiki characterizations [18, 22, 6].

Proposition 15 Suppose thaB is a structure having all constants. GSP(B) is solvable by AC, then it is solvable
by LAAC.



Proof. By Theoreni#, there is a homomorphigm o(B) — B. Since the structur® has all constants, for each

b € B there is a relation symbdt, with RB = {(b)}. Since({b}) € Y™, it must hold thatf({b}) € R, from
which it follows thatf({b}) = b. The mapping defined byi(S,b) = f(S) is then a homomorphism of the type
described in Theoref 6.

Proposition 16 There exists a structuB having all constants such th&SP(B) is solvable by LAAC but not by AC.
Proof. TakeB to be the relational structure with univer& 1} over signatur§Uo, U1, R(o,0), B(1,1)} Where
Uy = {0}
Up = {1}
R{5.0) = {0,132\ {(0,0)}

R?l,l) = {0, 1}2 \{(L, D}

It is straightforward to verify that the mappirglefined byl ({0,1},4') = ¥, [({0},) = 0, andl({1},’) = 1 for
ally € {0,1} is a homomorphism froqp(B) x B to B satisfying the condition of Theorelh 6. Hence, the problem
CSP(B) is solvable by LAAC.

To show that the probleif@SP(B) is not solvable by AC, lef be an arbitrary mapping from(B) \ {0} to B. We
show thatf cannot be a homomorphism fron{B) to B, which suffices by Theorefd 4. Lét= f({0,1}). It holds

that({0,1},{0,1}) € R{,3), but(£({0,1}), f({0,1})) = (b,b) ¢ RE ), and we are donel

Proposition 17 There exists a structu (not having all constants) such th@6P(B) is solvable by AC but not by
LAAC.

Proof. TakeB to be the relational structure with univer§e, 1} over signature{ R, S} where RB = {0,1}3\
{(0,1,1)} andS® = {0,1}2\ {(1,0,0)}. The mapping that sends each element@fB) \ {0} to 0 is a homomor-
phism fromp(B) to B, and hence AC solveSSP(B) by Theoreni .

To show that the problei@SP (B) is not solvable by LAAC, leff be an arbitrary mapping froiip(B) \ {0}) x B
to B that satisfies ({b},0') = bforall b,b’ € B. We show tha{f cannot be a homomorphism fropt{B) x B to B,
which suffices by Theorefd 6. We consider two cases dependittgeovalue off ({0, 1}, 0).

e If £({0,1},0) = 1, then we use the facts thgf0}, {0, 1}, {0,1}) € R*®) and that(0,0,0) € R®; we have
that (f({0},0), f({0,1},0), £({0,1},0)) = (0,1, 1), which is not contained B, implying that f is not a
homomorphism of the desired type.

e If £({0,1},0) = 0, then we use the facts théf1}, {0,1},{0,1}) € S#B) and that(0,0,0) € SB; we have
that (f({1},0), £({0,1},0), £({0,1},0)) = (1,0,0), which is not contained i$B, implying that f is not a
homomorphism of the desired type.

O

We now proceed to study PAC, and in particular, show thattituetsires solvable by AC or LAAC are solvable by
PAC.

Proposition 18 LetB be a structure. ICSP(B) is solvable by AC, then it is also solvable by PAC.

Propositior_1IB follows directly from the algebraic chaeaiztations given in Theorems$ 4 ahd 10; it can also be
seen to follow from the corresponding algorithm descripsio

Theorem 19 LetB be a structure. ICSP(B) is solvable by LAAC, then it is also solvable by PAC.



Proof. Suppose that look-ahead arc consistency solves BSPByY Theorenb there exists a homomorphism
I: p(B)xB — Bsuchthat({b},b') = bforallb,b’ € B. We want to show that peek arc consistency solves BpP(
by using Theorem10. Thus, we have to show that fonall 1 there is a homomaorphism, : Sing(p(B)") — B.

Letn > 1. Let us consider the mapping with

gn(Sl, .. ,Sn) = Z(Sl,l(SQ, e l(Sn_l,l(Sn,b)) .. ))

defined for all tuple§” = (S4,...,S,) € Sing(p(B)™) and allb € B. First we want to show that, is well defined.
Letb1, by € B with by # bo, let (S1,...,S,) € Sing(p(B)™) and leti € [n] be an index such tha; is a singleton.
LetS; = {b.} for ab. € B. We obtain that

ISty 1(Si—1,1(Sis . 1(Sn_1,1(Snsb1)) .. ) - .)
= 1(Sy,. .. 1(Si—1,1(Ss,¥'))..)
= 1(S1,... 1(Si—1,b.)...)

with & = 1(Si41,...1(Sh—1,1(Sn,b1))...) € B, becausé is applied to the singletofi; = {b..} andd’. Similarly,
we obtain that

1(S1, ... 1(Si—1,1(Ss, .. . 1(Sn=1,1(Sn,b2))...))...)
= 1(S1,... 1(Si_1,b,)...)
Consequentlyy,, is well defined. Next, we prove tha, is a homomorphism. LegS"&(#(B)") pe ak-ary relation and
let (T, ..., T*) be atuple in this relation. Deno#® = (57, S5,...,5;) foralli  [k]; then,S} = (S7,...,5%) has

to be inR®®) for all j € [n]. Further, we know that there exists a tuple: (b, ..., b;) € R, becaus&k*®) is not
empty. Sincd is a homomorphism, the tuple
9n (81,85, S) = 1(S1,1(S5, ... 1(S},_1,1(Sy,, b)) - .))

n—1»

is in RB. Thus,g,, is a homomorphism frorfing(o(B)") to B.

Theorem 20 There exists a structuB having all constants such th&SP(B) is solvable by PAC but not by LAAC
nor AC.

Proof. Let us consider the structure with univefge 1, 2} over the signatur¢Uy, Uy, Us, Ry, R2} where

Uy ={(0)}
UP ={(1)}
Uy ={2)}

RY = ({0,1} x {0,1,2}) \ {(0,0)}
RQB = {(07 O)a (17 2)5 (27 1)}

First we show that there is no homomorphism ©(B) x B — B such that/({b},b’) = b for all b,b’. Let us
assume there is one. Sin¢g0},{1,2}) € Rf(B) and (1,0) € RE the tuple(1({0},1),1({1,2},0)), which is
equal to(0,1({1,2},0)), has to be contained iR2. Thus,i({1,2},0) cannot be equal t6. On the other hand,
({1,2},{1,2}) € RY™® and(0,0) € RB implies that(/({1,2},0),1({1,2},0)) is in RB. Therefore]({1,2},0) has
to be0, which is a contradiction. This establishes that the stmécis not solvable by LAAC; by Propositidn]15, it
follows that the structure is not solvable by AC.



Next we show that for alh, there exists a homomorphisfifrom Sing((B)™) to B. Letn be arbitrary and let
(S1,...,Sn) be an arbitrary:-tuple of Sing(p(B)™). Further, let; be the minimal number such thét is {1}, {2},
{0, 1} or {0, 2}; if such anS; does not exists, then= 0. The homomorphisnf can be defined as follows:

1 ifi>0andS;is{1}or{0,1}
f(S1,...,8,) =<2 ifi>0andS;is {2} or {0,2}
0 otherwise.

Let us verify thatf is indeed a homomorphism: First of all, it is easy to see f{&t, ..., S,) is in UB whenever
(S1,...,8,)isin Ufi"g(@(B)"). Next, let us consideRs. Let (Sy,...,S,) and(T1,...,T,) be arbitraryn-tuples of
Sing(p(B)™) such that.S;, T;) is in RS(B) for all I. Leti be the minimal number such thstis {1}, {2}, {0,1} or
{0,2}, and letj be the minimal number such thaj is {1}, {2}, {0,1} or {0, 2}, and if such ar; or T; does not
exists, thent = 0 or j = 0 respectively. Ifi > 0, thenT; has to be{1}, {2}, {0,1} or {0,2} and henc® < j < i.
Symmetrically, ifj > 0, then0 < ¢ < j. Thereforej = j. Now, if i = j = 0, then(f(S1,...,5n), f(Th,...,Tn)) =
(0,0), whichis inRB; if i = j > 0, then(f(S1,...,S,), f(T1,...,T,)) € RE follows directly from(S;, T;) being
in Rg(B). Finally, let us consider two arbitrany-tuples(Si,...,S,) and (71,...,T,) of Sing(p(B)™) such that
(S, T7) is in RY™® for all 1. If £(Sy,...,5,) = 2, thenS; = {2} or {0,2} and(S;,T;) cannot be inRE™) . If
f(S1,...,8,) = 1, then(f(S1,...,Sn), f(T1,...,T,)) isin {1} x {0,1,2} and, thus, iInkRB. If j = 0, then letk
be an index such th&t, = {0}. Such an index has to exist, beca(®g, ..., T),) is a tuple ofSing(p(B)™). Since
(Sk,Ty)isin R?(B), Sk hasto beg(1}, and hence/ (54, .. .., S,) € {1, 2}, and we appeal to one of the first two cases.
The remaining case is= 0 andj > 0. In this case(f(S1,...,Sn), f(T1,...,T,)) isin {0} x {1,2} and therefore
in RB. O

We now move on to study SAC; we show that SAC is strictly moregréul than PAC.

Proposition 21 LetB be a structure. ICSP(B) is solvable by PAC, then it is also solvable by SAC.

Propositiod 211 follows directly from the algebraic chaeaitations given in Theorenis]10 aind 14; it can also be
seen to follow from the corresponding algorithm descripgio

Theorem 22 There exists a structuB having all constants such th&SP(B) is solvable by SAC but not by PAC.

Proof. We will consider a structure that has as a polymorphisndbmpotent binary commutative operatiodefined
onthesef0,1,2,3}by1%x2=2,2%3=3,3x1=1,and0«xa = aforalla € {1,2,3}. We consider the structure
B with universe{0, 1, 2, 3} over the signatur¢Uy, Uy, Uz, Us, R1, R2} where we have

Uy =1{(0)}
UpP ={1)}
Uy ={(2)}
Uz ={(3)}.

RY ={0,1,2,3}*\ {(0,0)},
R? = {(1’ 2)7 (2’ 3)7 (3’ 1)7 (0’ O)}
It is straightforward to verify that this structuRe has the operationas a polymorphism. The solvability & follows
from Theoreni 3R, which is proved in the next section; seethisaliscussion in Example33.
To show that peek arc consistency does not sdlg€(B), we prove that there is no homomorphism from

Sing(p(B)?) to B, which is sufficient by Theoremi’10. Defifg = ({0},{1,2,3}) andZz = ({1,2,3},{0}).

It is straightforward to verify thatt;,72) € Rf(B) ; since each of the tuples, > contains a singleton, it holds
that (71,73) € R3"W®))  Assume, for a contradiction, thatis a homomorphism fronSing(p(B)?) to B.

It then holds that(h(#1), h(f2)) € RB. Since(0,0) ¢ RE, we have that one of the valuég?;), h(Zz) is not
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equal to0. Let us assume thdt(Z;) is not equal ta); the other case is symmetric. Dendtf;) by b; we have
b € {1,2,3}. Since each of the two tupl€g0},{0}), ({1,2,3},{1,2,3}) is contained inRg(B), we have that

(({0},{1,2,3}),({0},{1,2,3})) € R?“WBW It follows that (b,b) € RE, but since no tuple of the forrr, c)
with ¢ € {1, 2, 3} is contained inkE, we have reached our contradictian.

We close this section by showing that the structures sadvbiplSAC, and hence those solvable by any of the
algorithms studied here, fall into the class of structurgrig bounded widthWe begin by defining bounded width.
A partial homomorphisnfrom A to B is a mappingf : A’ — B, whereA’ C A, that defines a homomorphismB
from the substructure &k induced byA’. Whenf andg are partial homomorphisms we say thaxtendsf, denoted
by f C g, if Dom(f) C Dom(g) andf(a) = g(a) for everya € Dom(f).

Definition 23 Letk > 1. A k-strategyfor an instancg A, B) is a nonempty collectiof/ of partial homomorphisms
from A to B satisfying the following conditions:

1. (restriction condition) iff € H andg C f, theng € H;
2. (extension condition) if € H, [Dom(f)| < k, anda € A, there isg € H such thatf C g anda € Dom(g).

WhenH is ak-strategy forf A, B) anda,, ..., a; € Ais asequence, we defidé,, . ., C B to be the relation

{(f(al)a"'af(a’j)) | VS HvDom(f) = {a17"'7aj}}'

Definition 24 LetB be a structure and > 1. We say tha€SP(B) haswidth k if for all structuresA the following
holds: if there is a(k + 1)-strategy for(A, B) then there is a homomorphish — B. We say thaCSP(B) has
bounded widlthif it has width% for somek > 1.

Proposition 25 LetB be a structure. ICSP(B) is solvable by SAC, thetSP(B) has bounded width.

Proof. Letr be the maximum of all the arities of the signaturdgfand set = max(2,r+1). We shall show that for
any instanceA of CSP(B), if H is ak-strategy for A, B), then the instancgA, B) has the SACC, which suffices.

Let us define the mapping : A — p(B) \ {0} ass(a) = H,. Furthermore, for every, € A, b € s(a),
defineh,, : A — o(B) \ {0} as the mapping, ,(a’) = {v' | (b,1’) € H, . }. Note that the extension property
of H guarantees that, for every € A, h,(a’) is, indeed, nonempty. It follows from the definition bf ; that
hap(a) = {b}, and that for alb’ € A, hqp(a’) C s(a’).

It is only necessary to show that, , defines a homomorphism from to p(B). Let R be any relation inA,
let (ay,...,a;) € R™, and letS; = h,;(a;) for eachj € [i]. In order to prove thafS;,...,S;) € R*®) it
suffices to show that for every € [i] and everyb; € S;, there exists somés,...,¢;) € RB N (S x --- x S;)
with ¢; = b;. This is a direct consequence of the properties of the glyatthdeed, by the definition oi, ; we
know that(b, b;) € H,,q; and then, by an iterative application of the extension prigpere can show that there exists

an extensior(b, ci,...,¢;) € Haa,....q, With ¢; = b;. The fact thatd contains only partial homomomorphisms
guarantees thdt, ...,c;) € RB. Finally, it follows from the restriction condition thatf@very! € [i], we have
€S0

5 Tractability via singleton arc consistency

5.1 Majority operations

An operationn: B® — B is amajority operation if it satisfies the identity.(z, v, y) = m(y, z,y) = m(y,y,z) =y
for all 2,y € B. Relative to a majority operation: B> — B, whenI C J C B, we say thaf is anidealof J if for
everyz,y,z € J such thate, z € I we havemn(x,y, z) € I. We will establish the following result.

Theorem 26 If B is a structure that has a majority polymorphism, then sitmiearc consistency solv&SP (B).
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The proof is obtained by using a strengthened version of thgue strategy defined by Barto and Kozik [6].

In this section, for the sake of readability, we will typilgalise the notation[:] to denote théth entry of a tuple.

We introduce the following definitions relative to an instafA, B) with signatures. A patternp of A is a
sequences, ey, as, - . -, €m—1, Gy SUCh thaty, . . . a,, are elements oft and for evenyh € [m — 1], we have that,,
is a triple(R, i, j) whereR is a symbol ino andi, j are indices such that there is a tuple R* with t[i] = a,, and
t[j] = an+1. Thelengthof patternp is defined to ben. A pattern is ecycleif a; = a,,. By aset systemmwe mean
any mappingd : A — p(B) \ {0}.

Apatterng = by, e}, ..., el _1, by Of B having the same length as a pattgwf A is arealizationof p if e, = e/,
forall n € [m — 1]. The pair(by, b,,,) is said to be @upportof p. For a set systen, if it holds thatb,, € H(a,,) for
all n € [m] then(by, b,,) is said to be a support gfinside H.

A set systentd is aweak strategyf for every patterrp = aj, e1,...,em—1,a, Of A, and everyy € H(a;) there
exists somé,, € H(a,,) such that(by, b,,) supportsp inside H. A set systen¥ is astrong strategyf for every
cyclep = (a = aq,...,a,, = a)in A and every € H(a), the pair(b, b) supportg inside . Note that every strong
strategy is a weak strategy and that the class of weak sieategmains the same if, in the definition of weak strategy,
one replaces “every pattepn= a1, e1, ..., em—_1, " Dy “every patterrp = aq, ey, ..., em—_1, an, Of lengthm = 2"

Observation 1 Every strong strategy is a weak strategy, relative to areinse(A, B).

Proof. For a patterp = ay,e1,...,en—1,an Of A, one needs only to apply the definition of strong strategyéo t
the patternuy, e, ..., €m_1,am, et | am_1,...,¢e5 ", a1, where(R, i,7) " is defined to b&R, j,7). O

Lemma 27 There exists a strong strategy for an instarige B) having the SACC.

Proof. Lets : A — o(B) \ {0}, {hes} be the mappings witnessing th@, B) has the SACC. We claim that the set
systemH defined byH (a) = s(a) for all a € A is a strong strategy. Indeed, let= a4, ¢4, ..., a,, be a pattern ofd
with a; = a,,, = a and letb € H(a;). We claim that there exists a realizatibnes, . .., b, of pwith by = b,, = b
such that for every < n < m, b,, € hq(a,). The realization is constructed in an inductive mannerstFgeth;

to b. Assume now that,,_; is already set and let, ; be (R,i,j). There exists a tuplér,,...,z,) € R® such
thatz; = a,—1 andz; = a,. Sinceh,; is a homomorphism, the subsgtC B" defined bymS = h,s(xz;) for
everyl <[ < ris a subset oRB. Fromb,,_; € h,(z;) it follows that there exists a tupl@y, . . ., y.) € S with

y; = bp—1. Defineb,, to bey;. Since, by definition of SACC strategy, ,(a) = {b}, it follows thatb,,, = b. O

We now prove the following lemma, which, as we explain aftex proof, essentially establishes the desired
theorem. In the course of proving this lemma, we establishnalyer of observations.

By a minimal strong strategy, we mean minimal with resped¢h&ordering where for two strategiés H’, we
considerd C H' if H(a) C H'(a) forall a € A.

Lemma 28 If the relations ofB are invariant under a majority operatiot and H is a minimal strong strategy then
for everya € A, the setH (a) is a singleton.

Proof. Towards a contradiction assume tlfatis a minimal strong strategy and € A is such thatd (a*), is not a
singleton. Consider the digraghwhose nodes are of the forfa, C') with a € A andC C H(a), and there is an edge
from (a,C) to (a’, C") if there is a patterp = aq,. .., am, With a = a; anda’ = a,, in A such that the following
holds: C" is the set containing alf € H(a’) such thai(b, t’) is supported by inside H for someb € C.

Observation 2 Letp = ay,eq,...,a, be a pattern, let < i < m, let g be the patterm,es,...,a; andr be the
patterna;,e; ..., en. If ¢ defines an edge froffa,, C1) to (a;, C;) andr defines an edge froffa;, C;) t0 (a, Cin)
thenp defines an edge froffa,, C4 ) to (a,, C,,). Hence, the graplt is transitive.

The following observation follows from the definition of strg strategy.
Observation 3 If there is an edge frorfu, C') to (a, C’) in G, then necessarilg' C C”.
Observation 4 If there is an edge fronfa, C) to (a’,C") in G, andC' is an ideal ofH(a), thenC" is an ideal of
H(d).
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Proof (Observationld). Let us prove the claim by induction on tmgjtem of the pattern that defines the edge.
Assume first thatn = 2. Leta, (R, 4,j),a’ be any such pattern. Let, x5, 23 € H(a’) and assume that two of
them, sayr;, 3, belong toC’. It follows, by the definition of edge, that for evenyc {1, 3} there exists tuple, € RB
with ¢, [j] = =, andt,[i] € C. Also, it follows by considering patterd, (R, j, i), a and from the fact thatl is a
weak strategy that there exists a tuplec RB with t5[i] € H(a) andts[j] = z2. Consider now tuplé = ¢(t1,t2,t3).
SinceC is an ideal ofH (a) we have that[i] € C. Hence, we conclude tha{z1, x2, z3) = t[j] € C".
The casen > 2 follows from the inductive hypothesis and Observaliba®2.

Now, let G’ be the subgraph daf induced by all nodesa, C') such thatC' is an ideal ofH (a) andC # H(a).
Observe that afl (a*) is not a singleton, the graghf is nonempty, because every singleton is an ideal.

A subsetM of vertices of a directed graph issarongly connected componeiffor every pair (v,w) € M?
there exists a path from to w consisting only of vertices id/. It is a maximal strongly connected componént
additionally, there is no eddge, w) withv € M andw ¢ M.

Let M be a maximal strongly connected component:af The following observation is a direct consequence of
Observationg]2 arid 3.

Observation 5 The maximal strongly connected componkhtannot have two verticda, C), (a, C’) with C # C".

We shall construct a new strong strated/as follows. If(a, C') belongs taM, then set’(a) = C otherwise set
H'(a) = H(a). Clearly H' is strictly smaller tharff .

We shall start by showing thdf’ is a weak strategy. By the note following the definition of Wetrategy it is
only necessary to show that for every pattgra- a1, e1, a2 0f length2 of A and everyp; € H'(aq), there exists a
support(by, bo) of p inside H'.

We do a case analysis. (fi2, H'(a2)) does not belong td/ the claim follows from the fact thall is a weak
strategy. Assume now théi,, H'(a2)) belongs toM. Consider the pattern = as,e; !, a; where(R,i,5)™" =
(R, j,1). This pattern defines an edge (i) from (a2, H'(az2)) to a node(a, C'). Observe, that by the definition of
the edges of7, we know that for every elemente C there is somé’ € H’(a2) such that(b, ') is supported by
inside H. Hence we only need to show thdt (a,) C C.

If (a1,C) isin G’ then, sinceV/ is a maximal strongly connected componen&tf we have thata;, C') belongs
to M as well and henc€ = H’(ay). If (a1, C) is notinG’ this must be becaug@is not an ideal of{ (a;) or because
C = H(a1). We can rule out the first possibility in the following way: the definitions of’ andH’, H'(a2) is an
ideal of H(as2). It follows by observatiofil4 thaf’ is an ideal ofH (a1). In consequenc€' = H(a;) and the proof
that H' is a weak strategy is concluded.

It remains to show thall’ is a strong strategy. Let= a1, e1,...,em_1,a, be any cycle il witha; = a,, = a
and letb be any element iff’(a). SinceH' is a weak strategy we know that there is a realization. ., b, of
p with b; = b inside H’. Notice that we do not necessarily halyg = b. Symmetrically, by considering pattern
am,ent1s. .. er ', a; we know that there is a realizatiohy,,e." ..., e; ", dy of p with d,,, = binside H'. Also,
sinceH is a strong strategy we know that there exists a realization, . . ., ¢, of p such that; = ¢,, = binsideH
(but not necessarily inside’). Finally consider the sequenge, . . ., z,, defined byr; = ¢(b;,¢;,d;),1 < j < m.
This sequence is a realizationaf Furthermore, we have that = z,, = b. It remains to show that it is insidg’.
Indeed, for everyt < j < m, {b;,d;} C H'(a;) andc; € H(a;). SinceH’(a;) is an ideal ofH (a;) the claim
follows.[d
Proof. (Theoreni 26) Suppose that the instafide B) has the SACC and th& has the majority polymorphism.
By Lemmad 2l7 and 28 there exists a strong stratégipr (A, B) such thatH (a) is a singleton for every € A.
Consider now the mappinly: A — B that maps every € A to the only element ir{(a). We claim thath is a
homomorphism fromA to B. Indeed, letR be any relation symbol, an@s, . .., a,) be any tuple inR?. Fix any
1 <i,j < rand consider pattemy, (R, 1, 5), a,. It follows by the definition of strong strategy that theraisc RB
such that[i] = h(i) andt[j] = h(j). SinceRB is necessaril2-decomposablé 20}, is a homomorphisni]

5.2 2-semilattice operations

A 2-semilatticeG = (G, %) consists of a sef7, which in this paper we assume to be finite, and a binary ojperat
satisfyingzxz = x (idempotency)zxy = yxx (commutativity), and:x (zxy) = (zxx)*y (restricted associativity).
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Each 2-semilattice naturally induces a directed gre®BhE) where(a,b) € E if and only if a x b = b. When
(a,b) € E, we also writer < b. The graph(G, E) is connected, sincex (axb) = bx (a*xb) = axbforanya,b € G,
and thereforeg, b < a x b. Each 2-semilattice has a unique maximal strongly condeztienponent, that is a strongly
connected component with no outgoing edges, denot&d lihe component is also the unique strongly connected
component of G, E) such that for any: € G, there exist$ € G such that < b. In this section, we will prove that a
certain class of 2-semilattices is tractable via singletanconsistency. Our treatment of 2-semilattices is irsjpémd
influenced by the study conducted by Bulatovi[10], who praved they are polynomial-time tractable.

A 2-semilatticeG = (G, *) is an algebra. By aalgebra we mean a paifA, O) consisting of a sef., theuniverse
of the algebra, and a séxof operations ord. A congruencef an algebra is an equivalence relation preserved by the
operation(s) of the algebra, and an algebrsinspleif its only congruences are trivial (that is, if its only cangnces
are the equality relation oA andA x A, whereA is the universe of the algebra).

We will begin by proving some general results on singletancansistency. In the following discussionsabal-
gebrais defined, with respect to a relational structl¥eas a subsef C B that is preserved by all polymorphisms of
B. For an arbitrary subs@t C B, we use(T') to denote the smallest subalgebra contaiffing

Proposition 29 Suppose thay,, ..., g, : A — p(B) are homomorphisms, and suppose tfiat B¥ — B is a
polymorphism oB. Then the mag : A — (B) \ {0} defined byy(a) = f(g1(a),...,gx(a)) foralla € Aisa
homomorphisnA — ©(B).

For an operatiorf : B¥ — B and a sequence of subsds, ..., B, C B, by the notationf(B;, ..., By), we
denote the seff(b1,...,bx) | b1 € B1,...,bx € Bi}. Regarding this notation, it is easy to verify thatan be
understood as a polymorphism@fB) if f is a polymorphism oB. Propositiori 29 follows straightforwardly from
the definitions.

Proposition 30 Suppose that : A — (B) is a homomorphism. Then the mapdefined by:'(a) = (h(a)) for all
a € Ais also a homomorphisA — p(B).

Proof. Repeatedly apply Propositign]29 with a polymorphignandg; = --- = g, = h, each time taking the
resultingg and updating: to beh U g. Note that at each step, the néws a homomorphisrA — (B), since the
union operationU is a polymorphism of>(B). When no changes can be made, the resultifggthe desired’. O

Let us say that a CSP instant&, B) has thesubalgebra SAC@ (A, B) has the SACC relative to mappings
s, {hap} such that for ala € A, the sets(a) is a subalgebra, and for alla’ € A, b € s(a), the seth, ,(a’) is a
subalgebra.

Proposition 31 If a pair (A, B) of similar structures has the SACC, and all polymorphisni afe idempotent, then
it has the subalgebra SACC.

Proof. Suppose thatA, B) has the SACC with respect to the mappirgéh, ,}. Sets’(a) = (s(a)) forall a € A,
andh, ,(a’) = (hap(a’)) forall a,a’ € A, b € s(a). Clearly, for all suchu,a’, b we haveh!, ,(a’) C s'(a’), and
also, thath/, » IS @ homomorphismA — o(B) (by Propositiori 3D). Leb be an element in '(a) \ s(a) for some
a € A We need to show that there exists a homomorptii§mthat satisfies the two conditions of Definitibnl 11
with respect tos’, and that also satisfies the subalgebra conditions’As) is defined ags(a)), it holds thats’(a) =
{f(b1,...,b;) | f apolymorphismoB;by,...,b; € s(a)}; the containmenD is clear by definition of subalgebra,
and the containmerg follows from the fact that the right hand side is a subalgebtach in turn follows from the
fact that the set of polymorphisms & forms a clone and is closed under composition [23]. Thuggetlesists a
polymorphismf of B and elements,, ..., b; € s(a) such that = f(by,...,bs). Letg » be the homomorphism
obtained from Propositidn 29 with; = h, 5, and f. Seth;, ,(a') = (g, ,(a )) forall ' € A. The homomorphism
hy, , has the desired properties.

We now turn to prove our tractability result. We will now useetterm subalgebra to refer tosabalgebraof a
2-semilattice( B, x), that is, a subset aB preserved by. Note, however, that we will be working with a relational
structureB assumed to have as a polymorphism, so a subalgebra in the previous senddqthdth respect td)
will also be a subalgebra in this sense. An algélitax) having a binary operation onservativef for all b,b" € B,
it holds thath x b" € {b, b'}. The following is the statement of our tractability result.
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Theorem 32 Let (B, x) be a conservative 2-semilattice such that every strongiyeoted subalgebra is simple Bf
is a structure having as a polymorphism, then singleton arc consistency sdl$€$B).

Example 33 We consider the binary operaticron {0, 1, 2, 3} defined by the following table.

0 23

N R O] *

N
W[N] NN

3
1
3
3

W|IN| O

3

It is straightforward to verify that this operation is comtative and conservative, and is a 2-semilattice. The graph
induced by this operation has edgés1), (0,2), (0, 3), (1,2), (2, 3), (3,1), as well as self-edges on each of the ver-
tices. There is thus just one strongly connected comporiesit@ strictly greater than one, namely, the component
{1,2,3}. Thisis a subalgebra of the algebf&0, 1, 2, 3}, ) and is readily verified to be simple. Hence, the tractability
via singleton arc consistency of any structure preservethbyperation follows from Theorerin 32.

We will make use of the following results. For our purposeshasubdirect producof algebras\,, ..., Ay is a
subalgebra of A; x --- x Ay such that for each e [k], it holds thatr; S = A;.

Lemma 34 Suppose tha$ is a subdirect product of 2-semilattics, . . ., S,,. ThenSN(S; x - - - x S,,) is a subdirect
product ofS7, ..., S,..

Proof. Immediate from[[10, Lemma 3.2[1

Definition 35 A relationS C B™ is almost trivialif there exists a partitiod, . . ., I}, of [n] such that
e ¢t ¢ Sifand only if for alli € [k], it holds thatry, t € 77, S; and,

e for eachj < [£], it holds thatr;, .S has the form{ (71 (p), m2(p), ..., mm(p)) | p € [¢]} for someq > 1 and
where each mapping; is a bijection from[g] to a subset oB.

Proposition 36 A subdirect product of simple strongly connected 2-setrik is an almost trivial relation, and is
hence itself strongly connected.

Proof. Immediate from[[10, Proposition 3.1]]

Proposition 37 Let (A, B) be an instance that has the SACC with respect 1o — (B) \ {(}. If for each tuple
(ai,...,ax) € RA, itholds thatRB N (s(a;) x - -- x s(ay)) is almost trivial, then there is a homomorphism frém
to B.

Proof. Consider the following grapti = (A, E), where{a,b} € E if and only if there is a relatio®? in A, and,

if I1,..., I is its partition regarding almost triviality a®® N (s(a1) x - -+ x s(ax)), there further is ah € [k] and
atuple(as,...,an) € R}} such that there arg j with a = a; andb = a;. For each connected componé&niof

the graphG arbitarily choose: € C andb € s(a). Since arc consistency can be established whisnset tob and
using the structure of the projected reIaUdR]% there exists a unique extensionof— b to a homomorphism on

C. Because of the first property of Def|n|t|-35 the homomaspts on the single components can be combined to a
homomorphism om\. OJ

The following is the main result used to prove Theolein 32.
Theorem 38 Suppose thaB satisfies the hypotheses of Theoferh 32, and suppos¢Ah&) has the subalgebra

SACC vias : A — p(B)\ {0}. Then,(A, B) has the SACC via the map: A — p(B)\ {0} defined by’ (a) = s(a)
forall a € A.
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Proof. Leta € A andb € s(a). By hypothesis, there exists a homomorphismA — ©(B) whereh(a) = {b} and
foralla’ € A, it holds thath(a') C s(a’). We want to show that there exists a homomorphismA — o(B) where
' (a) = {b} and for alla’ € A, it holds thath’(a’) C s'(a’). Defineh/(a) ash(a) if h(a) N s'(a) # 0, and ass’(a)
otherwise. Observe that in the first case, we héye) = h(a) C s'(a), and that in both cases, the subsgt) is a
subalgebra.

We claim thath’ is a homomorphism fronA to p(B). Leta € R” be atuple inA. For the sake of notation,
we assume that = (a1,...,ar11), I = {1,...,k}, J = {k+1,...,k + [}, and thatl contains exactly the
coordinates € [k + {] such that:(a;) N s'(a;) # 0, so thath/(a;) = h(a;) foralli € I andh/(a;) = s'(a;) for all
jeJ. LetT = (r;RB N (s(a1) x --- x s(ax))) N (s(ay) x -+ x s(ax)). By Lemmd3%, we have that relati@his a
subdirect product of(a,), . . ., s(ax). Further, letW = (RB N (s(a1) x - - x s(ars1))) N (s(ar) x - x s(aps1)).
By Lemmda 34, we have thdV is a subdirect product of(a; ), . . ., s(ax4;). Clearly,7;W C T. We show thafl’ C
mrW (and hence that' = 7; W), as follows. Let be atupleirf’. Letw be a tuple in¥ (such a tuple can be obtained,
for instance, by-multiplying together all tuples oR® N (s(a1) x - -- x s(ax41)), in any order). By our assumption
on B and by Proposition 36, there is a sequence of tuples. . , u,,, in T such thatr;w < u; < -+ < w,, =t. We
hence have tuples,, . .., v, withv; € RB N (s(a1) x - -+ x s(agy;)) andmrv; = u,; for eachi € [m]. The product
(- ((w*wy) *v2) % -+ % vy,) gives a tuple il? whose projection ontd is .

By Propositior 3B, it holds thal’ is almost trivial with respect to a partitiof/;}. Remove from thd; any
coordinateg such thats’(a;) has just one element. We now show that the resulting part{tlo} has the property
that eachl; is a subset of eithef or J. By the homomorphism and its subalgebra property, there exists a tuple
(t,z) € RB such that € T andz; ¢ s(a;) forall j € J (just multiply all tuples inRB N (h(a1) x - - x h(ag1))).
By the fact thafl’ C 7; W, we have a tuplét, u) € . By the strong connectednessléf (Propositio 3b), there is a
tuple (¢, ') € W that is distinct from(¢, ) at each coordinate inl; and such thatt’, v’) x (t,u) = (t,u). We also
have(t',u') x (t,2) = (t,u’); note thatu’ x x = ' by conservativity of. As u and«’ differ at every coordinate in
J N (UI;), the claim follows.

As a consequence of this last result, for any tupte 7;W and any tuple. € 7;W, it holds that(¢,u) € W.
Further it holds thatr; RBN(h(a1) x - - -xh(ax)))N (R (a1)x- - -xh'(ar,)) is a subdirect product @ (a1), . . . , b’ (ax)
(Lemmd34), and we have thatis a homomorphism from to o(B). O
Proof. (Theoreni 3R) Suppose th@k, B) has the SACC. By Proposition131, the instafide B) has the subalgebra
SACC. By Theoreri 38,A, B) has the SACC via a mapping where for alla € A, it holds thats’(a) is a strongly
connected subalgebra. By assumption, each siahis simple, and it follows from Propositiohsl36 dnd 37 that¢he
is a homomorphism fromA to B. [J

6 Discussion

In this work, we performed a systematic study of arc consistand three simple, natural extensions thereof. We per-
formed a comparison of the studied consistency notionghaseonstraint languages, and proved positive tractgbilit
results for singleton arc consistency.

Atserias and Weyer [5] gave a uniform treatment of AC, PACCSand general consistency. Among other results,
they show that it can be decided, given a constraint langaadeny pair of the previous consistency methods, whether
it is true that the set of instances that passes one of théstemsy tests coincides with the set of instances that passe
the other. Their results combined with the fact that genaakistency/bounded width is decidable [6] implies that it
can be decided whether or not a given constraint languagévialde by any of the other methods.

We conclude by posing one question for future work. Bartolaoalk [6] have recently characterized all languages
solvable by bounded width. Can all such languages be s@Japbkingleton arc consistency, or are there bounded
width languages not solvable by singleton arc consisteriRg8olving this question in the positive would seem to
yield an interesting alternative characterization of tbarided width languages.

Acknowledgements. The authors thank Manuel Bodirsky for his comments and boHation. The authors also
thank Johan Thapper for his many useful comments.
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