
Polynomially-parsable Unification Grammars

Hadas Peled
Department of Computer Science

University of Haifa, Israel
hadas.peled@gmail.com

Shuly Wintner
Department of Computer Science

University of Haifa, Israel
shuly@cs.haifa.ac.il

Abstract

Unification grammars (UG) are a grammatical formalism that underlies several contemporary lin-
guistic theories, including Lexical-functional Grammar and Head-driven Phrase-structure Grammar. UG
is an especially attractive formalism because of its expressivity, which facilitates the expression of com-
plex linguistic structures and relations. Formally, UG is Turing-complete, generating the entire class of
recursively enumerable languages. This expressivity, however, comes at a price: the universal recog-
nition problem is undecidable for arbitrary unification grammars. We define a constrained version of
UG that guarantees efficient processing, while allowing the expression of complex linguistic structures.
We do so by proving that the constrained formalism is equivalent to Range Concatenation Grammar, a
formalism that generates exactly the class of languages recognizable in deterministic polynomial time.
We thus obtain a grammatical formalism that is on one hand highly expressive, and on the other efficient
to compute with.

1 Introduction

Unification grammars (UG) underlie several contemporary linguistic theories, including Lexical-functional
Grammar (LFG) and Head-driven Phrase-structure Grammar (HPSG). UG is an attractive grammatical for-
malism, inter alia, because of its expressivity: it facilitates the expression of complex linguistic structures
and relations. Formally, UG is Turing-complete, generating the entire class of recursively enumerable lan-
guages (Francez and Wintner, 2012, Chapter 6). This expressivity, however, comes at a price: the universal
recognition problem is undecidable for arbitrary unification grammars (Johnson, 1988).

Several constraints on UGs were suggested in order to reduce the expressiveness of the formalism and
thereby guarantee more efficient processing. A series of works (see Jaeger et al. (2005) and references
therein) define various off-line parsability constraints, which guarantee the decidability of the universal
recognition problem, but not its tractability. The recognition problem for off-line parsable grammars is
NP-hard (Barton et al., 1987). Other works define highly restricted versions of UG, such that efficiency
of parsing is ensured: Feinstein and Wintner (2008) define non-reentrant UGs, which generate exactly the
class of context-free languages; and one-reentrant UGs, which generate the class of tree-adjoining languages
(TALs). Keller and Weir (1995) define PLPATR, an extension of Linear Indexed Grammars that manipulates
feature structures rather than stacks, which has a polynomial-time parsing algorithm. PLPATR languages
are included in the set of languages generated by Linear Context-Free Rewriting Systems. The expressivity
and flexibility of these constrained formalisms, however, are severely limited, and seriously handicap the
grammar designer.

In this work we define a constrained version of UG that is equivalent to Range Concatenation Grammar
(RCG). RCG is a formalism that generates exactly the class of languages recognizable in deterministic poly-



nomial time (Boullier, 1998b); specifically, it strictly contains the class of TALs (Boullier, 1998a). Boullier
(1999) shows that RCG can express natural language phenomena such as Chinese numbers and German
word scrambling, that lie beyond the expressive power of TALs. RCG is closed under union, concatenation,
Kleene iteration, intersection and complementation (Boullier, 1998b). Since RCG has a polynomial parsing
algorithm (Boullier, 1998b; Bertsch and Nederhof, 2001; Kallmeyer et al., 2009), a restricted version of UG
that is equivalent to RCG (along with an efficient conversion procedure) is guaranteed to have an efficient
recognition algorithm.

The main contribution of this work is thus a constrained version of UG that is on one hand expressive
enough so as to allow the expression of complex linguistic structures in terms of typed feature structures that
linguists favor, and on the other hand guarantees efficient processing for all grammars that can be expressed
in the formalism.

We begin in Section 2 by setting up notation and describing related work; specifically, we recall the
definitions of (typed) unification grammars, restricted versions thereof, and range concatenation grammars.
In Section 3 we define a restricted version of UG, such that constrained grammars can be simulated by an
equivalent RCG. The mapping of constrained UG grammars to RCG is given in Section 4. In Section 5
we show a reverse mapping of an arbitrary RCG to an equivalent restricted UG, thereby establishing the
equivalence between the two classes of languages generated by the two formalisms. Section 6 sketches a
proof of the correctness of the two mappings. We conclude with suggestions for future research.

2 Related work

We set up notation in this section for the two formalisms we focus on, namely Typed Unification Grammars
(Section 2.1) and Range Concatenation Grammars (Section 2.3). In addition, in Section 2.2 we list other
constraints on UG that were suggested in the past, in order to guarantee more efficient processing, at a price
of reduced expressiveness.

2.1 Typed Unification Grammars

We assume familiarity with typed unification grammars, as formulated, e.g., by Carpenter (1992). For a
partial function F , ‘F (x) ↓’ (and similarly, ‘F (x) ↑’) means that F is defined (undefined) for the value x.
The following definitions recapitulate basic notions.

Definition 1 (Type hierarchy). A partial order v over a finite, non-empty set TYPES of types is a type
hierarchy if it is bounded complete, i.e., if every up-bounded subset T of TYPES has a (unique) least upper
bound, tT . If t1 v t2 we say that t1 subsumes, or is more general than, t2; t2 is a subtype of (more
specific than) t1. We say that t1 is an immediate subtype of t2, denoted t2

◦
@ t1 if t2 v t1, t1 6= t2, and for

every t′ ∈ TYPES, if t′ v t1, then t′ v t2. If t is such that for no t′ 6= t, t v t′, then t is a maximal type, or
a species. Let uT be the greatest lower bound of the set T , if it exists. ⊥ = t∅ is the most general type.

Definition 2 (Appropriateness). Given a set of types TYPES and a set of features FEATS, an appropriateness
specification is a partial function Approp : TYPES × FEATS → TYPES, such that:

• for every f ∈ FEATS, let Tf = {t ∈ TYPES | Approp(t, f) ↓}; then Tf 6= ∅ and Intro(f) = uTf ∈
Tf .

• if Approp(t1, f) ↓ and t1 v t2 then Approp(t2, f) ↓ and Approp(t1, f) v Approp(t2, f).

2



A type t is featureless if for every f ∈ FEATS, Approp (t, f) ↑.

Definition 3 (Type signatures). A type signature is a quadruple 〈TYPES,v, FEATS, Approp〉, where 〈TYPES,v〉
is a type hierarchy and Approp : TYPES × FEATS → TYPES is an appropriateness specification.

In this work we use the LKB notation (Copestake, 1999, 2002) for defining a type signature, where a
subtype is listed below its super type, with increasing indentation. The features and the appropriate types of
each type are listed in the same line as the type. For example, the following specification:

TYPES = {t1, t2, t3, t4}, FEATS = {f1, f2}
t1
t2 f1: t3 f2: t4

t3
t4

represents a typed signature where ⊥ v t1, t1 v t2, ⊥ v t3, t3 v t4, Approp(t2, f1) = t3, and
Approp(t2, f2) = t4.

Definition 4 (Typed feature graphs). A typed feature graph 〈Q, q̄, δ, θ〉 is a directed, connected, labeled
graph consisting of a finite, nonempty set of nodes Q, a root q̄ ∈ Q, a partial function δ : Q× FEATS → Q
specifying the arcs such that every node q ∈ Q is accessible from q̄ and a total function θ : Q → TYPES

marking the nodes with types.

Let δ̂ be the reflexive-transitive closure of δ. In the sequel we abuse notation and refer to δ̂ as δ. Let
PATHS = FEATS∗.

Definition 5 (Paths). The paths of a feature graph A are Π (A) = {π ∈ PATHS | δA (q̄A, π) ↓}.

Definition 6 (Path value). for a feature graph A = 〈QA, q̄A, δA, θA〉 and a path π ∈ Π (A) the value
valA (π) of π in A is a feature graph B = 〈QB, q̄B, δB, θB〉, over the same signature as A, where:

• q̄B = δA (q̄A, π)

• QB = {q′ ∈ QA | for some π′, δA (q̄B, π
′) = q′} (QB is the set of nodes reachable from q̄B)

• for every feature f and for every q′ ∈ QB , δB (q′, f) = δA (q′, f) (δB is the restriction of δA to QB)

• for every q′ ∈ QB , θB (q′) = θA (q′) (θB is the restriction of θA to QB)

Definition 7 (Reentrancy). LetA = 〈Q, q̄, δ, θ〉 be a feature graph. Two paths π1, π2 ∈ Π (A) are reentrant
in A, iff δ (q̄, π1) = δ (q̄, π2) implying val (π1) = val (π2).

Definition 8 (Subsumption). Let A1 = 〈Q1, q̄1, δ1, θ1〉 and A2 = 〈Q2, q̄2, δ2, θ2〉 be two typed feature
graphs over the same signature. A1 subsumes A2 (denoted by A1 v A2) iff there exists a total function
h : Q1 → Q2, called a subsumption morphism, such that h(q̄1) = q̄2; for every q ∈ Q1 and for every f
such that δ1(q, f) ↓, h(δ1(q, f)) = δ2(h(q), f); and for every q ∈ Q1, θ1(q) v θ2(h(q)).

A typed feature structure (TFS) is an equivalence class of isomorphic feature graphs (ignoring the
identities of the nodes). A multi-rooted structure (MRS) is a sequence of TFSs, with possible reentrancies
(shared nodes) across the members of the sequence. Following the linguistic convention, we depict TFSs
and MRSs as attribute-value matrices (AVMs) in the sequel. Example 5 (page 11) depicts a TFS represented
as an AVM.

3



Definition 9 (Maximally specific TFS). A TFS F1 is maximally specific if no TFS F2 exists such that
F1 v F2.

Definition 10 (Rules). A rule is an MRS of n > 0 TFSs, with a distinguished first element. The first element
is its head and the rest of the elements are the rule’s body. We adopt a convention of depicting rules with an
arrow (→) separating the head from the body.

Since a rule is simply an MRS, there can be reentrancies among its elements: both between the head and
(some element of) the body and among elements in its body.

Definition 11 (Typed unification grammar). A typed unification grammar over a finite set WORDS of words
and a type signature 〈TYPES,v, FEATS, Approp〉 is a tupleG = 〈R, As,L〉, whereR is a finite set of rules,
each of which is an MRS, As is the start symbol (a TFS), and L is the lexicon which associates with each
word w ∈ WORDS a set of TFSs L(w).

The language generated by a UG is defined in terms of a derivation relation over MRSs. See Carpenter
(1992); Francez and Wintner (2012) for the details. Figure 2 (page 16) depicts a unification grammar and
specifies the language it generates.

2.2 Constrained Unification Grammars

UG, as defined above, is Turing-equivalent (Francez and Wintner, 2012, Chapter 6). In other words, it
generates the entire class of recursively enumerable languages. Consequently, the universal recognition
problem for UG is undecidable (Johnson, 1988). Several constraints on UGs were suggested in order to
reduce the expressiveness of the formalism and thereby guarantee more efficient processing.

Off-line parsability (OLP) constraints These constraints guarantee that the recognition problem for gram-
mars that obey them is decidable (Jaeger et al., 2005). The idea behind all the OLP definitions is to
rule out grammars which license trees in which an unbounded amount of material is generated with-
out expanding the frontier word. This can happen due to two kinds of rules: ε-rules (whose bodies
are empty) and unit rules (whose bodies consist of a single element). However, even for unification
grammars with no such rules the recognition problem is NP-hard (Barton et al., 1987).

Other works define highly restricted versions of UG, which guarantee the efficiency of parsing:

Non-reentrant unification grammars A unification grammar is non-reentrant if its rules include no reen-
trancies. Non-reentrant unification grammars generate exactly the class of context-free grammars
(Feinstein and Wintner, 2008).

One-reentrant unification grammars A unification grammar is one-reentrant if every rule includes at
most one reentrancy, between the head of the rule and some element of the body. One-reentrant
unification grammars generate exactly the class of Tree-Adjoining languages (Feinstein and Wintner,
2008).

Partially Linear PATR (PLPATR) A unification grammar is PLPATR if it obeys the following constraints:

• the start symbol contains no reentrancies;

• Every rule includes at most one reentrancy, between the head of the rule and some element of
the body; and

4



• Additional reentrancies are allowed between elements in the rule’s body, as long as they are not
also in the rule’s head.

PLPATR is more powerful than Tree-Adjoining grammar (TAG) since it can generate the k-copy
language for any fixed k:

{
wk | w ∈ L

}
for any k ≥ 1 and context-free language L. PLPATR

languages are included in the set of languages generated by Linear Context-Free Rewriting System
(LCFRS) (Keller and Weir, 1995).

These constrained versions of UG ensure efficiency by limiting the expressivity and flexibility of the
formalism, thereby handicapping the grammar designer. Our goal in this work is to define a constrained
version of UG that on one hand is expressive enough so as to allow the expression of complex linguistic
structures, and on the other hand guarantees efficient (polynomial time) processing. This is achieved by
mapping constrained UGs to RCGs, a formalism that guarantees polynomial-time processing (in the size of
the input string), but is maximally expressive. (Note that recognition time with RCGs can still be exponential
in the size of the grammar; we are only concerned with complexity as a function of the length of the input
string below.)

2.3 Range Concatenation Grammars

Range Concatenation Grammars (RCG) is a syntactic formalism that was introduced by Boullier (1998a).
Fundamental to RCG is the notion of ranges, pairs of integers denoting occurrences of substrings in an input
text. RCG generates exactly the class of languages recognizable in polynomial time (Boullier, 1998b), and it
is closed under union, concatenation, Kleene iteration, intersection and complementation (Boullier, 1998b).

Boullier (2000) define both Positive and Negative RCG, where the formalism is the union of the two.
Since the negative variant has no additional generative power over the positive one, however, we only use
Positive RCG, referring to it as RCG, for simplicity. The following definitions are taken from Boullier
(2000).

Definition 12 (Range Concatenation Grammar (RCG)). A range concatenation grammar (RCG) G =
〈N,T, V, P, S〉 is a 5-tuple, where:

• N is a finite set of nonterminal symbols (also called predicate names); each non-terminal A ∈ N is
associated with an arity, ar (A).

• T is a finite set of terminal symbols,

• V is a finite set of variable symbols, such that T ∩ V = ∅.

• S ∈ N is the start predicate, or the axiom; ar (S) = 1.

• P is a finite set of clauses of the form

ψ0 → ψ1...ψj ...ψm

where m ≥ 0 and each ψi, 0 ≤ i ≤ m, is a predicate of the form

A(α1, ..., αi, ..., αar(A)).

where A ∈ N , and each αi ∈ {T ∪ V }∗ , 1 ≤ i ≤ ar (A), is an argument.

5



Example 1. Following is an RCG grammar G. Expecting Definition 20, the language of this grammar is
{anbncn}. G = 〈N,T, V, P, S〉 where N = {S,A}, T = {a, b, c}, V = {X,Y, Z}, S is the start symbol,
ar (S) = 1, ar (A) = 3, and P is given by:

(1) S(XY Z)→ A(X,Y, Z)
(2) A(aX, bY, cZ)→ A(X,Y, Z)
(3) A(ε, ε, ε)→ ε

The language defined by an RCG is based on the notion of range.

Definition 13 (Range). For a given input string w = a1 . . . an, a range is a pair (i, j) , 0 ≤ i ≤ j ≤ n,
of integers, which denotes the occurrence of some substring ai+1 . . . , aj in w. The number i is its lower
bound, j is its upper bound and j − i is its length. If i = j, the range is empty. For w ∈ T ∗ such that
|w| = n, its set of ranges is Rw = {ρ | ρ = (i, j), 0 ≤ i ≤ j ≤ n}. Rkw is the set of vectors of ranges in
Rw with k elements: Rkw = {〈ρ1, . . . ρk〉 | ρi ∈ Rw, 1 ≤ i ≤ k}.

Let w = a1 . . . an be an input string. Let w1 = a1 . . . ai, w2 = ai+1 . . . aj and w3 = aj+1 . . . an
be three substrings of w. w1 is denoted by w〈0..i〉, w2 is denoted by w〈i..j〉 and w3 is denoted by w〈j..n〉.
Therefore, w〈j..j〉 = ε, w〈j−1..j〉 = aj and w〈0..n〉 = w. If ~ρ = ρ1, . . . , ρi, . . . , ρp is a vector of ranges, by
definition w~ρ denotes the tuple of strings wρ1 , . . . , wρi , . . . , wρp .

Definition 14 (Concatenation of ranges). Range concatenation is defined by w〈i1..j1〉 · w〈i2..j2〉 = w〈i1..j2〉

if and only if j1 = i2.

In any RCG, terminals, variables and arguments in a clause are bound to ranges by a substitution mech-
anism. For the following discussion, fix an RCG G = 〈N,T, V, P, S〉.

Definition 15 (Instantiation). A pair (X, ρ), denoted by X/ρ, where X ∈ V and ρ is a range, is called
a variable binding. ρ is the range instantiation of X and wρ is its string instantiation. A set σ =
{X1/ρ1, ..., Xp/ρp} of variable bindings is a variable substitution if and only if Xi/ρi 6= Xj/ρj implies
Xi 6= Xj . A pair (a, ρ) is a terminal binding, denoted by a/ρ if and only if ρ = 〈j − 1..j〉 and a = aj .

Example 2. A(w〈g..h〉, w〈i..j〉, w〈k..l〉)→ B(w〈g+1..h〉, w〈i+1..j−1〉, w〈k..l−1〉) is an instantiation of the clause
A(aX, bY c, Zd)→ B(X,Y, Z) if the input word w = a1...an is such that ag+1 = a, ai+1 = b, aj = c and
al = d. In this case, the variablesX,Y and Z are bound tow〈g+l..h〉, w〈i+1..j−1〉 andw〈k..l−1〉, respectively.

For brevity, in the following discussion we often use the term instantiation to indicate string instantia-
tion, rather than range instantiation. In any case, every variable substitution (by range or by substring) is
subject to the constraints of Definition 15 above.

Definition 16 (Argument instantiation). Let p = ψ0 → ψ1 . . . ψm, where m ≥ 0, be a clause in P . Let
α ∈ {T ∪ V }∗ be an argument of some predicate ψi, 0 ≤ i ≤ m. Given a string w, and a substring of w,
wρ, wρ is an instantiation of α if and only if:

• α = wρ = ε, hence ρ = 〈i, i〉, or,

• α = X ∈ V , or,

• α = wρ = a ∈ T , hence a/ρ is a terminal binding, or,

6



• α = β · γ, such that β, γ ∈ {T ∪ V }∗, and ρ = µ · σ, such that wµ is an instantiation of β, and wσ is
an instantiation of γ.

We now define the sets of instantiated predicates and instantiated clauses for a given RCGG and a given
word w. The set of instantiated clauses is the set of all the clauses that can be generated by instantiating the
clauses in P by substrings of w.

Definition 17 (The set of instantiated predicates). For an RCG G = (N,T, V, P, S) and a string w ∈ T ∗,
the set of instantiated predicates is

IPG,w = {A (~ρ) | A ∈ N, ~ρ ∈ Rhw, h = ar (A)}.

Definition 18 (The set of instantiated clauses). Given an RCG G = (N,T, V, P, S) and a string w ∈ T ∗,
p′ = A0

(
~β0

)
→ A1

(
~β1

)
. . . Am

(
~βm

)
is an instantiated clause of G if and only if:

• For every i, 0 ≤ i ≤ m, Ai
(
~βi

)
∈ IPG,w, and

• There is a clause p = A0 ( ~α0)→ A1 ( ~α1) . . . Am ( ~αm) ∈ P , such that:

– for every i, 0 ≤ i ≤ m, ~βi is the set of instantiated arguments of ~αi, and

– if {X1, . . . , Xl} is the set of variables in p, and {ρ1, . . . , ρl} is the variable binding of {X1, . . . , Xl}
in p′, then {X1/ρ1, . . . , Xl/ρl} is a variable substitution.

The set of instantiated clauses of G and w is denoted ICG,w .

As is customary in rewriting systems, the language of an RCG grammar is defined by first defining an
immediate derivation relation, and then taking the set of strings derived by its reflexive-transitive closure as
the language. However, RCG differs from standard rewriting systems by the fact that derivations begin with
the full input words and end with the empty word ε.

Definition 19 (Derivation relation). For an RCG G = (N,T, V, P, S) and a string w ∈ T ∗, a derivation
relation, denoted by ⇒G,w, is defined on strings of instantiated predicates. If Γ1 and Γ2 are strings of
instantiated predicates in (IPG,w)∗:

Γ1A0 (~ρ0) Γ2 ⇒G,w Γ1A1 (~ρ1) . . . Am ( ~ρm) Γ2 ∈ ICG,w

if and only if
A0 (~ρ0)→ A1 (~ρ1) . . . Am ( ~ρm) ∈ ICG,w.

The reflexive-transitive closure of⇒G,w is denoted by ∗⇒G,w.

Definition 20 (The language of an RCG). The language of an RCG G = (N,T, V, P, S) is the set

L(G) =
{
w | S(w)

∗⇒G,w ε
}

An input string w = a1...an is a sentence if and only if the empty string (of instantiated predicates) can be
derived from S(w〈0..n〉), the instantiation of the start predicate on w.

More generally, the string language of a nonterminal A is defined as

L(A) =
⋃
w∈T ∗

L(A,w)

7



where
L(A,w) =

{
w~ρ | ~ρ ∈ Rhw, h = ar (A) , A (~ρ)

+⇒G,w ε
}

Observe that L (G) = L (S), as expected.

Example 3. The following grammar defines the language {www | w ∈ {a, b}∗}:

(1) S(XY Z)→ A(X,Y, Z)
(2) A(aX, aY, aZ)→ A(X,Y, Z)
(3) A(bX, bY, bZ)→ A(X,Y, Z)
(4) A(ε, ε, ε)→ ε

We demonstrate that the input string w = ababab is a sentence:

S(ababab)⇒G,w A(ab, ab, ab)

using clause (1) and variable substitution {X/ab, Y/ab, Z/ab}

A(ab, ab, ab)⇒G,w A(b, b, b)

using clause (2) and variable substitution {X/b, Y/b, Z/b}

A(b, b, b)⇒G,w A(ε, ε, ε)

using clause (3) and variable substitution {X/〈2..2〉, Y/〈4..4〉, Z/〈6..6〉}

A(ε, ε, ε)⇒G,w ε

using clause (4).

Definition 21 (RCLs). If G is an RCG, then L (G) is a range concatenation language (RCL). Let LRCG
be the class of RCLs.

We demonstrate the formalism by presenting two RCG grammars: The grammarGprime whose language
is aprime = {ap | p is a prime}; and a grammar, GSCR, accounting for the phenomenon of word scrambling
which occurs in several natural languages such as German.

Example 4 (Gprime). The idea behind the grammar is as follows: Given a string an, if n = 2 or n = 3,
accept. Otherwise, try to divide n by any number from 2 to (n − 1)/2. If n is not divisible by any of these
numbers, accept. Division of n by k is done by RCG, using strings, as follows:

1. Let x = ak

2. Let y = an

3. Repeat while x and y are not empty:

(a) Remove one a from x

(b) Remove one a from y

4. If x is empty and y is not:

8



(a) x = ak

(b) Go to line 3

5. If y is empty and x is not, x is not a factor of y. Stop.

6. If both x and y are empty, x is a factor of y. Stop.

The clauses of Gprime are:

1. S (aa)→ ε accept aa

2. S (aaa)→ ε accept aaa

3. S (XaY )→ A (X,XaY,X,XaY ) eq (X,Y ) given an, try to divide n by k = (n− 1) /2

4. A (aX, aY, Z,W )→ A (X,Y, Z,W ) start the loop in the algorithm above, line 3

5. A (ε, Y, Z,W )→ A (Z, Y, Z,W ) X is empty, restart the loop, line 4

6. A (X, ε, aZ,W )→ A (Z,W,Z,W ) Y is empty, X is not,

NonEmpty (X)MinLen2 (Z) k is greater than 2, try k = k − 1

7. A (X, ε, Z,W )→ NonEmpty (X)Len2 (Z) Y is empty, X is not, k = 2, n is a prime.

8. eq (aX, aY )→ eq (X,Y )

9. eq (ε, ε)→ ε

10. NonEmpty (aX)→ ε

11. Len2 (aa)→ ε

12. MinLen2 (aX)→ NonEmpty (X)

To demonstrate the operation of the grammar, we list a derivation of the string aaaaa with Gprime:

(clause3) S (aaaaa) → A (aa, aaaaa, aa, aaaaa) eq (aa, aa)
(clause8) eq (aa, aa) → eq (a, a)
(clause8) eq (a, a) → eq (ε, ε)
(clause8) eq (ε, ε) → ε
(clause4) A (aa, aaaaa, aa, aaaaa) → A (a, aaaa, aa, aaaaa)
(clause4) A (a, aaaa, aa, aaaaa) → A (ε, aaa, aa, aaaaa)
(clause5) A (ε, aaa, aa, aaaaa) → A (aa, aaa, aa, aaaaa)
(clause4) A (aa, aaa, aa, aaaaa) → A (a, aa, aa, aaaaa)
(clause4) A (a, aa, aa, aaaaa) → A (ε, a, aa, aaaaa)
(clause5) A (ε, a, aa, aaaaa) → A (aa, a, aa, aaaaa)
(clause4) A (aa, a, aa, aaaaa) → A (a, ε, aa, aaaaa)
(clause7) A (a, ε, aa, aaaaa) → NonEmpty (a)Len2 (aa)
(clause10) NonEmpty (a) → ε
(clause11) Len2 (aa) → ε

9



3 Restricted Typed Unification Grammars

Our goal is to define a restricted version of TUG whose grammars can be converted to RCG. RCG clauses
consist of predicates whose arguments are parts of the input string, and nothing more. An RCG derivation
starts with the input word, and in each derivation step, substrings of the strings associated with the mother
of the clause are passed to the daughters, until reaching, in the end of the derivation, the empty word.

Our motivation in the design of the restricted TUG is to have the unification rules simulate RCG, where
feature values simulate RCG arguments. We thus define restrictions over unification grammars, such that
feature values can only contain representations of parts of the input string, and nothing more. In addition,
we want UG derivations to simulate RCG derivations, such that in every UG rule, the feature values of the
daughters can only contain parts of the feature values of the mother.

3.1 Representing Lists of Terminals with TFSs

RCG arguments are strings of terminals and variables, where in each derivation step, these strings can be split
or concatenated. In order to manipulate strings and substrings thereof with UG, we define an infrastructure
for handling bi-directional lists of terminal symbols with TFSs. While the formal definitions are suppressed
for brevity, we list below some of the main concepts we need, in an informal way. First, we manipulate lists
of terminal symbols. Each such list consists of nodes. A bi list node is a TFS with three features:

• CURR which includes the actual value of the node of type terminal;

• PREV which points to the previous node in the list;

• NEXT which points to the next node in the list.

Then, the list itself is represented as a TFS with two features:

• HEAD which points to the first node of the list;

• TAIL which points to the last node of the list.

For every type t ∈ TYPES we define the following bi list infrastructure types:

• node, the super-type of bi list nodes;

• null, such that node
◦
@ null, the type of empty nodes;

• ne node, such that node
◦
@ ne node, the type of non-empty nodes;

• bi list, the super-type of bi lists;

• elist, such that bi list
◦
@ elist, the type of empty bi lists;

• ne bi list, such that bi list
◦
@ ne bi list, the type of non-empty bi lists.

Definition 22 (bi list signature). Let

bi list TYPES = {terminal, node, null, ne node, bi list, elist, ne bi list}
bi list FEATS = {CURR, PREV, NEXT, HEAD, TAIL}

Then bi list signature = 〈bi list TYPES, bi list FEATS,v〉 is defined as follows:

10



terminal
node

null
ne node CURR: terminal PREV: node NEXT: node

bi list
elist
ne bi list HEAD: node TAIL: node

Example 5 (bi list). As an example of a TFS representing a bidirectional list of terminals, consider A
(Figure 1). The terminals are a and b (in other words, terminal v a and terminal v b). A represents the list
〈a, b, b〉. Note that:

• the length of A is 3;

• the 1-node of A is 1 , the 2-node is 2 and the 3-node is 3 .

A =



ne bi list

HEAD : 1



ne node

CURR : a

PREV : null

NEXT : 2



ne node

CURR : b

PREV : 1

NEXT : 3


ne node

CURR : b

PREV : 2

NEXT : null






TAIL : 3


Figure 1: An example TFS representing a bidirectional list of terminals

A TFS A =
[
bi list

]
(that is, neither an elist nor a ne bi list), is called an implicit bi list. We use the

notation of 〈a1, . . . , am〉 for a bi list TFS whose length is m, where for every i, 1 ≤ i ≤ m, ai is a TFS of
type terminal, the CURR value of the i-th node of the bi list TFS. For example, the list notation of the bi list
of Example 5 is 〈a, b, b〉.

Let A1 and A2 be two bi lists. The concatenation of A1 and A2, denoted by A1 · A2, produces a new
bi list which contains the nodes of A1, concatenated with the nodes of A2.

Example 6. (bi list concatenation) Let terminal, a, b be three types in TYPES, such that terminal v a, and
terminal v b. Let A1 = 〈a, a, a〉 and A2 = 〈b, a〉 be two bi list TFSs of type terminal. Then A1 · A2 =
〈a, a, a, b, b〉.

11



Let A be a bi list. The sublists of A are all the bi lists whose nodes are ordered subsets of the nodes of
A.

Example 7. (sublists) Let A = 〈a, a, b〉. Then its sublists are: elist, 〈a〉, 〈b〉, 〈a, a〉, 〈a, b〉 and 〈a, a, b〉.

3.2 Restricted type signatures

We begin by defining restrictions over the type signature. We constrain the set TYPES to consist of the
following types only:

• All the types in bi list TYPES, as defined in Definition 22;

• A type for every word α ∈ WORDS, such that L (α) 6= ∅;

• A type main which is used as the super-type of every TFS occurring at the top level of any grammar
rule;

• Subtypes of main. Such types can include only features of type bi list. These types are called main
types;

• Any main type must include one feature of type bi list which is used to encode a substring of the input
word. This feature is called the input feature;

• A main type start which is the type of the start FS As. Since in RCG the start predicate always has
one argument only, containing the input word, the type start only has one feature, the input feature.

In addition, we require that for every two main types t and t′, such that t v t′, t′ have no additional features
over the ones it inherits from t. The motivation for this restriction is explained in Section 4.1.

Definition 23 (Restricted signature). A type signature 〈TYPES, FEATS,v〉 is restricted if TYPES includes
exactly the following types:

• All the types in bi list TYPES, as defined in Definition 22;

• A type terminal such that ⊥
◦
@ terminal and terminal is featureless;

• Every word α ∈ WORDS is also a type in TYPES, such that terminal
◦
@ α, and α is featureless. α is

an explicit type of terminal;

• A type main, such that ⊥
◦
@ main and main is featureless;

• A type start such that:

– main v start,

– Approp (start, INPUTstart) = bi list, and

– Approp (start, f) ↑ for every f 6= INPUTstart;

• Any type t, such that:

– main v t;

12



– if main
◦
@ t:

∗ Approp (t, INPUTt) = bi list;
∗ for every F 6= INPUTt, if Approp (t, F) ↓, then Approp (t, F) = bi list.

– if t’
◦
@ t and t’ 6= main, {F | Approp (t, F) ↓} = {F | Approp (t’, F) ↓};

• No other types are allowed in TYPES.

Example 8. (Restricted typed signature). Let

TYPES =

{
main, cat, start, np, v,
terminal, lamb,Rachel, Jacob, . . .

}⋃
bi list TYPES

FEATS = {INPUTcat, INPUTv, SUBCAT}
⋃
bi list FEATS

Then the following typed signature (unioned with the bi list signature as of Definition 22) is restricted:

main
cat INPUTcat: bi list

start
np
v

v np
v np s

terminal
lamb
Rachel
Jacob
...

3.3 Restricted TFS

For the following discussion, fix a restricted type signature 〈TYPES,v, FEATS, Approp〉.

Definition 24 (main TFS). A TFS A of type t is a main TFS if main v t.

Definition 25 (Restricted TFS). A main TFS A is restricted if all its feature values are of type bi list.

Example 9 (Restricted TFS). Given the following signature fragment:

main
counter INPUTcounter: bi list COUNT: bi list

terminal
a
b

The following TFS is restricted: 
counter

INPUTcounter : 〈a, b, a〉

COUNT : 〈a, a, a〉


13



3.4 Restricted lexicon

Definition 26 (Restricted lexicon). A lexicon L is restricted if for every α ∈ WORDS, for every A ∈ L (α),
A is a restricted TFS, whose input feature contains exactly α.

Example 10. (Restricted L (b)).

b→


bt

INPUTbt : 〈b〉

COUNT : 〈a〉


Example 11. (Restricted L (tell)).

tell→

[
v np s

INPUTv : 〈tell〉

]

3.5 Restricted rules

In this section we define restrictions over the rules of a restricted TUG. For every rule in R we require that
both the mother and the daughters be restricted TFS. In addition, we add restrictions over the feature values
of these TFS:

• First, we require that the value of the input feature of the mother be the concatenation of the input
feature values of the daughters, in the order they occur in the rule. The motivation for this constraint
is the nature of derivation in RCG: the string associated with the mother of an RCG clause is obtained
by concatenating the strings associated with the daughters. Our input features simulate such strings,
hence the constraint.

• In addition, we require that every feature value of the daughters contain nothing but a sublist of some
feature value of the mother.

Definition 27 (Restricted rule). A set of unification rulesR is restricted if for every r ∈ R, r is of the form:

t0

INPUTt0 : A1 · . . . ·Ak
F01 : B1

...
F0n : Bn0


→



t1

INPUTt1 : A1

F11 : C1
1

...
F1n1

: C1
n1


. . .



tk

INPUTtk : Ak

Fk1 : Cik1

...
Fknk

: Cknk


such that:

• Each TFS in r is restricted;

• The value of the feature INPUTt0 of the mother is the concatenation of the values of the INPUTti
features, for every i, 1 ≤ i ≤ k;

• For every i, 1 ≤ i ≤ k, for every j, 1 ≤ j ≤ ni, Cij is either:

– a sublist of Bl for some 1 ≤ l ≤ n;

14



– a sublist of A1 · . . . ·Ak.

Example 12. In the following restricted rule, the feature values of the mother are obtained by concatenating
the feature values of the daughters:

bt

INPUTbt : b · 1

COUNT : a · 2

→


bt

INPUTbt : 〈b〉

COUNT : 〈a〉




bt

INPUTbt : 1 bi list

COUNT : 2 bi list


3.6 Restricted Unification Grammars

Definition 28 (Restricted typed UG). A typed unification grammar G = 〈R, As,L〉 over a type signature
〈TYPES,v, FEATS, Approp〉 is restricted typed UG (RTUG) if:

• The type signature 〈TYPES,v, FEATS, Approp〉 is restricted (Definition 23);

• The set of rulesR is restricted (Definition 27);

• The start symbol As is a restricted TFS of type start;

• L is restricted (Definition 26).

Definition 29 (RTULs). If G is an RTUG, then L (G) is a restricted typed unification language (RTUL).
Let LRTUG be the class of RTULs.

3.7 Examples of Restricted TUG

We demonstrate two RTUG grammars, one for a formal language and one for a small fragment of a nat-
ural language. The grammar Gabc generates a formal language that is trans-context-free; Glongdist is a
grammar of basic sentence structure in several natural languages, demonstrating a naı̈ve account of verb
sub-categorization and long distance dependency phenomena.

Example 13. (anbncn) Figure 2 depicts an RTUG, Gabc, generating the language anbncn. The grammar is
inspired by the (untyped) unification grammar Gabc of Francez and Wintner (2012, chapter 6). It has three
simple main types: at, bt and ct, derived from the supertype counter. Each of them counts the length of a
string of a, b and c symbols, respectively. Counting is done in unary base, by the feature COUNT, where
a string of length n is derived by a bi list of n a-s. We use a for counting and not t, as in the example of
Francez and Wintner (2012), because the value of COUNT must be a sublist of the input word. The start rule
has three daughters, for counting the a-s, b-s and c-s. Note that the value of COUNT of each of the daughters
must be reentrant with the value of the input feature of the first daughter. In other words, the number of b-s
and c-s must be equal to the number of a-s in the input word. Figure 3 demonstrates a derivation tree for
the string “aabbcc” with this grammar.

Example 14 (Long distance dependencies). Figures 4, 5 depict an RTUG, Glongdist. The grammar is
inspired by the (untyped) unification grammar G3, presented in Francez and Wintner (2012, chapter 5),
with additional rules presented in Francez and Wintner (2012, section 5.6). Glongdist reflects basic sentence
structure in a natural language such as English, and demonstrates an account of verb sub-categorization
and long distance dependency phenomena, producing sentences like “Jacob loved Rachel” and “Laban
wondered whom Jacob loved”. It has the following main types:

15



Signature The signature includes the bi list signature, as defined in Definition 22, and in addition:
main

simple
counter INPUTcount:bi list COUNT:bi list

at
bt
ct

start INPUTstart:bi list

terminal
a
b
c

Lexicon

a→


at

INPUTcount : 〈a〉

COUNT : 〈a〉

 , b→


bt

INPUTcount : 〈b〉

COUNT : 〈a〉

 , c→


ct

INPUTcount : 〈c〉

COUNT : 〈a〉


Rules [

start

INPUTstart : 1 · 2 · 3

]
→

at

INPUTcount : 1 bi list

COUNT : 1




bt

INPUTcount : 2 bi list

COUNT : 1




ct

INPUTcount : 3 bi list

COUNT : 1




at

INPUTcount : a · 1

COUNT : a · 2

 →


at

INPUTcount : 〈a〉

COUNT : 〈a〉




at

INPUTcount : 1 bi list

COUNT : 2 bi list




bt

INPUTcount : b · 1

COUNT : a · 2

 →


bt

INPUTcount : 〈b〉

COUNT : 〈a〉




bt

INPUTcount : 1 bi list

COUNT : 2 bi list




ct

INPUTcount : c · 1

COUNT : a · 2

 →


ct

INPUTcount : 〈c〉

COUNT : 〈a〉




ct

INPUTcount : 1 bi list

COUNT : 2 bi list



Figure 2: An RTUG, Gabc, generating the language anbncn

• start;

• np for noun phrases;

• vp for verb phrases;

• v for verbs with no subcategorized complement;

16



[
start

INPUTs : 〈a, a, b, b, c, c〉

]


at

INPUTc : 〈a, a〉

COUNT : 〈a, a〉




at

INPUTc : 〈a〉

COUNT : 〈a〉



a


at

INPUTc : 〈a〉

COUNT : 〈a〉



a


bt

INPUTc : 〈b, b〉

COUNT : 〈a, a〉




bt

INPUTc : 〈b〉

COUNT : 〈a〉



b


bt

INPUTc : 〈b〉

COUNT : 〈a〉



b


ct

INPUTc : 〈c, c〉

COUNT : 〈a, a〉




ct

INPUTc : 〈c〉

COUNT : 〈a〉



c


ct

INPUTc : 〈c〉

COUNT : 〈a〉



c

Figure 3: A derivation tree for the string “aabbcc”

• v subcat is a super type for verbs with subcategorized complement;

• v np for verbs subcategorizing for a noun phrase complement, such as loved;

• v s for verbs subcategorizing for a sentence complement, such as wondered;

• npq for interrogative noun phrases, such as whom;

• sq for sentences that start with an interrogative noun phrase, realizing a transposed constituent, for
example whom Jacob loved;

• vpslash for verb phrases in which a subcategorized complement is missing. vpslash has an additional
feature, SLASH, for the missing phrase;

• sslash for sentences consisting of a noun phrase, followed by a slashed verb phrase. sslash also has a
SLASH feature for the missing element.

Figure 6 demonstrates a derivation tree of the string Laban wondered whom Jacob loves with this grammar.

4 Simulation of RTUG by RCG

Let Gug = 〈R, As,L〉 be an RTUG over a restricted type signature 〈TYPES,v, FEATS, Approp〉. In this
section we show how to construct an RCG Grcg = (N,T, V, P, S) such that L (Gug) = L (Grcg).We show
how to simulate each rule r ∈ R by an equivalent clause p ∈ P , where each main TFS is mapped to a
predicate, whose name is the type of the TFS, and where the feature values are mapped to the predicate

17



Signature main
start INPUTstart : bi list
v INPUTv : bi list
v subcat INPUTvs : bi list

v np
v s

np INPUTnp : bi list
npq INPUTnpq : bi list
sq INPUTsq : bi list
s slash INPUTs slash : bi list SLASHs : bi list
vp INPUTvp : bi list
vp slash INPUTvp slash : bi list SLASHvp : bi list

terminal
Jacob
Rachel
Laban
whom
loves
wondered
...

Lexicon

loves →

[
v np

INPUTv : 〈loves〉

]
, wondered →

[
v s

INPUTv : 〈wondered〉

]

Jacob →

[
np

INPUTnp : 〈Jacob〉

]
, Rachel →

[
np

INPUTnp : 〈Rachel〉

]

Laban →

[
np

INPUTnp : 〈Laban〉

]
, whom →

[
npq

INPUTnpq : 〈whom〉

]

Figure 4: An RTUG, Glongdist

arguments. In addition, in order to simulate unification between TFSs, P also includes a set of unification
clauses for every two types in TYPES that have a common upper bound. Also, for every rule r ∈ R, if the
type t of the mother TFS is not maximal, then for every type s that is subsumed by t, there is an additional
clause in P , where the name of the predicate in the head is s.

Definition 30 (RCG mapping of RTUG). Fix an RTUG Gug = 〈R, As,L〉 over a restricted type signa-
ture 〈TYPES,v, FEATS, Approp〉. The RCG mapping of Gtug, denoted by TUG2RCG (Gtug), is an RCG
Grcg = 〈N,T, V, S〉, such that:

• T = {t | terminal @ t};

• N = {Nt | main @ t}. For each Nt ∈ N , ar (Nt) = |{f | Approp (t, f) ↓}|;

• Let k be the maximal arity of any non-terminal Nt ∈ N ; let d be the maximal number of daughters in
any rule r ∈ R. Then V = {X1, . . . , Xk×d};

• for every p ∈ P , either:

– p is a unification clause, as in Definition 31 below, or
– there is a rule r ∈ R, such that p is part of rule2clause (r), as in Definition 32 below, or
– there is a lexical entry l ∈ L, such that p is part of rule2clause (l), as in Definition 33 below.

18



Rules
start rule :

(1)

[
start

INPUTstart : 1 · 2

]
→

[
np

INPUTnp : 1 bi list

][
vp

INPUTvp : 2 bi list

]

queue rule :

(2)

[
sq

INPUTsq : 1 · 2

]
→

[
npq

INPUTnp : 1 bi list

]
s slash

INPUTs slash : 2 bi list

SLASHs : 1


slash rules :

(3)


s slash

INPUTs slash : 1 · 2

SLASHs : 3

→
[

np

INPUTnp : 1 bi list

]
vp slash

INPUTvp slash : 2 bi list

SLASHvp : 3



(4)


vp slash

INPUTvp slash : 1 bi list

SLASHvp : 2

→
[

v np

INPUTvs : 1 bi list

]

(5)


vp slash

INPUTvp slash : 1 · 2

SLASHvp : 3

→
[

v s

INPUTvs : 1 bi list

]
s slash

INPUTs slash : 2 bi list

SLASHs : 3 bi list



(6)


s slash

INPUTs slash : 1

SLASHs : 2

→
[

vp

INPUTvp : 1

]

vp rules :

(7)

[
vp

INPUTvp : 1

]
→

[
v

INPUTv : 1 bi list

]

(8)

[
vp

INPUTvp : 1 · 2

]
→

[
v s

INPUTvs : 1 bi list

][
start

INPUTstart : 2 bi list

]

(9)

[
vp

INPUTvp : 1 · 2

]
→

[
v s

INPUTvs : 1 bi list

][
sq

INPUTsq : 2 bi list

]

(10)

[
vp

INPUTvp : 1 · 2

]
→

[
v np

INPUTvs : 1 bi list

][
np

INPUTnp : 2 bi list

]

Figure 5: An RTUG, Glongdist (continued)

19



[
start

INPUTstart : 〈Laban,wondered, whom, Jacob, loves〉

]

[
np

INPUTnp : 〈Laban〉

]

Laban

[
vp

INPUTvp : 〈wondered, whom, Jacob, loves〉

]

[
vs

INPUTv : 〈wondered〉

]

wondered

[
sq

INPUTsq : 〈whom, Jacob, loves〉

]

[
npq

INPUTnp : 〈whom〉

]

whom


s slash

INPUTsl : 〈Jacob, loves〉

SLASH : 〈whom〉



[
np

INPUTnp : 〈Jacob〉

]

Jacob


vp slash

INPUTvpl : 〈loves〉

SLASH : 〈whom〉



[
v np

INPUTvs : 〈loves〉

]

loves

Figure 6: A derivation tree of the string Laban wondered whom Jacob loves

20



4.1 Mapping of type signatures to RCG clauses

The type hierarchy of the signature is mapped to unification clauses in P that simulate the unification
between every two types in TYPES that have a common upper-bound. First, we set the number of variables,
f , needed for expressing RCG clauses; this is the number of features appropriate for tmax, the type with
the most appropriate features. We then define an RCG clause for each pair of types that have a common
subtype.

Definition 31 (Simulation of the type signature). Let tmax ∈ TYPES be the subtype of main with the
maximal number of appropriate features. Let f be the number of features appropriate for tmax. Let
V ′ = {X1, . . . , Xf} ⊆ V be a set of variables. Then, for every t1, t2 ∈ TYPES such that t1 @ t2,
main @ t1, and t1 and t2 have k ≤ f features, the following clause is included in P :

t1 (X1, . . . , Xk)→ t2 (X1, . . . , Xk)

Example 15. The following type hierarchy:

main
counter INPUTcounter: bi list COUNT: bi list

at
bt
ct

is simulated by the following unification clauses in Grcg:

counter (X1, X2) → at (X1, X2)
counter (X1, X2) → bt (X1, X2)
counter (X1, X2) → ct (X1, X2)

4.2 Mapping of UG rules to RCG clauses

We now show how UG rules are mapped to an RCG clause p, where:

• The mother of the rule is mapped to a predicate in the head of the clause;

• Every daughter of the rule is mapped to a predicate in the body of the clause.

The predicate mapping of a main TFS is as follows:

• The name of the predicate is the type of the TFS;

• The arity of the predicate is the number of features of the TFS;

• Each feature value of the TFS is mapped to an argument of the predicate.

In addition, if the type t of the mother of the rule is not maximal, then for every type s that is subsumed by
t, there is an additional clause q, such that:

• The mother of the rule is mapped to a predicate in the head of q, whose name is s instead of t, and
whose arguments are the same as the arguments of the predicate in the head of p;

• The body of the clause is the same as q.

21



Definition 32 (RCG clause mapping of a rule). Let r ∈ R be a unification rule of the form:

A0 → A1 . . . An

where for every i, 0 ≤ i ≤ n, Ai is a main TFS of type ti, that has ki features. Let TAGS (r) be the
ordered set of tags in r, and let d = |TAGS (r)|. Then p ∈ P is the RCG clause mapping of r, denoted by
rule2clause (r), and is defined as follows:

• A0 is mapped to a predicate ψ0 in the head of p;

• For every i, 1 ≤ i ≤ n, Ai is mapped to a predicate ψi in the body of p.

Assume, without lost of generality, that TAGS (r) =
{

1 , . . . , d
}

. Let Vp = {X1, . . . , Xd} be an ordered
set of RCG variables.

Let A be a main TFS in r of the form:

A =


t

F1 : B1

...
Fk : Bk


such that for every i, 1 ≤ i ≤ k, Bi is a bi list TFS. The predicate mapping of A, denoted by tfs2pred (A),
is:

tfs2pred (A) = Nt (α1, . . . , αk) ,

where for every i, 1 ≤ i ≤ k, αi = feat2arg (Bi) is an argument mapping of Bi, defined as follows:

• If Bi = elist, then feat2arg (Bi) = ε;

• If Bi = 〈a〉, such that a is a terminal, then feat2arg (Bi) = a;

• If Bi =
[
bi list

]
, and Bi is marked with a tag l , then feat2arg (Bi) = Xl;

• If Bi = 〈a〉 · C, such that a is a terminal and C is a bi list, then feat2arg (Bi) = a · δ, such that
δ = feat2arg (C);

• If Bi = C ′ · C, such that C ′ =
[
bi list

]
, marked with a tag l and C is a bi list, then feat2arg (Bi) =

Xl · δ, such that δ = feat2arg (C).

Let t be the type of A0. If t is not maximal, then for every type s, such that t @ s, r is mapped to an
additional clause q ∈ P , such that:

• The head of the clause is a predicate of the form Ns (α1, . . . , αk), where for every i, 1 ≤ i ≤ k,
αi = feat2arg (Bi), and

• The body of the clause is the same as in rule2clause (r).

22



Example 16. The following UG rule
bt

INPUTbt : b · 1 bi list

COUNT : 2 bi list · 3 bi list

→


bt

INPUTbt : 〈b〉

COUNT : 2




bt

INPUTbt : 1

COUNT : 3


is simulated by the following RCG clause:

bt (bX1, X2X3)→ bt (b,X2) bt (X1, X3)

Observe that:

• The INPUTbt feature value of the mother is a concatenation of a terminal and some implicit bi list, so
it is mapped to a concatenation of a terminal and a variable (bX1);

• The COUNT feature value of the mother is a concatenation of two implicit bi list, so it is mapped to a
concatenation of two variables (X2X3);

• The INPUTbt feature value of the first daughter contains only one terminal, so it is mapped to an
argument that also contains the same terminal;

• The COUNT feature value of the first daughter is a sublist of the COUNT feature value of the mother,
so it is mapped to an argument that reuses the same variable as the mother’s;

• The feature values of the second daughter are both sublists of the feature values of the mother, so they
are mapped to arguments that reuse the same variables as the mother’s.

4.3 Mapping the lexicon to RCG clauses

Each lexical entry is mapped to a clause in P , where the head of the clause is the predicate mapping of the
pre-terminal, and the body of the clause is ε. In addition, if the type t of the pre-terminal is not maximal,
then for every type s that is subsumed by t, there is an additional clause in P , where the head of the clause
is the predicate mapping of the pre-terminal, but its name is s instead of t.

Definition 33 (mapping of RTUG lexicon to RCG clauses). Let a be a word in WORDS, and A ∈ L (a),
such that A is a main TFS of the form:

A =



t

INPUTt : 〈a〉

F1 : B1

...
Fk : Bk


and for every i, 1 ≤ i ≤ k, Bi is a bi list. Then A is mapped to a clause p as follows:

p = Nt (a, α1, . . . , αk)→ ε,

23



where for every i, 1 ≤ i ≤ k, αi = feat2arg (Bi).
Let t @ s. A is also mapped to a clause q as follows:

p = Ns (a, α1, . . . , αk)→ ε,

where for every i, 1 ≤ i ≤ k, αi = feat2arg (Bi).

Example 17. The following lexical entry

b→


bt

INPUTbt : 〈b〉

COUNT : 〈a〉


is mapped to the following RCG clause:

bt (b, a)→ ε

Example 18. Let l be following lexical entry

l = sheep→

[
np

INPUTnp : 〈sheep〉

]
,

such that np
◦
@ np sg and np

◦
@ np pl. Then l is mapped to the following RCG clauses:

np (sheep,X1)→ ε

np sg (sheep,X1)→ ε

np pl (sheep,X1)→ ε

4.4 Examples

We demonstrate the mapping of RTUG to equivalent RCGs on the two grammars presented in Section 3.7.

Example 19. (anbncn) Here is the RCG mapping of Gabc that was presented in Example 13. anbncn

language is very natural for RCG, and a direct implementation of an RCG grammar for it, which requires
only 3 clauses, was demonstrated in Example 1. The RCG that is produced by our mapping is slightly more
complicated. It has four non-terminals: start, which is the mapping of the type start, and at, bt and ct, which
are the mappings of the types at, bt and ct, where the first argument is the mapping of the input feature
and the second argument is the mapping of COUNT feature. We do not need a non-terminal mapping of the
supertype counter, since there is no TFSs of this type in the grammar rules. For the same reason, there is no
need in unification clauses. The clauses obtained from the rules are:

(clause1) start (XY Z) → at (X,X) bt (Y,X) ct (Z,X)
(clause2) at (aX, aY ) → at (a, a) at (X,Y )
(clause3) bt (bX, aY ) → bt (b, a) bt (X,Y )
(clause4) ct (cX, aY ) → ct (c, a) ct (X,Y )

24



The clauses obtained from the lexicon are:

(clause5) at (a, a) → ε
(clause6) bt (b, a) → ε
(clause7) ct (c, a) → ε

Compare the grammar above with the grammar of Example 1, which generates the same language.
To demonstrate the operation of the grammar, we describe below a derivation of the string aabbcc with

this grammar:
(clause1) start (aabbcc) → at (aa, aa) bt (bb, aa) ct (cc, aa)
(clause2) at (aa, aa) → at (a, a) at (a, a)
(clause5) at (a, a) → ε
(clause3) bt (bb, ab) → bt (b, a) bt (b, a)
(clause6) bt (b, a) → ε
(clause4) ct (cc, aa) → ct (c, a) ct (c, a)
(clause7) ct (c, a) → ε

Example 20 (Long distance dependencies). The RCG mapping TUG2RCG (Glongdist) (see Example 14) is:

Unification clauses

v subcat (X) → v s (X)
v subcat (X) → v np (X)

Lexicon clauses

v np (loves) → ε
v s (wondered) → ε
np (Jacob) → ε
np (Rachel) → ε
np (Laban) → ε
npq (whom) → ε

Rule clauses

start rule : (1) start (XY ) → np (X) vp (Y )

queue rules : (2) sq (XY ) → npq (X) s slash (Y,X)

slash rules : (3) s slash (XY,Z) → np (X) vp slash (Y,Z)
(4) vp slash (X,Y ) → v np (X)
(5) vp slash (XY,Z) → v s (X) s slash (Y, Z)
(6) s slash (X,Y ) → vp (X)

vp rules : (7) vp (X) → v (X)
(8) vp (XY ) → v s (X) start (Y )
(9) vp (XY ) → v s (X) sq (Y )
(10) vp (XY ) → v np (X) np (Y )

25



To demonstrate the operation of the grammar, we list below a derivation of the string Laban wondered whom
Jacob loves with this grammar:

(1) start (Laban wondered whom Jacob loves) → np (Laban) vp (wondered whom Jacob loves)
np (Laban) → ε

(9) vp (wondered whom Jacob loves) → v s (wondered) sq (whom Jacob loves)
v s (wondered) → ε

(2) sq (whom Jacob loves) → npq (whom) s slash (Jacob loves,whom)

npq (whom) → ε

(3) s slash (Jacob loves,whom) → np (Jacob) vp slash (loves,whom)
np (Jacob)) → ε

(4) vp slash (loves,whom) → v np (loves)
v np (loves) → ε

5 Simulation of RCG by RTUG

In this section we define a reverse mapping that, given any RCG, yields a restricted UG whose language
is identical. Since RCG derivations start with the whole input word, and terminate with empty clauses (ε
rules), the UG simulation has 2 phases: in the first phase the UG derivation scans the input word and stores
it in a TFS of type bi list; the second phase starts with the bi list that contains the whole input word, and
simulates the RCG derivation, step by step, where in each step, like in the RCG, the bi list is split to sub-lists
or trimmed, until ε is obtained in all of the branches of the derivation tree. Crucially, the UG simulating an
arbitrary RCG is restricted.

Definition 34 (TUG mapping of RCG). Let Grcg = (N,T, V, P, S) be an RCG. The RTUG mapping
of Grcg, denoted by RCG2TUG (Grcg), is Gtug = 〈R, As,L〉, defined over a restricted type signature
〈TYPES,v, FEATS, Approp〉, such that:

Type signature In addition to the types that are part of every RTUG (Definition 23), the signature of Gug
includes the following types:

• A type S’ such that: main
◦
@ S’ and Approp (S’, INPUTS′) = bi list. S’ is used for phase 1 of

the derivation to collect the input word;

• A type S” such that:

– main
◦
@ S”;

– Approp (S”, INPUTS′′) = bi list; and
– Approp (S”, ARGS′′) = bi list.

S” roots the second phase of the derivation, simulating the derivation steps of Grcg. The input
feature is added only to adhere to the restrictions of restricted type signatures (Definition 23).
During the entire derivation phase, the input feature of the TFSs is always empty (elist).

• For every RCG non-terminalA ∈ N such that ar (A) = k, there is a type A ∈ TYPES such that:

– main
◦
@ A;

– Approp (A, INPUTA) = bi list;
– Approp (A, ARGA) = bi list; and

26



– for every i, 1 ≤ i ≤ k, Approp
(
A, ARGiA

)
= bi list.

• For every RCG terminal α ∈ T there is a type α ∈ TYPES such that terminal
◦
@ α, and α is

featureless.

Lexicon L (α) = {A} if an only if α ∈ T , and A is of the form:

A =

[
S’

INPUTS′ : 〈α〉

]

Start symbol

As =

[
start

INPUTstart : 1 bi list

]

rules R includes the following rules:

• The start rule is of the form:

start

INPUTstart : 1 bi list

→ [
S’

INPUTS′ : 1

]
S”

INPUTS′′ : elist

ARGS′′ : 1


• To collect the input word in the first phase of the derivation, R always includes the following

rules: [
S’

INPUTS′ : 1 · 2

]
→

[
S’

INPUTS′ : 1 〈terminal〉

][
S’

INPUTS′ : 2 bi list

]
[

S’

INPUTS′ : elist

]
→ ε

• The second phase of the derivation is the actual simulation of Grcg derivation steps. For this
phase, for every clause p ∈ P there is a rule r ∈ R, such that r = clause2rule (p); see
Definition 35 below.

Definition 35 (Rules simulating RCG clauses). Let p be a clause in P ,

p = ϕ0 → ϕ1 . . . ϕn

such that for every i, 0 ≤ i ≤ n, ϕi is a predicate with non-terminal Ni and arity ki of the form
Ni

(
αi1 . . . α

i
ki

)
, and for every j, 1 ≤ j ≤ ki, αij ∈ T

⋃
V ∗. Then r ∈ R is the rule mapping of p,

denoted by r = clause2rule (p), where

r = A0 → A1 . . . An

27



such that, for every i, 0 ≤ i ≤ n, Ai is the TFS mapping of predicate ϕi, denoted pred2tfs (ϕi), and defined
as follows: Ai is a TFS of type Ni with ki + 1 features of type bi list:

Ai =



Ni

INPUTNi : elist

ARG1Ni
: Bi

1

...
ARGkiNi

: Bi
ki


where for every j, 1 ≤ j ≤ ki,Bi

j is a TFS of type bi list that is the mapping of the argument αij as described
in Definition 36 below. If ϕi is the start symbol S (α), then the type of Ai is S′′.

If p is an ε clause of the form p = N0 (α1, . . . , αk)→ ε, then clause2rule (p) is the following rule:

N0

INPUTN0 : elist

ARG1N0
: B1

...

ARGkN0
: Bk


→ ε

where for every i, 1 ≤ i ≤ k, Bi is a TFS of type bi list that is the mapping of the argument αi as described
in Definition 36.

Definition 36 (bi list mapping of RCG arguments). Let α ∈ T
⋃
V ∗. Then arg2feat (α), its bi list mapping,

is a TFS of type bi list defined as follows:

• if α = ε, then arg2feat (α) = elist;

• if α = a, a ∈ T , then arg2feat (α) = 〈a〉;

• if α = Xl, Xl ∈ V , then arg2feat (α) = l bi list;

• if α = a · δ, where a ∈ T and δ ∈ T
⋃
V ∗, then arg2feat (α) = 〈a〉 ·B, where B = arg2feat (δ);

• if α = Xl · δ, where Xl ∈ V and δ ∈ T
⋃
V ∗, then arg2feat (α) = l bi list · B, where B =

arg2feat (δ).

Example 21. (bi list Mapping of RCG arguments) Let α = aX1X2, such that a ∈ T and X1, X2 ∈ V , then

arg2feat (α) = 〈a〉 · 1 bi list · 2 bi list

where terminal
◦
@ a.

Example 22 (Gprime). We demonstrate how Gprime of Example 4 is mapped to an RTUG. The types in
TYPES are obtained from Gprime predicates, where:

• The types start, S’, S”, terminal, node and bi list are fixed types, generated for every RTUG;

28



• The types A, eq, NonEmpty, Len2 and MinLen2 are mappings of Gprime non-terminals;

• The type a is a mapping of the only Gprime terminal, a.

The complete type signature is:

main
start INPUTstart: bi list
S’ INPUTS′: bi list
S” INPUTS′′: bi list ARGS′′: bi list
A INPUTA: bi list ARG1A: bi list

ARG2A: bi list ARG3A: bi list
ARG4A: bi list

eq INPUTeq: bi list ARG1eq : bi list ARG2eq : bi list
NonEmpty INPUTNonEmpty: bi list ARG1NonEmpty : bi list
Len2 INPUTLen2: bi list ARG1Len2: bi list
MinLen2 INPUTMinLen2: bi list ARG1MinLen2: bi list

terminal
a

node
null
ne node CURR:terminal PREV:node NEXT:node

bi list
elist
ne bi list HEAD:ne node TAIL:ne node

Since there is only one terminal in T , the lexicon has only one entry:

a→

[
S’

INPUTS′ : 〈a〉

]

R includes the start rule and phase 1 rules(Definition 34). In addition, R includes the rule mappings of
Gprime clauses, as follows:

1. S (aa)→ ε 
S”

INPUTS′′ : elist

ARGS′′ : 〈a, a〉

→ ε

2. S (aaa)→ ε 
S”

INPUTS′′ : elist

ARGS′′ : 〈a, a, a〉

→ ε

29



3. S (XaY )→ A (X,XaY,X,XaY ) eq (X,Y )


S”

INPUTS′′ : elist

ARGS′′ : 1 bi list · 〈a〉 · 2 bi list

→



A

INPUTA : elist

ARG1A : 1

ARG2A : 1 · 〈a〉 · 2

ARG3A : 1

ARG3A : 1 · 〈a〉 · 2




eq

INPUTeq : elist

ARG1eq : 1

ARG2eq : 2



4. A (aX, aY, Z,W )→ A (X,Y, Z,W )

A

INPUTA : elist

ARG1A : 〈a〉 · 1 bi list

ARG2A : 〈a〉 · 2 bi list

ARG3A : 3 bi list

ARG4A : 4 bi list


→



A

INPUTA : elist

ARG1A : 1

ARG2A : 2

ARG3A : 3

ARG4A : 4


5. A (ε, Y, Z,W )→ A (Z, Y, Z,W )

A

INPUTA : elist

ARG1A : elist

ARG2A : 2 bi list

ARG3A : 3 bi list

ARG4A : 4 bi list


→



A

INPUTA : elist

ARG1A : 3

ARG2A : 2

ARG3A : 3

ARG4A : 4


6. A (X, ε, aZ,W )→ A (Z,W,Z,W )NonEmpty (X)MinLen2 (Z)

A

INPUTA : elist

ARG1A : 1 bi list

ARG2A : elist

ARG3A : 〈a〉 · 3 bi list

ARG4A : 4 bi list


→



A

INPUTA : elist

ARG1A : 3

ARG2A : 4

ARG3A : 3

ARG4A : 4




NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 1




MinLen2

INPUTMinLen2 : elist

ARG1MinLen2 : 3



30



7. A (X, ε, Z,W )→ NonEmpty (X)Len2 (Z)

A

INPUTA : elist

ARG1A : 1 bi list

ARG2A : elist

ARG3A : 3 bi list

ARG4A : 4 bi list


→


NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 1




Len2

INPUTLen2 : elist

ARG1Len2 : 3



8. eq (aX, aY )→ eq (X,Y ) 
eq

INPUTeq : elist

ARG1eq : 〈a〉 · 1 bi list

ARG2eq : 〈a〉 · 2 bi list

→


eq

INPUTeq : elist

ARG1eq : 1

ARG2eq : 2


9. eq (ε, ε)→ ε 

eq

INPUTeq : elist

ARG1eq : elist

ARG2eq : elist

→ ε

10. NonEmpty (aX)→ ε 
NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 〈a〉 · 1 bi list

→ ε

11. Len2 (aa)→ ε 
Len2

INPUTLen2 : elist

ARG1Len2 : 〈a, a〉

→ ε

12. MinLen2 (aX)→ NonEmpty (X)
MinLen2

INPUTMinLen2 : elist

ARG1MinLen2 : 〈a〉 · 1 bi list

→


NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 1


31



6 Proof of correctness (sketch)

In this section we sketch the proof of the main result of this work, namely that LRTUG = LRCG. We first
prove that LRCG ⊆ LRTUG, by proving the correctness of the RCG2TUG mapping (Definition 34), and
then that LRTUG ⊆ LRCG, by proving the correctness of the TUG2RCG mapping (Definition 30). While
the proofs are technical, they are not difficult. We only provide the outline in this section; readers interested
in the full details are referred to Peled (2011).

6.1 Instantiated grammar

As a technical aid, we first define, for a constrained unification grammar G, a set of instantiated grammars.
Each grammar in this set is designed to generate at most one word. More precisely, the instantiated grammar
G|w is obtained from G by restricting it to a specific word w, such that L(G|w) = {w} if w ∈ L(G), and is
empty otherwise. Crucially, while G|w is a unification grammar, it is formally equivalent to a context-free
grammar.

We start by defining instantiated bi lists, TFSs and rules, in a similar way to instantiated predicates
and clauses (Definition 15). Given a word w ∈ WORDS∗, a list instantiation of w is a TFS of type bi list
whose content is a substring of w.

Example 23 (list instantiation). Let w = abbb and B = 〈a〉 · 1 bi list. IB = 〈a, b, b〉 is a list instantiation
of B and w.

Given a word w ∈ WORDS∗, and a main TFS A, the instantiated TFS of A and w is a maximally
specific main TFS IA, such that A v IA, and where the contents of the feature values are substrings of w.

Example 24 (Instantiated TFS). LetA be a TFS over the signature presented in Example 13, andw = aabb.
Let

A =


counter

INPUT : 1 bi list

COUNTER : 〈a〉 · 1


The following TFS, IA, is an instantiated TFS of A and w:

IA =


at

INPUT : 〈a〉

COUNTER : 〈a, a〉


Given a word w ∈ WORDS∗, an RTUG G over S, and a rule r ∈ R, r′ is an instantiated rule of r and

w, if r subsumes r′, and every TFS of r′ is an instantiated TFS of w.

Example 25. (Rule instantiation) Let

r =


at

INPUTcounter : 1 · 2

COUNT : 〈a〉 · 3

→


at

INPUTcounter : 1 bi list

COUNT : 〈a〉




bt

INPUTcounter : 2 bi list

COUNT : 3 bi list

 ,
32



and w = aabb. The following is an instantiated rule of r and w:

r′ =


at

INPUTcounter : 〈a, b, b〉

COUNT : 〈a, b, b〉

→


at

INPUTcounter : 〈a〉

COUNT : 〈a〉




bt

INPUTcounter : 〈b, b〉

COUNT : 〈b, b〉

 ,
where 〈a〉 is the list instantiation of 1 , and 〈b, b〉 is the list instantiation of 2 and 3 (see the definition of
list instantiation above).

The set of all instantiated rules of G and w is the instantiated grammar of G and w, denoted by G|w .
For every RTUG G and w ∈ WORDS∗, w ∈ L (G) if and only if w ∈ L

(
G|w

)
.

6.2 Direction 1: LRCG ⊆ LRTUG
For every RCG G, there exists an RTUG Gtug, such that L (G) = L (Gtug). Obviously, we choose Gtug =
RCG2TUG (G), and show first that L (G) ⊆ L (Gtug), and then that L (Gtug) ⊆ L (G).

First we establish the commutativity of string instantiation and bi list instantiation with arg2feat (Defi-
nition 35). See the commutative diagram below:

α
arg2feat−→ A = arg2feat (α)

string inst. ↓ ↓ list inst.

u
arg2feat−→ B = arg2feat (u)

Then we establish the commutativity of instantiation (of predicates and of TFSs), with pred2tfs (Defini-
tion 35). See the commutative diagram below:

ϕ
pred2tfs−→ A = pred2tfs (ϕ)

pred. inst. ↓ ↓ TFS inst.

ψ
pred2tfs−→ IA = pred2tfs (ψ)

We then prove that L (G) ⊆ L (Gtug) by showing that if w ∈ L (G), then w ∈ L
(
Gtug |w

)
, implying

that w ∈ L (Gtug). L (Gtug) ⊆ L (G) is established by showing that if w ∈ L
(
Gtug |w

)
, then w ∈ L (G).

Recall that w ∈ L
(
Gtug |w

)
if and only if w ∈ L (Gtug).

6.3 Direction 2: LRTUG ⊆ LRCG
Conversely, for every RTUG G, there exists an RCG Grcg, such that L (G) = L (Grcg). In a similar
way to Direction 1 of the proof, we choose Grcg = TUG2RCG (G), (Definition 30), and show first that
L (G) ⊆ L (Grcg), and then that L (Grcg) ⊆ L (G).

First, we define a hierarchy over non-terminals and predicates of RCG that is equivalent to the
hierarchy over types and TFSs of RTUG: In general, given an RTUG G over a signature S, and an RCG

33



Grcg = TUG2RCG (G), we say that the non-terminal Nt ∈ N subsumes the non-terminal Ns ∈ N , if the
type t subsumes the type s in S. We say that a predicate ϕ subsumes the predicate ψ, if the non-terminal
of ϕ subsumes the non-terminal of ψ, and every argument of ϕ is a string instantiation of the corresponding
argument of ϕ. A predicate that is subsumed by no other predicate is called a maximum predicate.

Example 26. Consider Glongdist and TUG2RCG (Glongdist) of Example 14:

• v subcat (X) subsumes v np (loves), because v subcat v v np;

• v np is a maximum type and v np (loves) is a maximum predicate.

We establish that string instantiation and bi list instantiation commute with feat2arg (Definition 32). See
the following commutative diagram:

B
feat2arg−→ α = feat2arg (B)

list inst. ↓ ↓ string inst.

C
feat2arg−→ ρ = feat2arg (C)

We then address the commutativity of instantiation and the mapping between TFSs and predicates. Unlike
the previous direction, in a general RTUG a TFS A and its instantiated TFS IA can be of different types.
In this case, we cannot claim that tfs2pred (IA) is an instantiated predicate of tfs2pred (A), since they may
have different non-terminals. What we can claim, however, is that tfs2pred (A) subsumes tfs2pred (IA). See
the following commutative diagram:

A
tfs2pred−→ ϕ = tfs2pred (A)

TFS inst. ↓ ↓ subsumes

IA
tfs2pred−→ ψ = tfs2pred (IA)

Example 27. Consider the following fragment of the signature of Glongdist, repeated from Example 14:

Signature

main
v subcat INPUTvs:bi list

v np
v s

...

Consider further the TFS

A =

[
v subcat

INPUTvs : 1 bi list

]
Let w = loves, so the instantiated TFS of A and w is:

IA =

[
v np

INPUTvs : 〈loves〉

]

34



tfs2pred (A) = ϕ = v subcat (X) , X ∈ V
tfs2pred (IA) = ψ = v np (loves)

Clearly, ψ is not an instantiated predicate of ϕ. However, given the unification clauses of the grammar
TUG2RCG (Glongdist):

v subcat (X) → v np (X)
v subcat (X) → v s (X)

we can see that v subcat subsumes v np and ϕ subsumes ψ.

We then prove that if tfs2pred (A) subsumes tfs2pred (B), then A v B. See the following commutative
diagram:

A
tfs2pred−→ ϕ = tfs2pred (A)

v ↓ ↓ subsumes

B
tfs2pred−→ ψ = tfs2pred (B)

Finally, we prove that L (G) ⊆ L (Grcg) by showing that if w ∈ L
(
G|w

)
, then w ∈ L (Grcg). Recall that

w ∈ L
(
G|w

)
if and only ifw ∈ L (G). L (Grcg) ⊆ L (G) is established by showing that ifw ∈ L

(
Grcg |w

)
,

then w ∈ L (G).

7 Conclusions

The main contribution of this work is the definition of a restricted version of typed unification grammars,
RTUG, which is polynomially-parsable. Furthermore, RTUG generates exactly the class of languages recog-
nizable in deterministic polynomial time. We prove this result by showing a conversion algorithm between
RTUG and Range Concatenation Grammar (RCG), a grammatical formalism that generates exactly the
class of polynomially recognizable languages. We also demonstrate RTUGs that generate formal languages,
anbncn and aprime, and RTUGs that describe natural languages phenomena, long distance dependencies and
word scrambling.

RTUG is a highly restricted variant of unification grammars, allowing features of a single type only,
bi-directional lists of terminals. This fact makes the development of grammars in this formalism rather
difficult. Compared to other highly restricted versions of UG, One-reentrant unification grammars and
PLPATR (Section 2.2), RTUG rules and feature structures are very limited in the type of values their features
are allowed to take. At the same time, RTUG imposes no constraints on grammar rule reentrancies. One-
reentrant UG and PLPATR, on the other hand, do not limit the values of the features, while reentrancy is
extremely limited. Both formalisms generate classes of languages that are strictly included in the class of
polynomially recognizable languages (TAL and LCFRS).

A possible extension of this work, therefore, would be a formalism combining the benefits of RTUG and
one-reentrant UG (or PLPATR). In this combined formalism, feature structures would allow features of type
bi-directional lists of terminal, in which reentrancy is not limited, along with other features, with unlimited
values, where reentrancy is limited, according to the constraints of one-reentrant UG (or PLPATR). Such
a formalism would facilitate the design of natural language grammars, allowing simple implementation of
linguistic phenomena like agreement, while at the same time guaranteeing efficient recognition time.

35



References

G. Edward Barton, Jr., Robert C. Berwick, and Eric Sven Ristad. The complexity of LFG. In G. Edward
Barton, Jr., Robert C. Berwick, and Eric Sven Ristad, editors, Computational Complexity and Natural
Language, Computational Models of Cognition and Perception, chapter 4, pages 103–114. MIT Press,
Cambridge, MA, 1987.

Eberhard Bertsch and Mark-Jan Nederhof. On the complexity of some extensions of rcg parsing. In Proceed-
ings of the Seventh International Workshop on Parsing Technologies (IWPT-2001). Tsinghua University
Press, October 2001. ISBN 7-302-04925-4.

Pierre Boullier. A generalization of mildly context-sensitive formalisms. In Proceedings of the Fourth In-
ternational Workshop on Tree Adjoining Grammars and Related Frameworks, pages 17–20, Philadelphia,
1998a. University of Pennsylvania.

Pierre Boullier. Proposal for a natural language processing syntactic backbones. Research Report 3342,
INRIA-Rocquencourt, France, 1998b.

Pierre Boullier. Chinese numbers, MIX, scrambling, and range concatenation grammars. In Proceedings of
the ninth conference on European chapter of the Association for Computational Linguistics, pages 53–60,
Morristown, NJ, USA, 1999. Association for Computational Linguistics. doi: http://dx.doi.org/10.3115/
977035.977044.

Pierre Boullier. Range concatenation grammars. In John Carroll Harry Bunt and Giorgio Satta, editors, New
Developments in Parsing Technology, pages 269–289. Springer, Netherlands, 2000.

Bob Carpenter. The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1992.

Ann Copestake. The (new) LKB system. Technical report, Stanford University, September 1999.

Ann Copestake. Implementing Typed Feature Structure Grammars. CSLI Publications, Stanford, 2002.

Daniel Feinstein and Shuly Wintner. Highly constrained unification grammars. Journal of Logic,
Language and Information, 17(3):345–381, 2008. URL http://dx.doi.org/10.1007/
s10849-008-9062-9.

Nissim Francez and Shuly Wintner. Unification grammars. Cambridge University Press, New York, NY,
2012. URL http://cl.haifa.ac.il/ug.

Efrat Jaeger, Nissim Francez, and Shuly Wintner. Unification grammars and off-line parsability. Journal of
Logic, Language and Information, 14(2):199–234, 2005.

Mark Johnson. Attribute-Value Logic and the Theory of Grammar, volume 16 of CSLI Lecture Notes. CSLI,
Stanford, California, 1988.

Laura Kallmeyer, Wolfgang Maier, and Yannick Parmentier. An Earley parsing algorithm for range con-
catenation grammars. In Joint conference of the 47th Annual Meeting of the Association for Com-
putational Linguistics and the 4th International Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Processing (ACL-IJCNLP 2009), 2009. URL http:
//hal.inria.fr/inria-00393980/en/.

36

http://dx.doi.org/10.1007/s10849-008-9062-9
http://dx.doi.org/10.1007/s10849-008-9062-9
http://cl.haifa.ac.il/ug
http://hal.inria.fr/inria-00393980/en/
http://hal.inria.fr/inria-00393980/en/


Bill Keller and David Weir. A tractable extension of linear indexed grammars. In Proceedings of the seventh
conference on European chapter of the Association for Computational Linguistics, pages 75–82, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. doi: http://dx.doi.org/10.3115/976973.
976985.

Hadas Peled. Polynomially-parsable unification grammars. Master’s thesis, Department of Computer Sci-
ence, University of Haifa, November 2011.

37


	Introduction
	Related work
	Typed Unification Grammars
	Constrained Unification Grammars
	Range Concatenation Grammars

	Restricted Typed Unification Grammars
	Representing Lists of Terminals with TFSs
	Restricted type signatures
	Restricted TFS
	Restricted lexicon
	Restricted rules
	Restricted Unification Grammars
	Examples of Restricted TUG

	Simulation of RTUG by RCG
	Mapping of type signatures to RCG clauses
	Mapping of UG rules to RCG clauses
	Mapping the lexicon to RCG clauses
	Examples

	Simulation of RCG by RTUG
	Proof of correctness (sketch)
	Instantiated grammar
	Direction 1: LRCG LRTUG
	Direction 2: LRTUG LRCG

	Conclusions

