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Abstract. Positioning of valves is a real-life issue in Water Distribution
System design and, currently, it is usually addressed by hand by hydraulic
engineers, or by means of genetic algorithms, that give no assurance of
optimality. Since a given valves placement identifies a sectorization of the
WDS in several isolable portions, the valves positioning problem can be
seen as a variant of the well known graph partitioning, which is a hard
combinatorial problem. [2] showed recently that Computational Logic
can provide technologies and techniques that can be exploited to model
and achieve the optimal partition of the water network (i.e., the optimal
positioning of valves). In particular, they tackled the optimization of the
valves positioning through a two player game model, giving a Constraint
Logic Programming formalization to solve it effectively. The aim of this
paper, instead, is to investigate the potential of Answer Set Programming
in this practical application; evaluation is in terms both of language
expressivity and solving efficiency. Results are discussed for different ASP
models and a comparison with the CLP(FD) technique shown by [2] will
be given.

1 Introduction

During the design of a water distribution network, one of the choices is the
design of the isolation system. It is a real-life problem for hydraulic engineers,
and in recent years it has been studied through computational methods in the
hydroinformatics literature [13].

A water distribution system has the main objective of providing water to
homes and facilities that require it. The water distribution network can be
thought as a labelled indirected graph, in which the edges represent the pipes
in the network. There is at least one special node that represents the source of
water (node 1 in Figure 1), and the users’ homes are connected to the edges. For
each edge, we assume to have knowledge about the average amount of water (in
litres per second) that is drawn by the users insisting on that edge (during the
day); such value is the label associated to the edge, and it is called the users’
demand.

The isolation system is mainly used during repair operations: in case some
pipe is damaged, it has to be fixed or substituted. However, no repair work can
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Fig. 1. A water distribution network with valves

be done while the water is flowing at high pressure in the pipe: first the part of
the network containing the broken pipe should be de-watered, then workers can
fix the pipe. The de-watering is performed by closing a set of isolation valves,
that make up the so-called isolation system of the water distribution network.
For example, in Figure 1, if the edge connecting nodes 2 and 3 (let us call it e2,3)
is broken, workers can close valves v2,3 and v3,6 and de-water the broken pipe.
Of course, during this pipe substitution the users that take water from edge e2,3
cannot be serviced. The usual measure of disruption is the undelivered demand:
in this case, it corresponds to the demand of the users insisting on the broken
pipe, namely 7l/s.

However, we are not always this lucky: in case the damaged pipe is e7,8,
workers will have to close valves v5,7 and v6,8, de-watering pipes e7,8 and e6,8,
with a total cost of 6 + 2 = 8l/s. In fact, the minimum set of pipes that will
be de-watered is that belonging to the so-called sector of the broken pipe, i.e.,
the set of pipes encircled by a same set of valves. But there can be even worse
situations: if the broken pipe is e2,5, workers have to close valves v1,2 and v5,4,
which means disconnecting all the pipes except e1,4 and e4,5, with an undelivered
demand of 4+5+7+6+2+5+6+2 = 37l/s. Notice in particular that the edges
e2,3, e7,8 and e6,8 are disconnected in this way, although they do not belong to
the same sector as the broken pipe. This effect is called unintended isolation,
and usually means that the isolation system was poorly designed.

One common value used by hydraulic engineers [13] to measure the quality
of the isolation system is the undelivered demand in the worst case. In the
example of Figure 1, the worst case happens when the broken pipe is in the set
{e1,2, e2,5, e5,6, e5,7}; in this case, as we have seen, the undelivered demand is
37l/s.

In a previous work, [2] developed a system, based on Constraint Logic Pro-
gramming [16] on Finite Domains (CLP(FD)), that finds the optimal positioning
of a given number of valves in a water distribution network. The assignments



found by [2] improved the state-of-the-art in hydraulic engineering for this prob-
lem, finding solutions with a (worst-case) undelivered demand lower than the
best solutions known in the literature of hydraulic engineering [13], obtained
through genetic algorithms.

In this work, we address the same problem in Answer Set Programming [1,
21, 10], and evaluate pros and cons of the two solutions.

The rest of the paper is organized as follows. In Section 2, we provide the
formal definition of the problem, as given in [2]. Section 3 contains two ASP for-
mulations of the valve placement problem. In Section 4 we present experimental
results on a real-life network, taken from the hydraulic engineering literature
[13]. We discuss related work in Section 5, and, finally, we conclude.

2 Problem Description

A water distribution network is modelled as a weighted indirected graph G ≡
(N,E), where N = {1, . . . , n} is a set of nodes and E = {eij} is a set of edges.
Each edge eij has an associated weight w(eij) called demand. In the network,
there are some nodes identified by the set Σ that are called sources. Valves can
be positioned near one of the ends of a pipe; we will refer to valve on edge eij
near to node i as vij , while vji is a valve on the same edge, but close to node j.

Given a number Nv of valves, the objective is to position the valves in the
network such that:

1. it is possible to isolate any pipe in the network. Formally, given an edge eij ,
it is possible to identify a minimal set of valves C to be closed such that there
is no path from any source node s ∈ Σ to the edge eij that does not contain
a valve v ∈ C. Since the set C of valves to be closed depends on the damaged
pipe eij , we will also write C(eij). Note that there is only one reasonable
set C(eij) of valves to be closed given a broken edge eij : intuitively only the
valves directly reachable from eij will be closed.

2. the objective is to minimize the maximum undelivered demand (UD). For-
mally, let D(C) be the set of edges that do not receive water when the valves
in C are closed, i.e., those edges for which there is no path from any source
node to the edge: D(C) = {eij ∈ E|∀s ∈ Σ, 6 ∃Path(s, eij)}. The objective
function to be minimized is

UD = max
eij∈E

∑

ekl∈D(C(eij))

w(ekl).

3 ASP Formulations for the Valves Positioning Problem

The ASP approach to treat a computational problem consists of defining a logic
program that models the solutions of the said problem through its answer sets
[11].

We present two different approaches to the Valve Positioning Problem (VPP).
In one of the approaches, we explicitly define a concept of “sector”, while in the



other the same concept is left implicit. We first define the common parts of the
two approaches (Section 3.1), then we present the parts specific to the two ASP
programs (Sections 3.2 and 3.3).

The input data consists of a set of facts that describe the graph of the water
distribution network. Nodes are given as facts node(X), while labelled edges are
facts edge(I,J,D), where I and J are nodes of the graph, and D is the demand
associated to the edge. The sources of water are usually tanks, and they are
given as nodes tank(N), where N is the name of the node.
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Fig. 2. Example of graph with the corresponding Extended Graph.

In order to simplify the definition of the ASP program, we rely on an Ex-
tended Graph. The extended graph is built by adding to each edge ei,j of the
original graph a fictitious node νi,j that intuitively represents the demand from
the users. The added node νi,j “splits” the edge ei,j into two parts: one connects
node ni with the the new node νi,j , and the other connects the new node with
node nj, as shown in Figure 2.

Definition 1. Given a graph G(N,E), the Extended Graph Ḡ(N̄ , Ē) is defined
as follows:

– N̄ = N ∪ {νi,j |ei,j ∈ E}
– Ē = {ǫi,ji , ǫi,jj |i, j ∈ N, ei,j ∈ E}

We will name ǫ-edge each ǫi,ji and ǫi,jj , and ν-node each νi,j . We also add weights

to the ν-nodes: w(νi,j) := w(ei,j), while the original nodes in the graph do not
have a weight (w(ni) := 0).

With this definition, each ǫ-edge can host up to one valve, so defining a
partition through valves amounts to define a set of ǫ-edges to be removed from
the Extended Graph. Moreover, the demand is only on the nodes, so it is easy
to compute the demand of a partition by summing up the weights of the nodes
inside that partition.

The Extended Graph is represented through predicates nu and eps that
represent respectively its nodes and edges. Since each node νi,j of the extended
graph corresponds to an edge of the original graph, we keep the same naming
convention: for each ei,j ∈ E, there exists a ν-node νi,j :



nu(I,J) :- e(I,J,D).

The arguments of nu are the two extremes of the edge hosting the ν-node.
The ǫ-edges are represented with predicate eps. Each ǫ-edge connects one

of the original nodes to one ν-node; there are two ǫ-edges for each edge of the
original graph (or, equivalently, for each ν-node):

eps(I, nu(I,J)) :- nu(I,J).

eps(J, nu(I,J)) :- nu(I,J).

In this way, the graph partitions consist of weighted ν-nodes plus some
weightless junction nodes (the nodes of the original graph), and the valve place-
ment choice no longer lies on each vertex-side of each edge but it lies over the
simple set of ǫ-edges.

3.1 A Basic ASP Program for Valve Positioning

As we said in the problem description (Section 2), each ν-node should be isolable
by cutting a subset of ǫ-edges of the extended graph. The cut edges identify the
set of valves of the hydraulic network which (when closed) isolate the broken pipe.
We are interested in finding the set of valves in the network. As in Figure 1, we
use the convention that vi,j means that the valve is on edge ei,j closer to edge
i, while vj,i means that the valve is on the same edge, but closer to node j. We
define a predicate valve/2 with the same convention. We generate the possible
valves depending on the edges of the network; the number of valves should be
exactly Nv:

Nv { valve(A,B) : e(A,B), valve(B,A) : e(A,B) } Nv.

The symbol “:” is a conditional operator and, in this case, it instantiates as many
valve atoms as the possible groundings of facts e.

We are able to isolate network patches by closing the valves. However, the
set of closed valves depends on where the damaged pipe is. We define a predicate
closed valve/2. The meaning is that

closed_valve(ǫa,ba ,νx,y)

is true iff the valve that is on the ǫ-edge ǫa,ba will be closed when the pipe νx,y

is broken. The generation of the possible values for closed valves is as follows;
given a (tentatively broken) ν-node νX,Y , the number of possible valves that can
be closed ranges from 1 to the maximum number of valves Nv:

1 {

closed_valve(eps(A,nu(A,B)), nu(X,Y)) : nu(A,B),

closed_valve(eps(B,nu(A,B)), nu(X,Y)) : nu(A,B)

} Nv :- nu(X,Y).

If a valve is closed (for at least one broken pipe νX,Y ), then there must be a
valve in such position, so we link predicates closed valve/2 and valve/2:



valve(A,B) :- closed_valve(eps(A, nu(A,B)), nu(X,Y)).

valve(B,A) :- closed_valve(eps(B, nu(A,B)), nu(X,Y)).

Up to now, the ASP program assures that for each (damaged) ν-node there
exists a subset of the installed valves that will be closed, but there is no knowl-
edge of which users (or, which ν-nodes) will be reached by the water in each
situation. We define a predicate reached/2, that explains which ν-nodes νA,B

are reached by the water when node νX,Y is damaged:

reached(nu(A,B), nu(X,Y))

The ν-node νA,B is reached by the water if one of the endpoints of its edge
is a tank, and between the two there is no valve, or there is a valve but it is not
closed when the damaged node is νX,Y (Figure 3).

reached(nu(A,B), nu(X,Y)) :-

nu(A,B), tank(A),

not closed_valve(eps(A,nu(A,B)), nu(X,Y)).

Otherwise, νA,B is reached by the water if (at least) one of its adjacent
ν-nodes is reached and no valves are closed between the two (again, when the
damage is in ν-node νX,Y ). Figure 4 represents the reachability of a generic
ν-node νA,B, that is reachable if its adjacent νZ,A is, in turn, reached and if the
hypothetical valves between them are not closed.

reached(nu(A,B), nu(X,Y)) :-

nu(A,B), nu(X,Y), nu(Z,A),

not closed_valve(eps(A,nu(Z,A)), nu(X,Y)),

not closed_valve(eps(A,nu(A,B)), nu(X,Y)),

reached(nu(Z,A), nu(X,Y)).

Finally, the broken pipe should not be reachable by water:

:- reached(nu(X,Y), nu(X,Y)).

Frequently, in the hydraulic networks some junction nodes link only two
pipes. Of course, in such a case, there is no point in adding two valves on the
two edges, since isolating a junction does not make sense, as the demand is only
on edges. This also means that placing a valve at one side of such nodes rather
than the other side leads to two equivalent solutions. This kind of symmetry
can be avoided, obtaining a possible reduction of the search space, through the
definition of a further integrity constraint, as follows:

symm_e(X,Y) :- e(X,Y,D).

symm_e(Y,X) :- e(X,Y,D).

:- node(X), not tank(X), symm_e(X,A), symm_e(X,B),

2 { symm_e(X,Y) } 2, A>B, valve(X,A).

The above integrity constraint states that if a junction node X has degree 2 (i.e.,
the related set of symmetric edges has cardinality 2) and X is not a tank, then
we can impose that in one given side there must be no valve.
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3.2 Optimal Placement Specialization Based on Paths

As explained earlier, the objective is to maximize the satisfied demand (or, equiv-
alently, minimize the unsatisfied demand) in the worst case.

As a first attempt, we might use the ♯sum aggregator operator [5], and define
the satisfied water demand (when some ν-node νX,Y is broken) as the sum of
the demands of the ν-nodes reached by water:

sat(Dsat , nu(X,Y)) :- nu(X,Y),

Dsat = #sum[reached(nu(A,B), nu(X,Y))=D : e(A,B,D)].

Unfortunately, this type of aggregation leads to an explosion of the ground pro-
gram, especially if the single demands D can take large integer values. Another
way to find the minimum (total) satisfied demand is by means of pairwise com-
parisons amongst reached/2 atoms, varying the “broken” ν-nodes, using the
aggregator ♯sum as a conditional operator. Predicate cmp(νX,Y ,νW,Z) is true if
the satisfied demand is lower in case the edge νX,Y is broken, than it is when
the broken edge is νW,Z . It is defined as follows:

cmp(nu(X,Y), nu(W,Z)) :- nu(X,Y), nu(W,Z),

#sum[ reached(nu(A,B), nu(X,Y)))=Dn : e(A,B,Dn),

reached(nu(C,D), nu(W,Z)))=-Dm : e(C,D,Dm)]0.

In this case, the ♯sum aggregator sums with a positive sign the satisfied demand
when the broken edge is the first (νX,Y ), and with a negative sign the satisfied
demand when the broken edge is the second (νW,Z ). The body evaluates to true if
this algebraic sum is less than or equal to 0. In this case, the grounder instantiates
rule cmp/2 for each pair of ν-nodes, so that we move to the solver the task to
check if the sum is really less or equal than 0 (i.e., if the first term of cmp/2 –a
ν-node isolation– determines a satisfied demand less or equal than the second
one) and it will return answer sets containing only the actual comparisons.

We can now compute the minimum of the satisfied demands, varying the
broken node: the minimum is the one that is less than or equal to all the other
ones.

min(nu(X,Y)) :- nu(X,Y),

cmp(nu(X,Y),nu(W,Z)) : nu(W,Z).



At this stage, we know which damaged pipe gives the minimum satisfied
demand; one could think to compute the total satisfied demand and use it as an
objective function for maximization, however it is not possible to compute it by
this intuitive formula:

sat_min(nu(A,B), min(nu(X,Y)), D):-

reached(nu(A,B), nu(X,Y)), min(nu(X,Y)), e(A,B,D).

#maximize[ sat_min(nu(A,B),min(nu(X,Y)),D)=D ].

because the minimum is not unique, as there can be two or more sectors that,
when isolated, provide the same delivered demand. Also, the sector correspond-
ing to minimal satisfied demand may contain more than one pipe: if one of those
pipes is broken, they will all provide the same delivered demand. When the min-
imum is not unique, with the above program we would sum one contribution
for each of the equally good minima. In order to compute the correct delivered
demand, we select one of the minima. To select a unique minimum, we use a lex-
icographic comparison: after comparing the delivered demand, we compare the
names of the nodes inside a sector, obtaining only one node, given by the atom
unique, that (when broken) provides the minimum satisfied demand. Thus, we
can define the satisfied ν-nodes of the unique minimum, as follows:

min_sat(nu(X,Y), D) :-

reached(nu(X,Y), nu(A,B)),

unique(min(nu(A,B))), e(X,Y,D).

Finally, summing up the weights of the argument of any min sat/2 and
maximizing it through the operator ♯maximize, we find out the answer set that
represents the optimal valves positioning, i.e. that one for which the satisfied
water demand of the worst ν-node isolation is maximized, as follows:

#maximize [ min_sat(nu(X,Y), D)=D ].

3.3 Optimal Placement Specialization Based on Extended Sectors

The paths-based specialization for the optimization of the valve positioning,
described in the previous section, does not explicitly use sectors, but it maximizes
the satisfied water demand of the worst ν-node isolation.

In this section, instead, we give a further specialization of the program shown
in Section 3.1, where sectors are explicitly defined by means of two steps: in the
first, we generate the possible sectors, and then we state that any ν-node must
belong at least to a sector. It is important to notice that each valve can increase
the number of sectors of at most one unit. This bound is strict, and it happens,
e.g., if the network graph is actually a tree. Accordingly, the maximum number
of sectors is limited to the number of valves.

In the standard conception of sector, we should limit their number per ν-node
to 1, since one ν-node belongs to exactly one sector; here we refer as extended
sector to the set of unreachable ν-nodes given a ν-node isolation. In fact, a ν-node
isolation could be due to a direct or a indirect effect (the effect of unintended



isolation explained in the Introduction). E.g., for the hydraulic network shown
in Figure 1 the worst case of unsatisfied water demand is due to the isolation
of one among the possibly broken ν-nodes {ν1,2, ν2,5, ν5,6, ν5,7}; such isolation
determines the unintended disservice for {ν2,3, ν3,6, ν6,8, ν7,8}. Accordingly, the
related extended sector is the union of these two sets, whereas the extended
sector of the broken node ν7,8 is merely composed of {ν6,8, ν7,8}.
s(1..Nv).

1 { sector(nu(A,B),S) : s(S) } Nv :- nu(A,B).

The predicate sector/2 says that the ν-node νA,B (argument 1) belongs to the
(extended) sector S (argument 2). Two ν-nodes belong to the same extended
sector if whenever one is unreachable, the other one is unreachable as well:

sector(nu(A,B),S) :- nu(A,B), sector(nu(C,D),S),

not reached(nu(A,B),nu(C,D)).

In this case, if νA,B is not reachable for an indirect side effect of the isolation of
νC,D, then νA,B belongs to two or more different extended sectors and at least
one of which is in common with νC,D.

In order to find out the sector that determines the maximum service dis-
ruption if isolated, we proceed with pairwise comparisons among all sectors,
similarly as in Section 3.2. More precisely, the two following rules state that a
sector is empty if no ν-nodes are assigned to it and that a sector S1 is greater
than S2 if it is not empty and the sum of the weights of its ν-nodes is greater
than the sum of weights of S2:

empty(S) :- s(S), not sector(nu(A,B),S) : nu(A,B).

cmp(S1,S2) :- s(S1), s(S2), S1!=S2 , not empty(S1),

0 #sum[sector(nu(A,B),S1)=Dn : nu(A,B): e(A,B,Dn),

sector(nu(C,D),S2)=-Dm : nu(C,D) : e(C,D,Dm)].

The worst disservice is determined by the sector S1 for which the predicate
cmp(S1,S2) is true for each other S2, with S1 6=S2, and we identify it by the
predicate maxSect/1, where the argument is the sector name, as follows:

maxSect(S1):- s(S1), not empty(S1),

cmp(S1 ,S2) : S1!=S2 : s(S2).

As stated in Section 3.2, two or more extended sectors may determine the
same worst disservice, so we select the existing maxSect/1 with the greatest
name value; finally, we minimize the sum of those ν-node weights belonging to
the sector which gives rise to the maximum service disruption (and that has the
greatest name value):

bestMax(S) :- S=#max[ maxSect(S1)=S1 ].

maxUnsatDem(nu(A,B),D) :-

sector(nu(A,B),S), bestMax(S), e(A,B,D).

#minimize [ maxUnsatDem(nu(A,B),D)=D ] .



4 Computational Results

As above mentioned, the two ASP programs, described in Section 3, are imple-
mented with the native syntax of the Potsdam Answer Set Solving Collection
(Potassco) [9]. Such collection of tools includes, among all, the grounder Gringo
and the conflict-driven ASP solver Clasp. The solver Clasp can be “finely” tuned,
by working on parameters related to the preprocessing and solving processes [9].
Beside the default configuration, the Potassco team suggests specific configu-
rations for many types of combinatorial problems, used during the ASP Com-
petition 20091. Among such Clasp configurations, one is tuned to treat Graph
Partitioning (GP) problems and, perhaps due to the similarity with the valve
positioning problem, we will show that the GP configuration can improve the
solving computation time.

b
b

b

b

b

b

b

b
b

b b

b

b

b
b

b

b

b b

b

b

bb

1

23
9

10

13

22

12

11

4

6

5
19

18
17

23

21

20148

7
15

16

T

Fig. 5. The apulian water distribution network

We tested the two logic programs on the water distribution system in [12, 13],
that represents the distribution network of the Apulia Italian region, depicted
in Figure 5. It is worth noting that 4 nodes, namely {12, 20, 22, 23}, are junction
nodes of degree 2 (exactly two pipes meet in each of these nodes) and, as said
in Section 3.2, adding a symmetry breaking integrity constraint helps reducing
the search space.

The experiments have been performed on a Intel dual core architecture based
on P8400 CPUs, 2.26 GHz and 4GB of RAM; however, although Potassco pro-
vides a parallel ASP solver, we used only one core.

First, we show in Figure 6 the solving times of the two ASP programs (the
sectors-based one and the paths-based one) when symmetry breaking is either
used or not. In general, it is clear that, for the Apulian instance of the valve
positioning problem, the sectors based program reaches the optimality in a com-
putation time lower than the one based on paths. Moreover, for 6 valves the gap
between the two models is really huge. In particular, the symmetry breaking
leads to a performance improvement for the sectors based ASP program and to
a worsening for the paths based one.

1 http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/Potassco.shtml



Fig. 6. Computing times of programs solving if symmetry breaking is either used or
not

To give a general view about the incidence of the two different Clasp config-
urations (the default and the GP one) and of the symmetry breaking constraint,
we plot in Figure 7 the performance of four different solving runs, obtained by
using the sectors based program and by mixing the above described customiza-
tions. It is clear that both the symmetry breaking and the Clasp configuration
for graph partitioning problems enhance the performance of the optimization
process; nevertheless, the latter seems to have a higher incidence. The paths
based program solving processes present the same behaviour, but with much
higher computational times.

Fig. 7. Computation times of the sectors based program



Fig. 8. Computing times of the two ASP models if both customizations are used

The comparison between the two different ASP models’ computation times, if
both symmetry breaking constraint and the GP configuration of Clasp are tuned,
is shown in Figure 8. Based on the chart in Figure 8, we can state that the sectors
based ASP model finds out more quickly the optimal valves positioning. Even
so, computational results achieved with the CLP(FD) formulation discussed in
[2] is still better than the ones obtained with our ASP programs; in fact, while
the optimal solution with 7 valves is achieved in about 4 hours by our best ASP
program, the above mentioned CLP(FD) program computes the optimum in a
few seconds.

We must underline that both of the ASP programs presented here consist of
respectively 20 and 25 clauses, against the hundreds needed to solve the same
problem in CLP(FD). Hence, the ASP approach usually permits rapid proto-
typing of combinatorial problems, with lower implementation cost and time; in
fact, in a real-life infrastructure design context like this, there is no need for
real-time solving and the costs of person-hour are much more valuable than the
computation time of a machine.

5 Related Work

In the literature of hydraulic engineering, two main problems related to the
isolation valves in a pipe network have been faced, that is a) the identification
of the segments and undesired disconnections that occur after a set of isolation
valves has been closed and b) the (near) optimal location of the set of isolation
valves. As far as the first topic is concerned, in the literature there are a number
of studies regarding segment identification and the undesired disconnections that
occur following the closure of a set of isolation valves. In particular, the methods
proposed by [17] and [18] are based on a dual representation of the network, with
segments treated as nodes and valves as links. The methods proposed by [4] and



[13] use topological incidence matrices to identify the segments. As far as the
second topic is concerned, recently, [13] and [4] have proposed two different multi-
objective optimization approaches, both based on genetic algorithms; the first
minimizes the number of valves ensuring a fair compromise between the costs
of the valves and the system reliability in the event of routine and non-routine
maintenance, while the second one minimizes the costs and the undelivered water
demand given a number of available valves. All of these works use incomplete
algorithms, that cannot ensure that the found solution is the real optimum. To
the best of our knowledge, [2] present the first complete algorithm to address
the valve placement problem.

The valve placement problem has some similarities with the graph partition-
ing problem, in which the goal is to partition a graph into (almost) equal-size
parts. In general, graph partitioning is NP-hard [8]. Most works in the literature
deal with heuristics or approximation algorithms and one of the first works in the
area is by [20], that propose a greedy algorithm which outputs a graph bisection.
[6] improve the algorithm so that the asymptotic behaviour of the algorithm is
linear rather than quadratic. A different approach is based on the spectral anal-
ysis of the graph, discussed in [3, 7, 14, 24]. In comparison with other heuristics,
spectral methods provide good quality partitions at an increased computational
cost (necessary to compute the matrix eigenvalues). Moreover, various kinds of
heuristics can be used if multilevel schemes are exploited, as described in [15]
and [19].

The special case of planar graphs (i.e. graphs which can be drawn without
intersecting edges) is of particular interest for our application since it is often
the case for water supply networks. Finding the optimal solution is NP-hard
also for the planar case, however the planar separator theorem [22] states that
a bisection in which the biggest set contains at most two thirds of the vertices
and whose separator contains O(

√
n) vertices can be found in linear time.

Other related problems are the multicut problems [23], in which the aim is
to find the minimal set of edges (or nodes) such that given pairs of nodes are no
longer connected. In our case, instead, the aim is to disconnect a possibly small
part of the network while keeping connected all the rest.

The algorithms for graph partitioning or solving multicut problems are clearly
not directly applicable to the valve placement problem, also because of the issue
of unintended isolation mentioned in Section 1.

6 Conclusions

In this work, we presented two ASP formulations for the valve placement prob-
lem, a problem taken from the literature of hydraulic engineering [13], and for
which a CLP(FD) model was proposed in [2]. The two ASP formulations were
mainly developed by a first-year PhD student that was not an ASP expert (his
main background was on Operations Research, although he had some knowledge
of Prolog and CLP) in about one week. This shows that ASP is very intuitive
and easy to understand even for non experts, that it is indeed very declarative,



and that it can be used to address real-life problems taken from subject areas
apparently very distant from Logic Programming. The two ASP programs con-
sist of respectively about 20 and 25 clauses, which shows that ASP is a very
interesting technology for rapid prototyping.

The experiments show that the developed models take more computation
time than a CLP(FD) approach. However, we must say that the CLP(FD)
model was developed by two CLP experts, during some person-months and was
trimmed for efficiency. Since person-months are largely more costly than CPU
time, and since the given application does not require results in strict real-time
(as it is to be executed during the design of the hydraulic network), ASP could
be an effective solution for this type of applications. Another advantage of ASP
stands in the fact that existing solvers are improved all the time, and new solvers
are developed every year, so the efficiency of an ASP program improves every
year, requiring little (if any) modifications to be adapted to new solvers.

In future work, we plan to continue the development of new ASP models,
and to experiment them with other available ASP solvers. We are also interested
in trying to integrate the ASP models with a CLP approach, to take advantage
of the strengths of the two approaches. Finally, we plan to submit the prob-
lem instances to the next ASP competitions, so that new ASP models can be
developed and solvers can be improved also to solve these types of applications.
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