
ar
X

iv
:0

70
7.

37
81

v2
 [

cs
.A

I]
 3

0
Ju

l 2
00

7

Bijective Faithful Translations among Default Logics

Paolo Liberatore∗

Abstract

In this article, we study translations between variants of defaults logics such that
the extensions of the theories that are the input and the output of the translation are in
a bijective correspondence. We assume that a translation can introduce new variables
and that the result of translating a theory can either be produced in time polynomial
in the size of the theory or its output is of size polynomial in the size of the theory;
we restrict to the case in which the original theory has extensions. This study fills a
gap between two previous pieces of work, one studying bijective translations among
restrictions of default logics, and the other one studying non-bijective translations
between default logics variants.

1 Introduction

A translation from one logic to another is faithful if it preserves not only the consequences
but also the models of the original theory. What in modal logic is a model, in default logic
[Rei80, Bes89, Ant99] is an extension; therefore, a faithful translation involving two default
logics is a translation preserving the extensions.

The existence and non-existence of faithful translations among various logics are known
[Imi87, Kon88, ET93, Got95]. Recently, some effort has been devoted to translations that
introduce new variables [Jan98, Jan01, Jan03, DS03, DS05]: these translations generate
theories which may contain new variables in addition to the ones of the corresponding original
theories. The addition of new variables allows for translations that would otherwise be
impossible: for example, no translation that exactly preserves the extensions exists from
justified default logic to Reiter default logic; this is because E1 ⊂ E2 cannot hold for two
Reiter extensions E1 and E2 of the same theory, while this situation is instead possible
for two justified extensions [Lib05]. Introducing new variables can however circumvent this
difficulty, because two justified extensions E1 and E2 such that E1 ⊂ E2 can be translated
into E1 ∪ E ′

1 and E2 ∪ E ′
2, respectively, provided that E1 ∪ E ′

1 6⊂ E2 ∪ E ′
2.

The possibility of adding new variables is therefore of interest because it allows for trans-
lations that would otherwise be impossible. These translations are not defined in terms of
logical equivalence between extensions E1 ≡ E2, but in terms of var-equivalence E1 ≡X E2,
where X is the set of variables of the original theory and E1 ≡X E2 means that E1 and E2

have the same consequences when restricted over the alphabet X [LLM03].

∗Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza, Via Ariosto 25, 00185,
Rome, Italy. Email: paolo@liberatore.org

1

http://arxiv.org/abs/0707.3781v2

Faithful translations can be defined in two ways, which are equivalent when new variables
are not allowed. In particular, a translation is faithful if each theory T1 is translated into a
theory T2 such that either:

1. there is a bijection between the extensions of T1 and the extensions of T2 such that the
associated extensions of T1 and T2 are equivalent, or

2. for every extension of T1 there exists an equivalent extension of T2 and vice versa.

These two definitions can also be given when new variables are allowed, by replacing
“equivalence” with “var-equivalence”. However, they no longer coincide. Indeed, the second
definition allows a single extension of T1 to be associated to several extensions of T2. For
example, if T1 is build on variables {x} and T2 on {x, y}, the second definition allows the
same extension Cn({x}) to be associated to the two extensions Cn({x, y}) and Cn({x,¬y}).
These two extensions are indeed var-equivalent to the original one, but are not classically
equivalent to it or to each other. This translation is faithful according to the second definition
but not according to the first.

This example shows that that the two considered definitions of faithfulness do not coin-
cide. In this paper, we call translations satisfying the first definition bijective faithful and
translations satisfying the second faithful. This choice is motivated by the fact that all trans-
lations obeying the first definition also obey the second but not vice versa, that is, a bijection
between the extensions is an additional requirement over the translation.

Translations among default theories producing new variables have been studied by Jan-
hunen [Jan98, Jan01, Jan03] and Delgrande and Schaub [DS03, DS05]. All these authors
considered faithful translations, but using two differing definitions: the former author studies
bijective faithful translations, the latter authors do not require a bijection between exten-
sions.

In particular, Delgrande and Schaub [DS03, DS05] have shown faithful polynomial-time
translations from some default logic variants into Reiter default logic. Some of their faithful
reductions produce a bijection between the extensions only using a definition of extensions
that include the justification of the applied defaults. In particular, if one defines an extension
to be the deductive closure of the consequences of the applied defaults, their translation
from justified default logic into Reiter default logic is bijective, while their translations from
constrained and rational to Reiter default logic are faithful but not bijective. All of their
reductions are bijective if one takes an extension to be include also the justification of the
applied defaults.

Janhunen [Jan98, Jan01, Jan03] has instead studied bijective faithful translations, but not
between default logics variants but between default logics restrictions, and between default
logics and other logics. As a result, the study of bijective translations between default logics
variants is still largely open, and is the subject of this article.

The results about the existence of polynomial-time and polynomial-size bijective faithful
translations are shown in Table 1. The existence of polynomial-time bijective faithful trans-
lations from constrained or rational default logic to Reiter or justified default logic would
have some consequences on complexity classes, whenever extensions are considered to be
the deductive closure of the consequences of the applied default only (i.e., not including the
justifications). Ideally, a negative result should be unconditioned (e.g., there is no bijec-
tive polynomial time faithful translations from constrained to Reiter default logics) or at

2

least conditioned to the collapse of the polynomial hierarchy (e.g., if there exists a bijec-
tive polynomial-time faithful translations from constrained to Reiter default logics then the
polynomial hierarchy collapses); unfortunately, none of these two claims could be proved.
We however show some consequences on complexity classes of the existence of a bijective
polynomial time faithful translations from constrained to Reiter default logics.

Faithful translations cannot exist from semantics where a theory may have no exten-
sion to semantics where this is not possible. On the other hand, it can be shown that in
some cases theories having no extensions are the only ones that cannot be translated. For
example, Reiter default logic (which allows a theory to have no extensions) cannot be in gen-
eral translated into normal default logic (in which every theory has at least an extension).
However, if one restricts to theories having at least one extension, then Reiter default logic
can be faithfully translated into normal default logic [Lib06]. Translations that work in the
assumption of existence of extensions are of interest because theories can be modified in a
very simple way so that they are added a single known extension. Many problems, such as
entailment, number of extensions, etc. can therefore be solved via such translations.

In this paper, we show bijective faithful translations from rational and Reiter to con-
strained default logic and from Reiter to justified default logic. These translations are
polynomial-time but require not only the original theory to have an extension, but also
that a formula equivalent to one of the strongest (i.e., minimal w.r.t. set containment) ex-
tension is given. Such translations are of interest because an extension, being the deductive
closure of a set of consequences of some defaults in the theory, can always be represented
by a polynomially sized formula. The result of these translations are therefore of size poly-
nomial in the size of the original theory. In other words, for every theory in the original
semantics (provided it has extensions) there exists a theory in the resulting semantics that
has size polynomial in that of the original theory. More concisely, what can be expressed
in the first semantics can also be expressed in the second one in comparable space. Size-
preserving translations of this kind are called polysize because they produce a result that is
polynomial in size w.r.t. the size of the input theory. Finally, we show some consequences
of the existence of a bijective faithful polysize translation from constrained or rational to
Reiter or justified default logic on the counting hierarchy.

2 Definitions

2.1 Default Logics

We use the operational semantics for default logics. Two slightly different, but equivalent,
operational semantics for default logics have been given independently by Antoniou and
Sperschneider [AS94, Ant99] and by Froidevaux and Mengin [FM92, FM94]. A default is a
rule of the form:

d =
α : β

γ

The formulae α, β, and γ are called the precondition, the justification, and the conse-
quence of d, and are denoted as prec(d), just(d), and cons(d), respectively. This notation
is extended to sets and sequences of defaults in the obvious way. A default is applicable if
its precondition is true and its justification is consistent; if this is the case, its consequence
should be considered true.

3

↓From To → Reiter Justified Rational Constrained
Reiter yes1 no2 yes3 no2

Justified yes3 yes4 yes
Rational open5 no2 no2

Constrained open5 open5 yes

Bijective faithful polytime translations between semantics

↓From To → Reiter Justified Rational Constrained
Reiter yes1 yes yes3 yes

(polytime) (strongest extension) (polytime) (strongest extension)

Justified yes3 yes4 yes
(polytime) (polytime) (polytime)

Rational open5 open5 yes
(strongest extension)

Constrained open5 open5 polytime

Bijective faithful polysize translations between semantics.

Table 1: Faithful Translations between Semantics

1 Delgrande and Schaub [DS03, DS05] proved that Reiter default logic can “simulate itself”, i.e., there
is a non-trivial polynomial time bijective faithful translation from Reiter default logic to itself.

2 Unless the polynomial hierarchy collapses.
3 Proved by Delgrande and Schaub [DS03, DS05].
4 Trivially entailed by the reductions from justified to Reiter default logic and from Reiter to rational

default logic by Delgrande and Schaub [DS03, DS05].
5 Effects of the existence of a polysize translation on the counting hierarchy are shown in this article.

A default theory is a pair 〈D,W 〉 where D is a set of defaults andW is a consistent theory,
called the background theory. The assumption thatW is consistent is not standard; however,
all known semantics give the same evaluation when the background theory is inconsistent. We
also make some other assumptions about the default theory: all formulae are propositional,
the alphabet and the set D are finite, and all defaults have a single justification. The latter
assumption is irrelevant for some semantics (such as constrained default logic) but not for
other ones (such as justified default logic.)

We use semantics of default logics based on sequences of defaults. We typically denote
such sequences by Π, Π′, etc. We also denote by Π ·Π′ the sequence composed of Π followed
by Π′. When Π′ is composed of a single default d, we also denote this concatenation by Π ·d.
Given a sequence Π and one of its defaults d, we denote by Π[d] the sequence of defaults
preceeding d in Π. We define a process to be a sequence of defaults that can be applied
starting from the background theory.

Definition 1 A process of a default theory 〈D,W 〉 is a sequence of defaults Π such that
W ∪ cons(Π) is consistent and W ∪ cons(Π[d]) |= prec(d) for every default d ∈ Π.

The definition of processes only takes into account the preconditions and the consequences
of defaults. This is because the interpretation of the justifications depends on the semantics.

4

All semantics select a set of processes that satisfy two conditions: success and closure.
Intuitively, success means that the justifications of the applied defaults are not contradicted;
closure means that no other default should be applied.

The particular definitions of success and closure depend on the specific semantics; in
turn, closure can be defined in terms of applicability of a default. The following are the
definitions used by the variants of default logic considered in this paper.

Success:

Local: for each d ∈ Π, the set W ∪ cons(Π) ∪ {just(d)} is consistent;

Global: W ∪ cons(Π) ∪ just(Π) is consistent.

Closure:

Inapplicability: no default d 6∈ Π is applicable to Π; applicability of a default d in Π
is defined as W ∪ cons(Π) |= prec(d) and:

Local Applicability: W ∪ cons(Π) ∪ just(d) is consistent;

Global Applicability: W ∪ cons(Π) ∪ just(Π) ∪ just(d) is consistent.

Maximality: for any d 6∈ Π, the sequence Π · [d] is not a successful process.

Reiter default logic uses local success and local inapplicability closure; justified default
logic uses local success and maximality closure; rational default logic uses global success and
global inapplicability closure; constrained default logic uses global success and maximality
closure.

The definition of processes by Antoniou and Sperschneider [AS94, Ant99] and that by
Froidevaux and Mengin [FM92, FM94] differ mainly in “when justifications are checked”. In
terms of our definition or processes, Antoniou and Sperschneider do not allow a sequence of
defaults to be a process if the justification of a default is not consistent with the background
theory and the consequences of the previous defaults. On the contrary, this is allowed by
our definition and that by Froidevaux and Mengin. To the aim of automated deduction, the
first definition may allow reducing the width of the tree of processes; on the other hand, the
second definition is slightly simpler from a formal point of view.

The extensions of a default theory can be defined in two different ways, both based on
the set of selected processes. In this paper, we use the following one: if Π is a successful
processes, an extension is Cn(W ∪ cons(Π)). This definition is what is actually necessary
for defining query answering: the skeptical consequences of a default theory are the formulae
that are entailed by all its extensions; the credulous consequences are those implied by some
of its extensions.

Extensions for rational and constrained default logic have been initially defined in a form
that is equivalent to the pair 〈just(Π), Cn(W ∪ cons(Π))〉, where Π is a successful process.
This second definition includes in the extensions also the justification of the applied defaults.
In order to distinguish between extensions according to the first or to the second definition,
we use different names.

Extension: Cn(W ∪ cons(Π)), where Π is a selected process;

Double Extension: the pair 〈just(Π), Cn(W ∪ cons(Π)〉, where Π is a selected process.

5

According to the second definition, two processes composed of the same defaults in dif-
ferent order always generate two different extensions. The same is not true for the first
definition of extensions for constrained and rational default logic. In other words, two pro-
cesses composed of different defaults can generate the same extension in these two semantics,
if the extension is defined from consequences only.

A semantics for default logic is fail-safe if, for every default theory, any successful process
is the prefix of a successful and closed process. A successful process of a fail-safe semantics
cannot “fail”: if we can apply a sequence of defaults, then an extension will be eventually
generated, possibly after applying some other defaults. In other words, the situation in which
we apply some defaults but then find out that we do not generate an extension never occurs.
Fail-safeness is a form of commitment to defaults: if we apply a default, we never end up
with contradicting its assumption.

Fail-safeness can also be seen as a form of monotonicity of processes w.r.t. to sets of
defaults: if a semantics is fail-safe, then adding some defaults to a theory may only extend
the successful and closed process of the theory and create new ones. However, this form
of monotonicity is not the same as that typically used in the literature, which is defined
in terms of consequences, not processes. Froidevaux and Mengin [FM94, Theorem 29] have
proved a result that essentially states that every semantics in which closure is defined as
maximal success is fail-safe. As a result, justified and constrained default logics are fail-safe.

We assume that the background theory W is consistent. In this case, if a semantics is
fail-safe, then every default theory has a successful and closed process: since the process [] is
successful, a process Π that is successful and closed exists. The condition of antimonotonicity
provides an algorithm for finding this successful and closed process: if Π is successful and
closed, all its initial fragments are successful as well. We can therefore obtain a successful
and closed process by iteratively adding to [] a default that leads to a successful process.

2.2 Translations

We assume that translations between default logics can introduce new variables. Technically,
this is possible thanks to the concept of var-equivalence [LLM03]. In plain terms, two
formulae are var-equivalent if and only if their consequences, when restricted to be formulae
on a given alphabet, are the same.

Definition 2 (Var-Equivalence) Two formulae α and β are var-equivalent w.r.t. variables
X if and only if α |= γ iff β |= γ for every formula γ that only contains variables in X.

The translations we consider may introduce new variables: a theory 〈D,W 〉 built on
variables X is translated into a default theory 〈D′,W ′〉 built on variables X ∪ Y . Faithful
translations between default logics based on var-equivalence of extensions have been con-
sidered by Delgrande and Schaub [DS03, DS05] and by Janhunen [Jan98, Jan03]. These
authors use slightly different definitions of faithful translations. Delgrande and Schaub use
the following definition.

Definition 3 (Faithful Translation) A translation that maps each default theory 〈D,W 〉
into a default theory 〈D′,W ′〉 is faithful if and only if each extension of 〈D,W 〉 is var-
equivalent w.r.t. the variables of 〈D,W 〉 to at least one extension of 〈D′,W ′〉, and vice
versa.

6

Equivalently, the set of the extensions of 〈D′,W ′〉, after forgetting [LLM03] the added
variables, is exactly the same as the set of extensions of 〈D,W 〉. According to this translation,
a single extension E of 〈D,W 〉 may correspond to several extensions of 〈D′,W ′〉, all var-
equivalent to E w.r.t. the variables of 〈D,W 〉.

The translations used by Janhunen [Jan03] are faithful in this sense, but also require a
bijection to exists between the extensions of the two theories.

Definition 4 (Bijective Faithful Translation) A translation that maps each default the-
ory 〈D,W 〉 into a default theory 〈D′,W ′〉 is bijective faithful if and only if each extension of
〈D,W 〉 is var-equivalent w.r.t. the variables of 〈D,W 〉 to exactly one extension of 〈D′,W ′〉,
and vice versa.

This definition is only different from the previous one only because “is var-equivalent [...]
to at least one extension” is replaced by “is var-equivalent [...] to exactly one extension”.
The second definition requires a bijection between the sets of extensions to exist. Every
translation that satisfies Definition 4 also satisfies Definition 3, but not vice versa. Note
that non-bijective faithful translations implicitly requires every extension of 〈D′,W ′〉 to be
associated with a single extension of 〈D,W 〉 but the converse does not necessarily hold.

A requirement we impose on the translations is that of being polynomial. There are
two possible definitions of polynomiality, depending on what is required to be polynomial:
the running time or the size of the produced output. This difference is important, as some
translations require exponential time but still output a polynomially large theory. In this
paper, we consider three kinds of translations:

polynomial: runs in polynomial time;

strongest extension: runs in polynomial time but require one of the strongest extension
of the original theory;

polysize: produces a polynomially large result.

The existence of a polynomial-time translation from one semantics to another means
that any theory expressed in the first semantics can be translated in polynomial time into
an equivalent theory in the second one. Such translations are usually considered good from
a computational point of view because they allow solving problems about the first semantics
using procedures developed for the second one.

However, polynomial-time translations does not tell everything about the ability of se-
mantics at representing knowledge. The existence or non-existence of polynomial-time trans-
lations do not give an answer to the question “is it true that, for every formula in the first
semantics, there exists a formula in the second semantics that is equivalent to it and only
polynomially larger than it?” A polysize translation from the first semantics to the second
instead provides a positive answer to this question.

Finally, strongest-extension translations are a particular kind of polysize translations.
They are considered separately from polysize translations because the time required by the
translation, not only the size of its produced result, is still bounded by the complexity
of finding one of the strongest extensions of the original theory. In turn, finding such an
extension might be easy in particular cases such as, for example, when a single extension is
introduced by changing the default theory as explained below.

7

2.3 Theories Having No Extensions

Semantics for default logics differ as for whether a theory might or might not have no
extension. For example, the theory 〈 :a

¬a
, ∅〉 has no extension in Reiter and rational default

logic. All theories have at least one extension in justified and constrained default logics.
This argument has been used to prove that Reiter’s default logics cannot be translated

into justified or constrained default logic by Delgrande and Schaub [DS03], and that seminor-
mal default theories cannot always be translated into normal default theories by Janhunen
[Jan03].

In this paper, we consider translations that work in the assumption that the theory to
be translated has some extension. The existence of extensions might be guaranteed because:

1. the theory encodes a domain in which it is known that an extension exists; for example,
while using default logic for encoding problem of planning, the particular domain might
guarantee the existence of a plan;

2. theories can be made having extensions by a simple translations that adds a single
known extension to them:

〈

{

: a

a
,
: ¬a

¬a

}

∪

{

¬a ∧ α : β

γ

∣

∣

∣

∣

∣

α : β

γ
∈ D

}

,W

〉

For all considered semantics, this theory has exactly the extensions of 〈D,W 〉 with
¬a added to them plus the single extension Cn(a). This proves that a very simple
change can make theories guaranteed to have extensions. The resulting theory only
have an easy recognizable added extension. Querying this theory produces results that
are either identical to those of the original theory (e.g., entailment) or similar (counting
the extensions).

This point is relevant to the present article because we prove that some translations are
possible if the default theory to translate is assumed to have extensions. In particular, we
show translations from rational to constrained default logic, and from Reiter to constrained
and justified default logic; such translations would be impossible if the theory to be translated
lacks extensions. We can therefore conclude that the possible lack of extensions is the only
reason why such a translation is impossible in general.

Since these translations are polysize, checking the existence of extensions does not in-
troduce an additional cost (in terms of size). The translation works even in the case of no
extensions by slightly extending the syntax and semantics so that a default theory is either a
pair 〈D,W 〉 or the special symbol ⊥, which is not assigned any extensions by the semantics.
Thanks to this minimal change, the translation from, for example, Reiter to justified default
logic can be extended to theories having no extensions by translating such theories into ⊥.

A similar change can be done without changing the syntax or semantics but adding an
exception to the definition of faithfulness, so that a theory with no extensions can be trans-
lated into a theory with a single inconsistent extension. This way, we can translate theories
not having extensions into 〈∅, {⊥}〉. This translation preserve the number of extensions
unless the original theory have none, and also preserve the skeptical consequences exactly.

8

3 Polynomial Time Translations

In this section we show two polynomial-time bijective faithful translations, one from con-
strained to rational default logics, the other from justified to constrained default logics. We
also show that the existence of such translations from either Reiter or rational default logic
to either justified or constrained default logic implies that Σp

2 ⊆ Πp
2. We also prove that

the existence of such translations from either constrained or rational default logic to either
Reiter or justified default logic implies that NPNP = UPNP.

3.1 From Constrained to Rational

Constrained default logic can be translated into rational default logic by simply making all
defaults seminormal. In other words, a theory 〈D,W 〉 is translated into the following one.

TCR

(

α : β

γ

)

=
α : β ∧ γ

γ

TCR(〈D,W 〉) = 〈{TCR(d) | d ∈ D},W 〉

We prove that the processes of 〈D,W 〉 are translated into the processes of TCR(〈D,W 〉).

Lemma 1 There exists a bijection between the constrained processes of 〈D,W 〉 and the ratio-
nal processes of TCR(〈D,W 〉) such that the extensions generated by two associated processes
are equivalent.

Proof. We define the translation of a process [d1, . . . , dn] as TCR([d1, . . . , dn]) = [TCR(d1), . . . , TCR(dn)].
Let Π be a constrained process of 〈D,W 〉. We show that Π′ = TCR(Π) is a rational process
of TCR(〈D,W 〉).

Π′ is a process. The fact that W ∪ cons(Π′[d]) |= prec(d′) for every d′ ∈ Π′ follows from
the fact that the same condition holds for the original process Π, and preconditions
and consequences are not changed by the translation.

Π′ is globally successful. This condition holds because just(Π′) ∪ cons(Π′) = just(Π) ∪
cons(Π), and Π is successful.

Π′ is closed. We have to prove that no default is applicable to Π′. Since Π is maximally
globally successful, either W ∪ cons(Π) 6|= prec(d) or Π · [d] is not globally successful.
In the first case, d′ = TCR(d) is not rationally applicable to Π′. In the second case, we
have that W ∪just(Π · [d])∪cons(Π · [d]) is not consistent. By definition, just(Π′ · [d′])∪
cons(Π′) = just(Π · [d])∪ cons(Π · [d]) because the translation adds the consequence of
each default to its justification. As a result, we have that W ∪ just(Π′) ∪ cons(Π′) ∪
just(d′) is inconsistent; therefore, d′ cannot be applied to Π′.

We now show the converse: if Π′ = TCR(Π) is a rational process of TCR(〈D,W 〉), then Π
is a constrained process of 〈D,W 〉. As before, we denote by d′ the result of translating the
single default d.

Π is a process. As in the previous case, since preconditions and consequences are not
changed by the reduction, if Π′ is a process so is Π.

9

Π is successful. W ∪ cons(Π)∪ just(Π) is consistent because it is equal to W ∪ cons(Π′)∪
just(Π′), which is consistent because Π′ is a globally successful process.

Π is maximally successful. We have to prove that, if W ∪ cons(Π) |= prec(d), then Π · [d]
is not a successful process. Since Π′ is closed according to global applicability, if
W ∪ cons(Π′) |= prec(d′), then W ∪ cons(Π′)∪ just(Π)∪ just(d′) is inconsistent. Since
the latter is equal to W ∪ cons(Π′)∪ just(Π)∪ cons(d′)∪ just(d′) = W ∪ cons(Π · [d])∪
just(Π · [d]), its inconsistency implies that Π · [d] is not maximally successful.

The following corollary easily follows.

Corollary 1 The constrained extensions of 〈D,W 〉 and the rational extensions of TCR(〈D,W 〉)
are the same.

In this very simple case we were able to show a faithful translation that does not intro-
duce new variables, but this is not generally possible. Remarkably, beside the empty set of
extensions, constrained and rational default logic are able to express exactly the same sets
of extensions [Lib05].

3.2 From Justified to Constrained

The semantics of justified default logic is based on a local consistency check, in which each
justification is checked against the combined consequences of all defaults in the process.
This kind of consistency check can be simulated in constrained default logic by using a
separate alphabet for each justification. Assume that the original theory contains m defaults
d1, . . . , dm and its variables are those in a set X . The i-th default is translated as follows.

TJC

(

α : β

γ
, i

)

=
α : β[X/Xi]

γ ∧ γ[X/X1] ∧ · · · ∧ γ[X/Xm]

This translation assumes a total ordering over the defaults of the original theory. Pro-
cesses are translated in the obvious way, while a default theory is translated as follows.

TJC(〈{d1, . . . , dm},W 〉 = 〈{TJC(d1, 1), . . . , TJC(dm, m)}, W ∧W [X/X1] ∧ · · · ∧W [X/Xm]〉

For every default di we have an alphabet Xi. The justification of each default di is
translated into its associated alphabet Xi. Whenever a default is applied its consequence γ
is drawn on all alphabets, so that each justification is checked separately.

Lemma 2 There exists a bijection between the justified processes of 〈D,W 〉 and the con-
strained processes of TJC(〈D,W 〉) such that the extensions generated by two associated pro-
cesses are var-equivalent w.r.t. the variables of 〈D,W 〉.

Proof. We show a correspondence between each justified process Π of 〈D,W 〉 and its corre-
sponding process Π′ = TJC(Π) of TJC(〈D,W 〉). By definition, W ∪ cons(Π) is var-equivalent
to W ∧W [X/X1] ∧ · · · ∧W [X/Xm] ∪ cons(Π′) because the background theory and the con-
sequences of translated defaults contain the corresponding formulae of the original one and
other ones that do not affect the value of the variables X .

10

We prove that Π is a justified process of the original theory if and only if Π′ = TJC(Π) is
a constrained process of the translated theory. The following sequence of equations relates
Π and Π′:

W ′ ∪ cons(Π′) ∪ just(Π′) =

= W ∪
⋃

i=1,...,m

W [X/Xi] ∪
⋃

d′
i
∈Π′

just(d′i) ∪
⋃

d′
i
∈Π′

cons(d′i)

= W ∪
⋃

di 6∈Π

W [X/Xi] ∪
⋃

di∈Π

W [X/Xi] ∪

∪
⋃

di∈Π

just(di)[X/Xi] ∪
⋃

di∈Π

cons(di) ∪
⋃

dj∈Π

i=1,...,m

cons(dj)[X/Xi]

= W ∪
⋃

di∈Π

cons(di) ∪

∪
⋃

di 6∈Π

W [X/Xi] ∪
⋃

dj∈Π

di 6∈Π

cons(dj)[X/Xi]

∪
⋃

di∈Π



W [X/Xi] ∪ just(di)[X/Xi] ∪
⋃

dj∈Π

cons(dj)[X/Xi]





= W ∪
⋃

di∈Π

cons(di) ∪

∪
⋃

di 6∈Π



W ∪
⋃

dj∈Π

cons(dj)



 [X/Xi]

∪
⋃

di∈Π



W ∪ just(di) ∪
⋃

dj∈Π

cons(dj)



 [X/Xi]

The consistency of such formula is equivalent to the consistency of all formulae W ∪
just(di)∪

⋃

di∈Π cons(di) for every di ∈ Π, because all these formulae are on different alphabets
and their consistency entails the consistency of W ∪

⋃

di∈Π cons(di) and of all its variants on
the alphabets Xi for di 6∈ Π. The proof of the lemma is based on this fact: the global
successfulness of Π′ is equivalent to the local successfulness of Π.

Let us first assume that Π is a justified process of 〈D,W 〉, and show that Π′ is a con-
strained process of TJC(〈D,W 〉).

Π′ is a process. This is because the precondition of the defaults are not changed by the
translation and the background theory and the consequence of each translated default
d′ are var-equivalent to the consequence of the original default d on the variables X .

Π′ is globally successful. This fact holds because the global successfulness of Π′ is equiv-
alent to the local successfulness of Π, as shown above.

Π′ is maximally globally successful. We have to prove that, for every default d′i such
that W ′ ∪ cons(Π′) |= prec(d′i), the formula W ′ ∪ cons(Π′ · [d′i]) ∪ just(Π′ · [d′i]) is
inconsistent. Let us therefore assume that W ′ ∪ cons(Π′) |= prec(d′i), which implies
that W ∪ cons(Π) |= prec(di). Since Π is a maximal locally successful process, we have
that Π · [di] is not locally successful. As a result, Π′ · [d′i] is not globally successful.

11

Let us now assume that Π′ is a constrained process of TJC(〈D,W 〉), and prove that Π is
a justified process of 〈D,W 〉.

Π is a process. As in the previous case, since Π′ is a process, we have thatW ′∪cons(Π′[d′]) |=
prec(d′). Since prec(d′) = prec(d) andW ′∪cons(Π′[d′]) is var-equivalent toW∪cons(Π)
on the variables X , we have that W ∪ cons(Π) |= prec(d).

Π is locally successful. This is because Π′ is globally successful, and this condition implies
the local success of Π′.

Π is maximally locally successful. We have to show that, if W ∪ cons(Π) |= prec(di),
then Π · [di] is not successful. The condition that W ∪ cons(Π) |= prec(di) implies that
W ′ ∪ cons(Π′) |= prec(d′i). As a result, Π′ · [d′i] is not globally successful. As a result
Π · [di] is not locally successful.

We have therefore proved that the justified processes of the original theory correspond
to the constrained processes of the translated theory. The var-equivalence is guaranteed by
the fact that the alphabets are disjoint.

This lemma allows proving that the translation from justified to constrained default logic
is faithful.

Corollary 2 There exists a bijection from the justified extensions of 〈D,W 〉 to the con-
strained extensions of TJC(〈D,W 〉) such that two associated extensions are var-equivalent
w.r.t. the variables of 〈D,W 〉.

3.3 From Reiter or Rational to Justified or Constrained

Regarding translations from Reiter or rational default logic into justified or constrained
default logic, of course the translation is in general impossible, as the first two semantics
might not have extensions while the latter always has. We consider the specific case in which
theories are known to have extensions.

We show that no bijective-faithful polynomial-time translation from rational default logic
to any failsafe semantics (such as constrained or justified default logic) exists even if the
original theory is known to have extensions, unless the polynomial hierarchy collapses. The
same claim has been proved for Reiter semantics in another paper [Lib06].

This claim is proved by showing that the problem of entailment in theories having a single
extension is Σp

2 ∩ Πp
2-hard for the rational semantics. The same problem is in ∆p

2 for every
failsafe semantics because it amounts to generating a single extension, and this generation
is in ∆p

2 because it can be done by applying one of the applicable defaults and iterating.

Lemma 3 The problem of deciding the existence of rational extensions of a theory having
at most one rational extension and an empty background theory is Σp

2-hard.

Proof. Given ∃X∀Y.F , we build the following theory.

〈{

: xizi
zi ∧ (a → xi)

,
: ¬xizi

zi ∧ (a → ¬xi)

}

∪

{

z1 . . . zn ∧ (a → F) :

¬a
,
z1 . . . zn : a

false

}

, ∅

〉

12

The two defaults corresponding to the variable xi have mutually inconsistent justifications
xizi and ¬xizi. Once one of them is applied, its justification disallows the application of the
other one.

Since no other default can be applied until all zi’s are derived, a process is not closed until
either one of the two defaults associated to xi is applied. What results from this application
is a truth interpretation over the variables X conditioned to the variable a.

If this interpretation entails F regardless of the value of the variables Y , we can apply
the default having ¬a as a conclusion. The result of this application is that of making all
formulae a → xi and a → ¬xi derived so far vacuous, and the last default not applicable.

On the other hand, unless a is derived by the application of this default, the last default
can be applied generating a failure. This means that the theory has at most one extension,
and that happens exactly when ∃X∀Y.F .

This lemma can be used for deriving the complexity of the problem of entailment for
theories having a single extension.

Theorem 1 The problem of entailment is Σp
2 ∩Πp

2-hard for rational default logic even if the
default theory is guaranteed to have exactly one extension.

Proof. We have shown that every problem in Σp
2 can be reduced to checking whether a

theory having zero or one extension has in fact one extension in rational default logic. Now,
consider that for every instance of a problem in Σp

2∩Πp
2 we can produce two theories, the first

having 0/1 extensions, and the second having 1/0 extensions, depending on the instance of
the problem. We can then use a single variable separating the two cases: we combine these
two theories 〈D, ∅〉 and 〈D′, ∅〉 by introducing a new variable b, which is either true or false
in each extension of the following default theory:

〈{

: b

b
,
: ¬b

¬b

}

∪

{

b ∧ α : β

γ

∣

∣

∣

∣

∣

α : β

γ
∈ D

}

∪

{

¬b ∧ α : β

γ

∣

∣

∣

∣

∣

α : β

γ
∈ D′

}

, ∅

〉

This theory has all extensions of the two original theories. In this case, it has a single
extension, implying something or something else depending on the original instance.

What has been proved so far using complexity classes is that there is no poly-time re-
duction from rational default logic to any fail-safe semantics.

Corollary 3 If there exists a bijective faithful polynomial-time translation from either Reiter
or rational default logic to either justified or constrained default logics then Σp

2 ⊆ Πp
2.

3.4 From Constrained and Rational to Reiter and Justified

Delgrande and Schaub [DS03, DS05] showed polynomial-time faithful translations from all
four considered semantics to Reiter default logic. The translations from constrained and
rational default logic are bijective only when double extensions are used. This is because these
two translations copy the justifications of defaults into their consequence. As a result, two
constrained or rational processes generating the same extension correspond to two different
Reiter extensions. The correspondence is instead a bijection when double extensions are
used instead. Consider the following theory in either constrained or rational default logic.

13

〈{

: a

b
,
: ¬a

b

}

, ∅
〉

Constrained default logic selects two processes, each one composed of a single default.
These two processes generate the same extension Cn(b), but two different double extensions
〈a, Cn(b)〉 and 〈¬a, Cn(b)〉. This theory is translated into the following theory in Reiter
default logic:

〈{

: a′ ∧ b′

b ∧ a′ ∧ b′
,

: ¬a′ ∧ b′

b ∧ ¬a′ ∧ b′

}

, ∅

〉

The Reiter processes of this theory are still composed of one default each. However,
these processes generate not only two different double extensions 〈a′∧ b′, Cn(b∧a′ ∧ b′)〉 and
〈¬a′∧b′, Cn(b∧¬a′∧b′)〉, but also two different extensions Cn(b∧a′∧b′) and Cn(b∧¬a′∧b′).
This translation is therefore bijective on double extensions but not on extensions, as a single
extension of the original theory corresponds to two extensions of the resulting theory.

An open question is therefore whether bijective faithful polynomial-time reductions from
constrained and rational default logic to Reiter exist, when extensions, rather than double ex-
tensions, are considered. We show the effects of existence of such translations on complexity
classes.

Checking whether a formula is equivalent to an extension of a default theory in the
constrained or rational semantics is Σp

2 complete [Lib05]. The following lemma proves that
the problem remains hard even if the theory is known to have either one or two extensions,
both known in advance.

Lemma 4 For any formula F over variables X ∪ Y one can build in polynomial time a
default theory 〈D,W 〉 whose rational and constrained extensions are Cn(¬a ∧ ¬b) and, if
∃X∀Y.F is valid, Cn(¬a ∧ b).

Proof. Let X = {x1, . . . , xn}. The default theory corresponding to ∃X∀Y.F is 〈D, ∅〉 where:

D =
{

: xi

a → xi

,
: ¬xi

a → ¬xi

∣

∣

∣

∣

1 ≤ i ≤ n
}

∪

{

a → F : ¬ab

¬ab
,
: ¬a¬b

¬a¬b

}

Applying the last default generates ¬a¬b, which makes the second-last default inappli-
cable and entails all consequences of all other default. The formula ¬a¬b is therefore always
an extension of this theory.

The application of the defaults in the first set in either the rational or the constrained
semantics lead to a partial truth evaluation over the variables xi conditioned to a. We can
then apply the second-last default and generate b if and only if F is valid for this partial
truth evaluation. As a result, this theory has always the extension Cn(¬a ∧ ¬b), and also
has the extension Cn(¬a ∧ b) if and only if ∃X∀Y.F is valid.

The complexity of some problems easily follow from this lemma.

Corollary 4 Checking whether E is a rational or constrained extension of a default theory
is Σp

2-hard, and this result holds even if the theory has either one or two extensions.

14

Corollary 5 Checking whether a default theory has at least two constrained or rational
extensions is Σp

2-hard even if the theory has either one or two extensions.

Corollary 6 Checking whether a default theory skeptically entails a formula in the con-
strained or rational semantics is Πp

2-hard even if the theory has either one or two extensions.

Assume that a bijective faithful polynomial time translation from constrained or rational
default logic into Reiter or justified default logic exists. By Lemma 4, the validity of ∃X∀Y.F
can be translated in polynomial time into the question of whether ¬a∧ b is equivalent to an
extension of the theory 〈D,W 〉 of Lemma 4. This question can in turn be translated into
the question of whether the translated theory has an extension equivalent to ¬a ∧ b ∧G for
some formula G not mentioning the variables in {a, b} ∪ X ∪ Y ; this is indeed required for
this extension to be var-equivalent to Cn(¬a ∧ b). On the other hand, the assumption that
the translation is bijective ensures that at most one such formula G exists. This means that
the problem can be solved in Reiter or justified default logic with an unambiguous Turing
machine. Formally, we have the following result.

Theorem 2 If there exists a polynomial time bijective faithful translation from either con-
strained or rational default logic into Reiter or justified default logic then NPNP ⊆ UPNP.

Proof. The problem of whether E is equivalent to a constrained or rational extension of a
default theory is Σp

2-hard even if the theory is known to have only one other extension which
is inconsistent with E.

Assuming that a translation such in the statement of the theorem exists, the problem can
be translated into checking the existence of a subset of the consequences of the translated
theory E ′ such that EE ′ is an extension of the translated theory. On the other hand, if such
an E ′ exists is unique. Therefore, the test can be done by unambiguously guessing a subset
of the consequences E ′ and then checking whether EE ′ is a Reiter or justified extension of
the translated theory; since the latter problem can be solved with a polynomial number of
calls to an NP oracle [Ros99, Lib05], the whole problem would be in UPNP.

4 Strongest-Extension Translations

In this section, we show some bijective faithful reductions that require polynomial time only
once given one of the strongest extensions E of the original theory is known. Such translations
are polynomial-time given a formula that is equivalent to E; since E is deductive closure
of the consequences of some defaults in the theory, a formula of polynomial size that is
equivalent to E exists. Since these translations produce a polynomially sized result, they are
polynomial-size.

4.1 From Rational to Constrained

We show a reduction from rational to constrained default logic. This translation is proved to
work by relating each rational process of the original theory with a constrained process of the
translated theory. In the sequel, we refer to the rational process of the original theory as the
“simulated process” and the constrained process of the translated theory as the “simulating
process”. We also refer to a formula a → γ as “γ conditioned to a”. A simulated process is
related to its simulating process as follows:

15

1. the consequences of the simulated process are derived conditioned to a (that is, prepended
with a →) in the simulating process;

2. the justifications of the simulated process are derived conditioned to b (that is, prepended
with b →) in the simulating process;

3. both consequences and justifications of the simulated process are in the justifications
of the simulating process using a different alphabet.

Formally, every process Π is related to its simulating process Π′ as follows:

cons(Π′) = {a → γ | γ ∈ cons(Π)} ∪

{b → β | γ ∈ just(Π)}

just(Π′) = {γ[X/X ′] | γ ∈ cons(Π)} ∪

{β[X/X ′] | γ ∈ just(Π)}

Let 〈D,W 〉 be the original default theory, where D = {d1, . . . , dm}. The background
theory W is translated into a → W . This means that [] and its simulated process satisfy the
relationship above. We now define the defaults of the translated theory in such a way the
above relationship remains satisfied.

For every default di =
α:β
γ

of the original theory, we have two defaults which correspond
to different conditions of applicability of the original default in the original theory in the
rational semantics.

a → α : β[X/X ′] ∧ γ[X/X ′]

zi(a → γ)(b → β)

The precondition of this default is a → α is entailed in the simulating process if and
only if the precondition of the original default is entailed by the simulated process.

The justification of this default is consistent if and only if the original default is appli-
cable and does not produce a failure in the simulated default. Indeed, its justification
is consistent with just(Π′) if and only if the set of all consequences and justifications
of the simulated process is consistent with γ ∧ β.

Finally, the consequence of this default satisfies the condition that the consequences
and justifications of the original default are added to the consequences of the simulating
process with the assumptions a and b.

(a → α)(ab → ¬β) :

zi
This default is only applicable when the precondition of the original default is entailed
but its justification is inconsistent with the current set of justifications and conse-
quences. This is because all justifications and consequences of the simulated process
can be obtained by assuming both a and b. Therefore, if assuming both a and b then
β is false, then we are in the situation in which the original default cannot be applied
because of its justification.

16

These two defaults can be applied only if the precondition of the original default is
entailed. Moreover, the first default can be applied if the simulated default can be applied
without generating a failure. The second default can be applied only if the simulated default
cannot be applied. Therefore, if a → α is true, zi can be produced unless the simulated
default can be applied but produces a failure. The idea is that we generate a whenever we
are in the condition in which all applicable defaults are applied but a failure is not generated.
This is obtained by the following default.

∧

di∈D((a → prec(di)) → zi) : a¬E

a¬bz1 . . . zm

This default can be applied only if, for each default whose precondition is entailed ((a →
prec(di) is true), either the default cannot be applied or it can be applied without generating
a failure (zi is true). Therefore, this default can be applied only if the simulated process is
successful and closed (the justification ¬E is explained below.)

The consequence of this default include a, thus making all consequences that have been
derived so far unconditioned. It also includes ¬bz1 . . . zm; this formula entails all formulae
conditioned to b and all formulae zi derived so far. This way, the resulting extension does
not depend on which formulae b → β and zi have already been generated.

In order for the theory to simulate the original one we have to generate E whenever the
simulated process ends up in a failure. To simplify the matter, we allow E to be generated
at any time unless the above default has been applied. In the other way around, if we can
arrive to a point in which the above default is applied, we do not generate E; in all other
cases E can be generated.

:

¬a¬bEz1 . . . zm

The consequence of this default include ¬a, ¬b, and z1 . . . zm, which entail all conse-
quences of the defaults that have already been applied. This way, the generated extension
does not depend on which other defaults have been applied.

The only case in which this default cannot be applied is when a has been already derived.
Such a derivation cannot be accomplished by the defaults above because we always check
the consistency of a formula γ before generating a → γ. Therefore, this default is blocked
only if a has not be generated by the previous default.

We can therefore conclude that, if the simulated process if successful and closed we can
apply the previous default and generate the corresponding extension. In all other cases, this
last default is applicable, and generates the known extension E.

The precondition ¬E of the second-last default is used to avoid E to be generated both by
this and the last previous default. In order for this to work, we require E to be an extension
such that E ′ |= E does not hold for any other extension E ′. In this case, the inconsistency of
E and the extension to be different from E are the same condition. As a result, if generating
a produces an extension that is different from E, then the default cannot be applied because
the generated extension would be inconsistent with its justification.

The rationale of the proof can be therefore summarized as follows:

1. the consequences of the simulated theory are drawn conditioned to a, and preconditions
are checked conditioned to a;

17

2. the justifications of the simulated theory are drawn conditioned to b;

3. both consequences and justifications of the original theory are in the justifications of
this theory but rewritten in another alphabet;

4. we can always generate ¬a¬bE;

5. whenever all defaults that can be applied are applied, and that does not result in a
failure, we generate a¬b, making all consequences unconditioned and all justifications
void;

6. we generate a¬b only when the produced extension is different from E.

4.1.1 Formal Definition of the Translation

Let us now formally prove the correspondence between each theory and its translation. We
assume that 〈D,W 〉, where D = {d1, . . . , dm}, is a theory that has extensions and that E is
one of its strongest extensions, that is, for no other extension E ′ it holds E ′ |= E. We prove
some claims relating the processes of the original and translated theory. First, we define the
following two functions.

T e
RC

(

α : β

γ
, i

)

=
a → α : β[X/X ′] ∧ γ[X/X ′]

zi(a → γ)(b → β)

T n
RC

(

α : β

γ
, i

)

=
(a → α)(ab → ¬β) :

zi

The translated default theory is obtained by translating each default separately to two
ones and then adding the following two further defaults to it.

T g
RC({d1, . . . , dm}) =

∧

di∈D((a → prec(di)) → zi) : a¬E

a¬bz1 . . . zm

T s
RC({d1, . . . , dm}) =

:

¬a¬bEz1 . . . zm

The translation is defined as follows.

TRC(〈{d1, . . . , dm},W 〉) = 〈TRC(D), TRC(W)〉

where

TRC(D) = {T e
RC(di, i), T

n
RC(di, i) | 1 ≤ i ≤ m} ∪

{T g
RC({d1, . . . , dm}), T s

RC({d1, . . . , dm})}

TRC(W) = (a → W) ∧W [X/X ′]

4.1.2 Preliminary Results

In this section we show some general properties of propositional entailment. In particular,
we consider formulae in the form a → A, that is, formulae that are “conditioned” to a given
variable a. The translation uses formulae conditioned to variables in the background theory
and in the preconditions and consequences of some defaults.

18

Lemma 5 For any triple of formulae A, B, and C not containing the variables a and b, it
holds A |= C if and only if (a → A) ∧ (b → B) |= a → C.

Proof. We first assume to the contrary, that A |= C but (a → A)∧(b → B) 6|= (a → C). The
latter implies that (a → A) ∧ (b → B) ∧ ¬(a → C) is satisfiable. This formula is equivalent
to the following other ones:

(a → A) ∧ (b → B) ∧ ¬(a → C) ≡ (a → A) ∧ (b → B) ∧ ¬(¬a ∨ C)

≡ (a → A) ∧ (b → B) ∧ a ∧ ¬C

≡ A ∧ (b → B) ∧ a ∧ ¬C

If this formula is consistent, there exists a model that satisfies both A and ¬C, thus
violating the assumption that A |= C.

Let us now prove the converse. We assume that (a → A) ∧ (b → B) |= (a → C) but
A 6|= C. The latter condition implies that there exists a model M that satisfies both A and
¬C. Let us consider the model M ′ that extends M by the assignment a = true and b = false.
This model satisfies a, A, ¬C, and b → B. As a result, it satisfies A ∧ (b → B) ∧ a ∧ ¬C,
which we proved to be equivalent to (a → A) ∧ (b → B) ∧ ¬(a → C). As a result, (a →
A) ∧ (b → B) 6|= a → C, contrary to the assumption.

The second lemma is about conditioning with two variables.

Lemma 6 For any triple of formulae A, B, and C not containing the variables a and b, it
holds AB |= C if and only if (a → A) ∧ (b → B) |= (ab → C).

Proof. Assume that AB |= C. We have that abAB is equivalent to ab(a → A)(b → B).
Since AB entails C, we have that ab(a → A)(b → B) |= C. This condition can be rewritten
as (a → A)(b → B) |= (ab → C).

Let us now prove the converse. Assume that (a → A) ∧ (b → B) |= (ab → C) but
AB 6|= C. Then, we have a model that satisfies AB and ¬C at the same time. By adding
the assignment of a = true and b = true we obtain a model that satisfies a, b, A, B, and ¬C.
This formula therefore satisfies (a → A)∧ (b → B) but does not satisfy ab → C, contrary to
the assumption.

In the following, we use the above lemmas together with the following property.

Property 1 If K is satisfiable and does not share any variables with A and C, then A |= C
if and only if K ∧ A |= C.

4.1.3 e-Sequences

We show a correspondence between each sequence of defaults Π of the original theory and
the following sequence of defaults of the translated theory:

T e
RC([di1 , . . . , dik]) = [T e

RC(di1 , i1), . . . , T
e
RC(dik , ik)]

The consequences of Π and T e
RC(Π) are related as follows:

19

TRC(W) ∧ cons(T e
RC(Π)) ≡

≡ (a → W) ∧W [X/X ′] ∧ cons(T e
RC(Π))

≡ (a → W) ∧W [X/X ′] ∧
⋃

dj∈Π

(

zj ∧ (a → cons(dj)) ∧ (b → just(dj))
)

≡ W [X/X ′] ∧
(

⋃

dj∈Π

zj
)

∧ (a → (W ∧ cons(Π))) ∧ (b → just(Π)) (1)

Entailment of the precondition of a default from a sequence Π corresponds to the same
condition on the translated theory and sequence, as the following lemma shows.

Lemma 7 It holds W ∪ cons(Π) |= prec(di) if and only if TRC(W) ∧ cons(T e
RC(Π)) |=

prec(T e
RC(di, i)).

Proof. By the above correspondence between the conclusions of Π and of T e
RC(Π), the

condition TRC(W) ∧ cons(T e
RC(Π)) |= prec(T e

RC(di, i)) can be rewritten as follows:

W [X/X ′] ∧
(

⋃

dj∈Π

zj
)

∧ (a → (W ∧ cons(Π))) ∧ (b → just(Π)) |= a → prec(di)

Since W [X/X ′] and ∪zi do not share variables with the other formulae, by Property 1
this condition is equivalent to:

(a → (W ∧ cons(Π))) ∧ (b → just(Π)) |= a → prec(di)

By Lemma 5, this condition is equivalent to W ∪ cons(Π) |= prec(di).

This lemma proves that the precondition of a default di is entailed after the application
of Π in the original theory if and only if the same condition holds for the translated theory
and defaults. The following result is an immediate consequence of this lemma.

Corollary 7 A sequence of defaults Π is a process of 〈D,W 〉 if and only if T e
RC(Π) is a

process of TRC(〈D,W 〉).

The justifications of Π and of T e
RC(Π) are related in a similar way. In particular, we can

show the following equivalence about global consistency.

TRC(W) ∪ just(T e
RC(Π)) ∪ cons(T e

RC(Π))

≡ (a → W) ∧W [X/X ′] ∪ just(T e
RC(Π)) ∪ cons(T e

RC(Π))

≡ (a → W) ∧W [X/X ′] ∪
⋃

di∈D

just(d)[X/X ′] ∧ cons(d)[X/X ′] ∪

⋃

di∈Π

zi(b → just(d))(a → cons(d))

≡
⋃

di∈Π

zi ∪

W [X/X ′] ∪ just(Π)[X/X ′] ∪ cons(Π)[X/X ′] ∪

20

(a → W) ∪ (a → cons(Π)) ∪ (b → just(Π))

≡
⋃

di∈Π

zi ∪

(W ∪ just(Π) ∪ cons(Π))[X/X ′] ∪

(a → (W ∪ cons(Π)) ∪ (b → just(Π)) (2)

The consistency of this formula is easy to relate to the corresponding formula of Π.

Lemma 8 A sequence of defaults Π is a globally successful process of 〈D,W 〉 if and only if
T e
RC(Π) is a globally successful process of TRC(〈D,W 〉).

Proof. Formula 2 is consistent if and only if W ∪ just(Π) ∪ cons(Π) is consistent. Indeed,
Formula 2 contains W ∪ just(Π)∪ cons(Π) rewritten on a new alphabet plus other formulae
that are always satisfiable by setting both a and b to false.

This property can be pushed a little further by showing that if T e
RC(Π) is a globally

successful process, then its justifications and consequences are not only consistent with the
background theory but also with any other set of variables from Z ∪ {a}.

Lemma 9 The process T e
RC(Π) is globally successful if and only if TRC(W)∪cons(T e

RC(Π))∪
just(T e

RC(Π)) ∪ Z ∪ {a,¬b} is consistent.

Proof. If T e
RC(Π) is globally successful, by Equation (2) (W ∪ just(Π) ∪ cons(Π))[X/X ′]

is consistent, which means that W ∪ just(Π) ∪ cons(Π) is also consistent, that is, it has a
model. By adding the assignment a = true, b = false, and zi = true, we obtain a model of
TRC(W) ∪ cons(T e

RC(Π) ∪ just(T e
RC(Π)) ∪ Z ∪ {a,¬b}.

This lemma adds something to the previous one: not only Π is globally successful if and
only if T e

RC(Π) is globally successful, but the addition of other defaults having a subset of
Z ∪ {a,¬b} as consequences is irrelevant to the successfulness of T e

RC(Π).
Having proved that processes correspond to processes and successful processes correspond

to successful processes, what remains to be proved is that closed processes correspond to
closed processes. This is however not true in the presented reduction, which is based on the
idea of treating specially those processes for which a default is globally applicable but would
lead to global inconsistency.

4.1.4 n-Sequences

For any sequence of defaults Π of 〈D,W 〉, we consider the following sequence of defaults
of TRC(〈D,W 〉). In this formula,

∏

denotes a sequence of elements. The following is not
necessarily a process, nor Π has been assume to be a process.

T n
RC(Π) = T e

RC(Π) ·
∏

W∪cons(Π)|=prec(di)

W∪just(Π)∪cons(Π)∪just(di)|=⊥

T n
RC(di, i)

The following lemma is about the preconditions of the defaults T n
RC(di, i) that are in a

sequence T n
RC(Π).

Lemma 10 If T n
RC(di, i) is a default in T n

RC(Π), then TRC(W)∪cons(T e
RC(Π)) |= prec(T n

RC(di, i))
if and only if di is not globally applicable to Π.

21

Proof. The assumption that T n
RC(di, i) ∈ T n

RC(Π) implies that W ∪ cons(Π) |= prec(di).
Therefore, di is globally applicable to Π if and only if W ∪ cons(Π) ∪ just(Π) ∪ just(di) is
consistent.

The precondition of T n
RC(di, i) is a conjunction of the precondition of T e

RC(di, i) and
ab → ¬just(di). By Lemma 7, the precondition of T e

RC(Π) is entailed by T e
RC(Π) if and only

if W ∪ cons(Π) ∪ prec(di), which is true by assumption.
Regarding the second condition, the entailment of ab → ¬just(di) from T e

RC(Π) in for-
mulae is:

W [X/X ′] ∧
(

⋃

dj∈Π

zj
)

∧ (a → (W ∧ cons(Π))) ∧ (b → just(Π)) |= ab → ¬just(di)

The formulae W [X/X ′] and ∪zi can be neglected by Property 1 because they do not
share variables with the other formulae. By Lemma 6, the resulting condition (a → (W ∧
cons(Π))) ∧ (b → just(Π)) |= ab → ¬just(di) is equivalent to W ∪ cons(Π) ∪ just(Π) |=
¬just(di), which is the opposite of the global applicability of di to Π because W ∪cons(Π) |=
prec(di) holds by assumption.

The fact that the defaults T n
RC(di, i) have no justifications and a very simple consequence

has the effect that their order in T n
RC(Π) does not matter.

Lemma 11 For any sequence Π, the sequence T n
RC(Π) is a globally successful process if and

only if T e
RC(Π) is a globally successful process and TRC(W)∪cons(T e

RC(Π)) |= prec(T n
RC(di, i))

for every T n
RC(di, i) ∈ T n

RC(Π).

Proof. The defaults T n
RC(di, i) do not have justifications, and their consequences are con-

tained in Z. As a result, the set of justifications and consequences of T n
RC(Π) is exactly the

same as that of its first part T e
RC(Π) with a subset of Z added to it. By Lemma 9, this set

is consistent if and only if T e
RC(Π) is globally successful.

Regarding these sequences being processes or not, the consequence of a defaults T n
RC(di, i)

does not affect the precondition of another default of the same kind T n
RC(dj, j). Therefore,

two defaults of this kind can always be swapped. As a result, if T n
RC(Π) is a process then

any of its defaults T n
RC(di, i) can be moved to be immediately after T e

RC(Π). This proves
that T e

RC(Π) · [T
n
RC(di, i)] must be a process, which is the same as TRC(W)∪ cons(T e

RC(Π)) |=
prec(T n

RC(di, i) because the default T n
RC(di, i) has no justification. The converse is true by

the monotonicity of the underlying logic.

These two lemmas can be condensed as follows.

Corollary 8 For any sequence Π, the sequence T n
RC(Π) is a globally successful process if and

only if T e
RC(Π) is a globally successful process and, for any di such that T n

RC(di, i) ∈ T n
RC(Π),

it holds that di is not globally applicable to Π.

The condition of T n
RC(Π) being a globally successful process can be linked to Π being a

rational process.

Lemma 12 The sequence Π is a rational process of 〈D,W 〉 if and only if T n
RC(Π) is a

globally successful process of TRC(〈D,W 〉).

22

Proof. The sequence Π is a rational process if and only if Π is globally successful and every
default not in Π is not globally applicable to Π.

The global success of Π is equivalent to the global success of T e
RC(Π) by Lemma 8. We

therefore only have to prove that every di 6∈ Π is not globally applicable to Π if and only if,
for every T n

RC(di, i) ∈ T n
RC(Π), it holds that T

e
RC(Π) · [T

n
RC(di, i)] is a process. On the other

hand, the above corollary proves exactly this claim.

4.1.5 Permutation of Defaults

The correspondence between the processes of the original and the translated theory is not
bijective. Indeed, many processes of the translated theory generate the extension E, while
the same extension can be generated by one or few processes in the original theory. One
reason is that more than one constrained process might generate an extension that is var-
equivalent to E. On the other hand, we can prove that all such processes generate the same
extension.

Lemma 13 All constrained processes of TRC(〈D,W 〉) containing T s
RC(D) generate the ex-

tension W [X/X ′]¬a¬bEz1 . . . zm.

Proof. The formula W [X/X ′]¬a¬bEz1 . . . zm is the conjunction of the background theory
and the conclusion of T s

RC(D). If a process contains this default, its generated extension
contains this formula. We therefore only have to prove that the generated extension does
not include other formulae that are not entailed by this one.

Let Π be a rational process of TRC(〈D,W 〉) that contains T s
RC(D). Since this process

is successful and this default has ¬a as a conclusion, the process does not contain T e
RC(D),

which contains a as a precondition. All other defaults in TRC(〈D,W 〉) have consequences
that are entailed by ¬a¬bEz1 . . . zm; therefore, their presence in the process does not affect
the generated extension.

This lemma shows that all processes containing T s
RC(D) generate the same extension,

which is var-equivalent to E. Therefore, we can exclude these processes and the extension
E from consideration. In other words, we have to prove a bijection between the extensions
of the two theories besides the extension E and W [X/X ′]¬a¬bEz1 . . . zm. What we actually
prove is that there is a bijection between processes modulo permutation on the order of the
defaults.

Lemma 14 A constrained processes of TRC(〈D,W 〉) not containing T s
RC(D) contains T g

RC(D),
and therefore does not generate an extension that is var-equivalent to E.

Proof. The default T s
RC(D) has no precondition and no justification. It is therefore applicable

to every process, provided that its consequence is not inconsistent with the conclusions and
justifications of the other defaults in the process. On the other hand, the consequence
of T s

RC(D) is consistent with all justifications and conclusions of all defaults but T g
RC(D).

Therefore, if T s
RC(D) is not in a process, this process must include T g

RC(D). Since ¬E is a
justification of this default, the generated extension cannot be var-equivalent to E.

We have therefore divided the constrained processes of TRC(〈D,W 〉) into two groups:
those containing T s

RC(D) and generating the extension W [X/X ′]¬a¬bEz1 . . . zm and those

23

including T g
RC(D) and generating an extension that is not var-equivalent to E. The conse-

quences of the translated defaults are all in the form a → γ and b → β.
We now prove that processes can be put in a normal form in which defaults T e

RC(d, i)
occur first. We first prove that these defaults can always be put before defaults T n

RC(d, i).

Lemma 15 If TRC(〈D,W 〉) has a globally successful process in which a default T e
RC(d, i)

follows a default T n
RC(d, i), this default theory also has a globally successful process in which

the two defaults are swapped.

Proof. The only condition that makes swapping two consecutive defaults in a process impos-
sible is when the precondition of the second default is not entailed without the consequence
of the first. It is easy to show that this is not the case in the assumption of the lemma.

Indeed, the consequence of T n
RC(dj, j) is zj . The background theory does not contain zj ,

while the conclusions of all other defaults either do not contain zj or are in the form zj∧A, for
some formula A. Since the precondition of T e

RC(di, i) does not contain zj , Property 1 proves
that this precondition is entailed from the previous defaults if and only if it is entailed by
the previous defaults minus T n

RC(dj, j).

We now prove that a default T e
RC(d, i) cannot follow the default T g

RC(D).

Lemma 16 No constrained process of TRC(〈D,W 〉) contains T g
RC(D) followed by T e

RC(d, i).

Proof. Consider the first default T e
RC(d, i) that follows T

g
RC(D). All defaults between these

two are in the form T n
RC(d, i) because this process does not contain T s

RC(D) and T e
RC(d, i) is

the first one after T g
RC(D). By Lemma 15, the default T e

RC(d, i) can be moved immediately
after the default T g

RC(D). In other words, if there exists a globally successful process in
which T e

RC(d, i) follows T
g
RC(D), then the following is also a globally successful process:

Π = Π1 · [T
g
RC(D), T e

RC(di, i)] · Π2

This is a process. Therefore, the precondition of T e
RC(di, i) is entailed by Π1 · [T

g
RC(D)],

which can be rewritten as:

TRC(W) ∪ cons(Π1) ∪ cons(T g
RC(D)) |= prec(T e

RC(di, i))

iff (a → W) ∧W [X/X ′] ∪
⋃

T e
RC

(dj ,j)∈Π1

cons(T e
RC(dj, j)) ∪

⋃

Tn
RC

(dj ,j)∈Π1

cons(T n
RC(dj, j)) ∪ {a,¬b, z1, . . . , zm} |= a → prec(di)

iff (a → W) ∧W [X/X ′] ∪
⋃

T e
RC

(dj ,j)∈Π1

zj(a → cons(dj))(b → just(dj)) ∪

(

⋃

Tn
RC

(dj ,j)∈Π1

zj
)

∪ {a,¬b, z1, . . . , zm} |= a → prec(di)

since a and b are true and false, respectively

iff W ∧W [X/X ′] ∪
⋃

T e
RC

(dj ,j)∈Π1

zjcons(dj) ∪

⋃

Tn
RC

(dj ,j)∈Π1

zj ∪ {a,¬b, z1, . . . , zm} |= prec(di)

24

removing subformulae according to Property 1

iff W ∪
⋃

T e
RC

(dj ,j)∈Π1

cons(dj) ∪ {a} |= a → prec(di)

iff W ∪
⋃

T e
RC

(dj ,j)∈Π1

cons(dj) |= prec(di)

by Lemma 5

iff (a → W) ∪
⋃

T e
RC

(dj ,j)∈Π1

(a → cons(dj)) |= a → prec(di)

The formula preceeding |= is a subformula of TRC(W)∪ cons(Π1). As a result, TRC(W)∪
cons(Π1) |= a → prec(di).

By assumption, T g
RC(D) is applied after Π1. Therefore, all its preconditions must be

entailed at this point. In particular, (a → prec(di)) → zi must be entailed. Since a →
prec(di) is true after Π1, then zi must be true as well. Since T e

RC(di, i) is not in Π1 by
assumption, the only remaining default having di as a consequence is T n

RC(di, i). Therefore,
we have that Π1 contains T n

RC(di, i).
A consequence of this fact is that the precondition of T n

RC(di, i) is entailed from Π1. Let
us focus on the second part of the precondition:

TRC(W) ∪ cons(Π1) |= ab → ¬just(di)

iff (a → W) ∧W [X/X ′] ∪
⋃

T e
RC

(dj ,j)∈Π1

cons(T e
RC(dj, j)) ∪

⋃

Tn
RC

(dj ,j)∈Π1

cons(T n
RC(dj, j))

|= ab → ¬just(di)

iff (a → W) ∧W [X/X ′] ∪
⋃

T e
RC

(dj ,j)∈Π1

zj(a → cons(dj))(b → just(dj))

∪
⋃

Tn
RC

(dj ,j)∈Π1

zj

|= ab → ¬just(di)

removing the irrelevant parts by Property 1

iff (a → W) ∪
⋃

T e
RC

(dj ,j)∈Π1

(a → cons(dj))(b → just(dj)) |= ab → ¬just(di)

by Lemma 6

iff W ∪
⋃

T e
RC

(dj ,j)∈Π1

cons(dj) ∧ just(dj) |= ¬just(di)

replacing X with X ′ everywhere

iff W [X/X ′] ∪ just(Π1) ∪ cons(Π1) |= ¬just(di)[X/X ′]

The latter formula implies that W [X/X ′]∪just(Π1)∪cons(Π1)∪just(T e
RC(di, i) is incon-

sistent. As a result, the process Π is not globally successful, contradicting the assumption.

The latter two lemmas, together, implies that every constrained process of TRC(〈D,W 〉)
can be put in a sort of “normal form”.

25

Corollary 9 For each globally successful process of TRC(〈D,W 〉) containing T g
RC(D), there

exists another successful process that is composed of the same defaults, but all defaults
T e
RC(di, i) came first, followed by some defaults T n

RC(di, i), followed by T g
RC(D) followed by

some other defaults T n
RC(di, i).

4.1.6 Correspondence of Extensions

The correspondence between the rational processes of the original theory and the constrained
processes of the translated theory is obtained as follows. For each sequence of defaults Π of
the original theory, we consider the following sequence of the translated theory.

TRC(Π) = T n
RC(Π) · [T

g
RC(D)] (3)

We establish the following correspondence: each rational process Π of 〈D,W 〉 not having
E as an extension corresponds to the constrained process TRC(Π) of TRC(〈D,W 〉), and vice
versa. The converse is true in the sense that for every constrained process of TRC(〈D,W 〉)
there is an equivalent constrained process in which all defaults are in the form of TRC(Π).

Lemma 17 If TRC(Π) is a globally successful process, then there exists a sequence Π′ such
that TRC(Π)·Π

′ is a constrained process of TRC(〈D,W 〉) and for all such Π′ it holds cons(TRC(Π)) |=
cons(Π′).

Proof. If TRC(Π) is a globally successful process, it can be a non-constrained process only
because it is not maximal. On the other hand, the only applicable defaults are in the form
T n
RC(di, i) because of Lemma 14 and Lemma 16. The consequences of these defaults are

entailed by that of T g
RC(D).

Lemma 18 A formula E ′ that is not var-equivalent to E is an extension of TRC(〈D,W 〉) if
and only if E ′ = TRC(W) ∪ cons(TRC(Π)) and TRC(Π) is a globally successful process.

Proof. If TRC(Π) is a globally successful process, then it can be completed to form a con-
strained process by adding to it some defaults whose consequences are already entailed by
TRC(Π). Since TRC(Π) contains the default T g

RC(D), which has ¬E as a justification, the
generated extension is not E.

Let us assume that E is a constrained extension of TRC(〈D,W 〉) that is not equivalent to
E ′. By Lemma 13 and Lemma 14, its generating process contains T g

RC(D). By Corollary 9,
the default theory contains a process with the same defaults in which the defaults T e

RC(di, i)
preceed all other ones, followed by some defaults T n

RC(di, i) followed by T g
RC(D) followed

by some other defaults. Denoting by Π the set of defaults di such that either T e
RC(di, i) or

T n
RC(di, i) is before T g

RC(D) in this process, we have that this process can be rewritten as
TRC(Π) · Π

′. Since this is a constrained process, TRC(Π) is globally successful.

The following lemma relates the rational process of the original theory with the processes
obtained by the function TRC .

Lemma 19 Π is a rational process of 〈D,W 〉 not generating E as an extension if and only
if TRC(Π) is a globally successful process of TRC(〈D,W 〉).

26

Proof. By Lemma 12, Π is a rational process if and only if T n
RC(Π) is globally successful. Since

TRC(Π) = T n
RC(Π) · [T

g
RC(D)], if this process if globally successful then T n

RC(Π) is globally
successful as well. Therefore, we only have to prove that, if Π is a rational process, then
T n
RC(Π) · [T

g
RC(D)] is globally successful. In particular, since T n

RC(Π) is globally successful
and remains so even if their consequences are added {a,¬b}∪Z by Lemma 9, what remains
to be proved is only that the precondition of T g

RC(D) is entailed from the process T n
RC(Π).

Since Π is a rational process, for any default di such that W ∪ cons(Π) |= prec(di) it
holds that either di ∈ Π or that W ∪ cons(Π)∪ just(Π) |= ¬just(di). These three conditions
can be rephrased in the translated theory as follows.

W ∪ cons(Π) |= prec(di). This is equivalent to TRC(W) ∪ cons(T n
RC(Π)) |= a → prec(di) by

Lemma 7;

di ∈ Π. This means that T e
RC(di, i) ∈ T n

RC(Π), and therefore that TRC(W)∪cons(T n
RC(Π)) |=

zi;

W ∪ cons(Π) ∪ just(Π) |= ¬just(di). This means that T n
RC(di, i) ∈ T n

RC(Π), and therefore
that TRC(W) ∪ cons(T n

RC(Π)) |= zi.

As a result, since Π is a rational process then, for every index i such that TRC(W) ∪
cons(T n

RC(Π)) |= a → prec(di) it also holds that TRC(W) ∪ cons(T n
RC(Π)) |= zi. As a result,

the precondition of T g
RC(D) is entailed.

This lemma, together with Lemma 13 and Lemma 14 allows proving the correctness of
the translation.

Corollary 10 For every rational process Π of 〈D,W 〉 there are a number of constrained
processes of TRC(〈D,W 〉) all generating the same extension, which is var-equivalent to the
extension generated by Π, and vice versa.

4.2 From Reiter to Justified and Constrained

In order to translate theories from Reiter to justified default logic, we adopt a strategy slightly
different from the one used in the previous translation. Namely, we allow the application of
a default even if its justification is violated; however, we do not then generate the extension
in this case (we generate the known extension instead). We still replace W with a → W .
Each default di =

α:β
γ

is simulated by the two following defaults:

a → α : β[X/X ′]

zi(a → γ)

This default is always applicable whenever the precondition of the simulated default
is entailed. In other words, the justification of this default is always consistent at this
stage.

(a → α)(a → ¬β) :

zi
This default can only be applied if the precondition of the original default is entailed
but its justification is inconsistent with the current set of consequences.

27

These defaults can only be applied if the precondition of the original default is entailed.
In particular, if the justification of the original default is contradicted, we have a choice of
applying the first or the second default. If the original default is instead applicable, we are
forced applying the first default. The fact that the first default can be applied even if the
original default cannot will not be a problem, as these processes will be at a later time forced
to generate the known extension E.

As above, we have the default that generates the known extension, and which can always
be applied:

:

¬aEz1 . . . zn

This default can be applied provided that a has not been generated. On the converse,
if the defaults that have been applied correspond to a successful process, we can instead
generate a and produce the extension,by applying the following default:

∧

di∈D((a → prec(di)) → zi) : ¬E

a(X ≡ X ′)z1 . . . zm

Generating a makes all consequences of the defaults that have been applied uncondi-
tioned. On the other hand, X ≡ X ′ makes each formula β[X/X ′] equivalent to β. This is
done to check the justifications of all applied defaults of the first kind. If such a default has
been applied while its original default could not been applied because of its justification, the
addition of X ≡ X ′ would create a failure. This means that the last default is not applied,
as justified default logic does not allow generating a failure. As a result, this last default can
only be applied if the simulated process is successful. Otherwise, the only applicable default
is the one producing the known extension E.

The justification ¬E forbids E to be generated in two different ways, and work only if E
is one of the logically strongest extensions of the original theory.

Since justified default logic can be translated in polynomial time into constrained default
logic, it follows that Reiter default logics can be translated into constrained default logic
given one of the strongest extensions.

5 Polysize Translations

In this section, we show the effects of the existence of some polynomial-size translations
between variants of default logic. Existing translations have been shown in the previous sec-
tions: polynomial-time translations and translations that work given a strongest extension
are also polysize translations. The following result shows the ability of rational and con-
strained default logic to express the consistency of a formula with a partial interpretation.

Lemma 20 For any formula F over variables X ∪Y ∪Z it is possible to build in polynomial
time a default theory 〈D,W 〉 such that the following hold, where F |ωZ

is the formula obtained
from F by replacing each variable in Z with its truth value in ωZ :

1. for every truth assignment ωZ on the variables Z, the formula ωZ¬a¬b is a rational
and constrained extension of 〈D,W 〉;

28

2. for every truth assignment ωZ on the variables Z, the formula ωZ¬ab is a rational and
constrained extension of 〈D,W 〉 if and only if ∃X∀Y.F |ωZ

is valid;

3. 〈D,W 〉 has no other rational or constrained extension.

Proof. Let X = {x1, . . . , xn} and Z = {z1, . . . , zm}. The default theory that corresponds to
F is 〈D, ∅〉, where D is defined as follows; a, b, and {k1, . . . , km} are new variables.

D =

{

: ziki
ziki

,
: ¬ziki
¬ziki

∣

∣

∣

∣

∣

1 ≤ i ≤ m

}

∪

{

K : xi

a → xi

,
K : ¬xi

a → ¬xi

∣

∣

∣

∣

1 ≤ i ≤ n
}

∪
{

K(a → F) : ¬ab

¬ab
,
K : ¬a¬b

¬a¬b

}

where K = k1 ∧ · · · ∧ km

This set of defaults require a choice on all variables zi to be taken before applying any
other default. As a result, every extension of this theory contains a complete truth assignment
over the variables Z.

Once such a truth assignment has been obtained, we can apply the default K:¬a¬b
¬a¬b

, thus
obtaining the extension of the point 1. of the statement.

The only way of blocking this default it to apply the second last default. In turn, this
default can be applied only if some of the defaults of the second subset can be applied in
such a way the resulting conclusions a → ωX entail a → F |ωZ

regardless of the value of Y .
Therefore, ωZ¬ab is an extension if and only if ∃X∀Y.F |ωZ

is valid.

The default theory of the proof does not produce the same Reiter and justified extensions.
This is because the defaults K:xi

a→xi
and K:¬xi

a→¬xi
can coexist in the same Reiter or justified process

without making it unsuccessful. To make these defaults to contradict the justification of each
other one would need to change their justifications to a ∧ xi and a ∧ ¬xi, respectively; this
however would make the generation of ¬a by the last two defaults impossible.

This lemma is based on the ability of constrained and rational default logics to collect
the justifications of the applied defaults without making them appear in the conclusions.
This is the reason why extension-checking is harder in these two semantics than in Reiter
and justified default logics.

This idea constitutes the base of a possible proof of non-existence of a bijective translation
from rational or constrained default logics to Reiter or justified default logics. Namely, if such
a translation existed, then one would be able to solve the set of QBF problems ∃X∀Y.F |ωZ

for
every ωZ by first producing a rational or constrained default theory, translating it to Reiter or
justified default logic, and then checking for the existence of an extension containing ωZ¬ab.
For a fixed interpretation ωZ , such a translation would be certainly feasible in a polynomial
amount of space. The point is that a bijective faithful translation would need to produce a
theory that has one or two extensions for every interpretation ωZ over the variables Z.

The problem with this line of proof is that, in the theory that results from the translation,
we cannot simply check whether ωZ¬ab is an extension. Indeed, since new variables are
allowed, an extension ωZ¬ab is in general translated into an extension ωZ¬abG, where G is
a formula built over the new variables introduced by the translation.

29

For this reason, we consider the problem of checking whether a formula is equivalent to
part of an extension. This way, we could check ∃X∀Y.F |ωZ

by checking whether ωZ¬ab can
be extended to form an extension of the theory that results from the translation. We can
restrict to the case in which the theory is known to have at most one extension extending
the given formula. Indeed, in the lemma above, only a single extension containing ωZ¬ab
may possibly exist; the result of a bijective reduction is a single extension, if any, containing
ωZ¬ab.

A majority Turing machine is a nondeterministic Turing machine that output “yes” if and
only if at least half of the computation paths lead to acceptance. The class PP is the class
of problems solved by a majority Turing machine that works in polynomial time. Similarly,
PPA is the class of problems solved by a majority Turing machine working in polynomial
time and equipped with an oracle that solves the problem A in constant time. The class
PPC, where C is a class of problems, is defined as the union the classes of PPA for every
A ∈ C.

A slightly different characterization of classes defined in terms of oracles and nondeter-
ministic Turing machines is in terms of the counting quantifier C. This quantifier extends
both ∃ and ∀ by allowing the minimal number of assignments making a formula valid to
be specified arbitrarily. Wagner [Wag86] and Toran [Tor91] have shown that PPK = CK
for every class K that is defined in terms of quantifiers C, ∃, and ∀. Besides the superficial
difference on the bound, this result proves that an oracle majority Turing machine can be
restricted to make exactly one call to the oracle in each path of computation without a power
loss.

Theorem 3 Deciding whether |ext(T)| ≥ k is C∀∃P complete for constrained and rational
default logic.

Proof. The problem can be solved by counting the number of processes that generate an
extension. Since two processes can generate the same extension, we define an ordering over
processes and only count the minimal one for each extension. Given a default theory T , we
define proc(T) to be its selected processes and minproc(T) its minimal selected processes.

Given a default theory 〈D,W 〉, we add an arbitrary linear ordering < on the set of the
defaults. A linear ordering can be then defined over the processes: Π < Π′ if and only if
either Π is shorter than Π′, or Π(i) < Π′(i) where i is the first index for which Π(i) 6= Π′(i).
Counting the extensions can be done by counting the minimal processes:

Π ∈ minproc(T) iff Π ∈ proc(T)

∀Π′ . Π′ 6∈ proc(T) ∨ (cons(Π′) 6≡ cons(Π)) ∨ Π < Π′

A process Π is in this set if and only if it is the minimal process generating the extension
W ∪ cons(Π). As a result, we can count the number of extension of T by counting the
number of processes in minproc(T). Since deciding whether a process is in minproc(T) is
in ∀∃P, deciding whether their number is greater than a number k is in C∀∃P.

We prove the hardness of the problem by showing a reduction from the problem of
establishing whether the number of truth assignments ωZ over variables Z such that a formula
∃X∀Y.F |ωZ

is valid is greater than or equal to a given bound. This problem is C∃∀P complete
[Wag86].

30

By Lemma 20, the formula ∃X∀Y.F |ωZ
is valid for Z = ωZ exactly when ωZ¬ab is an

extension of the theory 〈D,W 〉 of the lemma. Besides these extensions, the theory 〈D,W 〉 has
also exactly 2|Z| extensions. Therefore, checking whether the number of truth assignments
ωZ satisfying the condition above is greater than or equal to k is equivalent to checking
whether 〈D,W 〉 has at least |ext(T)| ≥ 2|Z| + k extensions.

The same problem for Reiter and justified default logic is slightly simpler.

Theorem 4 Checking whether |ext(T)| ≥ k is in C∃ for Reiter and justified default logic.

Proof. We show that the problem is in PPNP, which is equal to C∃. Checking whether a
subset of cons(D) is an extension of a theory for the considered two semantics is in ∆p

2:
checking whether E ∈ ext(T) can be solved by a polynomial number of calls to an NP oracle
(actually, a logarithmic number suffices). Counting the number of extensions of T can be
solved by counting the number of nondeterministic paths of a Turing machine that has one
such path for every D′ ⊆ D and calls the oracle for checking whether E = cons(D′) is an
extension. Some nondeterministic paths have to be added to make the bound k to correspond
exactly to one half of the nondeterministic paths.

The complexity of the problem is therefore lower for Reiter and justified default logics
than for constrained and rational default logics. Of course, this result is not useful by itself,
as the non-existence of a polynomial-time translation is already established.

We denote by T ❀ T ′ the condition of existence of a bijective faithful translation from T
to T ′. This condition can be formalized as follows, where ≡T indicates var-equivalence over
the variables of T .

T ❀ T ′ iff ∀E . E ∈ ext(T) ↔ ∃E ′ . EE ′ ∈ ext(T ′)

∀E ′E ′′ . E ′ ∈ ext(T ′) E ′′ ∈ ext(T ′) (E ′ ≡T E ′′) → E ′ = E ′′

Checking the first line of the right-hand side of this equation is in Πp
3 because EE ′ ∈

ext(T ′) is ∆p
2 and therefore in Σp

2: as a result, ∃E ′ . EE ′ ∈ ext(T ′) is in Σp
2 as well. In the

second check, the dominating operation is to check the opposite of E ′ ≡T E ′′, and checking
var-equivalence is in Πp

2.
The idea is as follows: assume that, for every T , there exists a theory T ′ of polynomial

size such that T ❀ T ′. If this is the case, we can check the number of extensions of T by
first guessing a theory T ′ of polynomial size, and then checking whether T ❀ T ′ and doing
the check on the number of extensions on T ′. Formally:

|ext(T)| ≥ k ⇔ ∃T ′ . (T ❀ T ′) ∧ |ext(T ′)| ≥ k

⇔ ∀T ′ . (T ❀ T ′) → (|ext(T ′)| ≥ k)

The first line reformulates the problem with an existential quantifier ∃ and a formula
that is in ∀∃∀P and one that is in C∃P. The second line gives a similar result; note that
T ❀ T ′ is this time used in reverse because it is in an antecedent of an implication.

The above conditions allow solving the problem in two different ways, leading to mem-
bership to the following inclusion:

31

C∃∀P ⊆ ∃(∀∃∀P ∪ C∃P) ∩ ∀(∃∀∃P ∪ C∃P)

Some results that hold for these classes are: every class CK is closed under complemen-
tation [Tor91], and therefore C∃K = C∀K; both ∃K and ∀K are included into CK [Tor91];
and PH ⊆ PCP [Tod89]. Applying these results to the first class above we get:

∃(∀∃∀P ∪ C∃P) ⊆ ∃(PPP ∪ C∀P) Toda
= ∃(NPPP ∪ C∀P) because P ⊆ NP
= ∃(NPCP ∪ C∀P) because PP = PPP and PPK = CK
= ∃(∃CP ∪ C∀P) since NPCK = ∃CK
⊆ ∃(∃C∀P ∪ ∃C∀P) adding quantifier can only enlarge classes
= ∃∃C∀P classes with ∃ in front are closed under union
= ∃C∀P two quantifiers of the same type

For the second class, we obtain a similar result:

∀(∃∀∃P ∪ C∃P) ⊆ ∀(PPP ∪ C∃P)

⊆ ∀(∀CP ∪ C∃P)

⊆ ∀(∀C∃P ∪ ∀C∃P)

= ∀C∃P

Therefore, the assumption of existence of a bijective faithful translation would imply that
C∃∀P is contained in both ∃C∀P and ∀C∃P. This condition can be restated as: a counting
quantifier can be swapped with either an existential or a universal one.

If C∃∀P ⊆ ∃C∀P then ∃C∃∀P ⊆ ∃∃C∀P = ∃C∀P ⊆ ∃C∃∀P, and therefore ∃C∃∀P =
∃C∀P. With a similar proof one can conclude that ∀C∃∀P = ∀C∃P.

6 Conclusions

This article reports some results about the existence of bijective-faithful translations among
variants of default logics. Translations between such variants have already been investigated
in the literature; some of such translations are faithful: each extension of the original theory
corresponds to an equivalent extension of the translated theory. This article makes the
assumption that the translations can introduce new variables; that implies that faithful
translations might not be bijective: each extension of the original theory may correspond to
many extensions of the translated theory. We therefore considered translations that are not
only faithful but also create a bijection between extensions.

The rationale of requiring such a bijection is that the translated theory provides a more
close simulation of the original one. As an example, if one translates an instance of the
planning problem into Reiter default logic in such a way each plan corresponds to an ex-
tension [Tur97], then translating this theory in another variant breaks this correspondence
if the translation is not bijective. If one wants to enumerate all plans, and a non-bijective
translation has been applied, enumerating the extensions of the translated theory does not
automatically generate an enumeration of all possible plans, because some plans may be

32

generated more than once. As an extreme example, a planning instance having two plans P1

and P2 can be expressed into a Reiter default theory having two extensions E1 and E2. If
one then converts this theory into constrained default logic using a non-bijective translation,
what may result is a theory having a large number of extensions corresponding to E1 and a
single one corresponding to E2. That means that enumerating all extensions of this theory
is likely to find a large number of extensions corresponding to P1 before finding the one
corresponding to P2.

The same argument can be applied in general for the problem of generating all extensions
of a default theory, finding the number of extensions, finding whether a theory has a unique
extension [ZL02], etc. All these problems cannot be solved by first translating the theory into
a different semantics and then solving the problem in that semantics, unless the translation
is guaranteed to translate every extension into a single extension.

References

[Ant99] G. Antoniou. A tutorial on default logics. ACM Computing Surveys, 31(4):337–359,
1999.

[AS94] G. Antoniou and V. Sperschneider. Operational concepts of nonmonotonic logics,
part 1: Default logic. Artificial Intelligence Review, 8(1):3–16, 1994.

[Bes89] P. Besnard. An introduction to Default Logic. Springer, Berlin, 1989.

[DS03] J. Delgrande and T. Schaub. On the relation between Reiter’s default logic and
its (major) variants. In Seventh European Conference on Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty (ECSQARU 2003), pages 452–463,
2003.

[DS05] J. Delgrande and T. Schaub. Expressing default logic variants in default logic.
Journal of Logic and Computation, 2005. To appear.

[ET93] J. Engelfriet and J. Treur. A temporal model theory for default logic. In Proccedings
of the European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty (ECSQARU’93), pages 91–96, 1993.

[FM92] C. Froidevaux and J. Mengin. A framework for default logics. In European Work-
shop on Logics in AI (JELIA’92), pages 154–173, 1992.

[FM94] C. Froidevaux and J. Mengin. Default logics: A unified view. Computational
Intelligence, 10:331–369, 1994.

[Got95] G. Gottlob. Translating default logic into standard autoepistemic logic. Journal
of the ACM, 42:711–740, 1995.

[Imi87] T. Imielinski. Results on translating defaults to circumscription. Artificial Intelli-
gence, 32:131–146, 1987.

[Jan98] T. Janhunen. On the intertranslatability of autoepistemic, default and priority
logics, and parallel circumscription. In Proceedings of the Sixth European Workshop
on Logics in Artificial Intelligence (JELIA’98), pages 216–232, 1998.

33

[Jan01] T. Janhunen. On the effect of default negation on the expressiveness of disjunctive
rules. In Proceedings of the Sixth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’01), pages 93–106, 2001.

[Jan03] T. Janhunen. Evaluating the effect of semi-normality on the expressiveness of
defaults. Artificial Intelligence, 144:233–250, 2003.

[Kon88] K. Konolige. On the relationship between default and autoepistemic logic. Artificial
Intelligence, 35:343–382, 1988.

[Lib05] P. Liberatore. Representability in default logic. Journal of the Interest Group in
Pure and Applied Logic, 13(3), 2005.

[Lib06] P. Liberatore. Where fail-safe default logics fail. ACM Transactions on Computa-
tional Logic, 8(2), 2006.

[LLM03] J. Lang, P. Liberatore, and P. Marquis. Propositional independence: Formula-
variable independence and forgetting. Journal of Artificial Intelligence Research,
18:391–443, 2003.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[Ros99] R. Rosati. Model checking for nonmonotonic logics. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI’99), pages 76–83,
1999.

[Tod89] S. Toda. On the computational power of PP and⊕P. In Proceedings of the Thirtieth
Annual Symposium on the Foundations of Computer Science (FOCS’89), pages
514–519, 1989.

[Tor91] J. Torán. Complexity classes defined by counting quantifiers. Journal of the ACM,
38:753–774, 1991.

[Tur97] H. Turner. Representing actions in logic programs and default theories: a situation
calculus approach. Journal of Logic Programming, 31(1–3):245–298, 1997.

[Wag86] K. Wagner. The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica, 23:325–356, 1986.

[ZL02] X. Zhao and P. Liberatore. Complexity of the unique extension problem in default
logic. Fundamenta Informaticae, 53(1):79–104, 2002.

34

