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Abstract
This paper presents a self-contained proof of the strong completeness of the labeled tableaux method for
partial monoidal Boolean BI: if a formula has no tableau proof then there exists a counter-model for it which
is simple. Simple counter-models are those which are generated from the specific constraints that occur during
the tableaux proof-search process. As a companion to this paper, we provide a complete formalisation of this
result in Coq1 and discuss some of its implementation details.

1 Introduction
This paper presents the detailed and self-contained proofs of soundness and (strong) completeness of
the labeled tableaux method for a sub-structural logic called partial monoidal Boolean BI. The com-
pleteness is obtained w.r.t. the general class of partial commutative monoids but also, and this justifies
the use of the “strong” qualification, w.r.t. the strict sub-class of simple partial commutative monoids,
which are those that are generated during the tableaux proof-search process. To our knowledge, the
completeness proof for this logic has never been published but a soundness proof was already presented
in [22] for a labeled tableaux system called TBBI-tableaux. We point out however that the tableaux
proof system presented in this paper is not strictly identical to TBBI: these two systems differ but
only in their implementations.2

The aim of this paper is double: first, to serve as a reference for the completeness result of an
important variant of Boolean BI [23] strongly related to Separation Logic [19, 24]; and second, to serve
as a guideline for the formal Coq3 proof that implements the results of this paper. Although not
strictly identical to the (informal) developments presented in this paper, the formal proof follows the
same plan and there exists a high level of correspondence between intermediate results of both proofs.
This correspondence is discussed in a specific section.

The logic Boolean BI is characterised here both with its Kripke semantics and through a proof
system based on a labeled tableaux calculus. The addition of labels (and constraints) to traditional
proof systems like sequent calculi or tableaux calculi can be a way to introduce specific semantic
information within the proof system, something that could otherwise be difficult or impossible with
a pure syntactic setting. This framework of labels was introduced for intuitionistic BI in [14] and for
Boolean BI in [22]. It has been used for other logics like intuitionistic or intermediate logics as well. As

1The Coq code is distributed under a free software license and is accessible at http://www.loria.fr/˜larchey/BBI.
2See Fact 34 and the discussion that follows on page 12.
3The Coq system is open source software accessible at http://coq.inria.fr.
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an example, Roy Dyckhoff and Sara Negri used a labeled sequent calculus to propose decision methods
for Gödel-Dummett logic [11].

The Logic of Bunched Implications [29, 30] called BI is a sub-structural logic usually considered as
the foundation of separation logics [19, 26] and spatial logics [6]. It contains both additive operators
like ∧, ∨ and → and multiplicative operators like ∗ and −∗. The multiplicative operators are those of
multiplicative intuitionistic Linear Logic [15]. The additives can be interpreted either as in intuitionistic
logic which gives rise to intuitionistic BI [30], or as Boolean operators which gives rise to Boolean
BI [30, 13]. Classical BI [2, 3] is another variant of BI which combines Boolean additives with classical
multiplicatives.

The core semantic link between BI and separation logic can be summed up in the Kripke sharing
interpretation of the multiplicative conjunction:

m 
 A ∗B iff there exists a, b such that a ◦ b . m and a 
 A and b 
 B

The ternary composition/decomposition relation − ◦ − . − reads either as “m is a result of the
composition of a and b” or “m can be decomposed into a and b.” The interpretation of composi-
tion/decomposition depends on the variant of the logic and/or model, see [22, 24, 5] for an overview
of some possible interpretations of this relation. In this paper we will focus on Boolean BI (denoted
BBI), more precisely on partial monoidal BBI. In this case, the composition ◦ is a partial monoidal
operator and the relation . is the identity or at least a congruence relation w.r.t. the partial monoidal
composition ◦. This is not a restriction since all the models of separation logic and abstract separation
logic [7, 5, 21] are in fact partial monoids [24].

Contrary to what happened with intuitionistic BI which was well defined by a cut-free bunched
sequent calculus since its inception [30], later completed with a decidability result [14], the proof theory
of BBI was, at first, not very well understood. In [30], it is defined as the addition of a double negation
principle/axiom to intuitionistic BI, but of course, with this axiom, you loose either cut-elimination
or the bunched sequent calculus. In [13], a sound and complete Hilbert style proof system is given
for a variant of BBI called relational BBI or non-deterministic BBI. Later, [1] provided a cut-free
Display-style sequent calculus for relational BBI. In [22], a sound labeled tableaux calculus is given
for partial monoidal BBI, leading to an embedding of intuitionistic BI into Boolean BI, a result which
was quite unexpected at that time.4 But it was still unknown whether relational and partial monoidal
BBI coincide or not, or whether BBI was decidable or not.

Then, the situation improved a lot with a model that distinguishes relational and partial monoidal
BBI [23] as well as other variants of Boolean BI, leading to a family of different logics [20], and
an undecidability result obtained for the whole family of BBI/separation logics, independently and
simultaneously in [4] and [23]. We also point out the undecidability result for Classical BI [4, 20].
These undecidability results doomed the different attempts made at providing a decision procedure
for BBI either through Display logic [1] or through tableaux calculi [22].

However in this paper, we explain how the labeled tableaux calculus can still be useful as a tool for
the study of the properties of BBI, like finer completeness results. We believe that the labeled calculus
can also serve as an effective semi-decision algorithm for partial monoidal BBI, but we will only discuss
this as a perspective. This work also comes as a complement to [22], the knowledge of which being
advised but not required. Let us give a quick overlook of the content of the upcoming sections:

• in Section 2, we describe a framework of labels represented by words and constraints between
those labels that can be used as a syntactic representation for partial monoids. The solutions of
those constraints, partial monoidal equivalences, give a foundation to the semantics of (partial
monoidal) BBI;

• in Section 3, we introduce the syntax and Kripke semantics of (partial monoidal) BBI and the
notion of (counter-)model;

4and it is the completeness of a nearly isomorphic labeled tableau calculus that we establish here.
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• in Section 4, we present the labeled tableaux calculus for BBI with a table of branch expansion
rules and the conditions under which the branches of BBI-tableaux are closed. We review some
ground properties of the tableau calculus;

• in Section 5, we adapt the soundness proof already given in [22]: any BBI-formula that has a
closed BBI-tableau is a universally valid formula. There is nothing really new in this section
except the link with the formal Coq proof;

• Section 6 details the main concepts that lie at the heart of the strong completeness result: the
notion of Hintikka set, the notion of fair strategy and the notion of oracle. We point out that
contrary to the case of first order logic, it is not sufficient to obtain a maximally consistent set
of formulæ to be able to extract a counter-model. The Hintikka set has to be constructed more
carefully in the case of BBI. We characterise the constraints generated during proof-search as
basic: they are of the form ab−·····−m, am−·····− b and ε−·····−m where m is an already defined label, ε is
the empty label and a, b are two new labels. Simple models arise as those generated by (infinite)
sequences of basic constraints. We finish with the strong completeness result: any BBI-formula
that has no closed BBI-tableau has a simple counter-model;

• in Section 7 we focus on the strong links and also on the slight differences that exist between
the informal proof and the formal proof, mainly consequences of the divergence between the
informal meta-logic (classical set theory) and the formal meta-logic (the calculus of inductive
constructions);

• in Section 8 we discuss the perspectives of this work: the study of the specific properties of basic
and simple BBI models like cancellativity, the effective computation of the solutions of basic
sequences of constraints and its use in the context of semi-decision methods for BBI.

2 Partial Monoidal Equivalences
We introduce a framework of labels and constraints to syntactically represent commutative partial
monoids which form the semantic basis of partial monoidal Boolean BI. Labels are viewed as words
and constraints as binary relations between those words. This choice allows us to easily mix the logical
information and the semantic information within our semantic tableaux.

The basic idea is to represent the elements of a partial commutative monoid by multisets of letters
and to quotient those multisets by a partial equivalence relation which is moreover congruent with
monoidal operations: the neutral constant and the binary composition. We call such relations partial
monoidal equivalences (PME). To easily compute with PMEs, we provide a set of derivation rules
for which they are closed and which precisely characterises them: in a sense, these derivation rules
“axiomatize” PMEs. Moreover, the closure operator they generate provides a way to “solve” partial
monoidal constraints, i.e. to compute the least partial monoid which satisfies a given set of constraints.

Any commutative partial monoid can be obtained as a quotient of a set of words by a PME and
we recall a soundness/completeness result for this labeled semantics of BBI in Section 3.

2.1 Words, constraints and PMEs
Let L be a (potentially infinite) alphabet of letters. We consider the set of words L? where the order of
letters is not taken into account, i.e. we consider words as finite multisets of letters. The composition of
words is denoted multiplicatively and the empty word is denoted ε and thus (L?, ·, ε) is the commutative
monoid freely generated by L.

We denote x ≺ y when x is a subword of y, i.e. when there exists a word k such that kx = y. If
x ≺ y, there is only one k such that xk = y and it is denoted y/x, hence y = x(y/x). The (carrier)
alphabet of a word m is the set of letters of which it is composed: Am = {l ∈ L | l ≺ m}. We may view
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ε−·····− ε
〈ε〉

x−·····− y
y −·····− x

〈s〉
ky −·····− ky x−·····− y

kx−·····− ky
〈c〉

xy −·····− xy
x−·····− x

〈d〉
x−·····− y y −·····− z

x−·····− z
〈t〉

Table 1: Derivations rules for the definition of PMEs.

the alphabet L or any of its subsets X ⊆ L as a subset X ⊂ L?, i.e. we identify letters and one-letter
words using the canonical embedding.

Definition 1 (Constraint). A constraint is a ordered pair of words in L? × L? denoted m−·····− n.

As usual in set theory, we represent a binary relation R ⊆ L? × L? between words of L? as a
set of (ordered) pairs of words, hence as a set of constraints. Recall that the notation x R y is just
a convenient shortcut for x −·····− y ∈ R. We will use both notations throughout the paper sometimes
depending on typesetting requirements, sometimes because we want to enforce the distinction between
syntax and semantics. For instance, a constraint is syntactic object whereas a relation between words
is a semantic object. When C = {. . . , xi−·····−yi, . . .} is viewed as a finite or infinite collection of individual
constraints, it is interpreted as a syntactic notion and we write x −·····− y ∈ C for example. When R is
viewed as a relation between words, it is interpreted as a semantic notion and we rather write x R y.
But the precise nature of C and R is the same, that of a set of constraints.

Definition 2 (Language of/alphabet of). The language of a binary relation R ⊆ L?×L? denoted
LR is defined by LR = {x ∈ L? | ∃m,n ∈ L? s.t. xm R n or m R xn}. The carrier alphabet of R
denoted AR is defined by AR =

⋃
{Am ∪ An | m R n}.

A word m ∈ L? is said to be defined in R if m ∈ LR and is undefined in R otherwise. A letter
l ∈ L is new to R if l 6∈ AR . The language LR is downward closed w.r.t. the subword order ≺. The
inclusion LR ⊆ A?R and the identity AR = LR ∩ L hold. If R1 and R2 are two relations such that
R1 ⊆ R2 then the inclusions AR1 ⊆ AR2 and LR1 ⊆ LR2 hold. The alphabet of a set C of constraints
is thus AC = {l ∈ L | l ≺ m or l ≺ n for some m−·····− n ∈ C}, i.e. the set of letters which occur in some
constraint of C. Let us now introduce the derivation rules that characterise the particular relations we
are interested in.

Definition 3 (PME). A partial monoidal equivalence (PME) over the alphabet L is a binary relation
∼ ⊆ L? × L? which is closed under the derivation rules 〈ε, s, c, d, t〉 of Table 1.

As an example, let a, b ∈ L be two different letters and C0 be the singleton constraint C0 = {a−·····− b}.
Then C0 is not a PME because closure by rule 〈s〉 would require that b −·····− a belongs to C0 as well as
a −·····− b. However ∼0 = {ε −·····− ε, a −·····− a, b −·····− b, a −·····− b, b −·····− a} is a PME (left to the reader) which contains
C0. In fact, it can be checked that it is the least PME which contains C0. We will call it the PME
generated by C0 (see upcoming Definition 6).

Let us provide some derived rules which will be more suitable for computing relations in PMEs or
for proving properties of PMEs throughout this article.

Proposition 4. PMEs are closed under (the derived) rules 〈pl, pr, el, er〉:

kx−·····− y
x−·····− x

〈pl〉
x−·····− ky
y −·····− y

〈pr〉
x−·····− y yk −·····−m

xk −·····−m
〈el〉

x−·····− y m−·····− yk
m−·····− xk

〈er〉
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Proof. For rule 〈pl〉 and then rule 〈pr〉, we provide the two derivation trees:

kx−·····− y

kx−·····− y
〈s〉

y −·····− kx
〈t〉

kx−·····− kx
〈d〉

x−·····− x

x−·····− ky
〈s〉

ky −·····− x
〈pl〉

y −·····− y

For rule 〈el〉 and then rule 〈er〉, we provide the two derivation trees:

yk −·····−m
〈pl〉

yk −·····− yk x−·····− y
〈c〉

xk −·····− yk yk −·····−m
〈t〉

xk −·····−m

x−·····− y

m−·····− yk
〈s〉

yk −·····−m
〈el〉

xk −·····−m
〈s〉

m−·····− xk

Remark that derived rule 〈pl〉 is applied in the left hand side derivation tree with parameter k equal
to the empty word ε. �

Rule 〈pl〉 (resp. 〈pr〉) is a left (resp. right) projection rule. Rules 〈el〉 and 〈er〉 express the capacity
to exchange related subwords inside the PME ∼, either on the left or on the right.

Proposition 5. Let ∼ be a PME over the alphabet L. The following identities hold:

L∼ = {x ∈ L? | x ∼ x} and A∼ = {l ∈ L | l ∼ l}

Proof. It is obvious that {x ∈ L? | x ∼ x} ⊆ L∼. For the converse, if xm ∼ n (resp. m ∼ xn) then
x ∼ x by rule 〈pl〉 (resp. rule 〈pr〉). Hence, L∼ ⊆ {x ∈ L? | x ∼ x}. As A∼ = L∼ ∩ L, we get
A∼ = {l ∈ L | l ∼ l}. �

2.2 Sets of constraints and other properties of PMEs
Given a set of constraints C, we may interpret these syntactic constraints as equations, i.e. relations
between words that we want to satisfy. When we compute the closure C of those constraints by the
derivation rules of Table 1, we obtain an augmented set of constraints which in turn corresponds to
the least solution of those constraints. When we interpret C as a binary relation (semantic object)
instead of a set of constraints (syntactic object), we rather write ∼C.

Since they are defined by closure under some derivation rules, the class of PMEs is closed under
arbitrary intersections. Thus, given a set of constraints C, there exists a least PME containing C,
which will be denoted by either ∼C or C. We are especially interested in PMEs generated by some
finite or infinite set of constraints, and extensions of existing PMEs with additional constraints.

Definition 6 (Generated PME). Let C be a set of constraints over the alphabet L. The PME
generated by C is the least PME containing C. It is either denoted by ∼C or C, depending whether
we view it as a relation or as a set of constraints. Hence, the denotations m ∼C n and m−·····− n ∈ C are
synonymous.

As another example, let a, b, c ∈ L be three different letters and C1 be the singleton constraint
C1 = {ab−·····− ac}. Then, the PME generated by C1 is ∼C1 = C1 = {ε−·····− ε, a−·····− a, b−·····− b, c−·····− c, ab−·····− ab, ac−·····−
ac, ab−·····−ac, ac−·····−ab}. Interestingly, the constraint b−·····−c is not generated by C1 (i.e. b �C1 c holds), hence
PME rules do not allow to cancel/simplify ab ∼ ac by a to obtain b ∼ c; PMEs are not cancellative in
general even though some of them are.

The operator R 7→ R is a closure operator on sets of constraints, i.e. it is extensive (C ⊆ C),
monotonic (C ⊆ D implies C ⊆ D) and idempotent (C ⊆ C).
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Proposition 7 (Compactness). Let C be a (possibly infinite) set of constraints over the alphabet
L. Let m,n ∈ L? be such that m ∼C n holds. There exists a finite subset Cf ⊆ C such that m ∼Cf

n
holds.

Proof. See Proposition 3.17 page 447 of [22]. �

The compactness property is not related to the particular nature of rules defining PMEs but solely
to the fact that the derivation rules 〈ε, s, c, d, t〉 only have a finite number of premises. We now show
that the carrier alphabet of the closure C of the set of constraints C does not contain letters which do
not already occur in the carrier alphabet of C.

Proposition 8. If C is a set of constraints over L then the identity AC = A
C

holds.

Proof. The alphabet operator R 7→ AR is obviously monotonic. Thus, as the inclusion C ⊆ C holds,
we derive AC ⊆ A

C
. We now prove the converse inclusion A

C
⊆ AC. Let ∼ be defined by ∼ = A?C ×A?C.

Viewed as a binary relation, we thus have m ∼ n iff {m,n} ⊆ A?C. Then the identity A∼ = AC and the
inclusion C ⊆ ∼ obviously hold. It can moreover easily be checked that ∼ is a PME which thus contains
the PME generated by C. Hence C ⊆ ∼ holds and we conclude on the inclusion A

C
⊆ A∼ = AC. �

The identity LC = L
C

does not hold in general, but the inclusion LC ⊆ L
C

holds. However LC is
usually strictly included in L

C
. Consider the third example C2 = {ab −·····− ab, b −·····− c} which generates

C2 = {ε −·····− ε, a −·····− a, b −·····− b, c −·····− c, b −·····− c, c −·····− b, ab −·····− ab, ac −·····− ac, ab −·····− ac, ac −·····− ab}. In this case we have
AC2 = A

C2
= {a, b, c}, LC2 = {ε, a, b, c, ab} and L

C2
= {ε, a, b, c, ab, ac} and hence ac ∈ L

C2
\LC2 .

Definition 9 (PME extension). Let ∼ be a PME and C be a set of constraints, both over L. We
denote by ∼+ C the extension of ∼ by the constraints of C which is ∼ ∪ C, the least PME containing
both ∼ and C.

Let C and D be two sets of constraints. Since R 7→ R is a closure operator on sets of constraints,
we have C + D = C ∪D = C ∪D = D + C. If ∼ is a PME then the identities (∼ + C) + D =
(∼+D) + C = ∼+ (C ∪D) hold. Moreover, for any m,n ∈ L?, the relation m ∼ n holds if and only
if the identity ∼ + {m −·····− n} = ∼ holds; in particular the identity ∼ + {ε −·····− ε} = ∼ holds because of
rule 〈ε〉.

2.3 Basic and simple PMEs
In Section 4, we will use PME extensions of the forms ∼+{ab−·····−m}, ∼+{am−·····−b} or ∼+{ε−·····−m} where
∼ is a PME over L and a and b are two letters new to ∼, i.e. they satisfy the condition a 6= b ∈ L\A∼.
As fully explained in upcoming Sections 4.2 and 6.4, these are the particular extensions that occur
during proof-search using the semantic tableau method for BBI. We qualify these extensions as basic.

Definition 10 (Basic extension). Given a PME ∼ over the alphabet L, a constraint is basic w.r.t.
∼ when it is of one of the three following forms:

1. ab−·····−m with m ∼ m and a 6= b ∈ L\A∼;
2. am−·····− b with m ∼ m and a 6= b ∈ L\A∼;
3. ε−·····−m with m ∼ m.

When x−·····− y is basic w.r.t. ∼, we say that ∼+ {x−·····− y} is a basic extension of the PME ∼.

Let (xi −·····− yi)i<k be a sequence of constraints with k ∈ N ∪ {∞} and Cp be the set of constraints
Cp = {xi −·····− yi | i < p} for p < k. We suppose that for any p < k, the constraint xp −·····− yp is basic with
respect to ∼Cp . If k < ∞ then the sequence (xi −·····− yi)i<k is called basic. This definition implies in
particular that the empty sequence of constraints is basic. If k = ∞ then the sequence (xi −·····− yi)i<∞
is called simple.
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Definition 11 (Basic/Simple PME). A basic (resp. simple)5 PME is of the form ∼C where C =
{xi −·····− yi | i < k} and (xi −·····− yi)i<k is a basic (resp. simple) sequence of constraints.

We make the obvious following remark: according to those definitions, if ∼ is a basic PME and
∼+ {x−·····− y} is a basic extension of ∼ then ∼+ {x−·····− y} is a basic PME.

Using case 3 (with m = ε) of Definition 10, any (finite) basic sequence can be completed into an
(infinite) simple sequence by repeated use of the constraint ε −·····− ε (which always constitutes a basic
extension). Since adding this constraint does not change the corresponding PME (because of rule 〈ε〉),
basic PMEs are also simple PMEs. Of course, the converse is not true. Indeed, the alphabet of a basic
PME is always finite whereas the alphabet of a simple PME can be infinite. So the difference between
basic and simple PMEs is that in the later case, the underlying sequence can be infinite whereas it
must be finite for basic PMEs.

2.4 PMEs and substitutions
In this section, we define the substitutions of letters by words into constraints and show that the PME
closure operator R 7→ R commutes with substitutions. A substitution σ maps letters of L to words in
K?, where L and K are not necessarily the same alphabet. There is a unique morphism of commutative
monoids L? −→K? which extends σ and we usually denote this morphism by σ as well, despite the
little confusion this notation ambiguity may generate. We point out the particular case of substitution
of letters where L = K and each letter i is substituted into a single letter word σ(i) ∈ L ⊂ L?.

Definition 12 (Substitution). Let L and K be two alphabets. A substitution σ is a total map from
letters to words σ : L −→ K?. We naturally extend a substitution σ in a total map from words to
words σ(·) : L?−→K? by σ(m) = σ(m1m2 . . .mk) = σ(m1)σ(m2) . . . σ(mk) and obtain a morphism of
(commutative) monoids. A substitution of letters σ : L−→L is a particular case of substitution where
each image σ(a) of a letter a ∈ L is a single letter word in L?. Given a set of constraints C over L, we
also define the substituted set of constraints σ(C) over K by σ(C) = {σ(m)−·····− σ(n) | m−·····− n ∈ C}.

Theorem 13. If σ : L−→K? is a substitution and C is a set of constraints then σ(C) ⊆ σ(C) holds.

Proof. We define the binary relation ∼ by m ∼ n iff σ(m)−·····− σ(n) ∈ σ(C). Because the extension of σ
is a morphism of commutative monoids and σ(C) is a PME, it is easy to check that ∼ is also a PME.
From σ(C) ⊆ σ(C) we deduce C ⊆ ∼; indeed, m −·····− n ∈ C ⇒ σ(m) −·····− σ(n) ∈ σ(C) ⇒ σ(m) −·····− σ(n) ∈
σ(C)⇒ m ∼ n. Hence we derive C ⊆ ∼. Now let x−·····− y ∈ σ(C) and let us prove x−·····− y ∈ σ(C). There
exists a pair m −·····− n ∈ C such that x = σ(m) and y = σ(n). Since m −·····− n ∈ C, we deduce m ∼ n and
thus σ(m)−·····− σ(n) ∈ σ(C). Hence x−·····− y ∈ σ(C). The inclusion σ(C) ⊆ σ(C) holds. �

We could have proved this result by applying substitutions to whole derivation trees built using
the rules of Table 1; those rules are obviously stable under substitutions. However, the argument
we propose involves a specific PME. In the end, both proofs come down to the same argument: the
derivation rules of Table 1 are stable under substitutions.

Corollary 14. Let σ : L −→K? be a substitution and C be a set of constraints. For any m,n ∈ L?
if m ∼C n then σ(m) ∼σ(C) σ(n).

Proof. Given m,n ∈ L?, if m ∼C n then m−·····− n ∈ C then σ(m)−·····− σ(n) ∈ σ(C) (by definition of σ(C))
then σ(m)−·····− σ(n) ∈ σ(C) (by Theorem 13) which by definition is exactly σ(m) ∼σ(C) σ(n). �

5We make an important remark for those readers who did consult our earlier paper [22]. In that paper, we defined
BBI-elementary and BBI-simple PMEs. We point out that basic PMEs and BBI-elementary PMEs are not the same notions
and that the current Definition 11 of simple PME is different from the one of BBI-simple PME in [22] (Definitions 6.1
and 6.2 page 464). This does not affect the results in any way, it just reveals an unfortunate choice of terminology.
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3 Boolean BI and its labeled Kripke semantics
The language of the logic BBI is syntactically defined by the following grammar where Var is a countable
set of propositional variables:

Form : A,B ::= X | A ∧B | ¬A | I | A ∗B | A−∗B with X ∈ Var

Thus the denotation Form will be used to represent the set of formulæ of BBI. We point out that
we only consider the Boolean connectives of negation ¬ and of conjonction ∧ since the other Boolean
connectives, either the constants ⊥, >, the disjunction ∨ or the implication → can be obtained by
a combination of ¬ and ∧. This nearly minimalist choice limits duplicated cases in many proofs of
this paper as well as in the formalised Coq proof discussed in Section 7. We introduce a Kripke
interpretation of BBI formulæ based on PMEs.

Definition 15. A BBI-frame is a triple (L,∼,
) where L is an alphabet, ∼ is a PME over L, and 

is a forcing relation 
 ⊆ L∼ × Var which verifies the monotonicity property:6

∀X ∈ Var, ∀m,n ∈ L∼, if m ∼ n and m 
 X then n 
 X

We extend the forcing relation to 
∼ ⊆ L∼ × Form by induction on formulæ:

m 
∼ ¬A iff not m 
∼ A
m 
∼ A ∧B iff m 
∼ A and m 
∼ B
m 
∼ I iff ε ∼ m
m 
∼ A ∗B iff there exists x, y s.t. xy ∼ m and x 
∼ A and y 
∼ B
m 
∼ A−∗B iff for any x, y if xm ∼ y and x 
∼ A then y 
∼ B

We may write 
 for 
∼ when the relation ∼ is obvious from the context.

Proposition 16. The extended relation 
∼ is monotonic.

Proof. Monotonicity holds when for any F ∈ Form and any m,n ∈ L∼, the condition (m ∼ n ∧ m 
∼
F ) ⇒ n 
∼ F holds. It is standard to prove monotonicity by induction on the formula F . When F
is a logical variable, the monotonicity condition holds as a direct consequence of Definition 15. For
the additive operator ∧, the induction step is trivial. For the Boolean negation ¬, the induction step
involves the use of rule 〈s〉. For the multiplicative operators I and ∗, the induction step involves the
use of rule 〈t〉. For operator −∗, the induction step involves the use of the (derived) rule 〈el〉. �

Definition 17 (Validity). A formula F ∈ Form is valid in the BBI-frame (L,∼,
) if for every m ∈ L∼
the relation m 
∼ F holds.

Fact 18 (Soundness/completeness of PMEs). A BBI-formula F is valid in every partial monoidal
Kripke structure if and only if it is valid in every BBI-frame.

Proof. A proof of this result is given in [22], see Theorems 3.12 and 3.13 pages 445–446. See also [21]
to situate this result in the more general framework of non-deterministic Kripke semantics. The main
idea is the following: given a PME ∼ over L?, the restriction of ∼ to L∼ is an equivalence relation
and the quotient L∼/∼ has the structure of a partial commutative monoid. Up to isomorphism, any
partial commutative monoid can be obtained as such a quotient (for a well chosen alphabet L). �

According to this theorem, we can define universal validity and counter-models for BBI. A BBI
counter-model for F ∈ Form is a tuple (L,∼,
,m) where (L,∼,
) is a BBI-frame, m ∈ L∼ and
m 1∼ F . F is universally valid when it has no BBI counter-model.

6Since the relation ∼ is symmetric by rule 〈s〉, the converse implication (m ∼ n ∧ n 
 X)⇒ m 
 X also holds.

8



T¬A : m ∈ X
({FA : m}, ∅)

〈T¬〉 F¬A : m ∈ X
({TA : m}, ∅)

〈F¬〉

TA ∧B : m ∈ X
({TA : m,TB : m}, ∅)

〈T∧〉 FA ∧B : m ∈ X
({FA : m}, ∅) | ({FB : m}, ∅)

〈F∧〉

TI : m ∈ X
(∅, {ε−·····−m})

〈TI〉

TA ∗B : m ∈ X and a 6= b ∈ L\AC
({TA : a,TB : b}, {ab−·····−m})

〈T∗〉
FA ∗B : m ∈ X and xy ∼C m
({FA : x}, ∅) | ({FB : y}, ∅)

〈F∗〉

TA−∗B : m ∈ X and xm ∼C y
({FA : x}, ∅) | ({TB : y}, ∅)

〈T−∗〉
FA−∗B : m ∈ X and a 6= b ∈ L\AC

({TA : a,FB : b}, {am−·····− b})
〈F−∗〉

Table 2: The list of branch expansion rules for the BBI-tableau system.

4 Labeled Tableaux for Boolean BI
We present a labeled tableau proof system for BBI and review some ground properties of tableaux.
In Section 5, we will give a proof of its soundness (i.e. any formula which has a closed tableau is
universally valid) and in Section 6, a proof of its completeness (i.e. any formula that has no closed
tableau has a counter-model).

For all the discussions in the present and future sections, we fix an infinite and countable alphabet
L = {c0, c1, c2, . . .} which is ordered by the injective sequence (ci)i∈N. Hence L is bijectively enumerated
by this sequence. Labels will be words in the set L?.

4.1 Semantic tableaux with constraints for BBI
The tableaux we consider contain both statements and constraints. A statement is a term of the form
SA : m where S is the sign, A is a BBI-formula and m is a word in L?. In the following, we ensure
that if a statement SA : m occur in a branch of a tableau, then the branch contains constraints C such
that m in defined in C, i.e. m ∼C m. For a greater simplicity of notations, we collect the statements
and constraints in two different bags.

Definition 19. A tableau statement is a triple (S, A,m) ∈ {T,F} × Form × L? written SA : m. A
constrained set of statements (CSS in short) is a pair (X,C) where X is a set of tableau statements
and C is a set of constraints such that for every statement SA : m ∈ X, the relation m ∼C m holds. A
CSS (X,C) is finite if both X and C are finite sets. The binary relation of inclusion 4 between CSS
defined by

(X,C) 4 (X′,C′) iff X ⊆ X′ and C ⊆ C′

is an order relation. We denote (Xf ,Cf ) 4f (X,C) when (Xf ,Cf ) 4 (X,C) holds and (Xf ,Cf ) is finite.

Proposition 20. For any CSS (Xf ,C) where Xf is finite, there exists Cf ⊆ C such that Cf is finite
and (Xf ,Cf ) is a CSS (and hence the relation (Xf ,Cf ) 4f (Xf ,C) holds).

Proof. By induction on the number of statements in Xf using the compactness property for PMEs
(Proposition 7). �

Let us start with an informal discussion of the tableau system which is centered around the notion
of branch expansion. The rules of Table 2 describe the atomic steps of the branch expansion process
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by which BBI-tableaux are built. They have the following form:

cond(X,C)
(X1,C1) | · · · | (Xk,Ck)

The CSS (X,C) represents a tableau branch and the list (X1,C1), . . . , (Xk,Ck) of length k encode how
the branch (X,C) should be expanded provided the rule can be applied; in the specific rules of Table 2,
the value of k is either 1 or 2. The premise cond(X,C) is a condition expressing when the rule can be
applied (i.e. is fireable, see below). Each rule generates instances depending on different parameters
such as A,B ∈ Form, a, b ∈ L and x, y,m ∈ L?. Notice that X and C are not parameters: they
are binders for the predicate cond(X,C) and do not occur in X1,C1, . . . ,Xk,Ck. As an example, the
condition of the instance of rule 〈T¬〉 with parameter A set to A := U ∗ V and parameter m set to
m := k is the predicate ϕ : CSS −→ {0, 1} defined by ϕ(X,C) := (T¬(U ∗ V ) : k) ∈ X. And the
corresponding instance of rule 〈T¬〉 is thus ϕ/({F(U ∗ V ) : k, ∅) with a single expansion.

When an instance of a rule is such that the condition cond(X,C) is fulfilled for a particular CSS
(X,C),7 we say that this instance is fireable for (X,C). A rule instance fireable for the branch (X,C)
can be applied to it and in this case, the branch (X,C) is replaced by k new branches (X ∪ X1,C ∪
C1), . . . , (X∪Xk,C∪Ck) in the tableau. We say that the rule instance is fired and that the new branches
(X∪Xi,C∪Ci) are the expansions of (X,C). We see that the branch on which a rule instance is fired is
indeed expanded, i.e. the information contained in the branch grows according to the inclusion order
4, but this expansion is not necessarily strict on the obtained branches: some branches might remain
unchanged after an expansion which is the case when X = X ∪ Xi and C = C ∪ Ci.8 We now give a
formal definition of our BBI-tableaux implemented by lists of branches.

In the following definition, we use the Coq notations for lists: the infix notation ++ is for (as-
sociative) list concatenation and [B1; . . . ;Bn] for lists (of branches) with the branches B1, . . . ,Bn
enumerated.

Definition 21 (BBI-tableau). Let (X0,C0) be a CSS. A BBI-tableau for (X0,C0) is a (finite) list of
CSS which are called the branches of the tableau, built inductively according to the following rules:

1. the one branch list [(X0,C0)] is a BBI-tableau for (X0,C0);

2. if the list Tl ++ [(X,C)] ++ Tr is a BBI-tableau for (X0,C0) and

cond(X,C)
(X1,C1) | · · · | (Xk,Ck)

is a instance of some rule of Table 2 fireable for (X,C), then the list

Tl ++ [(X ∪ X1,C ∪ C1); . . . ; (X ∪ Xk,C ∪ Ck)] ++ Tr

is a BBI-tableau for (X0,C0).

When we just say BBI-tableau, we mean a list of CSS which is a BBI-tableau for some CSS (X0,C0).

A quick look at the rules of Table 2 should convince the reader of the obvious fact that the branch
expansion process preserves lists of finite CSS. With a finer study of those rules, we will show that
expansion also preserves basic PMEs (see Proposition 33).

Proposition 22. Any expansion of a CSS (resp. finite CSS) is a CSS (resp. finite CSS).
7On the previous example, it would mean that the predicate ϕ evaluates to “true” on the CSS (X, C).
8This typically happens when you apply the same rule instance twice in a row.
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Proof. Direct application of Proposition 4: using rules 〈pl〉 and 〈pr〉, we observe that the PME exten-
sions ∼+ {ab−·····−m} and ∼+ {am−·····− b} contain the two constraints a−·····− a and b−·····− b. �

Proposition 23 (Monotonicity). If [(X1,C1); . . . ; (Xk,Ck)] is a BBI-tableau for (X0,C0) then the
inclusion (X0,C0) 4 (Xi,Ci) holds for any i ∈ [1, k].
Proof. By induction on the process (i.e. the sequence of fired instances) that builds the tableau for
(X0,C0). Left to the reader. �

Proposition 24 (Composition). If Tl ++ [(X,C)] ++ Tr is a BBI-tableau for (X0,C0) and T is a
BBI-tableau for (X,C) then Tl ++ T ++ Tr is a BBI-tableau for (X0,C0).
Proof. By induction, simply replay the process that built T inside the list context Tl++(·)++Tr. Left
to the reader. �

Definition 25 (Closure conditions). A CSS (X,C) is closed if at least one of the two following
conditions is fulfilled:

1. TA : m ∈ X, FA : n ∈ X and m ∼C n hold for some A ∈ Form and some m,n ∈ L?;

2. FI : m ∈ X and ε ∼C m hold for some m ∈ L?.
A CSS is open if it is not closed. A BBI-tableau is closed if all its branches are closed.
Proposition 26. The closures conditions of Definition 25 are monotonic, i.e. for any two CSS (X,C)
and (X′,C′) such that X ⊆ X′ and C ⊆ C′ both hold, if (X,C) is closed then (X′,C′) is closed.
Proof. The inclusion C ⊆ C′ is equivalent to C ⊆ C′, i.e. ∼C ⊆ ∼C′ . �

Proposition 27. Every (infinite) closed CSS contains a finite and closed sub-CSS.
Proof. We consider the two cases for closure of a CSS and we extract a finite and closed sub-CSS using
compactness Proposition 7:

1. if TA : m ∈ X, FA : n ∈ X and m ∼C n hold for some A ∈ Form, m,n ∈ L?, then by compactness,
let Cf be a finite subset of C such that m ∼Cf

n. Let Xf = {TA : m,FA : n}. Then we have
(Xf ,Cf ) 4f (X,C) and (Xf ,Cf ) is a closed CSS;

2. if FI : m and ε ∼C m hold for some m ∈ L?, then by compactness, let Cf be a finite subset of C
such that ε ∼Cf

m. Let Xf = {FI : m}. Then we have (Xf ,Cf ) 4f (X,C) and (Xf ,Cf ) is a closed
CSS.

�

Definition 28 (CSS substitutions). Let σ : L −→ K? be a substitution. If SA : m is a tableau
statement then we define σ(SA : m) = SA : σ(m). The substitution σ extends to (X,C) by(

σ(X), σ(C)
)

=
(
{SA : σ(m) | SA : m ∈ X}, {σ(m)−·····− σ(n) | m−·····− n ∈ C}

)
If T is a list of CSS (typically a tableau) we write σ(T ) for σ(T ) = map σ T , i.e.

σ
(
[(X1,C1); . . . ; (Xk,Ck)]

)
= [(σ(X1), σ(C1)); . . . ; (σ(Xk), σ(Ck))]

In this previous definition, we used “map σ” which is the Coq/OCaml denotation for the operator
that maps the substitution σ on every element of the list T .
Proposition 29. Let σ : L−→K? be a substitution. The following properties hold:

1. if (X,C) is a CSS then (σ(X), σ(C)) is a CSS;

2. if (Xf ,Cf ) is a finite CSS then (σ(Xf ), σ(Cf )) is a finite CSS;

3. if (X,C) 4 (X′,C′) then (σ(X), σ(C)) 4 (σ(X′), σ(C′));

4. if (X,C) is a closed CSS then (σ(X), σ(C)) is a closed CSS.
Proof. Immediate consequences of Corollary 14. �
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4.2 Properties of BBI-tableau expansion
BBI-tableaux are stable under a substitution σ : L −→ L of letters provided σ satisfy two properties
that are bit weaker than its injectivity.9

Theorem 30. Let (X,C) be a CSS and σ : L−→L be a substitution of letters such that σ is injective
on L\AC and the inclusion σ−1(σ(AC)) ⊆ AC holds. If T is a BBI-tableau for (X,C) then σ(T ) is a
BBI-tableau for (σ(X), σ(C)).

Proof. By induction of the process that builds the tableau for (X,C), see Appendix A. �

We now introduce an important result on the monotonicity of closed BBI-tableaux and give a brief
overview of its proof; the detailed proof is complicated by the fact that some of the new labels need
to be renamed to avoid conflicts.

Theorem 31. Let (X1,C1) and (X2,C2) be two finite CSS such that X1 ⊆ X2 and C1 ⊆ C2 both hold.
If (X1,C1) has a closed BBI-tableau then (X2,C2) has a closed BBI-tableau.

Proof. See Appendix A. The basic idea is to replay the rules that built the tableau for (X1,C1) on
(X2,C2). But since some letters in C2 might be new to C1, we have to be careful not using them in
the instances of rules that require new letters, i.e. rules 〈T∗〉 and 〈F−∗〉. For this proof, it is critically
important that L contains an infinite set of letters; the result itself would be invalid in case L was
finite, because tableau expansion could then be blocked by exhaustion of free letters. �

Corollary 32. Let a, b ∈ L and G ∈ Form be a BBI-formula. The following properties are equivalent:

1. the finite CSS ({FG : a}, {a−·····− a}) has a closed BBI-tableau;

2. the finite CSS ({FG : a}, {ε−·····− ε, a−·····− b}) has a closed BBI-tableau;

3. the finite CSS ({FG : a}, {a−·····− b}) has a closed BBI-tableau.

Proof. Let us prove (1 ⇒ 2). Let us suppose that ({FG : a}, {a −·····− a}) has a closed tableau. Using
rule 〈pl〉, we easily check that the inclusion {a −·····− a} ⊆ {ε−·····− ε, a−·····− b} holds. By Theorem 31, ({FG :
a}, {ε−·····− ε, a−·····− b}) has a closed tableau.

To prove (2⇒ 3), we use Theorem 31 remarking that {ε−·····− ε, a−·····− b} ⊆ {a−·····− b} because of rule 〈ε〉.
Let us first prove (3⇒ 1). So let us suppose that T is a closed tableau for ({FG : a}, {a−·····−b}). Then

let us consider σ = id[b/a] that maps b to a and preserves every other letter in L. Using Theorem 30
(with C = {a −·····− b}), we deduce that σ(T ) is a tableau for ({FG : a}, {a −·····− a}) of which every branch
is closed by Proposition 29. �

Proposition 33. Let (X0,C0) be a finite CSS such that ∼C0 is a basic PME. Let T be a BBI-tableau
for (X0,C0). For any branch (X,C) of T , ∼C is a basic PME.

Proof. It is sufficient to show that the branch expansion process preserves basic PMEs. The constraints
part of CSS is strictly expanded only in the case of rules 〈TI〉, 〈T∗〉 and 〈F−∗〉. The constraints which
are added are ε−·····−m, ab−·····−m and am−·····− b respectively which exactly (and purposely) correspond to the
three cases of Definition 10. �

Fact 34. The current definition of BBI-tableau and the definition of TBBI-tableau of [22] characterise
the same notion of provability: given a BBI-formula G and a 6= b ∈ L, there exists a closed BBI-tableau
for the CSS ({FG : a}, {a −·····− b}) if and only if there exists a closed TBBI-tableau for the one-branch
and two-node tree [a−·····− b,FG : a].

9σ is injective on X ⊆ L if for any i, j ∈ X, σ(i) = σ(j) implies i = j; σ is injective if it is injective on L ⊆ L.
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We do not give a formal proof of this result because it would require us to reintroduce the TBBI-
tableau system already defined in [22]. Moreover, the argument would be a bit tedious and would likely
hide the fundamental correspondence between those two systems. Indeed, tableaux are just traces
that keep track of some information about the (inductive) branch expansion process that builds the
tableau, i.e. when and how each fireable rule instance is applied. A tableau generally contains enough
information to determine how its branches can be further expanded, but not necessarily how they
were expanded so far (i.e. historic information on the expansion process). The equivalence between the
BBI-tableau system and the TBBI-tableau system lies in the fact that, despite different implementations
of tableau and tableau branches, both systems define isomorphic branch expansion processes and have
the same closure conditions on branches. But in our current definition of BBI-tableaux, we don’t
keep track of how the tableau was built whereas we did keep this information in the definition of
TBBI-tableaux [22]. This choice is directed by the use we intend for tableaux. Here, we focus on the
completeness result and so we consider a tableau representation allowing the manipulation of limits
(infinite branches, see Section 6.3), whereas in [22] we focused heavily on tableau proof transformations
for which the ability of the reader to view and replay the branch expansion process was our primary
concern.

5 Soundness of the BBI-tableau system
The soundness proof displayed here uses the same argumentation as the one we provided in [22]. But
since tableaux are implemented a bit differently, the proofs are not strictly identical. It is decomposed
in two parts. We define the notion of realizability, which is for a given tableau, the fact that one of
its branches has a model. We then prove that closed tableaux are not realizable and that the branch
expansion process preserves realizability.

We consider BBI-tableaux over the alphabet L and BBI-frames over the alphabet K where L and
K have no relation a priori. So in statements like SF : m or in constraints like m −·····− n, the words
m,n belong to L? whereas the relation q 
∼ F or q 1∼ F in the frame (K,∼,
) involves the word q
belonging to K?. Recall (Definition 12) that a substitution ρ : L−→K? is extended into a morphism of
(commutative) monoids by ρ(m) = ρ(m1m2 . . .mk) = ρ(m1)ρ(m2) . . . ρ(mk) when m = m1m2 . . .mk

is a k letter word. We use substitutions here to make the correspondence between the syntactic world
of tableau statements and constraints (over the alphabet L) and the semantic world of BBI-frames
(over another alphabet K).

Definition 35 (Model/satisfaction). Given a tuple K = (K,∼,
, ρ) where (K,∼,
) is a BBI-
frame and ρ : L−→K? is a substitution, we say that:

• the statement TA : m is satisfied in K if ρ(m) ∈ L∼ and ρ(m) 
 A;

• the statement FA : m is satisfied in K if ρ(m) ∈ L∼ and ρ(m) 1 A;

• the constraint m−·····− n is satisfied in K if ρ(m) ∼ ρ(n);

• the CSS (X,C) is satisfied in K = (K,∼,
, ρ) if all the statements in X and all the constraints
in C are satisfied in K .

As an alternative to “(X,C) is satisfied in K ,” we might also say that K is a model of (X,C). Finally
we say that the CSS (X,C) has a model if there exists a tuple K such that (X,C) is satisfied in K .

Proposition 36. If a CSS (X,C) is satisfied in K = (K,∼,
, ρ) and m ∼C n then ρ(m) ∼ ρ(n).

Proof. The constraints of C are satisfied inK if and only ρ(C) ⊆ ∼. Thus we deduce ∼ρ(C) ⊆ ∼ because
∼ is a PME. By Corollary 14, from m ∼C n, we deduce ρ(m) ∼ρ(C) ρ(n) and thus ρ(m) ∼ ρ(n). �
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Proposition 37. Let (X,C) be a CSS. Let (K,∼,
) be a BBI-frame and ρ, ρ′ : L−→K? be substi-
tutions such that ρ(a) = ρ′(a) for every letter a ∈ AC. Then (X,C) is satisfied in (K,∼,
, ρ) if and
only if it is satisfied in (K,∼,
, ρ′).

Proof. Left to the reader. �

Definition 38 (Realizability). A BBI-tableau is realizable if at least one of its branches has a model.

Proposition 39. Closed BBI-tableaux are not realizable.

Proof. We prove that a closed branch (X,C) cannot be satisfied in any (K,∼,
, ρ). Let us suppose
the contrary and proceed by case analysis on the closure condition:

1. if TA : m ∈ X, FA : n ∈ X and m ∼C n then, as (X,C) is satisfied in K , we have ρ(m) ∼ ρ(n)
by Proposition 36. Moreover, both TA : m and FA : n are satisfied in K and thus ρ(m) 
 A
and ρ(n) 1 A. As ρ(m) ∼ ρ(n), we obtain a contradiction using the monotonicity of 
 (see
Proposition 16);

2. if FI : m ∈ X and ε ∼C m then, as (X,C) is satisfied in K , we have ε = ρ(ε) ∼ ρ(m) by
Proposition 36 and also ρ(m) 1 I. But then, we should have ε � ρ(m). Thus we obtain a
contradiction.

So we obtain a contradiction in any case. A closed branch cannot be satisfied. Thus closed BBI-tableaux
are not realizable. �

Lemma 40. BBI-tableau expansion preserves realizability.

Proof. Let T be a realizable BBI-tableau and let K = (K,∼,
, ρ) be such that at least one branch of
T is satisfied in K . We consider the expansion of one of the branches of T by one of the fireable rule
instances of the BBI-tableau system of Table 2, obtaining the tableau T ′. If the expanded branch is
not among the ones satisfied in K then the satisfied branches are kept unchanged by the application of
the rule and the obtained tableau T ′ still contains a branch satisfied in K . Hence T ′ is still realizable.

So we consider the case when the branch (X,C) which is expanded is among the satisfied ones. We
proceed by case analysis depending on the rule applied:

T¬A : m ∈ X is satisfied in K and thus ρ(m) ∈ L∼ and ρ(m) 
 ¬A. Thus ρ(m) 1 A and FA : m
is satisfied in K . So the expanded branch (X ∪ {FA : m},C ∪ ∅) of T ′ is satisfied in K ;

F¬A : m Similar to case T¬;
TA ∧B : m ∈ X is satisfied inK hence ρ(m) ∈ L∼ and ρ(m) 
 A∧B. Then ρ(m) 
 A and ρ(m) 
 B

hence TA : m and TB : m are satisfied in K . So the expanded branch (X ∪{TA : m,TB : m},C)
of T ′ is satisfied in K ;

FA ∧B : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and either ρ(m) 1 A or ρ(m) 1 B. Hence either
FA : m or FB : m is satisfied in K . So at least one of the two expanded branches of T ′ (namely
(X ∪ {TA : m},C) or (X ∪ {TB : m},C)) is satisfied in K ;

TI : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and ρ(m) 
 I. Thus ε ∼ ρ(m). As ρ(ε) = ε, we
obtain ρ(ε) ∼ ρ(m) and thus the constraint ε −·····− m is satisfied in K . So the expanded branch
(X,C ∪ {ε−·····−m}) of T ′ is satisfied in K ;

TA ∗B : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and ρ(m) 
 A ∗ B. So there exists x, y ∈ L∼
such that xy ∼ ρ(m), x 
 A and y 
 B. We define ρ′ = ρ[a 7→ x, b 7→ y] (possible because
a 6= b). Then for any m,n ∈ L? s.t. m ∼C n we have m,n ∈ A?C and thus ρ′(m) = ρ(m) and
ρ′(n) = ρ(n) (ρ and ρ′ are identical maps when restricted to AC because a, b 6∈ AC). Thus by
Proposition 37, (X,C) is satisfied in K ′ = (K,∼,
, ρ′). Moreover, ab −·····− m is satisfied in K ′
(because ρ′(ab) = xy, ρ′(m) = ρ(m) and xy ∼ ρ(m)), TA : a is satisfied (because ρ′(a) = x
and x 
 A), and TB : b is satisfied (because ρ′(b) = y and y 
 B). So the expanded branch
(X ∪ {TA : a,TB : b},C ∪ {ab−·····−m}) of T ′ is satisfied in K ′;
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FA ∗B : m ∈ X is satisfied in K hence ρ(m) ∈ L∼ and ρ(m) 1 A ∗B. (X,C) is expanded into two
branches (X ∪ {FA : x},C) and (X ∪ {FB : y},C) with x, y s.t. xy ∼C m. Then ρ(x)ρ(y) ∼ ρ(m)
holds by Proposition 36, and thus the inclusion {ρ(x), ρ(y)} ⊆ L∼ holds. So either ρ(x) 1 A or
ρ(y) 1 B. Thus at least one of the two expanded branches of T ′ is satisfied in K ;

TA−∗B : m ∈ X Similar to case F∗;

FA−∗B : m ∈ X Similar to case T∗.

In any case, there exists K ′ and a branch of T ′ satisfied in K ′, so T ′ is realizable. �

Theorem 41 (Soundness of the BBI-tableau system). Given a ∈ L andG ∈ Form, if there exists
a closed BBI-tableau for ({FG : a}, {a−·····− a}) then G is a universally valid BBI formula.

Proof. Let us suppose that there exists a closed BBI-tableau for ({FG : a}, {a−·····−a}). Let us now suppose
that G has a counter-model (K,∼,
,m), i.e. m ∈ L∼ and m 1 G. Then the CSS ({FG : a}, {a−·····− a})
is satisfied in (K,∼,
, ρ) where ρ = x 7→ m (in particular ρ(a) = m). Hence, the BBI-tableau
[({FG : a}, {a −·····− a})] is realizable and as a consequence, any BBI-tableau for ({FG : a}, {a −·····− a}) is
realizable by Lemma 40. By Proposition 39, no BBI-tableau for ({FG : a}, {a−·····− a}) can be closed. We
obtain a contradiction. Hence G has no counter-model. �

6 Completeness of the BBI-tableau system
In this section, we give the full proof of strong completeness of the BBI-tableau system, expressed in
Theorem 56. We define the notion of Hintikka CSS and show how to extract a Herbrand counter-
model from a Hintikka CSS. Then using fair strategies and oracles based on proof-search, we show
how to extend any finite CSS into a Hintikka CSS. The constraints that generate the counter-model
extracted from such a Hintikka CSS originate from proof-search and are thus of a specific form that
we characterise as simple. The strong completeness theorem ends this section.

This (new) proof is somewhat inspired by ideas developed in the reference textbook [12] in the
completeness proof of the tableau method for first-order logic.

6.1 Hintikka CSS and BBI counter-models
Hintikka sets [16] are saturated syntactic objects from which it is possible to extract (counter-)models.
We define the notion of Hintikka CSS corresponding to the labeled Kripke semantics of BBI.

Definition 42 (Hintikka CSS). A Hintikka CSS is a CSS (X,C) such that for any A,B ∈ Form and
any m,n ∈ L?:

1. not both TA : m ∈ X, FA : n ∈ X and m ∼C n;

2. if T¬A : m ∈ X then FA : m ∈ X;

3. if F¬A : m ∈ X then TA : m ∈ X;

4. if TA ∧B : m ∈ X then {TA : m,TB : m} ⊆ X;

5. if FA ∧B : m ∈ X then {FA : m,FB : m} ∩ X 6= ∅;

6. if TI : m ∈ X then ε ∼C m;

7. not both FI : m ∈ X and ε ∼C m;

8. if TA ∗B : m ∈ X then ∃x, y ∈ L?, xy ∼C m ∧ {TA : x,TB : y} ⊆ X;

9. if FA ∗B : m ∈ X then ∀x, y ∈ L?, xy ∼C m⇒ {FA : x,FB : y} ∩ X 6= ∅;
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10. if TA−∗B : m ∈ X then ∀x, y ∈ L?, xm ∼C y ⇒ {FA : x,TB : y} ∩ X 6= ∅;

11. if FA−∗B : m ∈ X then ∃x, y ∈ L?, xm ∼C y ∧ {TA : x,FB : y} ⊆ X.

Conditions 1 and 7 say that the CSS (X,C) is open: these are consistency conditions. The other
conditions express a saturation of (X,C) by the equivalences defining the Kripke semantics. Given a
tuple K = (K,∼,
, ρ) where (K,∼,
) is a BBI-frame and ρ : L −→K? is a substitution, it is easy
to build a Hintikka CSS : simply choose X as the set of statements that are satisfied in K and then
(X,∼) is a Hintikka CSS. What we are interested in here is the other way around: build a Hintikka
CSS out of “unprovability” (which is the main difficulty) and then extract a (counter-)model out of
that Hintikka CSS. Let us first show how to extract a (counter-)model out of a Hintikka CSS, which
justifies the view of Hintikka CSS as syntactic counter-models.

Lemma 43 (Herbrand model). Let (X,C) be a Hintikka CSS. The tuple (L,∼C,
, x 7→ x) is a
model of the CSS (X,C) when 
 ⊆ L

C
× Var is defined for m ∈ L

C
and Z ∈ Var by:

m 
 Z iff TZ : n ∈ X and n ∼C m hold for some n

Proof. Let us first prove that 
 is monotonic. So let us consider Z ∈ Var, m,n ∈ L
C

such that m ∼C n
and m 
 Z. By definition of 
, there exists a k such that TZ : k ∈ X and k ∼C m. By rule 〈t〉, we
deduce k ∼C n and thus by definition of 
 we obtain n 
 Z.

Since the substitution of the Herbrand model is the identity substitution σ = x 7→ x, all the
constraints in C are satisfied in the PME ∼C, i.e. C = σ(C) ⊆ ∼C. Now we prove that the statements
of X are also satisfied in the Herbrand model. First remark that when SG : m ∈ X, we have m ∼C m
because (X,C) is a CSS, and thus m ∈ L

C
. Now let us prove TG : m ∈ X ⇒ m 
 G and FG : m ∈

X ⇒ m 1 G by mutual induction on the formula G ∈ Form and by case analysis on SG : m.

TZ : m ∈ X since m ∼C m holds (because (X,C) is a CSS) and TZ : m ∈ X, we have m 
 Z;

FZ : m ∈ X let us suppose m 
 Z. Then, by definition of 
, we would obtain n such that n ∼C m
and TZ : n ∈ X. We would thus have simultaneously TZ : n ∈ X, FZ : m ∈ X and n ∼C m.
Since (X,C) is a Hintikka CSS, by condition 1 of Definition 42, we obtain a contradiction. Thus
m 1 Z;

T¬A : m ∈ X by condition 2 of Definition 42, we obtain FA : m ∈ X, and thus by induction, m 1 A,
hence m 
 ¬A;

F¬A : m ∈ X by condition 3 of Definition 42, we obtain TA : m ∈ X, and thus by induction, m 
 A,
hence m 1 ¬A;

TA ∧B : m ∈ X by condition 4 of Definition 42, we have TA : m,TB : m ∈ X and by induction,
m 
 A and m 
 B. Hence, m 
 A ∧B;

FA ∧B : m ∈ X by condition 5 of Definition 42, either FA : m ∈ X or FB : m ∈ X. So by induction,
either m 1 A or m 1 B. Then m 1 A ∧B;

TI : m ∈ X by condition 6 of Definition 42, we have ε ∼C m. By definition of 
, we obtain m 
 I;

FI : m ∈ X by condition 7 of Definition 42, ε �C m and thus m 1 I;

TA ∗B : m ∈ X by condition 8 of Definition 42, there exist x, y ∈ L? such that xy ∼C m and
TA : x,TB : y ∈ X. So by induction, we obtain x 
 A and y 
 B. Then m 
 A ∗B;

FA ∗B : m ∈ X by condition 9 of Definition 42, for every x, y ∈ L? such that xy ∼C m, we have
either FA : x ∈ X or FB : y ∈ X. Hence, by induction, either x 1 A or y 1 B for every x, y such
that xy ∼C m. We conclude m 1 A ∗B;

TA−∗B : m ∈ X similar to FA ∗B : m but use condition 10 of Definition 42;
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FA−∗B : m ∈ X similar to TA ∗B : m but use condition 11 of Definition 42.

So by induction on G, every statement SG : m ∈ X is satisfied in (L,∼C,
, x 7→ x). �

Hence, the BBI-frame (L,∼C,
) extracted from a Hintikka CSS is a model of this CSS. Hintikka
CSS are syntactic representations of (counter-)models of BBI formulæ.

Corollary 44. Let (X,C) be a Hintikka CSS, G ∈ Form and m ∈ L? be such that FG : m ∈ X. Then
(L,∼C,
,m) is a counter-model of G.

Proof. By Lemma 43, since FG : m ∈ X, the statement FG : m is satisfied in the tuple (L,∼C,
, σ =
x 7→ x) and we deduce m = σ(m) ∈ L

C
and m = σ(m) 1 G. �

6.2 Fair strategy, oracles and consistency
We now prove that any finite CSS having no closed tableau can be extended into a Hintikka CSS.
Using a fair strategy and an oracle that contains all finite and consistent CSS, we build a sequence of
CSS which saturates the initial CSS into a Hintikka CSS. The consistency criterion is a syntactic one:
having no closed tableau.

Definition 45 (Fair strategy). A fair strategy is a sequence (SiFi : mi)i∈N of tableau statements
such that any tableau statement (in {T,F}×Form×L?) occurs infinitely many times in this sequence,
i.e. {i ∈ N | SiFi : mi ≡ SF : m} is infinite for any SF : m ∈ {T,F} × Form× L?.

Proposition 46. There exists a fair strategy.10

Proof. Let X = {T,F} × Form × L?. As L = {c0, c1, c2, . . .} is countable and Var is countable, then
so are Form and L?. Hence X is a countable set as a product of countable sets. So N × X is also
countable and there exists a surjective function ϕ : N−→N×X. Let p : N×X −→X be the canonical
projection defined by p(i, x) = x. Then let us define u : N −→ X by u = p ◦ ϕ and let us prove
that u is a fair strategy. It is sufficient to show that u−1({x}) is infinite for any x ∈ X. Let x ∈ X.
Then u−1({x}) = ϕ−1(p−1({x})). But p−1({x}) = {(i, x) | i ∈ N} hence p−1({x}) is infinite. As ϕ is
surjective, ϕ−1(p−1({x})) is also infinite. �

Definition 47 (Oracle). An oracle is a set of CSS which is 4-downward closed, of finite character,
open and saturated. These characteristic properties of oracles are defined for any set P of CSS by

• P is 4-downward closed if (X,C) ∈ P whenever both (X,C) 4 (X′,C′) and (X′,C′) ∈ P hold;

• P is of finite character if (X,C) ∈ P whenever (Xf ,Cf ) ∈ P holds for every (Xf ,Cf ) 4f (X,C);11

• P is open if (X,C) is open for every (X,C) ∈ P;

• P is saturated if for any (X,C) ∈ P and any instance of a rule of Table 2 fireable on (X,C), at
least one of its expansions (X ∪ Xi,C ∪ Ci) belongs to P.

As a side remark, in the terminology of Fitting [12], a set of branches which is open and saturated
is called an “alternate consistency property.” The last condition ensures that whichever fireable rule
instance you choose to expand a CSS inside an oracle, there exists one expansion which stays in the
oracle. Hence, the expansion process cannot be blocked in an oracle. We point out that it would be a
to strong requirement to force that every expansion stays in the oracle.

10Remark: provided L and Var can be effectively enumerated, then we can obtain a recursive fair strategy: there is
no need for the axiom of choice or any of its weaker forms here. See the Coq proof comments in Section 7.

11i.e. (X, C) belongs to P as soon as all its finite approximations belong to P.
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Definition 48 (Consistency and finite consistency). Let (X,C) be a CSS. If (X,C) is a finite
CSS, we say that (X,C) is consistent if it has no closed BBI-tableau. If (X,C) is a (finite or infinite)
CSS, we say that (X,C) is finitely consistent if every finite sub-CSS of (X,C) is consistent.

Proposition 49. Consistency is a 4-downward closed property, i.e. if (X1,C1) 4 (X2,C2) are two
finite CSS and (X2,C2) is consistent then (X1,C1) is consistent.

Proof. This proposition is a specialisation of Theorem 31 (if C1 ⊆ C2 then C1 ⊆ C2). �

Corollary 50. A finite CSS is consistent if and only if it is finitely consistent.

Proof. Immediate consequence of Proposition 49. �

We now introduce and prove the main lemma of this paper: the set of finitely consistent CSS is an
oracle. In Section 6.3, it will allow us to saturate any finite and consistent CSS into a Hintikka CSS.

Lemma 51. The set of finitely consistent CSS is an oracle; its contains any (finite) consistent CSS.12

Proof. Let P be the set of finitely consistent CSS. By Corollary 50, for any finite CSS (Xf ,Cf ), we
have (Xf ,Cf ) ∈ P if and only if (Xf ,Cf ) is consistent. So P contains any (finite) consistent CSS.

Let us prove that P is 4-downward closed. Indeed, if (X,C) 4 (X′,C′) and (X′,C′) ∈ P hold. Let
us prove that (X,C) ∈ P holds., i.e. that (X,C) is finitely consistent. Let us consider a finite sub-CSS
(Xf ,Cf ) 4f (X,C). We derive (Xf ,Cf ) 4f (X′,C′) and thus (Xf ,Cf ) is consistent because (X′,C′) is
finitely consistent. Since every finite sub-CSS of (X,C) is consistent, we deduce (X,C) ∈ P.

Let us show that P is of finite character. Let (X,C) be a CSS such that (Xf ,Cf ) ∈ P holds for any
(Xf ,Cf ) 4f (X,C). Let (Xf ,Cf ) be such that (Xf ,Cf ) 4f (X,C). Then (Xf ,Cf ) is a finite CSS that
belongs to P, hence it is consistent by Corollary 50. Thus we have proved (X,C) ∈ P.

We now prove that P is open. Let (X,C) be a closed CSS. Let us prove (X,C) 6∈ P. By
Proposition 27, there exists (Xf ,Cf ) 4f (X,C) such that (Xf ,Cf ) is a closed CSS. Then [(Xf ,Cf )] is
a closed tableau for (Xf ,Cf ). Hence (Xf ,Cf ) is not consistent and we deduce (X,C) 6∈ P.

We finish by the proof that P is saturated. Let us fix a CSS (X,C) ∈ P. We consider each possible
instance of a tableau expansion rule of Table 2 fireable for (X,C):

T¬A : m ∈ X We show that (X∪{FA : m},C) belongs to P. Thus, let us consider (Xf ,Cf ) 4f (X∪
{FA : m},C) and let us show that (Xf ,Cf ) is consistent. Since (X,C) is a CSS and T¬A : m ∈ X,
we have m ∼C m. By compactness, there exists a finite subset C0 ⊆ C such that m ∼C0 m. Let
X′f = (Xf \{FA : m}) ∪ {T¬A : m} and C′f = Cf ∪ C0. Then (X′f ,C′f ) is a finite CSS and the
inclusion (X′f ,C′f ) 4f (X,C) holds. From (X,C) ∈ P, we deduce that (X′f ,C′f ) is consistent. Since
T¬A : m ∈ X′f , the list [(X′f∪{FA : m},C′f )] is a tableau for (X′f ,C′f ). Hence, if (X′f∪{FA : m},C′f )
has a closed tableau T , by Proposition 24, T would also be a closed tableau for (X′f ,C′f ) which
would contradict the consistency of (X′f ,C′f ). As consequence, (X′f ∪{FA : m},C′f ) cannot have a
closed tableau and is thus consistent. From (Xf ,Cf ) 4 (X′f ∪ {FA : m},C′f ) and Proposition 49,
we deduce the consistency (Xf ,Cf );

F¬A : m ∈ X Similar to case T¬;

TA ∧B : m ∈ X Similar to case T¬;

FA ∧B : m ∈ X Let us suppose by absurd that neither (X ∪ {FA : m},C) ∈ P nor (X ∪ {FB :
m},C) ∈ P hold. Then there exists (XAf ,CAf ) 4f (X ∪{FA : m},C) and (XBf ,CBf ) 4f (X ∪{FB :
m},C) such that both (XAf ,CAf ) and (XBf ,CBf ) are inconsistent. By compactness, there also exists
a finite subset C0 ⊆ C such that m ∼C0 m. Let X′f = XAf \{FA : m}∪XBf \{FB : m}∪{FA ∧B : m}

12Beware that the oracle itself is generally not a finite set.
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and C′f = CAf ∪ CBf ∪ C0. (X′f ,C′f ) is obviously a finite CSS. Since FA ∧B : m ∈ X′f holds, the
list [(X′f ∪ {FA : m},C′f ); (X′f ∪ {FB : m},C′f )] is a tableau for (X′f ,C′f ). Since (XAf ,CAf ) 4
(X′f ∪ {FA : m},C′f ) and (XBf ,CBf ) 4 (X′f ∪ {FB : m},C′f ), by Proposition 49, the finite CSS
(X′f ∪ {FA : m},C′f ) and (X′f ∪ {FB : m},C′f ) are both inconsistent. Let TA (resp. TB) be a
closed tableau for (X′f ∪ {FA : m},C′f ) (resp. (X′f ∪ {FB : m},C′f )). By two applications of
Proposition 24, TA ++ TB is a tableau for (X′f ,C′f ) which is closed because both TA and TB
are closed. Hence (X′f ,C′f ) is inconsistent. But we easily check that (X′f ,C′f ) 4f (X,C), which
contradicts (X,C) ∈ P;

TI : m ∈ X We show that (X,C ∪ {ε −·····− m}) belongs to P. Thus, let us consider (Xf ,Cf ) 4f
(X,C ∪ {ε−·····−m}) and let us show that (Xf ,Cf ) is consistent. Since (X,C) is a CSS and Xf ⊆ X
then (Xf ,C) is also a CSS. By Proposition 20, there exists a finite subset C0 ⊆ C such that
(Xf ,C0) is a (finite) CSS. From TI : m ∈ X, we deduce m ∼C m. Thus, by Proposition 7, let C1
be a finite subset of C such that m ∼C1 m. Let X′f = Xf ∪{TI : m} and C′f = Cf\{ε−·····−m}∪C0∪C1.
Then (X′f ,C′f ) is a finite CSS and (X′f ,C′f ) 4f (X,C). From (X,C) ∈ P, we deduce that (X′f ,C′f )
is consistent. Since TI : m ∈ X′f , the list [(X′f ,C′f ∪ {ε−·····−m})] is a tableau for (X′f ,C′f ). Hence, if
(X′f ,C′f ∪{ε−·····−m}) has a closed tableau T , by Proposition 24, T would also be a closed tableau for
(X′f ,C′f ) which would contradict the consistency of (X′f ,C′f ). As consequence, (X′f ,C′f ∪ {ε−·····−m})
cannot have a closed tableau and is thus consistent. From (Xf ,Cf ) 4 (X′f ,C′f ∪ {ε −·····− m}) and
Proposition 49, we deduce that (Xf ,Cf ) is consistent;

TA ∗B : m ∈ X with a 6= b ∈ L\AC. We show that (X ∪ {TA : a,TB : b},C ∪ {ab −·····−m}) belongs
to P. Thus, let us consider (Xf ,Cf ) 4f (X ∪ {TA : a,TB : b},C ∪ {ab −·····− m}) and show that
(Xf ,Cf ) is consistent. Let X′f = Xf \{TA : a,TB : b} ∪ {TA ∗B : m}. Since X′f ⊆ X, then
(X′f ,C) is a CSS where X′f is finite and by Proposition 20, there exists a finite subset C0 ⊆ C
such that (X′f ,C0) is a (finite) CSS. Let C′f = Cf \{ab −·····−m} ∪ C0. Then (X′f ,C′f ) is also a finite
CSS. We observe that (X′f ,C′f ) 4f (X,C) ∈ P and we deduce that (X′f ,C′f ) is consistent. Because
TA ∗B : m ∈ X′f and AC′

f
⊆ AC, it is easy to check that [(X′f ∪ {TA : a,TB : b},C′f ∪ {ab−·····−m})]

is a tableau for (X′f ,C′f ). Hence by Proposition 24, (X′f ∪{TA : a,TB : b},C′f ∪{ab−·····−m}) cannot
have a closed tableau; otherwise we would obtain a closed tableau for (X′f ,C′f ). Thus the CSS
(X′f∪{TA : a,TB : b},C′f∪{ab−·····−m}) is consistent. From the inclusions Xf ⊆ X′f∪{TA : a,TB : b}
and Cf ⊆ C′f ∪ {ab−·····−m}, we deduce that (Xf ,Cf ) is consistent by Proposition 49;

FA ∗B : m ∈ X with x, y ∈ L? such that xy ∼C m holds. Let us suppose by absurd that neither
(X ∪ {FA : x},C) ∈ P nor (X ∪ {FB : y},C) ∈ P hold. Then there exists (XAf ,CAf ) 4f
(X ∪ {FA : x},C) and (XBf ,CBf ) 4f (X ∪ {FB : y},C) such that (XAf ,CAf ) and (XBf ,CBf ) are
two inconsistent finite CSS. By compactness (Proposition 7), there also exists a finite subset
C0 ⊆ C such that xy ∼C0 m. Let X′f = XAf \{FA : x} ∪ XBf \{FB : y} ∪ {FA ∗B : m} and
C′f = CAf ∪ CBf ∪ C0. (X′f ,C′f ) is obviously a finite CSS. Since FA ∗B : m ∈ X′f and xy ∼C′

f
m

both hold, the list [(X′f ∪ {FA : x},C′f ); (X′f ∪ {FB : y},C′f )] is a tableau for (X′f ,C′f ). Since
(XAf ,CAf ) 4 (X′f ∪ {FA : x},C′f ) and (XBf ,CBf ) 4 (X′f ∪ {FB : y},C′f ), by Proposition 49, the
finite CSS (X′f ∪ {FA : x},C′f ) and (X′f ∪ {FB : y},C′f ) are both inconsistent. Let TA (resp. TB)
be a closed tableau for (X′f ∪ {FA : x},C′f ) (resp. (X′f ∪ {FB : y},C′f )). By two applications
of Proposition 24, TA ++ TB is a tableau for (X′f ,C′f ) which is closed because both TA and TB
are closed. Hence (X′f ,C′f ) is inconsistent. But we easily check that (X′f ,C′f ) 4f (X,C), which
contradicts (X,C) ∈ P;

TA−∗B : m ∈ X Similar to case F∗;

FA−∗B : m ∈ X Similar to case T∗.

Hence P is saturated by all fireable rule instances. �

19



6.3 Obtaining a Hintikka CSS by saturation
We now build a Hintikka CSS using the combination of a fair strategy (Proposition 46) denoted
(SiFi : mi)i∈N, which ensures that each choice of statement will eventually be tested in the future and an
oracle P containing any finite consistent CSS (Lemma 51), which ensures that the choices made preserve
consistency. We will see in Proposition 54 that this combination ensures saturation/maximality by
all possible consistent choices. However, unlike the case of classical or intuitionistic logic, maximally
consistent sets are not enough to obtain counter-models in the case of BBI. This is the reason of some
tweaks in the coming construction.

Let us proceed in the core of the proof. Recall that the infinite sequence (ci)i∈N is a bijective
enumeration of the alphabet L = {c0, c1, . . .}. We start with a finite CSS (X0,C0) and n0 ∈ N for
which we make the three following hypotheses:

0. ε−·····− ε ∈ C0;

1. (X0,C0) has no closed BBI-tableau;

2. the inclusion AC0 ⊆ {c0, c1, . . . , cn0−1} holds.

We simultaneously and recursively build two sequences (Xi)16i and (xi −·····− yi)16i. Denoting Ci =
C0 ∪ {x1 −·····− y1, . . . , xi −·····− yi}, the values Xi+1 and xi+1 −·····− yi+1 are determined recursively as follows:13

• if (Xi ∪ {SiFi : mi},Ci) 6∈ P then we define Xi+1 = Xi and xi+1 −·····− yi+1 = ε−·····− ε;

• if (Xi∪{SiFi : mi},Ci) ∈ P then we define Xi+1 = Xi∪{SiFi : mi}∪Xe where Xe and xi+1−·····−yi+1
are computed according to the following table:

Si Fi Xe xi+1−·····− yi+1

T I ∅ ε−·····−mi

T A ∗B {TA : a,TB : b} ab−·····−mi

F A−∗B {TA : a,FB : b} ami−·····− b
otherwise ∅ ε−·····− ε

with
{
a = cn0+2i
b = cn0+2i+1

Informally, the CSS (Xi,Ci) is augmented with SF : m only when this choice is proposed by our
strategy (i.e. SF : m ≡ SiFi : mi) and only when this choice is consistent according to our oracle P
(i.e. (Xi ∪ {SiFi : mi},Ci) ∈ P). Moreover (and this is a tweak specific to BBI), in the cases of the
shapes TI, T∗ and F−∗, we force further consistent constraints expansion with a controlled choice for
a and b ensuring freshness.

Proposition 52. For any i ∈ N, the following properties hold:

0. ε−·····− ε ∈ Ci;

1. (Xi,Ci) ∈ P;

2. ACi
⊆ {c0, c1, . . . , cn0+2i−1};

3. Xi ⊆ Xi+1 and Ci ⊆ Ci+1;

4. the constraint xi+1 −·····− yi+1 is basic w.r.t. ∼Ci
.

13We point out that to compute the values of Xi+1 and xi+1 −·····− yi+1, we need to decide whether (Xi ∪ {SiFi : mi}, Ci)
belongs to P or not. Although this point is painless in a classical setting like the classical set theory we use here, this
point is problematic in an intuitionistic setting, especially when P is not computably decidable (which is precisely the
case here [4, 23]). To build this sequence within Coq, we have to assume the excluded middle axiom and apply it to P.
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Proof. Since ε −·····− ε ∈ C0 holds by Hypothesis 0, Property 0 is obvious from the definition of Ci. We
first prove Properties 1 and 2 by recursion on i. For the ground case i = 0, Property 1, since (X0,C0)
has no closed tableau, it is consistent and thus we have (X0,C0) ∈ P. Property 2 is Hypothesis 2. For
the recursive step i+ 1, we examine each case for Property 1 and 2:

• if (Xi ∪ {SiFi : mi},Ci) 6∈ P then Xi+1 = Xi and Ci+1 = Ci ∪ {ε−·····− ε} = Ci. Thus (Xi+1,Ci+1) =
(Xi,Ci) ∈ P holds. Moreover ACi+1 = ACi ⊆ {c0, c1, . . . , cn0+2i−1} ⊆ {c0, c1, . . . , cn0+2i+1};
• if (Xi ∪ {SiFi : mi},Ci) ∈ P and SiFi : mi ≡ TI : mi then Xi+1 = Xi ∪ {TI : mi} and Ci+1 =
Ci ∪ {ε −·····− mi}. By saturation of P for rule 〈TI〉, from TI : mi ∈ Xi+1 and (Xi+1,Ci) ∈ P
we deduce (Xi+1,Ci+1) = (Xi+1,Ci ∪ {ε −·····− mi}) ∈ P. The elements of P are CSS and thus
(Xi ∪ {TI : mi},Ci) is one. So the relation mi ∼Ci

mi holds, thus mi ∈ A?Ci
and we deduce

ACi+1 = ACi
⊆ {c0, c1, . . . , cn0+2i+1};

• if (Xi∪{SiFi : mi},Ci) ∈ P and SiFi : mi ≡ TA ∗B : mi. We have Xi+1 = Xi∪{TA ∗B : mi,TA :
a,TB : b} and Ci+1 = Ci ∪{ab−·····−mi} with a = cn0+2i and b = cn0+2i+1. Since a 6= b ∈ L\ACi

and
(Xi ∪ {TA ∗B : mi},Ci) ∈ P, by saturation of P for rule 〈T∗〉, we deduce that (Xi+1,Ci+1) ∈ P.
Also mi ∈ A?Ci

and hence ACi+1 = ACi ∪ {a, b} ⊆ {c0, c1, . . . , cn0+2i+1};
• for the case where SiFi : mi ≡ FA−∗B : mi, similar arguments can be developed except using

saturation of P by rule 〈F−∗〉;
• in all other cases with (Xi∪{SiFi : mi},Ci) ∈ P we have Xi+1 = Xi∪{SiFi : mi} and Ci+1 = Ci∪
{ε−·····− ε} = Ci. Hence we easily obtain (Xi+1,Ci+1) ∈ P and ACi+1 = ACi ⊆ {c0, c1, . . . , cn0+2i+1}.

Property 3 is obvious because Xi+1 is obtained by extension of Xi, and Ci ⊆ Ci+1 follows from the
definition of Ci. For Property 4, it is sufficient to observe that since a = cn0+2i and b = cn0+2i+1,
hence we have a 6= b ∈ L\ACi

by Property 2 (remember that the enumeration of L is bijective). Then
constraint xi+1−·····− yi+1 is of one of the forms of Definition 10: ab−·····−mi, ami−·····− b, ε−·····−mi or ε−·····− ε. When
xi+1−·····−yi+1 ∈ {ab−·····−mi, ami−·····−b, ε−·····−mi}, we can check that mi ∼Ci

mi because (Xi∪{SiFi : mi},Ci) ∈ P
is a CSS. The identity xi+1 −·····− yi+1 = ε −·····− ε comes as a particular case of Definition 10 item 3 with
m = ε. Hence the constraint xi+1 −·····− yi+1 is basic w.r.t. ∼Ci

. �

We now consider the limit (X∞,C∞) of the sequence (Xi,Ci)i∈N defined by:

X∞ =
⋃
i∈N
Xi and C∞ =

⋃
i∈N
Ci = C0 ∪ {xi −·····− yi | 1 6 i}

We point out that we took care of building C∞ as the elements of an infinite sequence of basic
constraints rather than as the limit of a sequence of basic PMEs, which simplifies the proof of the fact
that ∼C∞ is a simple PME.

Proposition 53. If ∼C0 is a basic PME then ∼C∞ is a simple PME.

Proof. Let C0 = {u1 −·····− v1, . . . , uq −·····− vq} where u1 −·····− v1, . . . , uq −·····− vq is a basic sequence of constraints.
Then u1 −·····− v1, . . . , uq −·····− vq, x1 −·····− y1, x2 −·····− y2, . . . is a simple sequence of constraints and C∞ = {u1 −·····−
v1, . . . , uq −·····− vq, x1 −·····− y1, x2 −·····− y2, . . .}. Thus ∼C∞ is simple. �

Proposition 54 (Maximal consistency). (X∞,C∞) ∈ P and is a maximally consistent CSS, i.e.
for any SF : m, if (X∞ ∪ {SF : m},C∞) ∈ P then SF : m ∈ X∞.

Proof. First we show that (X∞,C∞) is a CSS. Let SF : m ∈ X∞. We have to show that m ∼C∞ m.
There exists i such that SF : m ∈ Xi. Since (Xi,Ci) ∈ P is a CSS, we have m ∼Ci m. Since Ci ⊆ C∞
we obtain m ∼C∞ m.

Let us now use the fact that P is of finite character to prove (X∞,C∞) ∈ P. Let (Xf ,Cf ) 4f
(X∞,C∞) be a finite CSS. We show that (Xf ,Cf ) ∈ P. As both Xf and Cf are finite sets, there exists
a natural number j ∈ N such that Xf ⊆ Xj and Cf ⊆ Cj (remember that the sequences (Xi)i∈N and
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(Ci)i∈N are increasing w.r.t. subset inclusion). Hence, as (Xj ,Cj) ∈ P by Proposition 52 and P is
4-downward closed, we deduce (Xf ,Cf ) ∈ P. So every finite sub-CSS of (X∞,C∞) belongs to P. As
P is of finite character, we deduce (X∞,C∞) ∈ P.

Let SF : m be such that (X∞ ∪ {SF : m},C∞) ∈ P. So (X∞ ∪ {SF : m},C∞) is a CSS and
thus m ∼C∞ m. By compactness, there exists a finite subset Cf ⊆ C∞ such that m ∼Cf

m. Then,
as Cf is finite, there exists j ∈ N such that Cf ⊆ Cj . By fairness, as SF : m occurs infinitely
many times in the sequence (SiFi : mi)i∈N, there exists l > j such that SlFl : ml ≡ SF : m.
As l > j, we have Cl ⊇ Cj ⊇ Cf and thus m ∼Cl

m. Then (Xl ∪ {SF : m},Cl) is a CSS and
(Xl ∪ {SF : m},Cl) 4 (X∞ ∪ {SF : m},C∞). Then, as P is 4-downward closed, we deduce that
(Xl ∪ {SlFl : ml},Cl) ∈ P holds. Hence, by definition of Xl+1, we have SF : m ≡ SlFl : ml ∈ Xl+1 and
thus SF : m ∈ X∞. �

Lemma 55 (Hintikka CSS). The limit CSS (X∞,C∞) is a Hintikka CSS s.t. (X0,C0) 4 (X∞,C∞).

Proof. By definition of (X∞,C∞), we obviously have (X0,C0) 4 (X∞,C∞). By Proposition 54, we have
(X∞,C∞) ∈ P where P is an oracle. We consider the different conditions of Definition 42:

1. Condition 1 holds because P only contains open CSS, hence (X∞,C∞) is an open CSS;
2. if T¬A : m ∈ X∞ then (X ∪ {FA : m},C∞) ∈ P because P is saturated by rule 〈T¬〉. Hence by

Proposition 54, we obtain FA : m ∈ X∞;
3. similar to Condition 2 but with rule 〈F¬〉;
4. if TA ∧B : m ∈ X∞ then (X∞∪{TA : m,TB : m},C∞) ∈ P because P is saturated by rule 〈T∧〉.

Since P is 4-downward closed, both (X∞ ∪ {TA : m},C∞) ∈ P and (X∞ ∪ {TB : m},C∞) ∈ P
hold. By Proposition 54, we obtain TA : m ∈ X∞ and TB : m ∈ X∞;

5. if FA ∧B : m ∈ X∞ then either (X∞ ∪ {FA : m},C∞) ∈ P or (X∞ ∪ {FB : m},C∞) ∈ P because
P is saturated by rule 〈F∧〉. By Proposition 54, either FA : m ∈ X∞ or FB : m ∈ X∞;

6. if TI : m ∈ X∞. By definition of X∞, there exists i ∈ N such that TI : m ∈ Xi. By fairness, there
exists j > i such that TI : m ≡ SjFj : mj . As j > i and since the sequence (Xi)i∈N is increasing,
we obtain TI : m ∈ Xj . Then ε−·····−mj ∈ Cj+1 by definition of Cj+1. As m = mj and Cj+1 ⊆ C∞,
we obtain ε−·····−m ∈ Cj+1 ⊆ C∞ and thus ε ∼C∞ m holds;

7. Condition 7 holds because (X∞,C∞) ∈ P is an open CSS;
8. suppose TA ∗B : m ∈ X∞. By definition of X∞, there exists i such that TA ∗B : m ∈ Xi.

By fairness, there exists j > i such that TA ∗B : m ≡ SjFj : mj . From i 6 j, we deduce
TA ∗B : m ∈ Xj . Let x = cn0+2j and y = cn0+2j+1. Then x, y ∈ L ⊂ L?, and by definition of
Xj+1 and xj+1 −·····− yj+1 we have TA : x ∈ Xj+1, TB : y ∈ Xj+1 and xy −·····−m ∈ Cj+1. We conclude
that both xy ∼C∞ m and {TA : x,TB : y} ⊆ X∞ hold;

9. suppose FA ∗B : m ∈ X∞. Let x, y such that xy ∼C∞ m. Since P is saturated by rule 〈F∗〉,
either (X∞ ∪ {FA : x},C∞) ∈ P or (X∞ ∪ {FB : y},C∞) ∈ P. Hence by Proposition 54, either
FA : x ∈ X∞ or FB : y ∈ X∞;

10. similar to Condition 9 but with rule 〈T−∗〉;
11. similar to Condition 8.

Hence, we have checked all the conditions of Definition 42. �

6.4 Strong completeness of the BBI-tableau system
We finish with the strong completeness theorem that states that whenever a formula has no closed
BBI-tableau, then we can build a counter-model based on a simple PME.
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Theorem 56 (Strong completeness of the BBI-tableau system). Let a ∈ L be a letter and G ∈
Form be a BBI-formula. If ({FG : a}, {a−·····− a}) has no closed BBI-tableau then G has a counter-model
of the form (L,∼,
, a) where ∼ is a simple PME over L.

Proof. Since L = {c0, c1, c2, . . .} is enumerated by the bijective sequence (ci)i∈N, let us first find i ∈ N
such that a = ci. Let us define b = ci+1. Then we have a 6= b ∈ L. Since ({FG : a}, {a −·····− a}) has no
closed tableau, from Corollary 32, we know that ({FG : a}, {ε−·····− ε, a−·····− b}) has no closed tableau either.
Let us define n0 = i + 2, X0 = {FG : a} and C0 = {ε −·····− ε, a −·····− b}. Since the sequence of constraints
ε−·····− ε, a−·····− b is basic then ∼C0 is basic PME. The values (X0,C0) satisfy the three hypotheses required in
Section 6.3. Thus we obtain the limit Hintikka CSS (X∞,C∞) of Proposition 53 and Lemma 55 which
satisfies FG : a ∈ X0 ⊆ X∞ and C0 ⊆ C∞. From the inclusion FG : a ∈ X∞, we deduce that the tuple
(L,∼C∞ ,
, a) is a counter-model of G by Corollary 44. By Proposition 53, since ∼C0 is a basic PME
then ∼C∞ is a simple PME. �

Corollary 57 (Soundness/completeness of the BBI-tableau system). Let a ∈ L be a letter in
an infinite alphabet L. A BBI-formula G is universally valid in the class of PMEs if and only if the
CSS ({FG : a}, {a−·····− a}) has a closed BBI-tableau over L.

Proof. Soundness is given by Theorem 41. Now let G be a BBI-formula such that ({FG : a}, {a−·····− a})
has no closed BBI-tableau. Then by Theorem 56, G has a counter-model and is thus invalid. �

The completeness proof we provide here is to our knowledge, the first published proof of the
completeness of the labeled tableau method for partial monoidal Boolean BI. We point out that this
proof can easily be adapted to intuitionistic BI, substituting partial monoidal equivalences (PME) with
partial monoidal orders (PMO) [22] for the labeled semantics of intuitionistic BI; we did precisely this
at the level of the formal Coq proof, see Section 7. However, Daniel Méry’s thesis [25] already contains
a proof of the completeness of the labeled tableaux method for intuitionistic BI. It should be noted
that this later proof depends on the fact that the models generated during proof-search are finite.
In particular, the saturation technique employed there relies on the possibility to finitely enumerate
at each step the statements which should be added to the list of statements to be explored in the
future. In the case of partial monoidal BBI, the models which are generated by proof-search (basic
PMEs) can be infinite, even after a finite number of proof-search steps, because of the extensions of
the form ∼ + {ε −·····−m} which introduce invertible words, see [21]. That is why we could not simply
adapt the proof of [25] and we choose to restart with ideas from [12].

7 Some remarks about the formal Coq proof
The Coq code corresponding to the proofs developed in this paper is distributed under a free software
license at the following web address: http://www.loria.fr/˜larchey/BBI.14 The practical instruc-
tions to type-check/compile the code are fully described there. It was our intent that the informal
proof and the formal proof share the same plan and the same concepts. As a witness of this closeness,
we provide a map between the definitions and propositions of this paper with their corresponding Coq
identifiers in Table 3. From now on, we will essentially focus on what we consider to be the most
notable differences between the informal proof and the formal proof.

To summarise, the main differences between the two proofs are the consequence of the divergence
between the meta-level logics used in each case. We develop the informal proofs of this paper in
Classical Set Theory whereas the formal Coq proofs are implemented in a variant of Intuitionistic
Type Theory called the Calculus of Inductive Constructions [9, 28], with a “minimised” (but we think
unavoidable) use of the axiom of excluded middle.

14We also point out the formal proof we have developed for (partial monoidal) intuitionistic BI accessible at http://
www.loria.fr/˜larchey/BI. Both proofs share the same plan but some semantic concepts slightly differ of course.
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Numbering of item Coq file name Coq identifier
Definition 1 constraints.v constraint
Definition 2 constraints.v language alphabet
Table 1 pme.v c sys PME
Definition 3 pme.v is pme
Proposition 4 pme.v pme lft pme rt pme el pme er
Proposition 5 pme.v language pme pme alphabet
Definition 6 pme.v pme
Proposition 7 pme.v pme cpct
Proposition 8 pme.v alphabet pme
Definition 9 predicate.v pme.v cup pme
Definition 10 bbi basic.v bbi basic
Definition 11 bbi simple.v simple pme
Definition 12 words.v pme.v subst w subst o subst cst subst dimage
Theorem 13 pme.v subst dimage pme inc
Corollary 14 pme.v subst pme prop
Definition 15 kripke.v bbi frame
Proposition 16 kripke.v forces monotonic
Definition 17 kripke.v mdl validity bbi frame

bbi sound and complete.v bbi validity
Definition 19 css.v stm CSS CSS leq CSS leqf
Proposition 20 css.v CSS compact
Table 2 bbi expansion.v bbi exp rules bbi expansion
Definition 21 tableaux.v bbi tableaux.v tableau bbi tab
Proposition 22 bbi tableaux.v bbi tab finite CSS
Proposition 23 bbi tableaux.v bbi tab increase
Proposition 24 tableaux.v tableau comp
Definition 25 bbi closed branch.v bbi closed branch
Proposition 26 bbi closed branch.v bbi cb inc
Proposition 27 bbi closed branch.v bbi cb finite
Definition 28 css.v subst CSS
Proposition 29 css.v CSS subst stable CSS subst finite

bbi closed branch.v CSS subst inc bbi cb subst
Theorem 30 bbi tableaux.v bbi proof subst
Theorem 31 bbi tableaux.v bbi has closed tableau pme monotonic
Corollary 32 bbi tableaux.v bbi has proof aa bbi has proof ab
Definition 35 kripke.v mdl stm mdl cst mdl CSS
Proposition 36 kripke.v mdl cst meq
Proposition 37 kripke.v meq mdl eq
Definition 38 bbi realizability.v realizable
Proposition 39 bbi realizability.v realizable not closed
Lemma 40 bbi realizability.v realizable stable
Theorem 41 bbi sound and complete.v bbi tab soundness
Definition 42 bbi hintikka.v Hintikka
Lemma 43 bbi hintikka.v Hintikka model
Corollary 44 bbi sound and complete.v Hintikka counter model
Definition 45 maps.v bbi strategy.v i surjective fair strategy
Proposition 46 bbi strategy.v fair strategy exists
Definition 47 bbi oracle.v oracle * oracle
Definition 48 bbi oracle.v CSS consistent CSS fconsistent
Proposition 49 bbi oracle.v CSS consistent closed
Corollary 50 bbi oracle.v finite consistency prop
Lemma 51 bbi oracle.v oracle exists
Proposition 52 bbi limit.v C prop0 XC prop1 C prop2 X prop3

C prop3 ce basic
Proposition 53 bbi limit.v lC simple
Proposition 54 bbi limit.v lXC max
Lemma 55 bbi limit.v lXC Hintikka
Theorem 56 bbi sound and complete.v bbi tab strong completeness

Table 3: Correspondence between the items in this paper and the files/identifiers in the Coq code.
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Hence, for instance, there is no primitive notion of sets/subsets within Coq. We represent sets
like the alphabet L or the set of logical formulæ Form by types. We represent subsets like AC, X, C
or ∼C by unary predicates.15 The use we make of sets/subsets here is compatible with this natural
choice; for instance, we do not need to combine subsets of sets of different types. Of course, we loose
extensionality: two logically equivalent predicates are not necessarily provably equal in Coq. But
we can prove that every proposition on the predicates we use “commutes” with extensionality, i.e.
substitution of a predicate by another equivalent predicate does not alter the validity of a proposition.
We could have assumed predicate extensionality as an added axiom but it is not necessary to do so.
The downside is that we have to systematically prove that the functions or propositions we define
commute with predicate extensionality.

Another point worth mentioning is the use of classical reasoning, i.e. the axiom of excluded-middle.
The calculus of inductive constructions is an intuitionistic logic at its core whereas set theory is
generally assumed classical. Indeed, classical reasoning occurs in the informal proofs of both the
soundness and the completeness of BBI. We think that due to the undecidability of BBI [4, 23], it
is not possible to give a constructive proof of soundness/completeness of BBI, but this might depend
on how the results are expressed. For instance, if you express completeness by “every BBI-formula
has either a closed BBI-tableau or a (simple) counter-model,” then meta-level normalisation combined
with a purely intuitionistic Coq proof (no added axiom) would provide a decision algorithm for BBI,
something that cannot exist. But if you express completeness by “a BBI-formula is semantically valid
if and only if it has a closed BBI-tableau,” then the impossibility of a constructive proof is not obvious
anymore. These two formulations of completeness are classically equivalent but are not necessarily
intuitionistically equivalent for an undecidable logic like BBI.

As a consequence, we were forced to use the axiom of excluded middle for our formal proofs of
soundness and completeness of BBI. Anyway, for what it is worth, we tried to minimise the use of
this axiom and in fact, very few Coq files depend on it: bbi oracle.v, bbi realizability.v and
bbi sound and complete.v.

For the axiom of choice which is usually assumed in classical set theory, we did not use it at all, both
in the informal and formal proof. The simple counter-model of Section 6.3 is built using a deterministic
process so we did not need to use König’s lemma or Zorn’s lemma. The price to pay to avoid the use
of the axiom of choice is to effectively enumerate some sets and provide some effective witnesses of
unboundedness for infinite subsets. With this little overhead, we can certify that the axiom of choice
can be avoided completely as witnessed in the formal Coq proof.

We have a remark concerning our implementation of words, constraints and PMEs. In the informal
proof, words are considered as unordered lists (or multisets) of letters, implying the commutativity of
composition. We feel that multisets are a sufficiently widely used and understood notion to take them
for granted. In Coq, though not impossible, the use of multisets can be complicated by the fact that it
is not an inductive data-type: it is a quotient type. Quotients are not generally available in the calculus
of constructions. Assuming them as an axiom could even lead to logical contradictions [8]. Instead of
trying to build a notion of quotient general enough for the simple purpose of building words/multisets
on an arbitrary alphabet L, we choose to keep words as (ordered) lists of letters, which is of course an
inductive data-type. To recover the needed commutativity on the side of the models of BBI, we simply
add the following 〈comm〉 rule to the rules for PMEs of Table 1:

xy −·····− xy
xy −·····− yx 〈comm〉

This rule ensures that letters can be permuted in words and constraints provided we work inside a
PME ∼, i.e. we obtain a congruence result such as: let x and x′ (resp. y and y′) be two lists of letters
equivalent up to permutation of letters; if x ∼ y holds then x′ ∼ y′ holds.

We finish our remarks with the two peripheral results that were not formalised in Coq; they are
not assumed, they are just ignored as useless to obtain the formalised proof of strong completeness:

15In the case of binary relations, we use unary predicates over a type of pairs, similarly to what is done in set theory.
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• on one hand, the equivalence of partial monoidal Kripke semantics and PME Kripke semantics
of BBI expressed in Fact 18. We think a formalisation will not really be difficult but would
probably involve the computation of a quotient partial monoid. The implementation of this
result is currently under way and will be made available in the near future;

• on the other hand, the equivalence between the TBBI-tableau system defined in [22] and the
BBI-tableau system defined in the current paper, as expressed in Fact 34. We view this result as
easy to formalise but the main annoyance will certainly derive from the following observation:
we deal with two notions of tableaux that differ only slightly in their respective implementations
and this implies duplicating Coq code as well Coq identifiers.

8 Conclusion and perspectives
In this paper, we provide a detailed standalone proof of the strong completeness of a labeled tableaux
system for partial monoidal Boolean BI. We give an account of our full formalisation in Coq of this
informal proof. We have already adapted our formal proof to intuitionistic BI. We think that our
framework, either informal or formal, is general enough to be adapted to various extensions of either
BI or BBI, like for instance in the case of Dynamic BI [10].

This strong completeness result implies that it is possible to analyse the semantic properties of
BBI through the study of the particular constraints generated by tableau proof-search, i.e. basic and
simple PMEs. In a recent study, we show that simple PMEs are cancellative [21], i.e. they are closed
under the following rule:

kx−·····− ky
x−·····− y 〈cancel〉

meaning that the corresponding quotient partial monoid is cancellative. As the extension ε−·····−m does
not always preserve cancellativity, there can be no direct inductive proof of the cancellativity of simple
PMEs. On the contrary, the arguments needed to establish that result are rather involved, justifying
this independent development [21].

As a consequence of the cancellativity of simple PMEs, we obtain a proof of completeness of BBI-
tableaux w.r.t. the class of separation algebras which are partial cancellative commutative monoids [21].
BBI-tableaux are thus a sound and complete semi-decision method for Abstract Separation Logic [7, 5].

Solving basic PMEs, i.e. computing a representation of ∼C from a representation of a basic sequence
of constraints C, is of fundamental importance in the semi-automated process of tableau construction
and is thus a strong motivation to study the specific properties of these basic PMEs.

We aim to show how to solve the semantic constraints generated during proof-search and thus
be able to decide whether a branch can be expanded and in such a case how it can be expanded by
computing the predicate cond(·, ·): given a branch (X,C) where ∼C is a basic PME, regarding the
expansion of that branch, we need to evaluate relations like m ∼C n or ε ∼C m to determine if the
branch is closed or not, and to compute values x, y such that xy ∼C m or xm ∼C y to determine the
fireable instances of the rules of the tableau system. We also need to introduce new letters a 6= b ∈ L\AC
but this does not require a computation of ∼C, only a (much simpler) computation of AC.

Then, we reasonably hope to design an effective method for deciding the constraints that are
generated during proof-search, method which could then be used in proof-assistants for example. The
design of such tools that help at proving general BBI-formulæ has been a long-term goal in the field
of verification of properties specified in separation logic and is beginning to emerge with for instance
a prover like BBeye [27] based on a nested sequent calculus or the provers of Hóu et al [18, 17] based
on labeled sequent calculi.
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A The monotonicity of closed BBI-tableaux
In this section, we develop the main arguments for the proof of Theorem 31.

Fact 58. Let (X,C) and (X,D) be two CSS such that C ⊆ D and AC = AD hold. If an instance of a
rule of Table 2 is fireable for (X,C) then the same instance (of the same rule) is fireable for (X,D).

Proof. The conditions of rules 〈T¬,F¬,T∧,F∧,TI〉 only depend on X (not on C, D) so the result is
trivial in that case. For rules 〈T∗,F−∗〉, the part of the condition that depends on C (resp. D) is
a 6= b ∈ L\AC (resp. a 6= b ∈ L\AD). Since AC = AD the two conditions are obviously equivalent.16

For rule 〈F∗〉, the part of the condition that depends on C (resp. D) is xy ∼C m (resp. xy ∼D m).
Since ∼C ⊆ ∼D , if the condition holds for C then it holds for D. The case of rule 〈T−∗〉 is similar. �

Beware that the conjunction of the conditions C ⊆ D and AC = AD is strictly weaker than the
condition C = D. As a counter-example we give, C = {a−·····− a, b−·····− b} and D = {a−·····− b} where a and b
are two different letters of L. We obtain C = {ε−·····− ε, a−·····−a, b−·····− b}, D = {ε−·····− ε, a−·····−a, b−·····− b, a−·····− b, b−·····−a},
AC = AD = {a, b} and obviously a−·····− b ∈ D\C hence C 6= D.

Let us denote T < T ′ when T is of the form T = [(X0
1 ,C

0
1 ), . . . , (X0

k ,C
0
k )], T ′ is of the form

T ′ = [(X0
1 ,C

1
1 ), . . . , (X0

k ,C
1
k )] and the relations C0

i ⊆ C1
i and AC0

i
= AC1

i
hold for any i ∈ {1, . . . , k}.

Lemma 59. Let (X,C) and (X,D) be two CSS such that the relations C ⊆ D and AC = AD both
hold. We can transform any BBI-tableau T for (X,C) into a BBI-tableau T ′ for (X,D) such that
T < T ′ holds.

Proof. We proceed by induction on the process that builds the tableau T :

• in the ground case, T is the tableau [(X,C)]. Then T ′ = [(X,D)] is a tableau for (X,D) with
T < T ′;

• otherwise, there exists a tableau T 0 = T 0
l ++ [(X0

q ,C
0
q )] ++ T 0

r for (X,C), an instance of a rule
of Table 2

cond( · , · )
(X1,C1) | · · · | (Xk,Ck)

fireable for (X0
q ,C

0
q ) with

T = T 0
l ++ [(X0

q ∪ X1,C
0
q ∪ C1); . . . ; (X0

q ∪ Xk,C0
q ∪ Ck)] ++ T 0

r

Since T was built inductively from T 0, we can apply the induction hypothesis to the tableau
T 0 and we can build a tableau T 1 = T 1

l ++ [(X0
q ,C

1
q )] ++ T 1

r for (X,D) such that T 0
l < T 1

l ,
T 0
r < T 1

r , C0
q ⊆ C1

q and AC0
q

= AC1
q
. From the Fact 58, we deduce that the same rule instance is

fireable for (X0
q ,C

1
q ). As a consequence

T ′ = T 1
l ++ [(X0

q ∪ X1,C
1
q ∪ C1); . . . ; (X0

q ∪ Xk,C1
q ∪ Ck)] ++ T 1

r

is a tableau for (X,D). We show that T < T ′. We already have T 0
l < T 1

l and T 0
r < T 1

r . From
C0
p ⊆ C1

p we deduce C0
p ∪ Ci ⊆ C1

p ∪ Ci and since AC0
p

= AC1
p
, we derive that C0

p ∪ Ci and C1
p ∪ Ci

have the same alphabet. Hence the relation T < T ′ holds.

Hence we proved the result by replaying the process that built the tableau T . �

16Remark that the weaker condition AC ⊆ AD would not be sufficient because the variables a and b introduced in rules
〈T∗〉 and 〈F−∗〉 would not necessarily be new in this case.
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Fact 60. Let (X,C) be a CSS and σ : L−→ L be a substitution of letters such that σ is injective on
L\AC and the inclusion σ−1(σ(AC)) ⊆ AC holds. If the rule instance

cond( · , · )
(X1,C1) | · · · | (Xk,Ck)

is fireable for (X,C) then there exists a(nother) instance of the same rule of the form

cond′( · , · )
(σ(X1), σ(C1)) | · · · | (σ(Xk), σ(Ck))

which is fireable for (σ(X), σ(C)).

Proof. We proceed by case analysis. We treat the case of rule 〈T∗〉 as an example. So let us consider
the following instance

TA ∗B : m ∈ (·) and a 6= b ∈ L\A(·)

({TA : a,TB : b}, {ab−·····−m})
〈T∗〉

with parameters A, B, m, a and b.17 This instance is fireable for (X,C) if and only if both TA ∗B :
m ∈ X and a 6= b ∈ L\AC hold. We consider the instance of the same rule with parameters A, B,
σ(m), σ(a) and σ(b):

TA ∗B : σ(m) ∈ (·) and σ(a) 6= σ(b) ∈ L\A(·)

({TA : σ(a),TB : σ(b)}, {σ(a)σ(b)−·····− σ(m)})
〈T∗〉

This instance is fireable for (σ(X), σ(C)) if and only if both TA ∗B : σ(m) ∈ σ(X) and σ(a) 6= σ(b) ∈
L\Aσ(C) hold. It is clear that if TA ∗B : m ∈ X holds then TA ∗B : σ(m) ∈ σ(X) holds. Since
σ is a substitution of letters, we have Aσ(C) = σ(AC). Since σ is injective on L\AC, from a 6= b we
deduce σ(a) 6= σ(b). Moreover, since the inclusion σ−1(σ(AC)) ⊆ AC holds, from a, b 6∈ AC we deduce
σ(a), σ(b) 6∈ σ(AC) = Aσ(C). Hence if the first instance of 〈T∗〉 is fireable for (X,C) then the second
instance of 〈T∗〉 is fireable for (σ(X), σ(C)). �

Theorem 61. Let (X0,C0) be a CSS and σ : L−→L be a substitution of letters such that σ is injective
on L\AC0 and the inclusion σ−1(σ(AC0)) ⊆ AC0 holds. If T is a BBI-tableau for (X0,C0) then σ(T ) is
a BBI-tableau for (σ(X0), σ(C0)).

Proof. We proceed by induction on the process that builds the tableau T for (X0,C0):

• in the ground case, T is the tableau T = [(X0,C0)]. It is obvious that σ(T ) = [(σ(X0), σ(C0))] is
a tableau for (σ(X0), σ(C0));
• otherwise, there exists a tableau T0 = Tl ++ [(X,C)] ++ Tr for (X0,C0) and a rule instance

cond( · , · )
(X1,C1) | · · · | (Xk,Ck)

fireable for (X,C) such that T = Tl++[(X∪X1,C∪C1); . . . ; (X∪Xk,C∪Ck)]++Tr. By induction
hypothesis, σ(T0) is a tableau for (σ(X0), σ(C0)). We check that σ is injective on L\AC and that
the inclusion σ−1(σ(AC)) ⊆ AC holds. We derive both these properties from the inclusion C0 ⊆ C

17Recall that contrary to A, B, m... the markers (·) for the binders X and C are not parameters for the rules.
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obtained by Property 23; indeed (X,C) is a branch of T0 which is a tableau for (X0,C0). As a
consequence of Fact 60, there exists another instance of the same rule

cond′( · , · )
(σ(X1), σ(C1)) | · · · | (σ(Xk), σ(Ck))

which is fireable for (σ(X), σ(C)). But σ(T0) = σ(Tl) ++ [(σ(X), σ(C))] ++ σ(Tr) is a tableau for
(σ(X0), σ(C0)). So the list

σ(Tl) ++ [(σ(X) ∪ σ(X1), σ(C) ∪ σ(C1)); . . . ; (σ(X) ∪ σ(Xk), σ(C) ∪ σ(Ck))] ++ σ(Tr)

is a tableau for (σ(X0), σ(C0)). This list matches exactly σ(T ).

Hence we proved the result by replaying the process that builds the tableau replacing each rule instance
according to Fact 60. �

Corollary 62. Let σ : L−→L be an injective substitution of letters. If T is a BBI-tableau for (X,C)
then σ(T ) is a BBI-tableau for (σ(X), σ(C)).

Proof. We remark that an injective substitution of letters is a fortiori injective on L\AC and satisfies the
identity σ−1(σ(X)) = X for any X ⊆ L. Hence the inclusion σ−1(σ(AC)) ⊆ AC holds and Theorem 61
can be applied. �

Fact 63. Let X, Xe, C and Ce be such that (X,C) and (X ∪ Xe,C ∪ Ce) are two CSS. If an instance
of a rule of Table 2

cond( · , · )
(X1,C1) | · · · | (Xk,Ck)

is fireable for (X,C) and satisfies (AC1 ∪ · · · ∪ ACk
) ∩ ACe ⊆ AC then the same instance (of the same

rule) is fireable for (X ∪ Xe,C ∪ Ce).

Proof. We proceed by case analysis. We treat the case of rule 〈T∗〉 as an example. So let us consider
the following instance

TA ∗B : m ∈ (·) and a 6= b ∈ L\A(·)

({TA : a,TB : b}, {ab−·····−m})
〈T∗〉

with parameters A, B, m, a and b, fireable for (X,C), i.e. both TA ∗B : m ∈ X and a 6= b ∈ L\AC
hold. By hypothesis we have the inclusion ({a, b} ∪ Am) ∩ ACe

⊆ AC. Thus, from a, b 6∈ AC we derive
a, b 6∈ ACe

. Hence we have a, b 6∈ AC∪Ce
. Since it is obvious that TA ∗B : m ∈ X ∪ Xe holds, we

conclude that this instance is also fireable for (X ∪ Xe,C ∪ Ce). �

Let T = [(X1,C1); . . . ; (Xk,Ck)] be a list of CSS. We write AT for the set of letters occurring in
this list, i.e. AT = AC1 ∪ · · · ∪ ACk

and we write T ∪ (Xe,Ce) for the result of adding (Xe,Ce) to each
CSS in the list, i.e.

T ∪ (Xe,Ce) = [(X1 ∪ Xe,C1 ∪ Ce); . . . ; (Xk ∪ Xe,Ck ∪ Ce)]

Proposition 64. Let X0, Xe, C0 and Ce be such that (X0,C0) and (X0 ∪ Xe,C0 ∪ Ce) are two CSS. If
T is a BBI-tableau for (X0,C0) which verifies AT ∩ ACe

⊆ AC0 then T ∪ (Xe,Ce) is a BBI-tableau for
(X0 ∪ Xe,C0 ∪ Ce).

Proof. We proceed by induction on the process that builds the tableau T for (X0,C0):

• in the ground case, T is the tableau T = [(X0,C0)]. It is obvious that T ∪ (Xe,Ce) = [(X0 ∪
Xe,C0 ∪ Ce)] is a tableau for (X0 ∪ Xe,C0 ∪ Ce);
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• otherwise, there exists a tableau T0 = Tl ++ [(X,C)] ++ Tr for (X0,C0) and a rule instance

cond( · , · )
(X1,C1) | · · · | (Xk,Ck)

fireable for (X,C) such that T = Tl ++ [(X ∪ X1,C ∪ C1); . . . ; (X ∪ Xk,C ∪ Ck)] ++ Tr. We have
AT0 ∩ ACe

⊆ AT ∩ ACe
⊆ AC0 . Hence, by induction hypothesis, T0 ∪ (Xe,Ce) = Tl ∪ (Xe,Ce) ++

[(X ∪ Xe,C ∪ Ce)] ++ Tr ∪ (Xe,Ce) is a tableau for (X0 ∪ Xe,C0 ∪ Ce). Moreover, we have (AC1 ∪
· · · ∪ ACk

) ∩ ACe
⊆ AT ∩ ACe

⊆ AC0 ⊆ AC by Proposition 23. As a consequence of Fact 63, the
same rule instance is fireable for (X ∪ Xe,C ∪ Ce). Hence the list of CSS

Tl ∪ (Xe,Ce) ++ [(X ∪ Xe ∪ X1,C ∪ Ce ∪ C1); . . . ; (X ∪ Xe ∪ Xk,C ∪ Ce ∪ Ck)] ++ Tr ∪ (Xe,Ce)

is a tableau for (X0 ∪ Xe,C0 ∪ Ce). This list matches exactly T ∪ (Xe,Ce).

Hence we proved the result by replaying exactly the process that built the tableau T . �

Lemma 65. Let (X0,C0) and (X1,C1) be two finite CSS such that (X0,C0) 4 (X1,C1). If (X0,C0) has
a closed BBI-tableau then (X1,C1) has a closed BBI-tableau.

Proof. Let us define Xe = X1 \X0 and Ce = C1 \C0. Since L = {c0, c1, . . .} and AC1 is finite, let us
choose n such that AC1 ⊆ {c0, . . . , cn−1}. We deduce AC0 ⊆ {c0, . . . , cn−1} and ACe

⊆ {c0, . . . , cn−1}.
We define the substitution of letters σ : L−→ L by

σ(ci) =
{
ci if ci ∈ AC0

ci+n if ci 6∈ AC0

From AC0 ⊆ {c0, . . . , cn−1} and the injectivity of the sequence (ci)i∈N, we deduce that σ is an injective
substitution of letters.18

Let T be a closed tableau for (X0,C0). By Corollary 62, we deduce that σ(T ) is a tableau for
(σ(X0), σ(C0)) = (X0,C0) (because σ is the identity on AC0). By Proposition 29, we know that all
the branches of σ(T ) are closed. Since σ is a substitution of letters we have Aσ(T ) = σ(AT ) ⊆
σ(L) = AC0 ∪ {cn, cn+1, . . .}. Thus we obtain Aσ(T ) ∩ ACe

⊆ Aσ(T ) ∩ {c0, . . . , cn−1} ⊆ AC0 . Thus by
Proposition 64, σ(T )∪ (Xe,Ce) is a tableau for (X0 ∪Xe,C0 ∪ Ce). Moreover, by Proposition 26, since
all the branches of σ(T ) ∪ (Xe,Ce) are closed, then we have a closed tableau for (X1,C1). �

Theorem 66. Let (X1,C1) and (X2,C2) be two finite CSS such that X1 ⊆ X2 and C1 ⊆ C2 both hold.
If (X1,C1) has a closed BBI-tableau then (X2,C2) has a closed BBI-tableau.

Proof. Let us suppose that (X1,C1) has a closed tableau. Let D = C1 ∪ C2. Then (X2,D) is a finite
CSS and the inclusion (X1,C1) 4 (X2,D) holds. By Lemma 65, we obtain a closed tableau T for
(X2,D). It is easy to check that D ⊆ C2 and AD = AC2 both hold. Then by Lemma 59, we obtain a
tableau T ′ for (X2,C2) such that T < T ′. Since all the branch of T are closed and T < T ′, then by
Proposition 26, all the branches of T ′ are closed. Hence, T ′ is a closed tableau for (X2,C2). �

18Remark that such an injective substitution does not necessarily exist when the set of letters L is finite.
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