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2 Extending a system in the calculus of structures

with a self-dual quantifier
Luca Roversi

Università di Torino — Dipartimento di Informatica∗

Abstract

We recall thatSBV, a proof system developed under the methodology of deep in-
ference, extends multiplicative linear logic with the self-dual non-commutative logical
operatorSeq. We introduceSBVQ that extendsSBV by adding the self-dual quantifier
Sdq. The systemSBVQ is consistent because we prove that (the analogous of) cut elim-
ination holds for it. Its new logical operatorSdq operationally behaves as a binder, in a
way that the interplay betweenSeq, andSdq can modelβ-reduction of linearλ-calculus
inside the cut-free subsystemBVQ of SBVQ. The long term aim is to keep developing
a programme whose goal is to give pure logical accounts of computational primitives
under the proof-search-as-computation analogy, by means of minimal, and incremental
extensions ofSBV.

1 Introduction.

This is a work in structural proof-theory. We extendSBV [5], the paradigmatic system of the
deep inference methodology to design proof systems.

Deep inference (DI). One of the main aspects of DI is that logical systems can be designed
as they were rewriting systems, namely, systems with rules that applydeeplyinside terms, or,
equivalently, in any suitable context. We must read “deep” as opposed to “shallow”. Rules
of sequent and natural deduction systems are shallow because they build proofs whose form
mimics the one of formulas. Thanks to the deep application ofits rules,BV substantially
extends multiplicative linear logic (MLL) [3] with the non commutative binary operatorSeq,
whose logical properties are strictly connected to the expressiveness ofBV itself. Any limits
we might put on the application depth ofBV rules would yield a strictly less expressive system
[16] indeed. An extension ofBV, by means of linear logic exponentials [6, 7, 8, 15] isNEL,
whose provability is undecidable [13].

Contributions, and motivations. We introduceSBVQ. It is SBV plus a quantifier that we
identify asSdq, which abbreviates “Self-dual quantifier”. The relevant feature ofSdq is to
bind variable names ofSBVQ only. The consequence is twofold. First, we do not need to
classifySdq as either an existential, or a universal quantifier. Indeed,binding variable names
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λx.λy.((True) y) x
︷                                                                                                                        ︸︸                                                                                                                        ︷

⌈⌈

((True) y) x
︷                                                                                                                ︸︸                                                                                                                ︷

⌈[

(True) y
︷                                                                                ︸︸                                                                                ︷

⌈[

True
︷                                              ︸︸                                              ︷

⌈⌈

(w) z
︷                                      ︸︸                                      ︷

⌈[

w
︷  ︸︸  ︷

〈w ⊳ p′〉O⌈

z
︷︸︸︷

〈z ⊳ q〉⌋q O 〈p′ ⊳ p〉]⌋p′⌋z⌋w O⌈

y
︷︸︸︷

〈y ⊳ q〉⌋q O 〈p ⊳ r〉]⌋p O⌈

x
︷︸︸︷

〈x ⊳ s〉⌋s O 〈r ⊳ o〉]⌋r⌋y⌋x

D

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
BVQ

⌈[⌈⌈⌈⌈[⌈[〈z ⊳ p〉
︸︷︷︸

z

O⌈〈y ⊳ q〉
︸︷︷︸

y

⌋q O 〈p ⊳ r〉]

︸                              ︷︷                              ︸

(z) y

⌋p O ⌈〈x ⊳ s〉
︸︷︷︸

x

⌋s O 〈r ⊳ t〉]

︸                                                               ︷︷                                                               ︸

((z) y) x

⌋r⌋y⌋x⌋z

︸                                                                              ︷︷                                                                              ︸

Not

O⌈⌈⌈⌈[〈w ⊳ p〉
︸ ︷︷ ︸

w

O⌈〈z ⊳ q〉
︸︷︷︸

z

⌋q O 〈p ⊳ r〉]⌋p

︸                                  ︷︷                                  ︸

(w) z

⌋z⌋w

︸                                           ︷︷                                           ︸

True

⌋r O 〈t ⊳ o〉]⌋t

︸                                                                                                                                                         ︷︷                                                                                                                                                         ︸

(Not) True

Figure 1: Computingλ-term (Not) True in BVQ.

only, it never requires to distinguish if the quantificationis over a variable which we can think
of as an assumption or as a conclusion. Hence, a second consequence is thatSdq naturally
becomes self-dual. So,SBVQ can be viewed as a minimal extension ofSBVQ by means of a
logical operator whose instances identify regions of formulas where specific variable names
can essentially change freely.

The work may be viewed as divided in two parts. The first is about proving thatSBVQ
is consistent. Namely,SBVQ enjoys Splitting (Section 3) which identifies the subsetBVQ of
SBVQ which plays the role of cut-free fragment.

The second part of the work gives toSdq an operational semantics. Exploiting thatSdq is
a binder, we show that its interplay withSeq makes proof-search insideBVQ complete w.r.t.
the basic functional computation expressed by linearλ-calculus. We recall that functions lin-
earλ-calculus represents use their arguments exactly once in the course of the evaluation. So,
the set of functions it can express is quite limited, but large enough to let the decision about
which is the normal form of two linearλ-terms apolynomial time completeproblem [10].
Completeness amounts to first defining an embeddingL· M· from linearλ-terms to formulas of
BVQ (Section 5.) Then, completeness states that, for every linearλ-termM, and every atom
o, which plays the role of an output-channel, ifM reduces toN, then there is a derivationD
of BVQ, that derives the conclusionLM Mo from the assumptionLN Mo. (Theorem 5.1.) For
example, let us recall a possible encoding of boolean values, and of boolean negation:

Not ≡ λz.λx.λy.((z) y) x True ≡ λw.λz.(w) z False ≡ λw.λz.(z)w

Figure 1 shows (part of) a non trivial example of completeness. We have a derivation ofBVQ
whose conclusion encodes (Not) True, while the premise encodes itsβ-reductλx.λy.((True) y) x.

Finally, showing completeness means we keep developing a programme whose goal is to
give pure logical accounts of computational primitives under the proof-search-as-computa-
tion analogy, by means of minimal extensions ofSBV. This programme begins in [2]. It
shows thatSeq soundly, and completely modelsCCsp, the restriction of MilnerCCS [?] to a
fragment that contains sequential, and parallel composition only.
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Related works. This work directly relates to [11], and [12] as follows. First here we choose
a better terminology. Current “self-dual quantifier”Sdq were dubbed as “renaming” in both
[11], and [12], putting too much emphasis about its operational meaning. Moreover, this
work (i) cleans up the definition, and the properties ofSdq, (ii) generalizes the statements of
some principal property, correcting non-crucial flows in their proofs, (iii) states and proves
deduction and standardization properties, (iv) includes details of many proofs of the given
statements, (v) simplifies the mapL· M· from linearλ-terms to formulas ofBVQ dropping any
reference to explicit substitutions inside linearλ-terms, which was, instead, mandatory in
[11, 12], (vi) among the conclusions (Section 6), anticipates thatBVQ can be complete, and
not only sound, w.r.t. a suitable extension of the above fragmentCCS of Milner CCS.

Besides [2], further related works are [1, 4], and [17].
The former restates natural deduction of the negative fragment of intuitionistic logic into

a DI system from which extracting an algebra of combinators where interpretingλ-terms.
So, the connection is the aim of giving a computational interpretation to a DI system. Further
investigation on the computational nature of deep inference system is in [4]. It shows rela-
tions among lambda calculi with explicit substitutions, and intuitionistic systems redefined
in accordance with the deep inference approach to proof theory. Specifically, [4] shows the
impact on the design ofλ-calculi with explicit substitutions of intuitionistic logic reworked
in terms of nested sequents or of calculus of structures, under both the proofs-as-programs,
and fromulas-as-programs paradigms.

Finally, [17] inspired the two-arguments mapL· M· from linear λ-terms to formulas of
BVQ. Anticipating a bit the content of Section 4, the definition of the basic clause ofL· M· is
LxMo = 〈x ⊳ o〉. Intuitively, the linearλ-calculus variablex in L· M· becomes the name of an
input channel to the left of the occurrence⊳ of Seq. The input channel is forwarded to the
output channelo in analogy with theforwarder [x]o = x(◦) . o〈◦〉 which comes from [9], and
which is one of the defining clauses of theoutput-based embeddingof standardλ-calculus
with explicit substitutionsinto π-calculus [17]. So,SBV can model a forwarder, the basic
input/output communication flow thatλ-variables realize. The introduction ofSdq allows to
model anyon-the-fly renamingof channels that serves to model the substitution of a term for
a bound variable, namely, the linearβ-reduction process of linearλ-calculus.

Road map. Section 2 introduces the extensionSBVQ (BVQ) of SBV (BV). Section 3
proves thatSBVQ is consistent by extending the proof of (the analogous of) cut-elimination
for SBV to SBVQ. Section 4 recalls linearλ-calculus, and defines the embedding of its terms
to formulas ofBVQ. Section 5 shows the completeness ofBVQ w.r.t. linearλ-calculus,
namely it shows that every computation in the latter corresponds to a proof-search in the
former. Section 6 comments about the lack of a reasonable soundness ofBVQ w.r.t. to
λ-calculus, and points to future work.

2 Systems SBVQ and BVQ

We recall and clean-up the definitions of [11, 12].

Structures. Let a, b, c, . . . denote the elements of a countable set ofpositive propositional
variables. Let a, b, c, . . . denote the elements of a countable set ofnegative propositional
variables. The set ofnames, which we range over byl,m, andn, contains both positive, and
negative propositional variables, and nothing else. Let◦ be a constant, different from any
name, which we callunit. The set ofatomscontains both names and the unit, while the set

3



of structuresidentifies formulas ofSBV. Structures belong to the language of the grammar
in (1).

R ::= ◦ | l | R | (R� R) | 〈R ⊳ R〉 | [RO R] | ⌈R⌋a (1)

We useK,P,R,T,U,V to range over structures. As inSBV, R is aNot structure, (R� T) is a
CoPar structure,〈R ⊳ T〉 is aSeq structure, and [RO T] is aPar structure. TheSdq structure
⌈R⌋a is new. It comes with the proviso thata must be a positive atom. Namely,⌈R⌋a is not in
the syntax.Sdq induces notions offree, andbound names, defined in (2).

{a} = fn(a) ∪ fn(a)

a ∈ fn(R) if a ∈ fn(R)

a ∈ fn((R� T)) if a ∈ fn(R) ∪ fn(T)

a ∈ fn(〈R ⊳ T〉) if a ∈ fn(R) ∪ fn(T)

a ∈ fn([RO T]) if a ∈ fn(R) ∪ fn(T)

a ∈ fn(⌈R⌋b) if a , b anda ∈ fn(R)

∅ = bn(a) ∪ bn(a)

a ∈ bn(R) if a ∈ bn(R)

a ∈ bn(〈R ⊳ T〉) if a ∈ bn(R) ∪ bn(T)

a ∈ bn((R� T)) if a ∈ bn(R) ∪ bn(T)

a ∈ bn([RO T]) if a ∈ bn(R) ∪ bn(T)

a ∈ bn(⌈R⌋b) if a ≡ b or a ∈ bn(R)

(2)

Finally, (3) defines the substitutionR{a/b} that replaces (i) the atoma for the free occurrences
of b, and (ii) the atoma for those ones ofb, in R.

◦{a/b} ≡ ◦

b{a/b} ≡ a

b{a/b} ≡ a

c{a/b} ≡ c

c{a/b} ≡ c

R{a/b} ≡ R{a/b}

(R� T){a/b} ≡ (R{a/b} � T{a/b})

〈R ⊳ T〉{a/b} ≡ 〈R{
a/b} ⊳ T{

a/b}〉

[RO T]{a/b} ≡ [R{a/b} O T{a/b}]

⌈R⌋b{
a/b} ≡ ⌈R⌋b

⌈R⌋c{
a/b} ≡ ⌈R{

a/b}⌋c

(3)

Size of the structures. Thesize|R| of R is the number of occurrences of atoms inR plus
the number of occurrences ofSdq that effectively bind an atom.

Example 2.1 (Size of the structures) We have|[a O a]| = |⌈[a O a]⌋b| = 2 for we do not count
the occurrence of⌈·⌋·. Instead, we count it in⌈[a O a]⌋a, getting|⌈[a O a]⌋a| = 3.

(Structure) Contexts. We denote them byS{ }. A context is a structure with a single
hole { } in it. If S{R}, thenR is asubstructureof S. We shall tend to shortenS{[RO U]} as
S[RO U] when [RO U] fills the hole{ } of S{ } exactly.

Congruence ≈ on structures. Structures are partitioned by the smallest congruence≈ we
obtain as reflexive, symmetric, transitive and contextual closure of the relation∼whose defin-
ing clauses are (4), through (20) here below.
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Negation

◦ ∼ ◦ (4)

R ∼ R (5)

[RO T] ∼ (R� T) (6)

(R� T) ∼ [RO T] (7)

〈R ⊳ T〉 ∼ 〈R ⊳ T〉 (8)

⌈R⌋a ∼ ⌈R⌋a (9)

Symmetry

[RO T] ∼ [T O R] (10)

(R� T) ∼ (T � R) (11)

Associativity

(R� (T � V)) ∼ ((R� T) � V) (12)

〈R ⊳ 〈T ⊳ V〉〉 ∼ 〈〈R ⊳ T〉 ⊳ V〉 (13)

[RO [T O V]] ∼ [[RO T] O V] (14)

Unit

(◦ � R) ∼ R (15)

〈◦ ⊳R〉 ∼ 〈R ⊳ ◦〉 ∼ R (16)

[◦ O R] ∼ R (17)

α-rule

⌈R⌋a ∼ R if a < fn(R) (18)

⌈R{a/b}⌋a ∼ ⌈R⌋b if a < fn(R) (19)

⌈⌈R⌋b⌋a ∼ ⌈⌈R⌋a⌋b (20)

Contextual closuremeans thatS{R} ≈ S{T} wheneverR≈ T. We remark thatSdq is self-dual
like Seq is. When introducing the logical rules we shall clarify why.Thanks to (20), we
abbreviate⌈· · · ⌈R⌋a1 · · ·⌋an as⌈R⌋~a, where we may also interpret~a as one of the permutations
of a1, . . . , an.

The system SBVQ. It contains the set of inference rules in (21) here below. Every rule has

form
T

ρ −−−−
R

, nameρ, premise T, andconclusion R.

◦
ai↓ −−−−−−−−−−−−−−−−−−

[a O a]

(a � a)
ai↑ −−−−−−−−−−−−−−−−−−

◦

〈[RO U] ⊳ [T O V]〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈R ⊳ T〉 O 〈U ⊳ V〉]

([RO T] � U)
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(R� U) O T]

(〈R ⊳ T〉 � 〈U ⊳ V〉)
q↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
〈(R� U) ⊳ (T � V)〉

⌈[RO U]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈R⌋a O ⌈U⌋a]

(⌈R⌋a � ⌈U⌋a)
u↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈(R� U)⌋a

(21)

Every (instance of) inference rule can be used in any context, namely as
S{T}
ρ −−−−−−−−

S{R}
for anyS{ }.

This means that, if a structureU matchesR in S{ }, it can be rewritten toS{T}. This justifies
callingR theredexof ρ, andT its reduct.

Up and down fragments of SBVQ. The set{ai↓, s, q↓, u↓} is thedown fragmentBVQ of
SBVQ. Theup fragmentis {ai↑, s, q↑, u↑}. Sos belongs to both. The ruleai↑ plays the role
of the cut rule of sequent calculus. The down rule forSdq restricts the following one [14]:

∀a.[RO U]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[∀a.RO ∃a.U]
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to binding variable names only. LimitingSdq to abstract variables implies that the difference
between existentially, and universally quantified names disappears. The reason is that the
cut-elimination will have no need to differentiate between the substitution of an existentially
quantified variable for a universally quantified one, or viceversa. So,Sdq becomes self-dual.

Derivations vs. proofs. A derivation in SBVQ is either a structure or an instance of the
above rules or a sequence of two derivations. BothD , andE will range over derivations.
The topmost structure in a derivation is itspremise. The bottommost is itsconclusion. The
length |D | of a derivationD is the number of rule instances inD . A derivationD of a

structureR in SBVQ from a structureT in SBVQ, only using a subsetB ⊆ SBVQ is
T

D
∥∥∥∥∥∥∥B

R
.

The equivalentspace-savingform we shall tend to use isD : T ⊢B R. The derivation
T

D

∥∥∥∥∥∥∥B

R
is a

proof wheneverT ≈ ◦. We denote it as
◦

P

∥∥∥∥∥∥∥B

R
, or

−
P

∥∥∥∥∥∥∥B

R , orP : ⊢B R. BothP, andQ will range

over proofs. In general, we shall dropB when clear from the context. In a derivation, we

write
T

ρ1,...,ρm,n1,...,np ====

R
, whenever we use the rulesρ1, . . . , ρm to deriveR from T with the help

of n1, . . . , np instances of (4), . . . , (11). To avoid cluttering derivations, whenever possible,
we shall tend to omit the use of negation axioms (4), . . . , (9),associativity axioms (12),
(13), (14), and symmetry aximos (10), (11). This means we avoid writing all brackets, as in
[RO [T O U]], in favor of [RO T O U], for example. Finally if, for example,q > 1 instances
of some axiom (n) of (4), . . . , (20) occurs amongn1, . . . , np, then we write (n)q.

Admissible and derivable rules. A rule ρ is admissiblefor the systemSBVQ if ρ < SBVQ
and, for every derivationD such thatD : T ⊢

{ρ}∪SBVQ R, there is a derivationD ′ such that

D ′ : T ⊢SBVQ R. A rule ρ is derivablein B ⊆ SBVQ if ρ < B and, for every instance
T

ρ −−−−
R

,

there exists a derivationD in B such thatD : T ⊢B R.
The rules in (22) recall a core set of rules derivable inSBV, hence inSBVQ.

◦
i↓ −−−−−−−−−−−−−−−−−−−−

[RO R]

(R� T)
mixp −−−−−−−−−−−−−−−−−−−−
〈R ⊳ T〉

(R� R)
i↑ −−−−−−−−−−−−−−−−−−−−
◦

〈R ⊳ T〉
pmix −−−−−−−−−−−−−−−−−−−−

[RO T]

(22)

General interaction down and up. In (22), general interaction upis i↑, derivable in the
set{ai↑, s, q↑, u↑}, reasoning by induction on|R|, and proceeding by cases on the form ofR.
We show the few steps of the proof, relative the caseSdq:

(⌈R⌋a � ⌈R⌋a)
(9) ====================================

(⌈R⌋a � ⌈R⌋a)
u↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⌈(R� R)⌋a
i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−− ind. hypothesis
⌈◦⌋a

(18)==========
◦

6



Similar arguments apply to the cases relative toNot, CoPar, Seq, andPar. Symmetrically,
general interaction downi↓ is derivable in{ai↓, s, q↓, u↓}.

General Seq-transitive up, and down rules. In (22) t↓ is derivable by reasoning induc-
tively on the size ofS{ }, and proceeding by cases on its structure, under the proviso(∗)
which says that ({a} ∪ fn(T)) ∩ bn(S{ }) = ∅. If S{ } ≈ { }, thent↓ is:

〈R ⊳ T〉
ai↓,(17),(16)==================================================================

〈R ⊳ 〈[a O a] ⊳ [◦ O T]〉〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
〈R ⊳ [〈a ⊳ ◦〉 O 〈a ⊳ T〉]〉

(17),(16)==================================================================
〈[RO ◦] ⊳ [a O 〈a ⊳ T〉]〉

q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[〈R ⊳ a〉 O 〈◦ ⊳ 〈a ⊳ T〉〉]

(16)===============================================================
[〈R ⊳ a〉 O 〈a ⊳ T〉]

If S{ } ≈ (S′{ } � U), then:

([S′〈R ⊳ T〉] � U)
t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ind. hypothesis

([S′〈R ⊳ a〉 O 〈a ⊳ T〉] � U)
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(S′〈R ⊳ a〉 � U) O 〈a ⊳ T〉]

If S{ } ≈ ⌈S′{ }⌋p, then:

⌈[S′〈R ⊳ T〉]⌋p
t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ind. hypothesis
⌈[S′〈R ⊳ a〉 O 〈a ⊳ T〉]⌋p

(18),u↓ =================================================================
[⌈S′〈R ⊳ a〉⌋p O 〈a ⊳ T〉]

The case withS{ } ≈ [S′{ } O U] is simpler than the two here above.

Mix rules. In (22) bothmixp, andpmix, show a hierarchy between connectives:Par is the
lowermost,Seq lies in the middle, andCoPar on top [5]. Postfix mix rulemixp is derivable
in {q↑}.

Finally, some properties that formalize simple derivations we can always build inside
BVQ. The first one says when two structuresR, andT of BVQ can be moved inside a context
so that they get one aside the other.

Proposition 2.2 (Context extrusion) S[RO T] ⊢
{q↓,u↓,s} [S{R} O T], for everyS,R,T.

Proof By induction on|S{ }|, proceeding by cases on the form ofS{ }. (Details in Ap-
pendix A).

The following statement highlights the scoping nature ofSdq. For proving it, it is enough to
inspect the behavior of the rules inBVQ.

Fact 2.3 (Sdq is a scoping operator) Let a,U, andV be given.

1. If D : V ⊢BVQ ⌈U⌋a, then there existR, andD such thatD : ⌈R⌋a ⊢BVQ ⌈U⌋a.

2. For everyR, if D : ⌈R⌋a ⊢BVQ ⌈U⌋a, thenD ′ : R ⊢BVQ U, for someD ′.

The last property says that no new variable can be introducedin the course of a derivation.

Proposition 2.4 (BVQ is affine) In everyD : T ⊢BVQ R, we have|R| ≥ |T |.

Proof By induction on|D |, proceeding by cases on its last ruleρ.
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3 Splitting for SBVQ

We recall, and clean the proof of Splitting forSBVQ in [11, 12]. Splitting can be viewed
as a generalization of cut-elimination for sequent calculus-like systems. Proving Splitting of
SBVQ amounts to proving thatSBVQ, andBVQ are equivalent, namely that every up-rule is
admissible inBVQ, or, equivalently, that we can eliminate every up-rule fromany derivation
of SBVQ. Sinceai↑ is an up-rule, and it plays the role of the cut rule, proving Splitting means
proving also cut-elimination forSBVQ.

The first part of this section traces how Splitting, and some other properties it relies on,
works to eliminateu↑. The second part, Subsection 3.1, is for technical eyes interested to the
full formal details.

Let us see how Splitting eliminates an occurrence (∗) of u↑ from a proofP of SBVQ,
so focusing on the case that differentiates the proof of Splitting forSBVQ from the one for
SBV. Let:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

S(⌈R⌋a � ⌈T⌋a)
u↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (∗)

S⌈(R� T)⌋a

beP with (∗) the instance ofu↑ we want to eliminate. We are going to rewriteP to a proof
of BVQ with the same conclusion asP, but without (∗). The first step to get rid of (∗) is
Splitting (Theorem 3.5). The instance of Splitting we need,up to some details we can ignore
at this level, is:

If
−

Q

∥∥∥∥∥∥∥∥∥∥∥∥

S⌈(R� T)⌋a
, then∃K, ~b such that∀V, both

⌈[V O K]⌋~b
D

∥∥∥∥∥∥∥∥∥∥∥∥

S{V}
, and

−
Q′
∥∥∥∥∥∥∥∥∥∥∥∥

[(R� T) O K]

We remark that extractingK, hidden insideD , might require many instances ofSdq to
emerge, as the outermost occurrence⌈·⌋~b in the premise ofD shows. We can apply Splitting
by takingP — beware, notP ′— asQ. SinceV in D can be any, we chooseV ≈ ⌈(R� T)⌋a,
the conclusion of the instance ofu↑ we want to eliminate. From such an instance ofD we
get:

⌈[(R� T) O K]⌋~b
D′
∥∥∥∥∥∥∥∥∥∥∥∥

S⌈(R� T)⌋a

Now we extract fromK the, usually called, killers ofR, andT inside (R� T). Namely, we
apply the following instance of Shallow splitting (Proposition 3.2) to the aboveQ′:

If
−

P′′
∥∥∥∥∥∥∥∥∥∥∥∥

[(R� T) O K]
, then∃K1,K2, ~c such that

⌈[K1 O K2]⌋~c
E

∥∥∥∥∥∥∥∥∥∥∥∥

K
and

−
E1

∥∥∥∥∥∥∥∥∥∥∥∥

[RO K1]
and

−
E2

∥∥∥∥∥∥∥∥∥∥∥∥

[T O K2]

which, once more, may let instances ofSdq to emerge. ComposingD ′, E , E1, andE2, we get
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the (∗)-free proof we are looking for:

⌈◦⌋ ~c,b ≈ ◦

E2

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[T O K2]⌋ ~c,b
E1

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[([RO K1] � T) O K2]⌋ ~c,b
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[(R� T) O K1 O K2]⌋ ~c,b

Proposition2.2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
BVQ

⌈[(R� T) O ⌈[K1 O K2]⌋~c]⌋~b
E

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[(R� T) O K]⌋~b
D′
∥∥∥∥∥∥∥∥∥∥∥∥

S⌈(R� T)⌋a

It is a proof with the same conclusion asP, without (∗), but with, at least, a couple of new
instances of bothu↓, ands, the first one being “inside” Proposition 2.2

3.1 Details on Splitting

Proposition 3.1 (Provability of structures in BVQ) Let R, andT be structures, anda be a
name, andP ,P1, andP2 be proofs ofBVQ.

1. P : ⊢BVQ 〈R ⊳ T〉 iffP1 : ⊢BVQ RandP2 : ⊢BVQ T.

2. P : ⊢BVQ (R� T) iffP1 : ⊢BVQ R andP2 : ⊢BVQ T.

3. P : ⊢BVQ ⌈R⌋a iffP ′ : ⊢BVQ R{b/a}, for every variableb.

Proof “If implication” . The proofs of 1 and 2, given in [5] by induction on|P | insideBV,
extend to the cases when the last rule ofP is u↓. Indeed, the redex ofu↓ can only be inside
R or T. Concerning 3, the assumption implies the existence ofP ′ : ⊢ R{a/a}, namely of
P ′ : ⊢ R. So, we can “wrap”P ′ with ⌈·⌋a, exploiting (18), and apply every rule ofP ′ deep
in the proofP we are building.

“Only if implication” . In all the three cases, the proof is by induction on|P |, proceeding
by cases on its last ruleρ. Concerning points 1, and 2 a redex can only be insideR or T.
So, the application of the inductive hypothesis is immediate. Instead,a may not belong to
fn(R) in Point 3. If this is true, then (18) implies that every instance ofP ′ with b in place
of a exists. The reason is that, by definition, the substitution (3) distributes over structures,
preserving the scope of every instance ofSdq. Otherwise, ifa ∈ fn(R), then the redex ofρ
can only be insideR. So, we can conclude thanks to the inductive hypothesis.

Proposition 3.2 (Shallow Splitting in BVQ) Let R,T, andP be structures, anda be a name,
andP be a proof ofBVQ.

1. If P : ⊢BVQ [〈R ⊳ T〉 O P], then there areD : 〈P1 ⊳ P2〉 ⊢BVQ P, andP1 : ⊢BVQ [RO P1],
andP2 : ⊢BVQ [T O P2], for someP1, andP2.

2. If P : ⊢BVQ [(R� T) O P], then there areD : [P1 O P2] ⊢BVQ P, andP1 : ⊢BVQ
[RO P1], andP2 : ⊢BVQ [T O P2], for someP1, andP2.

3. LetP : ⊢BVQ [RO P] with R ≈ [l1 O · · · O lm], such thati , j implies li , l j , for every
i, j ∈ {1, . . . ,m}, andm > 0. Then, for every structureR0, andR1, if R ≈ [R0 O R1],
there existsD : R1 ⊢BVQ [R0 O P].
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4. If P : ⊢ [⌈R⌋a O P], then there areD : ⌈T⌋a ⊢BVQ P, andP ′ : ⊢BVQ [RO T], for some
T.

Proof Following [5], both statements 1, and 2 must be proved simultaneously. We rea-
son by induction on the lexicographic order of the pair (|V|, |P |), whereV is one between
[〈R ⊳ T〉 O P] or [(R� T) O P], proceeding by cases on the last ruleρ of P.

Point 3 relies on points 1, 2. It holds by induction on (|R|, |P |), proceeding by cases on the
last rule ofP. Point 4 relies on points 1, 2. It holds by induction on (|⌈R⌋a|, |P |), proceeding
by cases on the last rule ofP. (Details in Appendix B).

Remark 3.3 The proviso “i , j implies li , l j , for everyi, j ∈ {1, . . . ,m}” of Point (3) in
Proposition 3.2 serves to let the killer of everyl be inside [R0 O P].

Proposition 3.4 here below says thatS{ } supplies the “context”U, required for provingR,
no matter which structure fills the hole ofS{ }.

Proposition 3.4 (Context Reduction in BVQ) Let R be a structure, andS{ } be a context
such thatP : ⊢BVQ S{R}. There are a structureU, and, possibly, some variables~b such that,
for everyV, if fn(V)∩bn(R) = ∅, then bothD : ⌈[V O U]⌋~b ⊢BVQ S{V}, andQ : ⊢BVQ [RO U].

Proof The proof is by induction on|S{ }|, proceeding by cases on the form ofS{ }. (Details
in Appendix C).

Theorem 3.5 (Splitting in BVQ) Let R, andT, be structures, andS{ } be a context.

1. If P : ⊢BVQ S〈R ⊳ T〉, then there are structuresK1,K2, and, possibly, some variables~b
such that, for everyV with fn(V)∩bn(〈R ⊳ T〉) = ∅, there areD : ⌈[V O 〈K1 ⊳ K2〉]⌋~b ⊢BVQ
S{V}, andP1 : ⊢BVQ [RO K1], andP2 : ⊢BVQ [T O K2].

2. If P : ⊢BVQ S(R� T), then there are structuresK1,K2, and, possibly, some variables~b
such that, for everyV with fn(V)∩bn((R� T)) = ∅, there areD : ⌈[V O K1 O K2]⌋~b ⊢BVQ
S{V}, andP1 : ⊢BVQ [RO K1], andP2 : ⊢BVQ [T O K2].

3. If P : ⊢BVQ S⌈R⌋a, then there are a structureK, and, possibly, some variables~b such
that, for everyV with fn(V) ∩ bn(⌈R⌋a) = ∅, there existD : ⌈[V O K]⌋~b ⊢BVQ S{V}, and
P ′ : ⊢BVQ [RO K].

Proof We obtain the proof of the three statements by composing Context Reduction (Propo-
sition 3.4), and Shallow Splitting (Proposition 3.2) in this order. (Details in Appendix D).

Theorem 3.6 (Admissibility of the up fragment for BVQ) The set{ai↑, q↑, u↑} in SBVQ is
admissible forBVQ.

Proof Use Splitting (Theorem 3.5), and Shallow Splitting (Proposition 3.2) (Details in Ap-
pendix E.)

4 Linear λ-calculus mapped to BVQ

To show thatSdq is not an extemporaneous logical operator we interpret it asbinder that,
together withSeq, models the renaming mechanism of linearβ-reduction.

10



Linear λ-calculus. We recall that linearλ-calculus can be viewed as a pair (linearλ-terms,
linear operational semantics). LetV be a countable set of variable names we range over by
x, y,w, z. We callV theset ofλ-variables. The set oflinear λ-termsis Λ =

⋃

X⊂V ΛX we
range over byM,N,P,Q. For everyX ⊂ V , the setΛX contains thelinear λ-terms whose
free variables are in X, and which we define as follows: (i)x ∈ Λ{x}; (ii) λx.M ∈ ΛX if
M ∈ ΛX∪{x}; (iii) ( M) N ∈ ΛX∪Y if M ∈ ΛX, N ∈ ΛY, andX ∩ Y = ∅ ; (iv) M {P/x} ∈ ΛX∪Y

if M ∈ ΛX∪{x}, P ∈ ΛY, andX ∩ Y = ∅. The linear operational semantics that rewrites linear
λ-terms is the relation⇒⊆Λ×Λ here below:

rfl −−−−−−−−−−−−−−−−−−−−−−
M ⇒ M

β −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(λx.M) N⇒ M {N/x}

M ⇒ P P⇒ N
tra −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

M ⇒ N

M ⇒ N
f −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
λx.M ⇒ λx.N

M ⇒ N
@l −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(M) P⇒ (N) P

M ⇒ N
@r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(P) M ⇒ (P) N

(23)

whereM{N/x} is the usual clash-freesubstitution, that replacesN for the forcefully single
occurrence ofx in M. We remark that (23) is the reflexive, contextual, and transitive closure
of linearβ-reduction we find in ruleβ. Finally, |M ⇒ N| denotes thenumber of instances of
rules in (23), used to derive some givenM ⇒ N.

The map L· M·. We define it here below, to map terms ofΛ into structures ofBVQ.

LxMo = 〈x ⊳ o〉 with o fresh (24a)

Lλx.M Mo = ⌈LM Mo⌋x (24b)

L(M) N Mo = ⌈[LM Mp O ⌈LN Mq⌋q O 〈p ⊳ o〉]⌋p (24c)

For every linearλ-termM, the structureLM Mo is such that (i)o is a unique output channel, and
(ii) every free variable ofM is used as positive atom name that plays the role of input channel.
Clause (24a) associates the input channelx to the fresh output channelo. Intuitively, x shall
be eventuallyforwardedto o, in accordance with terminology taken from [9]. Clause (24b)
usesSdq to abstract on the input channelx. This means to letx ready to merge with any
output channel of a linearλ-term that has to be substituted forx. Such a channel comes
from the argument of an application, as translated by (24c).It wrapsLN Mq, abstracting on its
output channelq thanks toSdq. So, thanks toSdq, linearβ-reduction, and its substitution
mechanism, become an identification of channel names insideBVQ, as follows:

LM{N/x} Mo
(18)====================================
⌈LM{N/x} Mo⌋p

mt↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[LM{N/x} Mp O 〈p ⊳ o〉]⌋p

(18)============================================================================
⌈[⌈LM{N/x} Mp⌋x O 〈p ⊳ o〉]⌋p

subst −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[⌈[LM Mp O LN Mx]⌋x O 〈p ⊳ o〉]⌋p

u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[⌈LM Mp⌋x O ⌈LN Mx⌋x O 〈p ⊳ o〉]⌋p

(19)==============================================================================================================================================
⌈L(λx.M) N Mo ≡ [⌈LM Mp⌋x O ⌈LN Mq⌋q O 〈p ⊳ o〉]⌋p

(25)

In (25) here above (i) (19) holds because we have that⌈LN Mq⌋q ≈ ⌈LN Mq{
x/q}⌋x ≈ ⌈LN Mx⌋x

holds thanks to the uniqueness of input, and output channels, and thanks toSeq which never
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confuses left, and right-hand sides of〈R ⊳ T〉, (ii) the instance ofu↓ identifies the input channel
x of ⌈LM Mo⌋x with the output channelx of LN Mx, after its renaming by means of (19), (iii) we
are going to show that bothsubst, andmt↓ are derivable inBVQ, with the second one being
a specialization of the transitivityt↓, and (v) the two occurrences of (18) apply becausex and
p disappear.

5 Completeness of BVQ w.r.t. Linear λ-calculus

Completeness says that we can mimic every computation step of linearλ-calculus as proof-
reconstruction insideBVQ.

Theorem 5.1 (Completeness of BVQ) For everyM, and N, ando, if M ⇒ N, thenD :
LN Mo ⊢BVQ LM Mo.

The proof relies on some technical lemma that we detail out inthe coming lines.

Lemma 5.2 (Output names are linear) For everyM, ando, the output nameo of LM Mo oc-
curs once.

Proof By induction on the definition ofL· M·, proceeding by cases on the form ofM.

Lemma 5.3 (Substitution in BVQ) For everyM,N, p, o, andx, such thatx ∈ fn(LM Mo), in
BVQ, we can derive:

LM Mo
mt↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[LM Mp O 〈p ⊳ o〉]

LM{N/x} Mo
subst −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[LM Mo O LN Mx]

Proof Concerningmt↓, we reason inductively on the size ofL· M·, proceeding by cases onM.
(Details in Appendix F.) Concerningsubst, we reason inductively on the size of [LM Mo O LN Mx],
exploitingmt↓. (Details in Appendix G.)

Lemma 5.4 (Linear β reduction in BVQ) For everyM,N, o, andx, in BVQ, we can derive:

LM {N/x} Mo
beta −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

L(λx.M) N Mo

Proof The rulebeta is derived in (25) exploiting the definition ofL· M·, and Lemma 5.3.

Proof of Theorem 5.1. By induction on|M ⇒ N|, proceeding by cases on the last rule
in (23) used for provingM ⇒ N. If the last rule isbeta, then Lemma 5.4 implies the thesis.
Let the last rule betra. The inductive hypothesis implies the existence ofD0, andD1:

LN Mo

D1

∥∥∥∥∥∥∥∥∥∥∥∥

LPMo

D0

∥∥∥∥∥∥∥∥∥∥∥∥

LM Mo

In all the remaining cases we proceed as here above, exploiting thatBVQ is a DI system, so
we can apply deeply, namely in any context, every of its rules.

Remark 5.5 As a corollary, under the same assumption as Theorem 5.1, we have ⊢BVQ

[LM Mo O LN Mo] because we can derivei↓ in BVQ, and we can plug it on top ofD .
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6 Conclusions and future work

On the computational interpretation side of proof-search insideBVQ, this work makes no
reference to soundness ofBVQ w.r.t. linearλ-calculus. Soundness is the reverse of complete-

ness. For everyM,N, ando, if
LN Mo

D
∥∥∥∥∥∥∥BVQ

LM Mo

, thenM ⇒ N. A counter example to it is:

L((λx.M) P) QMo = ⌈[⌈[⌈LM Ms⌋x O ⌈LPMp⌋p O 〈s ⊳ r〉]⌋s O ⌈LQMq⌋q O 〈r ⊳ o〉]⌋r

≈ ⌈[⌈[⌈LM Ms⌋x O ⌈LPMp⌋p O 〈s ⊳ r〉]⌋s O ⌈⌈LQMq⌋q⌋s O 〈r ⊳ o〉]⌋r

≈ ⌈[⌈[⌈LM Ms⌋x O ⌈LQMq⌋q O ⌈LPMp⌋p O 〈s ⊳ r〉]⌋s O 〈r ⊳ o〉]⌋r

where we would erroneously substitute (the mapping of)Q for (the mapping of)x in (the
mapping of)M. We think essentially two ways exist to react to the lack of soundness ofBVQ
w.r.t. linearλ-calculus. The first is in [11, 12] which proves a weak, and notso interesting
form of soundness. The second way is replacing the target language linearλ-calculus, so
moving towards the programme that [2] begins. It suggests that the natural computational
paradigm w.r.t. whichBVQ can be sound, is some extension ofCCsp, the fragment of Milner
CCS with sequential and parallel composition only. This is coming work, indeed.

On the proof-theoretical side, whose concern is the minimal, and incremental extension
of SBV, an example of which isSBVQ, we plan to keep investigating self-dual operators. By
By means of a self-dual operator, and in accordance with the proof-search-as-computation
paradigm, we plan to model non deterministic choice. Candidate rules that model a self-dual
non-deterministic choice are1:

[[RO T] � [U O T]]
p↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[[R� U] O T]

([R� U] � T)
p↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[(R� T) � (U � T)]

We think they are interesting because they would internalize the non deterministic choice
that we apply at the meta-level when searching for proofs, orderivations, insideSBVQ or
SBV.
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A Proof of Context extrusion (Proposition 2.2, page 7)

By induction on|S{ }|, proceeding by cases on the form ofS{ }. The base is withS{ } ≡ { }.
The statement holds simply because (i)S[RO T] ≡ [S{R} O T] ≡ [RO T], and (ii) [RO T] is
a structure, so, by definition, a derivation.

As afirst case, let S{ } ≡ 〈S′{ } ⊳ U〉. Then:

〈S′[RO T] ⊳U〉 ≡ S[RO T]
D

∥∥∥∥∥∥∥∥∥∥∥∥

〈[S′{R} O T] ⊳U〉
q↓,(16)=======================================================================================

[S{R} O T] ≡ [〈S′{R} ⊳U〉 O T]

whereD exists by inductive hypothesis which holds thanks to|S′{ }| < |S{ }|. If, instead
S{ } ≡ (S′{ } � U), we can proceed as here above, usings in place ofq↓.

As asecond case, let S{ } ≡ ⌈S′{ }⌋a. Without loss of generality, thanks to (19), we can
assumea < fn(T). Then:

⌈S′[RO T]⌋a ≡ S[RO T]
D

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[S′{R} O T]⌋a
u↓,(18)=========================================================================================================================================

[S{R} O T] ≡ [⌈S′{R}⌋a O T] ≡ [⌈S′{R}⌋a O ⌈T⌋a]

whereD exists by inductive hypothesis which holds thanks to|S′{ }| < |S{ }|.

B Proof of Shallow Splitting (Proposition 3.2, page 9)

Proof of Points 1 and 2. We prove the two statements simultaneously, by induction onthe
lexicographic order (|U |, |P |), whereU is one among [〈R ⊳ T〉 O P], and [(R� T) O P],
proceeding by cases on the last ruleρ of P.

As afirst casefor both points 1 and 2 we assume the redex ofρ is inside one among
R,T or P. So,P is one between:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈R′ ⊳ T ′〉 O P′]
ρ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈R ⊳ T〉 O P]

−
P′′
∥∥∥∥∥∥∥∥∥∥∥∥

[(R′ � T ′) O P′]
ρ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[(R� T) O P]

where only one amongR′,T′,P′ is the reduct ofρ. We can conclude by applying the
inductive hypothesis onP ′, or P ′′, andρ in the obvious way.

As asecond caseof Point 1 letρ beq↓ with [〈〈R′ ⊳ R′′〉 ⊳ T〉 O [〈P′ ⊳ P′′〉 O P′′′]] as its
redex. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈[R′ O P′] ⊳ [〈R′′ ⊳ T〉 O P′′]〉 O P′′′]
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[[ 〈R′ ⊳ 〈R′′ ⊳ T〉〉 O 〈P′ ⊳ P′′〉] O P′′′]
(13),(14)=====================================================================================================

[〈〈R′ ⊳R′′〉 ⊳ T〉 O [〈P′ ⊳ P′′〉 O P′′′]]

Thanks to|[〈〈R′ ⊳R′′〉 ⊳ T〉 O [〈P′ ⊳ P′′〉 O P′′′]] | = |[〈[R′ O P′] ⊳ [〈R′′ ⊳ T〉 O P′′]〉 O P′′′]|
and |P ′| < |P | the inductive hypothesis holds onP ′ which impliesE : 〈P1 ⊳ P2〉 ⊢

P′′′, andP ′′ : ⊢ [[R′ O P′] O P1], andQ : ⊢ [[ 〈R′′ ⊳ T〉 O P′′] O P2].

Thanks to|[[ 〈R′′ ⊳ T〉 O P′′] O P2]| < |[〈[R′ O P′] ⊳ [〈R′′ ⊳ T〉 O P′′]〉 O P′′′]| the induc-
tive hypothesis holds onQ which impliesE ′ : 〈U1 ⊳ U2〉 ⊢ [P′′ O P2], andQ′ : ⊢
[R′′ O U1], andQ′′ : ⊢ [T O U2].
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The first derivation and the first proof ofBVQ in the statement we have to prove are:

〈〈[P′ O P1] ⊳U1〉 ⊳U2〉
(13)===============================================================
〈[P′ O P1] ⊳ 〈U1 ⊳U2〉〉

E ′
∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ [P′′ O P2]〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈P′ ⊳ P′′〉 O 〈P1 ⊳ P2〉]
E

∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ P′′〉 O P′′′]

−
P′′
∥∥∥∥∥∥∥∥∥∥∥∥

[[R′ O P′] O P1]
(16)===========================================================
〈[[R′ O P′] O P1] ⊳ ◦〉

Q′
∥∥∥∥∥∥∥∥∥∥∥∥

〈[[R′ O P′] O P1] ⊳ [R′′ O U1]〉
(14)=====================================================================================
〈[R′ O [P′ O P1]] ⊳ [R′′ O U1]〉

q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[〈R′ ⊳ R′′〉 O 〈[P′ O P1] ⊳ U1〉]

The second proof ofBVQ in the statement we have to prove isQ′′.

The situation withρ ≡ q↓ and [〈R ⊳ 〈T′ ⊳ T′′〉〉 O [〈P′ ⊳ P′′〉 O P′′′]] its redex is analo-
gous to one one just developed.

As a third caseof Point 1 letρ be q↓ with [〈R ⊳ T〉 O [〈P′ ⊳ P′′〉 O [U′ O U′′]]] as its
redex. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ [〈R ⊳ T〉 O P′′]〉 O [U′ O U′′]]
q↓,(16)===================================================================================================================

[[ 〈◦ ⊳ 〈R ⊳ T〉〉 O 〈P′ ⊳ P′′〉] O [U′ O U′′]]
(14),(16)===================================================================================================================

[〈R ⊳ T〉 O [〈P′ ⊳ P′′〉 O [U′ O U′′]]]

Thanks to|[〈R ⊳ T〉 O [〈P′ ⊳ P′′〉 O [U′ O U′′]]] | = |[〈P′ ⊳ [〈R ⊳ T〉 O P′′]〉 O [U′ O U′′]] |
and|P ′|< |P | the inductive hypothesis holds onP ′ yieldingE : 〈P1 ⊳ P2〉 ⊢ [U′ O U′′],
andP ′′ : ⊢ [P′ O P1], andQ : ⊢ [[ 〈R ⊳ T〉 O P′′] O P2].

Thanks to|[[ 〈R ⊳ T〉 O P′′] O P2]| < |[〈R ⊳ T〉 O [〈P′ ⊳ P′′〉 O [U′ O U′′]]] | and|P ′| < |P |

the inductive hypothesis holds onQ yielding E ′ : 〈U1 ⊳ U2〉 ⊢ [P′′ O P2], andQ′ : ⊢
[RO U1], andQ′′ : ⊢ [T O U2].

Both Q′, andQ′′ are the two proofs ofBVQ of the statement we have to prove. The
derivation ofBVQ is:

〈U1 ⊳U2〉
(16)=======================================
〈◦ ⊳ 〈U1 ⊳ U2〉〉

P′′
∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ 〈U1 ⊳U2〉〉

E ′
∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ [P′′ O P2]〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈P′ ⊳ P′′〉 O 〈P1 ⊳ P2〉]
E

∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ P′′〉 O [U′ O U′′]]

As a fourth caseof Point 1 letρ be s with [〈R ⊳ T〉 O [(P′ � P′′) O P′′′]] as its redex.
So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[([ 〈R ⊳ T〉 O P′] � P′′) O P′′′]
(10)==================================================================================

[([P′ O 〈R ⊳ T〉] � P′′) O P′′′]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[(P′ � P′′) O 〈R ⊳ T〉] O P′′′]

(14),(10)==================================================================================
[〈R ⊳ T〉 O [(P′ � P′′) O P′′′]]

Thanks to|[〈R ⊳ T〉 O [(P′ � P′′) O P′′′]] | = |[([ 〈R ⊳ T〉 O P′] � P′′) O P′′′]| and |P ′| <

|P |, by the inductive hypothesis, Point 2 applies toP ′. This means there existE :
[P1 O P2] ⊢ P′′′, andP ′′ : ⊢ [[ 〈R ⊳ T〉 O P′] O P1], andQ : ⊢ [P′′ O P2].

Thanks to|[〈R ⊳ T〉 O P′]|< |[([ 〈R ⊳ T〉 O P′] � P′′) O P′′′]| the inductive hypothesis holds
on P ′′ which impliesE ′ : 〈U1 ⊳ U2〉 ⊢ [P′ O P1], andQ1 : ⊢ [RO U1], andQ2 : ⊢
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[T O U2]. Both Q1, andQ2 are the two proofs ofBVQ in the statement we have to
prove. The derivation is:

〈U1 ⊳ U2〉

E ′
∥∥∥∥∥∥∥∥∥∥∥∥

[P′ O P1]
(15)==========================================

[(◦ � P′) O P1]
Q

∥∥∥∥∥∥∥∥∥∥∥∥

[([P′′ O P2] � P′) O P1]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[(P′′ � P′) O P2] O P1]

(11),(14),(10)===================================================================
[(P′ � P′′) O [P1 O P2]]

E

∥∥∥∥∥∥∥∥∥∥∥∥

[(P′ � P′′) O P′′′]

As a fifth caseof Point 1 letρ be u↓ with [〈R ⊳ T〉 O P] as its redex. This means
P ≈ ⌈U⌋a, for someU anda, that, without loss of generality, thanks to (19), we can
assume such thata ∈ fn(U), anda < fn(〈R ⊳ T〉). So, by (18),〈R ⊳ T〉 ≈ ⌈〈R ⊳ T〉⌋a, the
derivation is:

−
P
′
∥∥∥∥∥∥∥∥∥∥∥∥

⌈[〈R ⊳ T〉 O U]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈〈R ⊳ T〉⌋a O ⌈U⌋a]

Point 3 of Proposition 3.1, applied onP ′, implies:

−
P′′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈R ⊳ T〉 O U]

Thanks to|[〈R ⊳ T〉 O U]| < |[⌈〈R ⊳ T〉⌋a O ⌈U⌋a]| the inductive hypothesis holds onP ′′

which impliesE : 〈P1 ⊳ P2〉 ⊢ U, andQ1 : ⊢ [RO P1], andQ2 : ⊢ [T O P2]. Both Q1,
andQ2 are the two poofs ofBVQ in the stetement we have to prove. The derivation is
⌈〈P1 ⊳ P2〉⌋a ⊢ ⌈U⌋a, we obtain fromE thanks to Fact 2.3.

We have exhausted the interesting cases relative to Point 1.

Recall that we prove Point 1, and Point 2 simultaneously, by induction on the lex-
icographic order (|U |, |P |), whereU is one among [〈R ⊳ T〉 O P], and [(R� T) O P],
proceeding by cases on the last ruleρ of P. Now we explore the cases relative to
Point 2.

As a first caseof Point 2 letρ be q↓ with [(R� T) O [〈P′ ⊳ P′′〉 O [U′ O U′′]]] as its
redex. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈[[(R� T) O P′] O U′] ⊳ P′′〉 O U′′]
(16),(10)=======================================================================================================================

[〈[[(R� T) O U′] O P′] ⊳ [◦ O P′′]〉 O U′′]
q↓ =======================================================================================================================

[[ 〈[(R� T) O U′] ⊳ ◦〉 O 〈P′ ⊳ P′′〉] O U′′]
(14),(10),(16)=====================================================================================================================

[(R� T) O [〈P′ ⊳ P′′〉 O [U′ O U′′]]]

Thanks to|[(R� T) O [〈P′ ⊳ P′′〉 O [U′ O U′′]]] | = |[〈[[(R� T) O P′] O U′] ⊳ P′′〉 O U′′]|
and |P ′| < |P |, by the inductive hypothesis, Point 1 applies toP ′. There exist
E : 〈U1 ⊳ U2〉 ⊢ U′′, andP ′′ : ⊢ [[[( R� T) O P′] O U′] O U1], andQ : ⊢ [P′′ O U2].

Thanks to|[[[( R� T) O P′] O U′] O U1]| < |[〈[[(R� T) O P′] O U′] ⊳ P′′〉 O U′′]| the in-
ductive hypothesis holds onP ′′ which impliesE ′ : [P1 O P2] ⊢ [[P′ O U′] O U1], and
Q1 : ⊢ [RO P1], andQ2 : ⊢ [T O P2]. Both Q1, andQ2 are the two proofs ofBVQ
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in the statement we have to prove. The derivation ofBVQ in the statement we have to
prove is:

[P1 O P2]
E ′
∥∥∥∥∥∥∥∥∥∥∥∥

[[P′ O U′] O U1]
(16),(10),(14)=============================================================

[〈[P′ O U1] ⊳ ◦〉 O U′]
Q

∥∥∥∥∥∥∥∥∥∥∥∥

[〈[P′ O U1] ⊳ [P′′ O U2]〉 O U′]
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[[ 〈P′ ⊳ P′′〉 O 〈U1 ⊳U2〉] O U′]
(10)=====================================================================================

[〈P′ ⊳ P′′〉 O [U′ O 〈U1 ⊳ U2〉]]
E

∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ P′′〉 O [U′ O U′′]]

As asecond caseof Point 2 letρ bes with [((R′ � R′′) � (T′ � T′′)) O [P′ O P′′]] as its
redex. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[([(R′ � T ′) O P′] � (R′′ � T ′′)) O P′′]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[((R′ � T ′) � (R′′ � T ′′)) O P′] O P′′]

(14),(10),(12),(11)=============================================================================================================
[((R′ � R′′) � (T ′ � T ′′)) O [P′ O P′′]]

Both |[((R′ � R′′) � (T′ � T′′)) O [P′ O P′′]] | = |[([(R′ � T′) O P′] � (R′′ � T′′)) O P′′]|,
and |P ′| < |P | imply that the inductive hypothesis applies toP ′. There existE :
[P1 O P2] ⊢ P′′, andP ′′ : ⊢ [[(R′ � T′) O P′] O P1], andQ : ⊢ [(R′′ � T′′) O P2].

Both |[[(R′ � T′) O P′] O P1]| < |[([(R′ � T′) O P′] � (R′′ � T′′)) O P′′]| the inductive
hypothesis holds onP ′′ which impliesE ′ : [U′1 O U′2] ⊢ [P′ O P1], and Q′1 : ⊢
[R′ O U′1], andQ′2 : ⊢ [T′ O U′2].

Thanks to|[(R′′ � T′′) O P2]| < |[([(R′ � T′) O P′] � (R′′ � T′′)) O P′′]| the inductive
hypothesis holds onQ which impliesE ′′ : [U′′1 O U′′2 ] ⊢ P2, andQ′′1 : ⊢ [R′′ O U′′1 ],
andQ′′2 : ⊢ [T′′ O U′′2 ].

The derivation and the two proofs ofBVQ in the statement we have to prove are:

[[U′1 O U′′1 ] O [U′2 O U′′2 ]]
(14),(10)=========================================================================

[[U′1 O U′2] O [U′′1 O U′′2 ]]
E ′′
∥∥∥∥∥∥∥∥∥∥∥∥

[[U′1 O U′2] O P2]
E ′
∥∥∥∥∥∥∥∥∥∥∥∥

[[P′ O P1] O P2]
(14)=============================================

[P′ O [P1 O P2]]
E

∥∥∥∥∥∥∥∥∥∥∥∥

[P′ O P′′]

−
Q′′1

∥∥∥∥∥∥∥∥∥∥∥∥

[R′′ O U′′1 ]
(15)================================================

[(◦ � R′′) O U′′1 ]]
Q′1

∥∥∥∥∥∥∥∥∥∥∥∥

[([R′ O U′1] � R′′) O U′′1 ]]
(14),s ========================================================================

[(R′ � R′′) O [U′1 O U′′1 ]]

−
Q′′2

∥∥∥∥∥∥∥∥∥∥∥∥

[T ′′ O U′′2 ]
(15)================================================

[(◦ � T ′′) O U′′2 ]]
Q′2

∥∥∥∥∥∥∥∥∥∥∥∥

[([T ′ O U′2] � T ′′) O U′′2 ]]
(14),s =========================================================================

[(T ′ � T ′′) O [U′2 O U′′2 ]]
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As a third caseof Point 2 letρ be s with [(R� T) O [(P′ � P′′) O [U′ O U′′]]] as its
redex. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[([P′ O [(R� T) O U′]] � P′′) O U′′]
s =========================================================================================================
[[(P′ � P′′) O [(R� T) O U′]] O U′′]

(14),(10)=========================================================================================================
[(R� T) O [(P′ � P′′) O [U′ O U′′]]]

Both |[([P′ O [(R� T) O U′]] � P′′) O U′′]| = |[(R� T) O [(P′ � P′′) O [U′ O U′′]]] |,
and |P ′| < |P | imply that the inductive hypothesis holds onP ′. So, we haveE :
[P1 O P2] ⊢ U′′, andP ′′ : ⊢ [P′′ O P2], andQ : ⊢ [[P′ O [(R� T) O U′]] O P1].

Both |[[P′ O [(R� T) O U′]] O P1]| < |[([P′ O [(R� T) O U′]] � P′′) O U′′]|, and|P ′| <

|P | imply that the inductive hypothesis holds onQ. SO, we haveE ′ : [U1 O U2] ⊢
[P′ O [U′ O P1]], andQ′ : ⊢ [RO U1], andQ′′ : ⊢ [T O U2].

Both Q′, andQ′′ are the two proofs ofBVQ of the statement we have to prove. The
derivation ofBVQ is:

[U1 O U2]
E ′
∥∥∥∥∥∥∥∥∥∥∥∥

[P′ O [U′ O P1]]
(15)===============================================================

[(◦ � P′) O [U′ O P1]]
P′′
∥∥∥∥∥∥∥∥∥∥∥∥

[([P′′ O P2] � P′) O [U′ O P1]]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[(P′′ � P′) O P2] O [U′ O P1]]

(14),(10),(11)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(P′ � P′′) O [U′ O [P1 O P2]]]

E

∥∥∥∥∥∥∥∥∥∥∥∥

[(P′ � P′′) O [U′ O U′′]]

As a fourth caseof Point 2 letρ be u↓ with [(R� T) O P] as its redex. This means
P ≈ ⌈U⌋a, for someU anda, that, without loss of generality, thanks to (19), we can
assume such thata < fn((R� T)). So, by (18), (R� T) ≈ ⌈(R� T)⌋a, andP is:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

⌈[(R� T) O U]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈(R� T)⌋a O ⌈U⌋a]

Point 3 of Proposition 3.1, applied onP ′, implies:
−

P′′
∥∥∥∥∥∥∥∥∥∥∥∥

[(R� T) O U]

Thanks to|[(R� T) O U]| < |[⌈(R� T)⌋a O ⌈U⌋a]| the inductive hypothesis holds on
P ′′ which impliesE : [P1 O P2] ⊢ U, andQ1 : ⊢ [RO P1], andQ2 : ⊢ [T O P2].
Both Q1, andQ2 are the two poofs ofBVQ in the stetement we have to prove. The
derivation is⌈(P1 � P2)⌋a ⊢ ⌈U⌋a, we obtain fromE thanks to Fact 2.3.

Proof of Point 3. It holds by induction on (|R|, |P |), proceeding by cases on the last ruleρ
of P.

As afirst caselet the redex ofρ be insideP. So,P is:

−
P′
∥∥∥∥∥∥∥

[RO P′]
ρ −−−−−−−−−−−−−−−−

[RO P]
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We can conclude by applying the inductive hypothesis onP ′, andρ in the obvious
way.

As asecond case, let ρ beq↓ with P ≈ [〈P′ ⊳ P′′〉 O P′′′]. Also, letR0, andR1 such that
R≈ [R0 O R1]. The proofP can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈[R1 O P′] ⊳ P′′〉 O [R0 O P′′′]]
q↓,(14),(16),(10)=================================================================================================

[R0 O [〈R1 ⊳ ◦〉 O 〈P′ ⊳ P′′〉] O P′′′]
(14),(16)=================================================================================================

[[R0 O R1] O [〈P′ ⊳ P′′〉 O P′′′]]

Point 1 applies toP ′. There are structuresP1,P2, such thatE0 : 〈P1 ⊳ P2〉 ⊢ [R0 O P′′′],
andQ0 : ⊢ [[R1 O P′] O P1] ≈ [R1 O [P′ O P1]], andQ1 : ⊢ [P′′ O P2].

We observe that|R1| < |[R0 O R1]|. So, the inductive hypothesis holds onQ0. It implies

that, for everyR1
0,R

1
1, if R1 ≈ [R1

0
O R1

1], thenE1 : R1
1 ⊢ [R1

0
O [P′ O P1]]. In particular,

it holdsE ′1 : R1 ⊢ [◦ O [P′ O P1]] ≈ [P′ O P1] by takingR1 ≈ R1
1, and◦ ≈ R1

0.

We can conclude as follows:

R1
(16)===================

〈R1 ⊳ ◦〉

Q1

∥∥∥∥∥∥∥∥∥∥∥∥

〈R1 ⊳ [P′′ O P2]〉
E ′1

∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ [P′′ O P2]〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈P′ ⊳ P′′〉 O 〈P1 ⊳ P2〉]
E0

∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ P′′〉 O [R0 O P′′′]]
(14),(10)===================================================================

[R0 O [〈P′ ⊳ P′′〉 O P′′′]]

As a third caselet ρ beq↓ with P ≈ [〈P′ ⊳ P′′〉 O [R′ O R′′]]. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ [[R0 O R1] O P′′]〉 O [R′ O R′′]]
q↓,(16)========================================================================================================================

[[ 〈◦ ⊳ [R0 O R1]〉 O 〈P′ ⊳ P′′〉] O [R′ O R′′]]
(14),(16)========================================================================================================================

[[R0 O R1] O [〈P′ ⊳ P′′〉 O [R′ O R′′]]]

Point 1 applies toP ′. There are structuresP1,P2 such that there existE0 : 〈P1 ⊳ P2〉 ⊢

[R′ O R′′], andQ0 : ⊢ [P′ O P1], and
Q1 : ⊢ [[[ R0 O R1] O P′′] O P2] ≈ [R1 O [R0 O [P′′ O P2]]].

We observe that|R1| < |[R0 O R1]|. So, the inductive hypothesis holds onQ1. It implies

that, for everyR1
0,R

1
1, if R1 ≈ [R1

0
O R1

1], thenE1 : R1
1 ⊢ [R1

0
O [R0 O [P′′ O P2]]]. In

particular, it holdsE ′1 : R1 ⊢ [◦ O [R0 O [P′′ O P2]]] ≈ [R0 O [P′′ O P2]], by taking
R1 ≈ R1

1, and◦ ≈ R1
0.
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We can conclude as follows:

R1
(16)===================

〈◦ ⊳ R1〉

Q0

∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳R1〉

E ′1

∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ [R0 O [P′′ O P2]] 〉
(14)=====================================================================================
〈[P′ O P1] ⊳ [[R0 O P′′] O P2]〉

q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[〈P′ ⊳ [R0 O P′′]〉 O 〈P1 ⊳ P2〉]

E0

∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ [R0 O P′′]〉 O [R′ O R′′]]
(17)======================================================================================================

[〈[◦ O P′] ⊳ [R0 O P′′]〉 O [R′ O R′′]]
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[[ 〈◦ ⊳ R0〉 O 〈P′ ⊳ P′′〉] O [R′ O R′′]]
(16),(14)===================================================================================================

[R0 O [〈P′ ⊳ P′′〉 O [R′ O R′′]]]

As a fourth caselet ρ bes with P ≈ [(P′ � P′′) O P′′′]. Also, let R0, andR1 such that
R≈ [R0 O R1]. The proofP can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[([R1 O P′] � P′′) O [R0 O P′′′]]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[R1 O (P′ � P′′)] O [R0 O P′′′]]

(14),(10)==========================================================================================
[[R0 O R1] O [(P′ � P′′) O P′′′]]

Point 2 applies toP ′. There are structuresP1,P2, such that there existE0 : [P1 O P2] ⊢
[R0 O P′′′], andQ0 : ⊢ [[R1 O P′] O P1], andQ1 : ⊢ [P′′ O P2].

We observe that|R1| < |[R0 O R1]|. So, the inductive hypothesis holds onQ0. It implies

that, for everyR1
0,R

1
1, if R1 ≈ [R1

0
O R1

1], thenE1 : R1
1 ⊢ [R1

0
O [P′ O P1]]. In particular

it holdsE ′1 : R1 ⊢ [◦ O [P′ O P1]] ≈ [P′ O P1] by takingR1 ≈ R1
1, and◦ ≈ R1

0. We can
conclude as follows:

R1
(15)======================

(◦ � R1)
Q1

∥∥∥∥∥∥∥∥∥∥∥∥

([P′′ O P2] � R1)
E ′1

∥∥∥∥∥∥∥∥∥∥∥∥

([P′′ O P2] � [P′ O P1])
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(P′′ � [P′ O P1]) O P2]

(14),s,(11)===================================================================
[(P′ � P′′) O [P1 O P2]]

E0

∥∥∥∥∥∥∥∥∥∥∥∥

[(P′ � P′′) O [R0 O P′′′]]
(14),(10)=====================================================================

[R0 O [(P′ � P′′) O P′′′]]

As afifth caselet ρ beu↓ with P ≈ ⌈P′⌋a. The proofP can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

⌈[[R0 O R1] O P′]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈[R0 O R1]⌋a O ⌈P′⌋a]
(18)==============================================================

[[R0 O R1] O ⌈P′⌋a]
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because, thanks to (19), we can always assumeP′ is such thata < fn([R0 O R1]).
Point 3 of Proposition 3.1, applied onP ′, implies:

−
P′′
∥∥∥∥∥∥∥∥∥∥∥∥

[[R0 O R1] O P′]

We observe that|P ′′| < |P |. So the inductive hypothesis holds onP ′′. It implies that,

for everyR1
0,R

1
1, if [ R0 O R1] ≈ [R1

0
O R1

1], there areE : R1
1 ⊢ [R1

0
O P′]. In particular

it holdsE ′1 : R1 ⊢ [R0 O P′] by takingR1 ≈ R1
1, andR0 ≈ R1

0. We can conclude as
follows:

R1
(18)=============

⌈R1⌋a

E ′1

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[R0 O P′]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈R0⌋a O ⌈P′⌋a]
(18)=========================================

[R0 O ⌈P′⌋a]

The topmost instance of (18) is legal thanks toa < fn([R0 O R1]).

Proof of Point 4. The proof is by induction on|P |, proceeding by cases on the last ruleρ of
P.

As afirst caselet the last rule ofP beq↓ with [⌈R⌋a O [〈P′ ⊳ P′′〉 O [U′ O U′′]]] as its
redex. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ [⌈R⌋a O P′′]〉 O [U′ O U′′]]
(14),(16),q↓,(16)=============================================================================================

[⌈R⌋a O [〈P′ ⊳ P′′〉 O [U′ O U′′]]]

Point 1 applies toP ′. There existE : 〈P1 ⊳ P2〉 ⊢ [U′ O U′′], andP ′′ : ⊢ [P′ O P1],
and Q : ⊢ [[ ⌈R⌋a O P′′] O P2]. The inductive hypothesis holds onQ. Thanks to
|[[ ⌈R⌋a O P′′] O P2]| < |[⌈R⌋a O [〈P′ ⊳ P′′〉 O [U′ O U′′]]] | we getE ′ : ⌈U⌋a ⊢ [P′′ O P2],
andQ′ : ⊢ [RO U]. The proof ofBVQ in the statement we have to prove isQ′. The
derivation ofBVQ in the statement we have to prove is:

⌈U⌋a
(16)==========================
〈◦ ⊳ ⌈U⌋a〉

P′′
∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ ⌈U⌋a〉
E ′
∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ [P′′ O P2]〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈P′ ⊳ P′′〉 O 〈P1 ⊳ P2〉]
E

∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ P′′〉 O [U′ O U′′]]

As a second caselet the last rule ofP be q↓ with [⌈R⌋a O [〈P′ ⊳ P′′〉 O P′′′]] as its
redex. So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ [⌈R⌋a O P′′]〉 O P′′′]
(14),(16),q↓,(17)=========================================================================

[⌈R⌋a O [〈P′ ⊳ P′′〉 O P′′′]]

Point 1 applies toP ′. There existE : 〈P1 ⊳ P2〉 ⊢ P′′′, andP ′′ : ⊢ [P′ O P1], and
Q : ⊢ [⌈R⌋a O [P′′ O P2]]. Thanks to|[⌈R⌋a O [P′′ O P2]] | < |[⌈R⌋a O [〈P′ ⊳ P′′〉 O P′′′]] |
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the inductive hypothesis holds onQ which impliesE ′ : ⌈U⌋a ⊢ [P′′ O P2], andQ′ : ⊢
[RO U]. The proof ofBVQ in the statement we have to prove isQ′. The derivation is:

⌈U⌋a
E ′
∥∥∥∥∥∥∥∥∥∥∥∥

[P′′ O P2]
(16)=========================================
〈◦ ⊳ [P′′ O P2]〉

P′′
∥∥∥∥∥∥∥∥∥∥∥∥

〈[P′ O P1] ⊳ [P′′ O P2]〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈P′ ⊳ P′′〉 O 〈P1 ⊳ P2〉]
E

∥∥∥∥∥∥∥∥∥∥∥∥

[〈P′ ⊳ P′′〉 O P′′′]

As a third caselet the last rule ofP bes with [⌈R⌋a O [(P′ � P′′) O P′′′]] as its redex.
So,P can be:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

[([P′ O ⌈R⌋a] � P′′) O P′′′]
(14),(10),s,(10)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈R⌋a O [(P′ � P′′) O P′′′]]

Point 2 applies toP ′. There existE : [P1 O P2] ⊢ P′′′, andP ′′ : ⊢ [[ ⌈R⌋a O P′] O P1],
andQ : ⊢ [P′′ O P2]. Thanks to|[⌈R⌋a O [P′ O P1]] | < |[⌈R⌋a O [(P′ � P′′) O P′′′]] | the
inductive hypothesis holds onP ′′ which impliesE ′ : ⌈U⌋a ⊢ [P′ O P1], andQ′ : ⊢
[RO U]. The proof ofBVQ in the statement we have to prove isQ′. The derivation of
BVQ in the statement we have to prove is:

⌈U⌋a
E ′
∥∥∥∥∥∥∥∥∥∥∥∥

[P′ O P1]
(15)==========================================

[(◦ � P′) O P1]
Q

∥∥∥∥∥∥∥∥∥∥∥∥

[([P′′ O P2] � P′) O P1]
(11),(14),(10),s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[(P′ � P′′) O [P1 O P2]]
E

∥∥∥∥∥∥∥∥∥∥∥∥

[(P′ � P′′) O P′′′]

As a fourth caselet the last rule ofP beu↓ with [⌈R⌋a O P] as its redex. This means
P ≈ ⌈U⌋a. So,P is:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

⌈[RO U]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈R⌋a O ⌈U⌋a]
======================================

[⌈R⌋a O P]

Point 3 of Proposition 3.1, applied onP ′, implies the existence ofP ′′ : ⊢ [RO U],
which is the proof ofBVQ in the statement we have to prove. The derivation is⌈U⌋a ⊢
⌈U⌋a.

C Proof of Context Reduction (Proposition 3.4, page 10)

The proof is by induction on|S{ }|, proceeding by cases on the form ofS{ }.
As afirst case, let S{ } ≈ 〈S′{ } ⊳ P〉. So, the assumption isP : ⊢ 〈S′{R} ⊳ P〉. Point 1

of Proposition 3.1 impliesP ′ : ⊢ S′{R}, andP ′′ : ⊢ P. Thanks to|S′{R}| < |〈S′{R} ⊳ P〉| the
inductive hypothesis holds onP ′. There areU, and~b such that, for everyV with fn(V) ∩
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bn(R) = ∅, bothD : ⌈[V O U]⌋~b ⊢ S′{V}, andP ′′′ : ⊢ [RO U]. The proofP ′′′ is the one we
are looking for. To get the derivation we are looking for, we fix V such that fn(V)∩bn(R) = ∅.
This allows to useD as follows:

⌈[V O U]⌋~b
D

∥∥∥∥∥∥∥∥∥∥∥∥

S′{V}
(16)============================
〈S′{V} ⊳ ◦〉

P′′
∥∥∥∥∥∥∥∥∥∥∥∥

〈S′{V} ⊳ P〉

As asecond case, letS{ } ≈ (S′{ } � P). So, the assumption isP : ⊢ (S′{R} � P). Point 2
of Proposition 3.1 impliesP ′ : ⊢ S′{R}, andP ′′ : ⊢ P. Thanks to|S′{R}| < |(S′{R} � P)| the
inductive hypothesis holds onP ′. There areU, and~b such that, for everyV with fn(V) ∩
bn(R) = ∅, bothD : ⌈[V O U]⌋~b ⊢ S′{V}, andP ′′′ : ⊢ [RO U]. The proofP ′′′ is the one we
are looking for. To get the derivation we are looking for, we fix V such that fn(V)∩bn(R) = ∅.
This allows to useD as follows:

⌈[V O U]⌋~b
D

∥∥∥∥∥∥∥∥∥∥∥∥

S′{V}
(15)==============================

(S′{V} � ◦)
P′′
∥∥∥∥∥∥∥∥∥∥∥∥

(S′{V} � P)

As athird case, letS{ } ≈ ⌈S′{ }⌋b with b ∈ fn(S′{ }). Otherwise it would be meaningless
assuming to haveS{ } with such a form. So, the assumption isP : ⊢ ⌈S′{R}⌋b. Point 3
of Proposition 3.1 impliesP ′ : ⊢ S′{R}. So, |S′{R}| < |⌈S′{R}⌋b| implies the inductive
hypothesis holds onP ′. There areU, and~b such that, for everyV with fn(V) ∩ bn(R) = ∅,
bothD : ⌈[V O U]⌋~b ⊢ S′{V}, andP ′′′ : ⊢ [RO U]. The proofP ′′′ is the one we are looking
for. To get the derivation we are looking for, we fixV such that fn(V) ∩ bn(R) = ∅. This
allows to useD as follows:

⌈[V O U]⌋~b
D

∥∥∥∥∥∥∥∥∥∥∥∥

⌈S′{V}⌋b

As afourth case, letS{ } ≈ [〈S′{ } ⊳ P′〉 O P]. The assumption isP : ⊢ [〈S′{R} ⊳ P′〉 O P].
Shallow splitting implies the existence ofP1,P2 such thatD : 〈P1 ⊳ P2〉 ⊢ P, andP1 : ⊢
[S′{R} O P1], andP2 : ⊢ [P′ O P2]. The relation|[S′{R} O P1]| < |[〈S′{R} ⊳ P′〉 O P]|, which
holds also thanks to|P1| < |P|, implies the inductive hypothesis holds onP1. There areU,
and~b such that, for everyV with fn(V) ∩ bn(R) = ∅, bothD ′ : ⌈[V O U]⌋~b ⊢ [S′{V} O P1],
andP ′′′ : ⊢ [RO U]. The proofP ′′′ is the one we are looking for. To get the derivation we
are looking for, we fixV such that fn(V) ∩ bn(R) = ∅. This allows to useD ′ as follows:

⌈[V O U]⌋~b
D′
∥∥∥∥∥∥∥∥∥∥∥∥

[S′{V} O P1]
(16)================================================
〈[S′{V} O P1] ⊳ ◦〉

P2

∥∥∥∥∥∥∥∥∥∥∥∥

〈[S′{V} O P1] ⊳ [P′ O P2]〉
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[〈S′{V} ⊳ P′〉 O 〈P1 ⊳ P2〉]
D

∥∥∥∥∥∥∥∥∥∥∥∥

[〈S′{V} ⊳ P′〉 O P]

As afifth case, letS{ } ≈ [(S′{R} � P′) O P]. The assumption isP : ⊢ [(S′{R} � P′) O P].
Shallow splitting implies the existence ofP1,P2 such thatD : [P1 O P2] ⊢ P, andP1 : ⊢
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[S′{R} O P1], andP2 : ⊢ [P′ O P2]. The relation|[S′{R} O P1]| < |[(S′{R} � P′) O P]|, which
holds also thanks to|P1| < |P|, implies the inductive hypothesis holds onP1. There areU,
and~b such that, for everyV with fn(V) ∩ bn(R) = ∅, we haveD ′ : ⌈[V O U]⌋~b ⊢ [S′{V} O P1],
andP ′′′ : ⊢ [RO U]. The proofP ′′′ is the one we are looking for. To get the derivation we
are looking for, we fixV such that fn(V) ∩ bn(R) = ∅. This allows to useD ′ as follows:

⌈[V O U]⌋~b
D′
∥∥∥∥∥∥∥∥∥∥∥∥

[S′{V} O P1]
(15)==================================================

(◦ � [S′{V} O P1])
P2

∥∥∥∥∥∥∥∥∥∥∥∥

([P′ O P2] � [S′{V} O P1])
(11),s ==========================================================================

[([S′{V} O P1] � P′) O P2]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[(S′{V} � P′) O P1] O P2]

(14)==========================================================================
[(S′{V} � P′) O [P1 O P2]]

D

∥∥∥∥∥∥∥∥∥∥∥∥

[(S′{V} � P′) O P]

As a sixth case, let S{ } ≈ [⌈S′{ }⌋a O P] with a ∈ bn(S′{R}). Otherwise, it would be
meaningless to assumeS{ } as such. The assumption isP : ⊢ [⌈S′{R}⌋a O P]. Shallow
splitting implies the existence ofP′ such thatD : ⌈P′⌋a ⊢ P, andP ′ : ⊢ [S′{R} O P′]. The
relation |[S′{R} O P′]| < |[⌈S′{R}⌋a O P]|, which holds also becausea ∈ fn(S′{R}), implies
that the inductive hypothesis onP ′ is true. There areU, and~b such that, for everyV with
fn(V) ∩ bn(R) = ∅, bothD ′ : ⌈[V O U]⌋~b ⊢ [S′{V} O P′], andP ′′ : ⊢ [RO U]. The proofP ′′

is the one we are looking for. To get the derivation we are looking for, we fix V such that
fn(V) ∩ bn(R) = ∅. This allows to useD ′ as follows:

⌈[V O U]⌋b1,...,bn,a

D′
∥∥∥∥∥∥∥∥∥∥∥∥

⌈[S′{V} O P′]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈S′{V}⌋a O ⌈P′⌋a]
D

∥∥∥∥∥∥∥∥∥∥∥∥

[⌈S′{V}⌋a O P]

As aseventh case, let S{ } ≈ [S′{ } O ⌈P⌋a] with a ∈ bn(⌈P⌋a). Also, without loss of gen-
erality, can always choosea such thata < fn(S′{R}). The assumption isP : ⊢ [S′{R} O ⌈P⌋a].
Shallow splitting implies the existence ofP′ such thatD : ⌈P′⌋a ⊢ P, andP ′ : ⊢ [S′{R} O P′].
The relation|[S′{R} O P′]| < |[S′{R} O ⌈P]⌋a|, which holds also becausea ∈ bn(⌈P⌋a), implies
that the inductive hypothesis onP ′ is true. There areU, and~b such that, for everyV with
fn(V) ∩ bn(R) = ∅, bothD ′ : ⌈[V O U]⌋~b ⊢ [S′{V} O P′], andP ′′ : ⊢ [RO U]. The proofP ′′

is the one we are looking for. To get the derivation we are looking for, we fix V such that
fn(V) ∩ bn(R) = ∅. This allows to useD ′ as follows:

⌈[V O U]⌋b1,...,bn,a

D′
∥∥∥∥∥∥∥∥∥∥∥∥

⌈[S′{V} O P′]⌋a
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[⌈S′{V}⌋a O ⌈P′⌋a]
(18)===================================================

[S′{V} O ⌈P′⌋a]
D

∥∥∥∥∥∥∥∥∥∥∥∥

[S′{V} O ⌈P⌋a]

We remark that (18) applies thanks toa < fn(S′{R}).
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D Proof of Splitting (Theorem 3.5, page 10)

We obtain the proof of the three statements by composing Context Reduction (Proposi-
tion 3.4), and Shallow Splitting (Proposition 3.2) in this order. We develop the details of
Points 1, and 3. The proof of Point 2 is analogous to the one of 1.

Point 1. Context Reduction (Proposition 3.4) applies toP. So, there areU, and~b such that,
for everyV, with fn(V)∩bn(〈R ⊳ T〉) = ∅, there existD : ⌈[V O U]⌋~b ⊢ S{V}, andQ : ⊢
[〈R ⊳ T〉 O U]. Shallow Splitting (Proposition 3.2) applies toQ. So,E : 〈K1 ⊳ K2〉 ⊢ U,
andQ1 : ⊢ [RO K1], andQ2 : ⊢ [T O K2], for someK1,K2. BothQ1, andQ2 are the
two proofs we are looking for. The derivation is:

⌈[V O 〈K1 ⊳ K2〉]⌋~b
E

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[V O U]⌋~b
D

∥∥∥∥∥∥∥∥∥∥∥∥

S{V}

Point 3. Context Reduction (Proposition 3.4) applies toP. So, there areU, and~b such
that, for everyV with fn(V) ∩ bn(⌈R⌋a) = ∅, there existD : ⌈[V O U]⌋~b ⊢ S{V}, and
Q : ⊢ [⌈R⌋a O U]. Shallow Splitting (Proposition 3.2) applies toQ. So,E : ⌈K⌋a ⊢ U,
andQ′ : ⊢ [RO K], for someK. So,Q′ is the proof we are looking for. The derivation
is:

⌈[V O K]⌋a,~b
u↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[⌈V⌋a O ⌈K⌋a]⌋~b

(18)==============================================
⌈[V O ⌈K⌋a]⌋~b

E

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[V O U]⌋~b
D

∥∥∥∥∥∥∥∥∥∥∥∥

S{V}

The step (18) applies thanks to the assumption that fn(V)∩bn(⌈R⌋a) = ∅, which implies
a < fn(V).

E Proof of Admissibility of the up fragment (Theorem 3.6,
page 10)

As afirst casewe show thatai↑ is admissible forBVQ. So, we start by assuming:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

S(a � a)
ai↑ −−−−−−−−−−−−−−−−−−−−−−−

S{◦}

Point 2 of Splitting (Theorem 3.5) applies toP ′, whose conclusion isS(a � a). There
are K1,K2, and~b such that, for everyV with fn(V) ∩ bn((a � a)) = ∅, there existD :
⌈[V O [K1 O K2]] ⌋~b ⊢ S{V}, andP1 : ⊢ [a O K1], and P2 : ⊢ [a O K2]. Shallow splitting
(Proposition 3.2) onP1, andP2 implies E1 : a ⊢ K1, andE2 : a ⊢ K2. To build the
following proof with the same conclusion asP, but without its bottommost instance of
ai↑ it is enough to observe that among all the possible instancesof V there is◦, because
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fn(◦) ∩ bn((a � a)) = ∅. So, we can prove:

◦
(18)==========
⌈◦⌋b

ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[a O a]⌋~b

E2

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[a O K2]⌋~b
E1

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[K1 O K2]⌋~b
(15)====================================================
⌈[◦ O [K1 O K2]] ⌋~b

D′
∥∥∥∥∥∥∥∥∥∥∥∥

S{◦}

whereD ′ is D with V instantiated as◦.
As asecond casewe show thatq↑ is admissible forBVQ. So, we start by assuming:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

S(〈R ⊳U〉 � 〈T ⊳ V〉)
q↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S〈(R� T) ⊳ (U � V)〉

Point 1 of Splitting (Theorem 3.5) applies toP — beware, notP ′ —, whose conclusion
is S〈(R� T) ⊳ (U � V)〉. There areK1,K2, and~b such that, for everyV′ with fn(V′) ∩
bn(S〈(R� T) ⊳ (U � V)〉) = ∅, there existD : ⌈[V′ O 〈K1 ⊳ K2〉]⌋~b ⊢ S{V′}, andP1 : ⊢
[(R� T) O K1], andP2 : ⊢ [(U � V) O K2]. Shallow splitting (Proposition 3.2) on bothP1,
and P2 implies E : [KR O KT ] ⊢ K1, andQ1 : ⊢ [RO KR], and Q2 : ⊢ [T O KT ], and
E ′ : [KU O KV] ⊢ K2, andQ′1 : ⊢ [U O KU ], andQ′2 : ⊢ [V O KV]. To build the following
proof with the same conclusion asP, but without its bottommost instance ofq↑, it is enough
to observe that one of the possible instances ofV′ is 〈(R� T) ⊳ (U � V)〉 because, thanks to
(19), we can always assume fn(〈(R� T) ⊳ (U � V)〉) ∩ bn(〈(R� T) ⊳ (U � V)〉) = ∅:

◦
(18)==========
⌈◦⌋~b

Q′′2

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[V O KV]⌋~b
Q′′1

∥∥∥∥∥∥∥∥∥∥∥∥

⌈〈[T O KT ] ⊳ [V O KV]〉⌋~b
Q′1

∥∥∥∥∥∥∥∥∥∥∥∥

⌈〈[T O KT ] ⊳ [([U O KU ] � V) O KV]〉⌋~b
Q1

∥∥∥∥∥∥∥∥∥∥∥∥

⌈〈[([RO KR] � T) O KT ] ⊳ [([U O KU ] � V) O KV]〉⌋~b
s2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⌈〈[(R� T) O KR O KT ] ⊳ [(U � V) O KU O KV]〉⌋~b
q↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[〈(R� T) ⊳ (U � V)〉 O 〈[KR O KT ] ⊳ [KU O KV]〉]⌋~b

pmix −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[〈(R� T) ⊳ (U � V)〉 O [KR O KT O KU O KV]] ⌋~b

E ′
∥∥∥∥∥∥∥∥∥∥∥∥

⌈[〈(R� T) ⊳ (U � V)〉 O [KR O KT O K2]] ⌋~b
E

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[〈(R� T) ⊳ (U � V)〉 O [K1 O K2]] ⌋~b
D′
∥∥∥∥∥∥∥∥∥∥∥∥

S〈(R� T) ⊳ (U � V)〉

whereD ′ is D with V′ instantiated as〈(R� T) ⊳ (U � V)〉.
As a third casewe show thatu↑ is admissible forBVQ. So, we start by assuming:

−
P′
∥∥∥∥∥∥∥∥∥∥∥∥

S(⌈R⌋a � ⌈T⌋a)
u↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S⌈(R� T)⌋a
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Point 3 of Splitting (Theorem 3.5) applies toP — beware, notP ′ —, whose conclusion is
S⌈(R� T)⌋a. There isK, and~b such that, for everyV with fn(V)∩bn(S⌈(R� T)⌋a) = ∅, there
existD : ⌈[V O K]⌋a,~b ⊢ S{V}, andP1 : ⊢ [(R� T) O K]. Shallow splitting (Proposition 3.2)
on P1 implies E : [KR O KT ] ⊢ K, andQ1 : ⊢ [RO KR], andQ2 : ⊢ [T O KT ]. To build
the following proof with the same conclusion asP, but without its bottommost instance of
u↑ it is enough to observe that one of the possible instances ofV is S⌈(R� T)⌋a such that
fn(⌈(R� T)⌋a) ∩ bn(⌈(R� T)⌋a) = ∅:

◦
(15),(18)==============================

⌈(◦ � ◦)⌋a,~b
Q1

∥∥∥∥∥∥∥∥∥∥∥∥

⌈(◦ � [RO KR])⌋a,~b
Q2

∥∥∥∥∥∥∥∥∥∥∥∥

⌈([T O KT ] � [RO KR])⌋a,~b
(11),s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[([RO KR] � T) O KT ]⌋a,~b

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[(R� T) O KR O KT ]] ⌋a,~b

E

∥∥∥∥∥∥∥∥∥∥∥∥

⌈[(R� T) O K]⌋a.~b
D

∥∥∥∥∥∥∥∥∥∥∥∥

S⌈(R� T)⌋a

F Proof that mt↓ is derivable in BVQ (Lemma 5.3, page 12)

We proceed by induction on the size|LM Mo|, of LM Mo, that occurs in the conclusion ofmt↓,
proceeding by cases on the form ofM.

The first base case isM ≡ x.

LxMo ≡ 〈x ⊳ o〉
t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[LxMr O 〈r ⊳ o〉] ≡ [〈x ⊳ r〉 O 〈r ⊳ o〉]

The second base case isM ≡ (M′) M′′.

L(M′) M′′ Mo ≡ ⌈[LM′ Mp O ⌈LM′′ Mq⌋q O 〈p ⊳ o〉]⌋p
t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⌈[LM′ Mp O ⌈LM′′ Mq⌋q O 〈p ⊳ r〉 O 〈r ⊳ o〉]⌋p
(10),u↓ =======================================================================================================================================================================================================

[L(M′) M′′ Mr O 〈r ⊳ o〉] ≡ [⌈[LM′ Mp O ⌈LM′′ Mq⌋q O 〈p ⊳ r〉]⌋p O 〈r ⊳ o〉]

The unique inductive case is withM ≡ λy.M′ that, without loss of generality, can have
y , x.

Lλy.M′ Mo ≡ ⌈LM′ Mo⌋y
mt↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[LM′ Mr O 〈r ⊳ o〉]⌋y

(18),u↓ ==========================================================================================================================
[Lλy.M′ Mr O 〈r ⊳ o〉] ≡ [⌈LM′ Mr ⌋y O 〈r ⊳ o〉]

wheremt↓ applies by induction because|LM′ Mr | < |Lλy.M′ Mr |.

G Proof that subst is derivable in BVQ (Lemma 5.3, page 12)

We proceed by induction on the size|[LM Mo O LN Mx]| of [LM Mo O LN Mx], that occurs in the
conclusion ofsubst, proceeding by cases on the form ofM.

Let M ≡ x. We have three situations:
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N ≡ y.
Lx{y/x} Mo ≡ LyMo ≡ 〈y ⊳ o〉

t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[LxMo O LyMx] ≡ [〈x ⊳ o〉 O 〈y ⊳ x〉]

N ≡ (N′) N′′.

Lx{(N
′) N′′/x} Mo ≡ L(N′) N′′ Mo ≡ ⌈[LN′ Mp O ⌈LN′′ Mq⌋q O 〈p ⊳ o〉]⌋p

t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
⌈[LN′ Mp O ⌈LN′′ Mq⌋q O 〈x ⊳ o〉 O 〈p ⊳ x〉]⌋p

(14),u↓,(18)================================================================================================================================================================================================
[LxMo O L(N′) N′′ Mx] ≡ [〈x ⊳ o〉 O ⌈[LN′ Mp O ⌈LN′′ Mq⌋q O 〈p ⊳ x〉]⌋p]

N ≡ λy.N′ that, without loss of generality, can bey , x.

Lx{λy.N
′

/x} Mo ≡ Lλy.N′ Mo ≡ ⌈LN′ Mo⌋y
mt↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⌈[〈x ⊳ o〉 O LN′ Mx]⌋y
(18),u↓ =====================================================================================================================

[LxMo O Lλy.N′ Mx] ≡ [〈x ⊳ o〉 O ⌈LN′ Mx⌋y]

Let M ≡ λy.M′ that, without loss of generality, can always be such thaty , x.

Lλy.M′{N
′

/x} Mo ≡ ⌈LM′{N
′

/x} Mo⌋y
subst −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⌈[LM′ Mo O LN′ Mx]⌋y
(18),u↓ =======================================================================================================================

[Lλy.M′ Mo O LN Mx] ≡ [⌈LM′ Mo⌋y O LN Mx]

wheresubst applies by induction because|[LM′ Mo O LN′ Mx]| < |[Lλy.M′ Mo O LN′ Mx]|.
Let M ≡ (M′) M′′ with x ∈ fv(M′).

L(M′{N/x}) M′′ Mo ≡ ⌈[LM′{N/x} Mp O ⌈LM′′ Mq⌋q O 〈p ⊳ o〉]⌋p
subst −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⌈[[LM′ Mp O LN Mx] O ⌈LM′′ Mq⌋q O 〈p ⊳ o〉]⌋p
(10),u↓,(14)====================================================================================================================================================================================================

[L(M′) M′′ Mo O LN Mx] ≡ [⌈[LM′ Mp O ⌈LM′′ Mq⌋q O 〈p ⊳ o〉]⌋p O LN Mx]

wheresubst can be applied by induction because|[LM′ Mp O LN Mx]| < |[L(M′) M′′ Mo O LN Mx]|.
Let M ≡ (M′) M′′ with x ∈ fv(M′′).

L(M′) M′′{N/x} Mo ≡ ⌈[LM′ Mp O ⌈LM′′{N/x} Mq⌋q O 〈p ⊳ o〉]⌋p
subst −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⌈[LM′ Mp O [⌈LM′′ Mq⌋q O LN Mx] O 〈p ⊳ o〉]⌋p
(10),u↓ ===========================================================================================================================

⌈[LM′ Mp O [⌈LM′′ Mq⌋q O LN Mx] O 〈p ⊳ o〉]⌋p
(10),u↓,(14)====================================================================================================================================================================================================

[L(M′) M′′ Mo O LN Mx] ≡ [⌈[LM′ Mp O ⌈LM′′ Mq⌋q O 〈p ⊳ o〉]⌋p O LN Mx]

wheresubst applies by induction as|[LM′′ Mq O LN Mx]| < |[L(M′) M′′ Mo O LN Mx]|.
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