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Abstract11

Temporal logics are a well investigated formalism for the specification, verification, and synthesis of reactive systems.12

Within this family, Alternating-Time Temporal Logic (ATL∗, for short) has been introduced as a useful generalization13

of classical linear- and branching-time temporal logics, by allowing temporal operators to be indexed by coalitions of14

agents. Classically, temporal logics are memoryless: once a path in the computation tree is quantified at a given node,15

the computation that has led to that node is forgotten. Recently, mCTL∗ has been defined as a memoryful variant16

of CTL∗, where path quantification is memoryful. In the context of multi-agent planning, memoryful quantification17

enables agents to “relent” and change their goals and strategies depending on their history.18

In this paper, we define mATL∗, a memoryful extension of ATL∗, in which a formula is satisfied at a certain19

node of a path by taking into account both the future and the past. We study the expressive power of mATL∗,20

its succinctness, as well as related decision problems. We also investigate the relationship between memoryful21

quantification and past modalities and show their equivalence. We show that both the memoryful and the past22

extensions come without any computational price; indeed, we prove that both the satisfiability and the model-checking23

problems are 2EXPTIME-COMPLETE, as they are for ATL∗.24
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1 Introduction27

Multi-agent concurrent systems recently emerged as a new paradigm for better understanding28

distributed systems [11, 41]. In this kind of systems, different processes can have different29

goals and the interactions between them may be adversarial or cooperative. Thus the latter can30

be seen as games in the classical framework of game theory, with adversarial coalitions [32].31

Classical branching-time temporal logics, such as CTL∗ [10], turn out to be of very limited32

power when applied to multi-agent systems. For example, consider the property p: “processes33

1 and 2 cooperate to ensure that a system (having more than two processes) never enters a34

failure state”. It is well known that CTL∗ cannot express p [1]. Rather, CTL∗ can only say35

whether the set of all agents can or cannot prevent the system from failing.36

In order to allow the temporal-logic framework to work within the setting of multi-agent37

1This work is partially based on the paper [27], which appeared in LPAR’10.

1L. J. of Logic and Computation, Vol. 0 No. 0, pp. 1–22 0000 © Oxford University Press



2 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

concurrent systems, Alur, Henzinger, and Kupferman introduced Alternating-Time Temporal1

Logic (ATL∗, for short) [1]. This is a generalization of CTL∗ obtained by replacing the path2

quantifiers, “E” (there exists) and “A” (for all), with “cooperation modalities” of the form3

〈〈A〉〉 and [[A]] where A is a set of agents. These modalities can be used to represent the4

power that a coalition of agents has to achieve certain results. In particular, they can express5

selective quantifications over those paths that are obtained as outcomes of the infinite game6

between the coalition and its complement. ATL∗ formulas are interpreted over concurrent7

game structures (CGS, for short) [1], closely related to systems in [11], which model a set8

of interacting processes. Given a CGS G and a set A of agents, the ATL∗ formula 〈〈A〉〉ψ is9

satisfied at a state s of G iff there exists a strategy for the agents in A such that, no matter10

the strategy that is executed by agents not in A, the resulting outcome of the interaction in11

G satisfies ψ at s. Coming back to the previous example, one can see that the property p12

can be expressed by the ATL∗ formula 〈〈{1, 2}〉〉G ¬fail , where G is the classic LTL temporal13

operator “globally”.14

Traditionally, temporal logics are memoryless: once a path in the underlying structure15

(usually a computation tree) is quantified at a given state, the computation that led to that state16

is forgotten [19]. In the case of ATL∗, we have even more: the logic is also “relentless”, in the17

sense that the agents are not able to formulate their strategies depending on the history of the18

computation; when 〈〈A〉〉ψ is asserted in a state s, its truth is independent of the path that led to19

s. Inspired by a work on strong cyclic planning [9], Pistore and Vardi proposed a logic that can20

express the spectrum between strong goal Aψ and the weak goal Eψ in planning [33]. A novel21

aspect of the Pistore-Vardi logic is that it is “memoryful”, in the sense that the satisfiability of22

a formula at a state s depends on the future as well as on the past, i.e., the trace starting from23

the initial state and leading to s. Nevertheless, this logic does not have a standard temporal24

logical syntax (for example, it is not closed under conjunction and disjunction). Also, it is25

less expressive than CTL∗. This has lead Kupferman and Vardi [19] to introduce a memoryful26

variant of CTL∗ (mCTL∗, for short), which unifies in a common framework both CTL∗ and the27

Pistore-Vardi logic. Syntactically, mCTL∗ is obtained from CTL∗ by simply adding a special28

proposition present, which is needed to emulate the ability of CTL∗ to talk about the “present”29

time. Semantically, mCTL∗ is obtained from CTL∗ by reinterpreting the path quantifiers of the30

logic to be memoryful.31

Recently, ATL∗ has become a popular specification logic in the context of multi-agent system32

planning [15, 37]. In such a framework, a memoryful enhancement of ATL∗ enables “relentful”33

planning, that is, agents can relent and change their goals, depending on their history1. That is,34

when a specific goal at a certain state is checked, agents may learn from the past to change35

their goals. Note that this does not mean that agents change their strategy, but that they can36

choose a strategy that allows them to change their goals. For example, consider the ATL∗37

formula 〈〈∅〉〉G 〈〈A〉〉ψ. In the memoryful framework, this formula is satisfied by a CGS G (at38

its starting node) iff for each possible trace (history) ρ the agents in A can ensure that the39

evolution of G that extends ρ satisfies ψ from the start state.40

In this paper, we introduce and study the logic mATL∗, a memoryful extension of ATL∗.41

Thus, mATL∗ can be thought of as a fusion of mCTL∗ and ATL∗ in a common framework.42

Similarly to mCTL∗, the syntax of mATL∗ is obtained from ATL∗ by simply adding a special43

proposition present. Semantically, mATL∗ is obtained from ATL∗ by reinterpreting the path44

quantifiers of the logic to be memoryful. More specifically, for a CGS G, the mATL∗ formula45

〈〈A〉〉ψ holds at a state s of G if there is a strategy for agents in A such that, no matter which is46

1In Middle English to relent means to melt. In modern English it is used only in the combination of “relentless”.
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the strategy of the agents not in A, the resulting outcome of the game, obtained by extending1

the execution trace of the system ending in s, satisfies ψ. As an example of the usefulness of2

the relentful reasoning, consider the situation in which the agents in a set A have the goal to3

eventually satisfy q and, if they see r, they can also change their goal to eventually satisfy v. It4

is easy to formalize this property in ATL∗ with the formula 〈〈A〉〉(F (q ∨ r) ∧ G f), where f5

is r → 〈〈A〉〉(F v). Consider, instead, the situation in which the agents in A have the goal to6

satisfy p until q holds, unless they see r in which case they change their goal to satisfy u until7

v holds from the start of the computation. This cannot be easily handled in ATL∗, since the8

specification depends on the past. On the other hand, it can be handled in mATL∗, with the9

formula 〈〈A〉〉((p U (q ∨ r)) ∧ G f), where f is r → 〈〈A〉〉(u U v).10

In the paper, we also consider an extension of mATL∗ with past operators (mpATL∗, for11

short). As for classical temporal and modal logics, past operators allow reasoning about the12

past in a computation [6, 7, 22, 23, 38]. In mpATL∗, we can further require that coalitions13

of agents had a memoryful goal in the past. In more details, we can write a formula whose14

satisfaction, at a state s, depends on the trace starting from the initial state and leading to a15

state s′ occurring before s. Coming back to the previous example, by using P as the dual16

of F , we can change the alternative goal f of agents in A to be r → P (h ∧ 〈〈A〉〉(u U v)),17

which requires that once r occurs at a state s, at a previous state s′ of s in which h holds, the18

subformula u until v from the start of the computation must be true.19

As a direct consequence and important contribution of this work, we show for the first time20

a clear and complete picture of the relationships among ATL∗ and its various extensions with21

memoryful quantification and past modalities, which goes beyond the expressiveness results22

obtained in [19] for mCTL∗. Since memoryfulness refers to behavior from the start of the23

computation, which occurred in the past, memoryfulness is intimately connected to the past.24

Indeed, we prove this formally. We study the expressive power and the succinctness of mATL∗25

w.r.t ATL∗, as well as the memoryless fragment of mpATL∗ (i.e., the extension of ATL∗ with26

past modalities), which we call pATL∗. We show that the three logics have the same expressive27

power, but both mATL∗ and pATL∗ are at least exponentially more succinct than ATL∗. As for28

m−ATL∗ (where the minus stands for the variant of the logic without the “present” proposition,29

but the path interpretation is still memoryful), we prove that it is strictly less expressive than30

ATL∗. On the other hand, we prove that pATL∗ is equivalent to p−ATL∗, but exponentially more31

succinct.32

From an algorithmic point of view, we examine, for mpATL∗, the two classical decision33

problems: model checking and satisfiability. We show that model checking is not easier than34

satisfiability and in particular that both are 2EXPTIME-COMPLETE, as for ATL∗. We recall35

that this is not the case for mCTL∗, where the model checking is EXPSPACE-COMPLETE,36

while satisfiability is 2EXPTIME-COMPLETE. For the upper bounds, we follow an automata-37

theoretic approach [20]. In order to develop a decision procedure for a logic with the tree-38

model property, one first develops an appropriate notion of tree automata and studies their39

emptiness problem. Then, the decision problem for the logic can be reduced to the emptiness40

problem of such automata. To this aim, we introduce a new automaton model, the complex41

symmetric alternating tree automata with satellites (SATAS, for short), which extends both42

automata over concurrent game structures in [36] and alternating automata with satellites43

in [19], in a common setting. For technical convenience, the states of the whole automaton44

are partitioned into states regarding the satellite and those regarding the rest of the automaton,45

which we call the main automaton. The complexity results then come from the fact that46

mpATL∗ formulas can be translated into a SATAS with an exponential number of states for47



4 Relentful Strategic Reasoning in Alternating-Time Temporal Logic

the main automaton and doubly exponential number of states for the satellite, and from the1

fact that the emptiness problem for this kind of automata is solvable in EXPTIME w.r.t. both2

the size of the main automaton and the logarithm of the size of the satellite.3

Outline4

In Section 2, we recall the basic notions regarding concurrent game structures and trees, tracks5

and plays, strategies, plays, and unwinding. Then, we have Section 3, in which we introduce6

mATL∗ and define its syntax and semantics, followed by Section 4, in which it is defined the7

extension mpATL∗ and there are studied the expressiveness and succinctness relationship of8

both the logics. In Section 5, we introduce the SATAS automaton model. Finally, in Section9

6 we describe how to solve the satisfiability and model-checking problems for both mATL∗10

and mpATL∗. Note that, in the accompanying Appendix A, we recall standard mathematical11

notation and some basic definitions that are used in the paper.12

2 Preliminaries13

A concurrent game structure (CGS, for short) [1] is a tuple G , 〈AP,Ag,Ac,St, λ, τ, s0〉,14

where AP and Ag are finite non-empty sets of atomic propositions and agents, Ac and St are15

enumerable non-empty sets of actions and states, s0 ∈ St is a designated initial state, and16

λ : St → 2AP is a labeling function that maps each state to the set of atomic propositions17

true in that state. Let Dc , AcAg be the set of decisions, i.e., functions from Ag to Ac18

representing the choices of an action for each agent. Then, τ : St×Dc→ St is a transition19

function mapping a pair of a state and a decision to a state. If the set of actions is finite, i.e.,20

b = |Ac| < ω, we say that G is b-bounded, or simply bounded. If both the sets of actions and21

states are finite, we say that G is finite.22

Given a set A ⊆ Ag of agents, a decision and a counterdecision for A are, respectively, two23

functions dA ∈ AcA and dcA ∈ AcAg\A. By d , (dA, d
c
A) ∈ Dc we denote the composition24

of dA and dcA, i.e., the total decision such that d�A = dA and d�(Ag\A) = dcA.25

A track (resp., path) in a CGS G is a finite (resp., an infinite) sequence of states ρ ∈ St∗26

(resp., π ∈ Stω) such that, for all i ∈ [0, |ρ| − 1[ (resp., i ∈ N), there exists a decision27

d ∈ Dc such that (ρ)i+1 = τ((ρ)i, d) (resp., (π)i+1 = τ((π)i, d)). A track ρ is non-trivial if28

|ρ| > 0, i.e., ρ 6= ε. Trk ⊆ St+ (resp., Pth ⊆ Stω) denotes the set of all non-trivial tracks29

(resp., paths). Moreover, Trk(s) , {ρ ∈ Trk : fst(ρ) = s} (resp., Pth(s) , {π ∈ Pth :30

fst(π) = s}) indicates the subsets of tracks (resp., paths) starting at a state s ∈ St.31

A strategy for G w.r.t. a set of agents A ⊆ Ag is a partial function fA : Trk ⇀ AcA that32

maps a non-empty trace ρ in its domain to a decision fA(ρ) of agents in A. Intuitively, a33

strategy for agents in A is a combined plan that contains all choices of moves as a function of34

the history of the current outcome. For a state s, we say that fA is s-total iff it is defined on35

all non-trivial tracks starting in s that are reachable through fA itself, i.e., ρ · s′ ∈ dom(fA),36

with ρ ∈ dom(fA), iff fst(ρ) = s and there is a counterdecision dcA ∈ AcAg\A for A such that37

τ(lst(ρ), (fA(ρ), dcA)) = s′. We use Str(A) (resp., Str(A, s) with s ∈ St) to indicate the set38

of all the (resp., s-total) strategies of agents in A.39

A path π in G starting at a state s is a play w.r.t. an s-total strategy fA (fA-play, for short)40

iff, for all i ∈ N, there is a counterdecision dcA ∈ AcAg\A such that πi+1 = τ(πi, d), where41

d = (fA(π≤i), d
c
A). Observe that π is an fA-play iff π≤i ∈ dom(fA), for all i ∈ N. Intuitively,42

a play is the outcome of the game determined by all the agents participating to it. By Play(fA)43
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we denote the set of all fA-plays.1

A concurrent game tree (CGT, for short) is a CGS T , 〈AP,Ag,Ac,St, λ, τ, ε〉, where (i)2

St ⊆ ∆∗ is a ∆-tree for a given set ∆ of directions and (ii) if t · e ∈ St then there is a decision3

d ∈ Dc such that τ(t, d) = t · e, for all t ∈ St and e ∈ ∆. Furthermore, T is a decision tree4

(DT, for short) if (i) St=Dc∗ and (ii) if t · d∈St then τ(t, d)= t · d, for all t∈St and d∈Dc.5

Given a CGS G, its unwinding is the DT GU , 〈AP,Ag,Ac,Dc∗, λ′, τ ′, ε〉 for which there6

is a surjective function unw : Dc∗ → St such that (i) unw(ε) = s0, (ii) unw(τ ′(t, d)) =7

τ(unw(t), d), and (iii) λ′(t) = λ(unw(t)), for all t ∈ Dc∗ and d ∈ Dc.8

From now on, we use the name of a CGS as a subscript to extract the components from its9

tuple-structure. Accordingly, if G = 〈AP,Ag,Ac,St, λ, τ, s0〉, we have AcG = Ac, λG = λ,10

s0G = s0, and so on. Also, we use the same notational concept to make explicit to which CGS11

the sets Dc, Trk, Pth, etc. are related to. Note that, we omit the subscripts if the structure can12

be unambiguously individuated from the context.13

3 Memoryful Alternating-Time Temporal Logic14

In this section, we introduce an extension of classic alternating-time temporal logic ATL∗ [1],15

obtained by allowing the use of memoryful quantification over paths, in a similar way it has16

been done for the memoryful branching-time temporal logic mCTL∗ [19].17

3.1 Syntax18

The memoryful alternating-time temporal logic (mATL∗, for short) inherits from ATL∗ the19

existential 〈〈A〉〉 and the universal [[A]] strategy quantifiers, where A denotes a set of agents.20

We recall that these two quantifiers can be read as “there exists a collective strategy for agents21

in A” and “for all collective strategies for agents in A”, respectively. The syntax of mATL∗ is22

similar to that for ATL∗: there are two types of formulas, state and path formulas. Strategy23

quantifiers can prefix an assertion composed of an arbitrary Boolean combination and nesting24

of the linear-time operators X “next”, U “until”, and R “release”. The only syntactical25

difference between the two logics is that mATL∗ formulas can refer to a special proposition26

present, which enables us to refer to the present time. Readers familiar with mCTL∗ can see27

mATL∗ as mCTL∗ where strategy quantifiers substitute path quantifiers. The formal syntax of28

mATL∗ follows.29

DEFINITION 3.1 (mATL∗ Syntax)
mATL∗ state (ϕ) and path (ψ) formulas are built inductively from the sets of atomic proposi-30

tions AP and agents Ag in the following way, where p ∈ AP and A ⊆ Ag:31

1. ϕ ::= present | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉ψ | [[A]]ψ;32

2. ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | X ψ | ψ U ψ | ψ R ψ.33

mATL∗ is the set of all state formulas generated by the above grammar, in which the occurrences34

of the special proposition present is in the scope of a strategy quantifier.35

We now introduce some auxiliary syntactical notation.36

For a formula ϕ, we define the length lng(ϕ) of ϕ as for ATL∗. Formally, (i) lng(p) , 1, for37

p ∈ AP∪{present}, (ii) lng(Op ψ) , 1+ lng(ψ), for all Op ∈ {¬,X}, (iii) lng(ψ1Op ψ2) ,38

1 + lng(ψ1) + lng(ψ2), for all Op ∈ {∧,∨,U,R}, and (iv) lng(Qn ψ) , 1 + lng(ψ), for all39

Qn ∈ {〈〈A〉〉, [[A]]}.40
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We also use cl(ψ) to denote a variation of the classical Fischer-Ladner closure [12] of ψ1

defined recursively as for ATL∗ in the following way: cl(ϕ) , {ϕ} ∪ cl′(ϕ), for all basic2

formulas ϕ = Qn ψ, with Qn ∈ {〈〈A〉〉, [[A]]}, and cl(ψ) , cl′(ψ), in all other cases, where3

(i) cl′(p) , ∅, for p ∈ AP ∪ {present}, (ii) cl′(Op ψ) , cl(ψ), for all Op ∈ {¬,X}, (iii)4

cl′(ψ1Op ψ2) , cl(ψ1) ∪ cl(ψ2), for all Op ∈ {∧,∨,U,R}, and (iv) cl′(Qn ψ) , cl(ψ), for5

all Qn ∈ {〈〈A〉〉, [[A]]}. Intuitively, cl(ϕ) is the set of all basic formulas that are subformulas6

of ϕ.7

Finally, by rcl(ψ) we denote the reduced closure of ψ, i.e., the set of maximal basic8

formulas contained in ψ. Formally, (i) rcl(ϕ) , {ϕ}, for all basic formulas ϕ = Qn ψ,9

with Qn ∈ {〈〈A〉〉, [[A]]}, (ii) rcl(Op ψ) , rcl(ψ) when Op ψ is a path formula, for all10

Op ∈ {¬,X}, and (iii) rcl(ψ1Op ψ2) , rcl(ψ1) ∪ rcl(ψ2) when ψ1Op ψ2 is a path formula,11

for all Op ∈ {∧,∨,U,R}. It is immediate to see that rcl(ψ) ⊆ cl(ψ) and |cl(ψ)| = O(lng(ψ)).12

3.2 Semantics13

As for ATL∗, the semantics of mATL∗ is defined w.r.t. concurrent game structures. However,14

the two logics differ on interpreting state formulas. First, in mATL∗ the satisfaction of a state15

formula is related to a specific track, while in ATL∗ it is related only to a state. Moreover,16

a path quantification in mATL∗ ranges over paths that start at the initial state and contain17

as prefix the track that lead to the present state. We refer to this track as the present track.18

The whole concept is what we name memoryful quantification. On the contrary, in ATL∗,19

path quantifications range over paths that start at the present state. For example, consider the20

formula ϕ = [[A]]G 〈〈B〉〉ψ. Considered as an ATL∗ formula, ϕ holds in the initial state of a21

structure if the agents in B can force a path satisfying ψ from every state that can be reached22

by a strategy of the agents in A. In contrast, considered as an mATL∗ formula, ϕ holds in the23

initial state of the structure if the agents in B can extend to a path satisfying ψ every track24

generated by a strategy of the agent in A. Thus, when evaluating path formulas in mATL∗ one25

cannot ignore the past, and satisfaction may depend on the events that preceded the point of26

quantification. In ATL∗, state and path formulas are evaluated w.r.t. states and paths in the27

structure, respectively. In mATL∗, instead, we add an additional parameter, the present track,28

which is the track that led from the initial state to the point of quantification. Path formulas29

are again evaluated w.r.t. paths, but state formulas are now evaluated w.r.t. tracks, which are30

viewed as partial executions.31

We now formally define mATL∗ semantics w.r.t. a CGS G. For two non-empty initial tracks32

ρ, ρp ∈ Trk(s0), where ρp is the present track, we write G, ρ, ρp |= ϕ to indicate that the33

state formula ϕ holds at ρ, with ρp being the present. Similarly, for a path π ∈ Pth(s0), a34

non-empty present track ρp ∈ Trk(s0) and a natural number k, we write G, π, k, ρp |= ψ to35

indicate that the path formula ψ holds at the position k of π, with ρp being the present. The36

semantics of mATL∗ state formulas involving ¬, ∧, and ∨, as well as that for mATL∗ path37

formulas, except for the state formula case, is defined as usual in ATL∗. The semantics of the38

remaining part, which involves the memoryful feature, follows.39

DEFINITION 3.2 (mATL∗ Semantics)
Given a CGS G = 〈AP,Ag,Ac,St, λ, τ, s0〉, two initial traces ρ, ρp ∈ Trc(s0), a path40

π ∈ Pth(s0), and a number k ∈ N, it holds that:41

1. G, ρ, ρp |= present if ρ = ρp;42

2. G, ρ, ρp |= p if p ∈ λ(lst(ρ)), with p ∈ AP;43
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3. G, ρ, ρp |= 〈〈A〉〉ψ if there exists a lst(ρ)-total strategy fA ∈ Str(A, lst(ρ)) such that, for1

all plays π ∈ Play(fA), it holds that G, ρ · π≥1, 0, ρ |= ψ;2

4. G, ρ, ρp |= [[A]]ψ if, for all lst(ρ)-total strategies fA ∈ Str(A, lst(ρ)), there exists a play3

π ∈ Play(fA) such that G, ρ · π≥1, 0, ρ |= ψ;4

5. G, π, k, ρp |= ϕ if G, π≤k, ρp |= ϕ.5

Observe that the present track ρp is used in the above definition only at Item 1 and that6

formulas of the form 〈〈A〉〉ψ and [[A]]ψ “reset the present”, i.e., their satisfaction w.r.t ρ and ρp7

is independent of ρp, and the present trace, for the path formula ψ, is set to ρ.8

Let G be a CGS and ϕ be an mATL∗ formula. Then, G is a model for ϕ, in symbols G |= ϕ,9

iff G, s0, s0 |= ϕ, where we recall that s0 is the initial state of G. In this case, we also say10

that G is a model for ϕ on s0. A formula ϕ is said satisfiable iff there exists a model for it.11

Moreover, it is an invariant for the two CGSs G1 and G2 iff either G1 |= ϕ and G2 |= ϕ or12

G1 6|= ϕ and G2 6|= ϕ.13

For all state formulas ϕ1 and ϕ2, we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, iff,14

for all CGS G and non-empty traces ρ, ρp ∈ Trc(G, s0), it holds that if G, ρ, ρp |= ϕ1 then15

G, ρ, ρp |= ϕ2. Consequently, we say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff16

both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.17

W.l.o.g., in the rest of the paper, we mainly consider formulas in existential normal form (enf,18

for short), i.e., only existential strategy quantifiers occur. Indeed, all formulas can be linearly19

translated in enf by using De Morgan’s laws together with the following equivalences, which20

directly follow from the semantics of the logic: ¬X ϕ ≡ X ¬ϕ, ¬(ϕ1U ϕ2) ≡ (¬ϕ1)R (¬ϕ2),21

and ¬〈〈x〉〉ϕ ≡ [[x]]¬ϕ.22

By induction on the syntactical structure of the sentences, it is easy to prove the following23

two classical results. Note that these are the basic steps towards the automata-theoretic24

approach we use to solve the model-checking and the satisfiability problems for mATL∗.25

THEOREM 3.3 (mATL∗ Unwinding Invariance)
mATL∗ is invariant under unwinding, i.e., for each CGS G and formula ϕ, it holds that ϕ is an26

invariant for G and GU .27

PROOF. As first thing, let unwtrk : TrkGU (ε) → TrkG(s0G) and unwpth : PthGU (ε) →28

PthG(s0G) be the two functions mapping tracks and paths of the unwinding GU into the29

corresponding ones of the original model G, which satisfy the following properties: (i)30

unwtrk(ε) = s0G , (ii) unwtrk(ρ · t) = unwtrk(ρ) · unw(t), for all ρ · t ∈ TrkGU (ε) with31

t ∈ StGU , and (iii) (unwpth(π))≤i = unwtrk((π)≤i), for all π ∈ PthGU (ε) and i ∈ N. Note32

that ε ∈ TrkGU (ε) is not the empty track, but the track of length 1 made by the root of the33

tree only. Moreover, consider the following orderings between tracks and paths of GU : (i)34

ρ < ρ′ iff there exists a track ρ′′ ∈ TrkGU such that ρ′ = ρ · ρ′′, for all ρ, ρ′ ∈ TrkGU (ε);35

(ii) ρ < π iff there exists a path π′ ∈ PthGU such that π = ρ · π′, for all ρ ∈ TrkGU (ε) and36

π ∈ PthGU (ε). Observe that < forms a partial order on tracks.37

At this point, we prove the statement by showing that, for all state formulas ϕ and path38

formulas ψ, it holds that (i) GU , ρ, ρp |= ϕ iff G, unwtrk(ρ), unwtrk(ρp) |= ϕ, for all ρ, ρp ∈39

TrkGU (ε), such that either ρ < ρp or ρ = ρp or ρp < ρ, and (ii) GU , π, k, ρp |= ψ iff40

G, unwpth(π), k, unwtrk(ρp) |= ψ, for all π ∈ PthGU (ε), k ∈ N, and ρp ∈ TrkGU (ε), such41

that ρp < π.42

We now prove, by induction on the structure of formulas, the three cases of special proposi-43

tion present, atomic proposition p, and existential quantifier 〈〈A〉〉ψ. The remaining cases are44

immediate or easily derivable by the former ones.45
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• (ϕ = present)1

By definition of semantics, we have that GU , ρ, ρp |= present iff ρ=ρp and G, unwtrk(ρ),2

unwtrk(ρp) |= present iff unwtrk(ρ) = unwtrk(ρp). Now, by the hypothesis ρ < ρp or3

ρ = ρp or ρp < ρ on the tracks ρ and ρp, we have that ρ = ρp iff unwtrk(ρ) = unwtrk(ρp).4

Therefore, GU , ρ, ρp |= present iff G, unwtrk(ρ), unwtrk(ρp) |= present.5

• (ϕ = p)6

By definition of unwtrk, we have that lst(unwtrk(ρ)) = unw(lst(ρ)). Thus, by definition7

of the unwinding function unw, it holds that λG(lst(unwtrk(ρ))) = λGU (lst(ρ)). At this8

point, we derive that GU , ρ, ρp |= p iff p ∈ λGU (lst(ρ)) iff p ∈ λG(lst(unwtrk(ρ))) iff9

G, unwtrk(ρ), unwtrk(ρp) |= p. Therefore, GU, ρ, ρp |=p iff G, unwtrk(ρ), unwtrk(ρp) |=10

p.11

• (ϕ = 〈〈A〉〉ψ,⇒)12

Suppose that GU , ρ, ρp |= 〈〈A〉〉ψ and let s , lst(ρ) ∈ StGU and s′ , unw(s) =13

lst(unwtrk(ρ)) ∈ StG . Then, by definition of semantics, we have that there exists an14

s-total strategy fA ∈ StrGU (A, s) such that, for all plays π ∈ PlayGU (fA), it holds that15

GU , ρ · π≥1, 0, ρ |= ψ. Moreover, by the inductive hypothesis, it holds that G, unwpth(ρ ·16

π≥1), 0, unwtrk(ρ) |= ψ. Now,to prove the statement, we have only to show that there17

exists an s′-total strategy f ′A ∈ StrG(A, s′) such that, for all plays π′ ∈ PlayG(f ′A), there18

exists a play π ∈ PlayGU (fA) such that unwtrk(ρ) · π′≥1 = unwpth(ρ · π≥1). To do this,19

we first define an auxiliary function h : TrkG(s′) ⇀ TrkGU (s) mapping back tracks of G20

into corresponding tracks of GU . This function, can be inductively defined by means of21

the following recursive properties:22

1. s′ ∈ dom(h) and h(s′) , s;23

2. for all ρ′ ∈ dom(h) and counterdecision dcA ∈ AcAg\A, it holds that ρ′ · t′ ∈ dom(h)24

and h(ρ′ · t′) , h(ρ′) · t, where t′ , τG(lst(ρ′), d), t , τGU (lst(h(ρ′)), d), and d ,25

(fA(h(ρ′)), dcA).26

At this point, we can define the strategy f ′A ∈ StrG(A, s′) as follows: f ′A(ρ′) , fA(h(ρ′)),27

for all ρ′ ∈ dom(f ′A) , dom(h). Now, by a simple induction on the length of the play28

π′, we can prove that f ′A actually satisfies the required property. Hence, we obtain that if29

GU , ρ, ρp |= 〈〈A〉〉ψ then G, unwtrk(ρ), unwtrk(ρp) |= 〈〈A〉〉ψ.30

• (ϕ = 〈〈A〉〉ψ,⇐)31

Suppose that G, unwtrk(ρ), unwtrk(ρp) |= 〈〈A〉〉ψ and let s , lst(ρ) ∈ StGU and s′ ,32

unw(s) = lst(unwtrk(ρ)) ∈ StG . Then, by definition of semantics, we have that there33

exists an s′-total strategy f ′A ∈ StrG(A, s′) such that, for all plays π′ ∈ PlayG(f ′A), it holds34

that G, unwtrk(ρ) · π′≥1, 0, unwtrk(ρ) |= ψ. Now, define the strategy fA ∈ StrGU (A, s)35

as follows: fA(ρ) , f ′A(unwtrk(ρ)), for all ρ ∈ TrkGU (s). At this point, it is easy to36

see that, for all plays π ∈ PlayGU (fA), it holds that unwpth(π) ∈ PlayG(f ′A). Therefore,37

G, unwtrk(ρ) ·unwpth(π)≥1, 0, unwtrk(ρ) |= ψ, i.e., G, unwpth(ρ ·π≥1), 0, unwtrk(ρ) |=38

ψ. Now, by the inductive hypothesis, it holds that GU , ρ · π≥1, 0, ρ |= ψ. Hence, we obtain39

that if G, unwtrk(ρ), unwtrk(ρp) |= 〈〈A〉〉ψ then GU , ρ, ρp |= 〈〈A〉〉ψ.40

41

As an immediate corollary, we obtain that mATL∗ also enjoys the tree model property.42

COROLLARY 3.4 (mATL∗ Tree Model Property)
mATL∗ enjoys the tree model property.43
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PROOF. Consider a formula ϕ and suppose that it is satisfiable. Then, there is a CGS G such1

that G |= ϕ. By Theorem 3.3, ϕ is satisfied at the root of the unwinding GU of G. Thus, since2

GU is a CGT, we immediately have that ϕ is satisfied on a tree model.3

4 Expressiveness and Succinctness4

In this section, we compare mATL∗ with other logics derived from it. The basic comparisons5

are in terms of expressiveness and succinctness.6

Let L1 and L2 be two logics whose semantics are defined on the same kind of structure. We7

say that L1 is as expressive L2 iff every formula in L2 is logically equivalent to some formula8

in L1. If L1 is as expressive as L2, but there is a formula in L1 that is not logically equivalent9

to any formula in L2, then L1 is more expressive than L2. If L1 is as expressive as L2 and vice10

versa, then L1 and L2 are expressively equivalent. Note that, in the case L1 is more expressive11

than L2, there are two sets of structures M1 and M2 and an L1 formula ϕ such that, for all12

M1 ∈M1 andM2 ∈M2, it holds thatM1 |= ϕ andM2 6|= ϕ and, for all L2 formulas ϕ′, it13

holds that there are two models M1 ∈M1 andM2 ∈M2 such thatM1 |= ϕ′ iffM2 |= ϕ′.14

Intuitively, each L2 formula is not able to distinguish between two models that instead are15

different w.r.t. L1.16

We define now the comparison of the two logics L1 and L2 in terms of succinctness, which17

measures the necessary blow-up when translating between them. Note that comparing logics18

in terms of succinctness makes sense also when the logics are not expressively equivalent, by19

focusing on their common fragment. In fact, a logic L1 can be more expressive than a logic20

L2, but at the same time, less succinct than the latter. Formally, we say that L1 is (at least)21

exponentially more succinct than L2 iff there exist two infinite lists of models {M1,M2, . . .}22

and of L1 formulas {ϕ1, ϕ2, . . .}, withMi |= ϕi and lng(ϕi) = O(p1(i)), where p1(n) is a23

polynomial, i.e., lng(ϕi) is polynomial in i ∈ N, such that, for all L2 formulas ϕ, ifMi |= ϕ24

then lng(ϕ) ≥ 2p2(i), where p2(n) is another polynomial, i.e., lng(ϕ) is (at least) exponential25

in i.26

We now discuss expressiveness and succinctness of mATL∗ w.r.t. ATL∗ as well as some27

extensions/restrictions of mATL∗. In particular, we consider the logics mpATL∗ and pATL∗ to be,28

respectively, mATL∗ and ATL∗ augmented with the past-time operators “previous” and “since”,29

which dualize the future-time operators “next” and “until” as in pLTL [22] and pCTL∗ [17].30

Note that pATL∗ still contains the present proposition and that, as for pCTL∗, the semantics of31

its quantifiers is as for ATL∗, where the past is considered linear, i.e., deterministic. Moreover,32

we consider the logics m−ATL∗, p−ATL∗, and mp−ATL∗ to be, respectively, the syntactical33

restriction of mATL∗, pATL∗, and mpATL∗ in which the use of the atomic proposition present34

is not allowed. On one hand, we have that all mentioned logics are expressively equivalent,35

except for m−ATL∗ and p−ATL∗. On the other hand, the ability to refer to the past makes all36

of them at least exponentially more succinct than the corresponding ones without the past.37

For example, a pATL∗ formula ϕ can be translated into an equivalent ATL∗ one ϕ′, but ϕ′38

may require a non-elementary space in lng(ϕ) (shortly, we say that pATL∗ is non-elementary39

reducible to ATL∗). Note that, to get a better complexity for this translation is not an easy40

question. Indeed, it would improve the non-elementary reduction from first order logic to41

LTL, which is an outstanding open problem [14]. All the discussed results are reported in the42

following theorem.43

THEOREM 4.1 (Reductions)
The following properties hold:44
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1. ATL∗ (resp., pATL∗) is linearly reducible to mATL∗ (resp., mpATL∗);1

2. mpATL∗ (resp., mp−ATL∗) is linearly reducible to pATL∗ (resp., p−ATL∗);2

3. mpATL∗ (resp., mp−ATL∗) is non-elementarily reducible to mATL∗ (resp., m−ATL∗);3

4. pATL∗ is non-elementarily reducible to ATL∗;4

5. m−ATL∗ and p−ATL∗ are at least exponentially more succinct than ATL∗;5

6. m−ATL∗ is less expressive then ATL∗.6

PROOF. Let ϕ be an input formula for items 1-4.7

• Items 1 and 2 follow by replacing each subformula 〈〈A〉〉ψ in ϕ by 〈〈A〉〉F (present ∧ ψ)8

and 〈〈A〉〉P ((Ỹ f) ∧ ψ), respectively, where P ψ′ is the corresponding past-time operator9

for F ψ′ and Ỹ ψ′ is the weak previous time operator, which is true if either ψ′ is true10

in the previous time-step or such a time-step does not exist. Note that all the formula11

substitutions start from the innermost subformula.12

• Item 3 follows by replacing each subformula 〈〈A〉〉ψ in ϕ by 〈〈A〉〉ψ′, where ψ′ is obtained13

by the Separation Theorem (see Theorem 2.4 of [14]), which allows to eliminate all14

pure-past formulas2. Note that, as in the above items, the substitutions start from the15

innermost subformula. Moreover, the non-elementary blow-up is inherited from the use of16

the Separation Theorem.17

• Item 4 proceeds as for the translation of pCTL∗ into CTL∗ (see Lemma 3.3 and Theorem18

3.4 of [17]). The only difference here is that, when we apply the Separation Theorem to19

obtain a path formula as a disjunction of formulas of the form ps ∧ pr ∧ ft, where ps,20

pr, and ft are respectively pure-past, pure-present (i.e., Boolean combinations of atomic21

propositions and basic formulas), and pure-future formulas, we need to substitute the22

present proposition with f in ps and ft and with t in pr. As for the previous item, the23

origin of the non-elementary blow-up resides in the Separation Theorem.24

• Item 5 follows by using the formula ϕ , 〈〈A〉〉G (
∧n
i=1(pi ↔ [[∅]]pi) → (p0 ↔ [[∅]]p0))25

(resp., ϕ , 〈〈A〉〉G (
∧n
i=1(pi ↔ P ((Ỹ f) ∧ pi)) → (p0 ↔ P ((Ỹ f) ∧ p0)))), which is26

similar to that used to prove that pLTL is exponentially more succinct than LTL (see27

Theorem 3.1 of [21]). By using an argument similar to that used in [21], we obtain the28

desired result.29

• Item 6 follows by using a proof similar to that used for m−CTL∗ (see Theorem 3.4 of [19]),30

and so showing that the ATL formula ϕ , 〈〈A〉〉F (([[∅]]X p) ∧ ([[∅]]X ¬p)) has no m−ATL∗31

equivalent formula.32

33

As an immediate consequence of combinations of the results shown into the previous theorem,34

it is easy to prove the following corollary.35

COROLLARY 4.2 (Expressiveness)
mATL∗, p−ATL∗, pATL∗, and mpATL∗ have the same expressive power of ATL∗. m−ATL∗ and36

mp−ATL∗ have the same expressive power, but are less expressive than ATL∗. Moreover, all of37

them are at least exponentially more succinct than ATL∗.38

2A pure-past formula contains only past-time operators. In Item 4, we also consider pure-future formulas, which contain only future-time operators, and
pure-present formulas, which do not contain any temporal operator at all.
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FIG. 1: Expressive power and succinctness hierarchy.

Figure 1 summarizes all the above results re-1

garding expressiveness and succinctness. The2

acronym “lin” (resp., “nelm”) means that the3

translation exists and it is linear (resp., non-4

elementarily) in the size of the formula, and5

“/” means that such a translation is impossible.6

The numbers in brackets represent the item of7

Theorem 4.1 in which the translation is shown.8

We use no numbers when the translation is triv-9

ial or comes by a composition of existing ones.10

5 Alternating Tree Automata11

In this section, we briefly introduce an automaton model used to solve efficiently the satis-12

fiability and model-checking problems for mpATL∗, by reducing them, respectively, to the13

emptiness and membership problems of the automaton. We recall that, in general, such an14

approach is only possible once the logic satisfies the invariance under unwinding. In fact, this15

property holds for mpATL∗, as it is stated in Theorem 3.3.16

5.1 Classic automata17

Alternating tree automata [29] are a generalization of nondeterministic tree automata. Intu-18

itively, while a nondeterministic automaton that visits a node of the input tree sends exactly one19

copy of itself to each of the successors of the node, an alternating automaton can send several20

copies of itself to the same successor. Symmetric automata [16] are a variation of classical21

(asymmetric) alternating automata in which it is not necessary to specify the direction (i.e., the22

choice of the successors) of the tree on which a copy is sent. In fact, through two generalized23

directions (existential and universal moves), it is possible to send a copy of the automaton,24

starting from a node of the input tree, to one or all its successors. Hence, the automaton does25

not distinguish between directions. As a generalization of symmetric alternating automata,26

here we consider automata that can send copies to successor nodes, according to some entity27

choice. These automata are a slight variation of automata over concurrent game structures28

introduced in [36].29

We now give the formal definition of symmetric and asymmetric alternating tree automata.30

DEFINITION 5.1 (Symmetric Alternating Tree Automata)
A symmetric alternating tree automaton (SATA, for short) is a tuple A , 〈Σ,E,Q, δ, q0,31

F〉, where Σ, E, and Q are non-empty finite sets of input symbols, entities, and states,32

respectively, q0 ∈ Q is an initial state, F is an acceptance condition to be defined later, and33

δ : Q × Σ → B+(D × Q) is an alternating transition function, where D = {3,2} × 2E34

is an extended set of abstract directions, which maps each pair of states and input symbols35

to a positive Boolean combination on the set of propositions, a.k.a. abstract moves, of the36

following form: existential ((3, A), q) and universal ((2, A), q) propositions, with A ⊆ E37

and q ∈ Q.38

DEFINITION 5.2 (Asymmetric Alternating Tree Automata)
An asymmetric alternating tree automaton (AATA, for short) is a tuple A , 〈Σ,∆,Q, δ, q0,39

F〉, where Σ, Q, q0, and F are defined as for the symmetric one, ∆ is a non-empty finite set40
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of real directions, and δ : Q × Σ → B+(∆ × Q) is an alternating transition function that1

maps each pair of states and input symbols to a positive Boolean combination on the set of2

propositions of the form (d, q) ∈ ∆×Q, a.k.a. real moves.3

A nondeterministic tree automaton (NTA, for short) is a special AATA in which each4

conjunction in the transition function δ has exactly one move (d, q) associated with each5

direction d. In addition, a universal tree automaton (UTA, for short) is a special AATA in6

which all the Boolean combinations that appear in δ are only conjunctions of moves.7

In the following, we simply write ATA when we indifferently refer to its symmetric or8

asymmetric version.9

The semantics of ATAs is now given through the following related concepts of run.10

DEFINITION 5.3 (SATA Run)
A run of an SATA A = 〈Σ,E,Q, δ, q0,F〉 on a Σ-labeled BE-tree T = 〈T, v〉, for a given set11

B, is a (Q× T)-labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε) and (ii) for all nodes12

y ∈ R with r(y) = (q, x), there is a set of abstract moves S ⊆ ∆ × Q with S |= δ(q, v(x))13

such that, for all (z, q′) ∈ S, it holds that:14

• if z = (3, A) then there exists a choice d ∈ BA such that, for all counterchoices15

d′ ∈ BE\A, it holds that (q′, x · (d, d′)) ∈ l(y);16

• if z = (2, A) then, for all choices d ∈ BA, there exists a counterchoice d′ ∈ BE\A such17

that (q′, x · (d, d′)) ∈ l(y);18

where (d, d′) ∈ BE denotes composition of d and d′, i.e., the function such that (d, d′)�A = d19

and (d, d′)�(E\A) = d′ and l(y) , {r(y · j) : j ∈ N ∧ y · j ∈ R} is the set of labels of20

successors of the node y in the runR.21

DEFINITION 5.4 (AATA Run)
A run of an AATA A = 〈Σ,∆,Q, δ, q0,F〉 on a Σ-labeled ∆-tree T = 〈T, v〉 is a (Q× T)-22

labeled N-tree R , 〈R, r〉 such that (i) r(ε) = (q0, ε) and (ii) for all nodes y ∈ R with23

r(y) = (q, x), there is a set of real moves S ⊆ ∆×Q with S |= δ(q, v(x)) such that, for all24

(d, q′) ∈ S, there is an index j ∈ [0, |S|[ for which it holds that y ·j ∈ R and r(y ·j) = (q′, x·d).25

In the following, we consider ATAs along with the parity F = (F1, . . . ,Fk) ∈ (2Q)+ with26

F1 ⊆ . . . ⊆ Fk = Q (APT, for short) acceptance condition (see [20], for more). The number27

k of sets in F is called the index of the automaton. We also use ATAs with the Co-Büchi28

acceptance condition F ⊆ Q (ACT, for short) that are APTs of index 2 in which the set of29

final states is represented by F1.30

Let R = 〈R, r〉 be a run of an ATA A on a tree T and R′ ⊆ R one of its branches. Then,31

by inf(R′) , {q ∈ Q : |{y ∈ R′ : r(y) = q}| = ω} we denote the set of states that occur32

infinitely often as labeling of the nodes in the branch R′. We say that a branch R′ of T satisfies33

the parity acceptance condition F = (F1, . . . ,Fk) iff the least index i ∈ [1, k] for which34

inf(R′) ∩ Fi 6= ∅ is even.35

At this point, we can define the concept of language accepted by an ATA.36

DEFINITION 5.5 (ATA Acceptance)
A SATA A = 〈Σ,E,Q, δ, q0,F〉 (resp., AATA A = 〈Σ,∆,Q, δ, q0,F〉) accepts a Σ-labeled37

BE-tree (resp., ∆-tree) T iff is there exists a runR ofA on T such that all its infinite branches38

satisfy the acceptance condition F, where the concept of satisfaction is dependent from of the39

definition of F.40
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By L(A) we denote the language accepted by the ATA A, i.e., the set of trees T accepted by1

A. Moreover, A is said to be empty if L(A) = ∅. The emptiness problem for A is to decide2

whether L(A) = ∅ or not.3

Now, we show how to reduce, for equivalence, a SATA to an AATA when it is known a4

priori the structure of the trees of interest.5

THEOREM 5.6 (SATA-AATA Reduction)
LetA = 〈Σ,E,Q, δ, q0,F〉 be a SATA and B be a finite set. Then there is an AATA A′ = 〈Σ,6

BE,Q, δ′, q0,F〉 such that every Σ-labeled BE-tree is accepted by A iff it is accepted by A′.7

PROOF. The transition function δ′ of A′ is obtained from that of A by substituting each exis-8

tential ((3, A), q′) and universal ((2, A), q′) move with the formulas
∨
d∈BA

∧
d′∈BE\A((d,9

d′), q′) and
∧
d∈BA

∨
d′∈BE\A((d, d′), q′), respectively. At this point, it is immediate to see10

that the thesis follows directly by Definition 5.3 of SATA run.11

5.2 Automata with satellite12

As a generalization of ATA, here we also consider alternating tree automata with satellites13

(ATAS, for short), in a similar way it has been done in [19]. The satellite is used to take a14

bounded memory of the evaluated part of a path in a given structure and it is kept apart from15

the main automaton as it allows to show a tight complexity for the satisfiability problems. We16

use symmetric ATAS (SATAS, for short) for the solution of the satisfiability problem and17

asymmetric ATAS (AATAS, for short) for the model-checking problem.18

We now formally define this new fundamental concept of automaton.19

DEFINITION 5.7 (Alternating Tree Automata with Satellite)
A symmetric (resp., asymmetric) alternating tree automaton with satellite (SATAS (resp.,20

AATAS), for short) is a tuple 〈A,S〉, where A , 〈Σ× P,E,Q, δ, q0,F〉 (resp., A , 〈Σ× P,21

∆,Q, δ, q0,F〉) is an SATA (resp., AATA) and S , 〈Σ,P, ζ, p0〉 is a deterministic safety22

word automaton, a.k.a. satellite, where P is a non-empty finite set of states, p0 ∈ P is an23

initial states, and ζ : P× Σ→ P is a deterministic transition function that maps a state and24

an input symbol to a state. The sets Σ and E (resp., ∆) are, respectively, the alphabet and the25

entity set (resp., direction sets) of the ATAS 〈A,S〉.26

At this point, we can define the language accepted by an ATAS.27

DEFINITION 5.8 (ATAS Acceptance)
A Σ-labeled BE-tree (resp., ∆-tree) T is accepted by a SATAS (resp., AATAS) 〈A,S〉, where28

A , 〈Σ× P,E,Q, δ, q0,F〉 (resp., A = 〈Σ× P,∆,Q, δ, q0,F〉) and S = 〈Σ,P, ζ, p0〉, iff it29

is accepted by the product-automaton A? , 〈Σ,E,Q× P, δ?, (q0, p0),F?〉 (resp., A? , 〈Σ,30

∆,Q× P, δ?, (q0, p0),F?〉) with δ?((q, p), σ) , δ(q, (σ, p))[q′ ∈ Q/(q′, ζ(p, σ))], where by31

f [x ∈ X/y] we denote the formula in which all occurrences of x in f are replaced by y, and32

F? is the acceptance condition directly derived from F.33

In words, δ?((q, p), σ) is obtained by substituting in δ(q, (σ, p)) each occurrence of a state q′34

with a tuple of the form (q′, p′), where p′ = ζ(p, σ) is the new state of the satellite. By L(〈A,35

S〉) we denote the language accepted by the ATAS 〈A,S〉.36

In the following, we consider, in particular, ATAS along with the parity acceptance condition37

(APTS, for short), where F? , (F1 × P, . . . ,Fk × P).38
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Note that satellites are just a convenient way to describe an ATA in which the state space1

can be partitioned into two components, one of which is deterministic, independent from the2

other, and that has no influence on the acceptance. Indeed, it is just a matter of technicality3

to see that automata with satellites inherit all the closure properties of alternating automata.4

In particular, we prove how to translate an AAPTS into an equivalent NPT with only an5

exponential blow-up in the number of states.6

THEOREM 5.9 (AAPTS Nondeterminization)
Let 〈A,S〉 be an AAPTS, where the main automaton A has n states and index k and the7

satellite S has m states. Then there is an NPT N ? with 2O((n·k)·log(n·k)+log(m)) states and8

index O(n · k), such that L(N ?) = L(〈A,S〉).9

PROOF. To deduce the thesis, we use the Muller-Schupp exponential-time nondeterminization10

procedure [30] that leads from the AAPT A to an NPT N , with 2O((n·k)·log(n·k)) states and11

index O(n · k), such that L(N ) = L(A). Since an NPT is a particular AAPT, we immediately12

have that L(〈N ,S〉) = L(〈A,S〉). At this point, by taking the product-automaton between13

N and the satellite S, as described in Definition 5.8 of ATAS acceptance, we obtain a new14

NPT N ?, with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ?) = L(〈N ,15

S〉). Hence, it is evident that L(N ?) = L(〈A,S〉).16

The following theorem, directly derived by a proof idea of [19], shows how the separation17

between A and S gives a tight analysis of the complexity of the relative emptiness problem.18

THEOREM 5.10 (APTS Emptiness)
The emptiness problem for an APTS 〈A,S〉 with alphabet size h, where the main automa-19

ton A has n states and index k and the satellite S has m states, can be decided in time20

2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).21

PROOF. The proof proceeds in two steps, the first of which is used only if A is a SATA, in22

order to translate it into an AATA. First, in order to obtain a linear translation from SATAs23

to AATAs, we use a bounded model theorem (see Theorem 2 of [36]), which asserts that a24

SATA A accepts a tree iff it accepts a |Z× E||E|-bounded tree, where Z is the set of abstract25

moves used in its transition function. Hence, by Theorem 5.6, there is an AATA A′, with the26

same set of states and acceptance condition of the original automaton A and a set Z × EE
27

of directions, such that L(A′) = ∅ iff L(A) = ∅. Hence, by definition of ATAS, we obtain28

that L(〈A′,S〉) = ∅ iff L(〈A,S〉) = ∅. At this point, by Theorem 5.9, we obtain an NPT29

N ?, with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such that L(N ?) = L(〈A′,S〉).30

Now, the emptiness of N ? can be checked in polynomial running-time in its number of states,31

exponential in its index, and linear in the alphabet size (see Theorem 5.1 of [18]). Overall,32

with this procedure, we obtain that the emptiness problem for an APTS is solvable in time33

2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).34

Finally, we show how much costs to verify if a given tree language, represented by a safety35

NPT, is recognized by an APTS.36

THEOREM 5.11 (APTS-NTA Intersection Emptiness)
The emptiness problem for the intersection of an APTS 〈A,S〉 with alphabet size h, where37

the main automaton A has n states and index k and the satellite S has m states, and a38

safety NTA N with n′ states, both running over BE-trees, can be decided in time n′O(n·k) ·39

2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).40
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PROOF. As for Theorem 5.10, the proof proceeds in two steps. First, by Theorem 5.6, there1

is an AATA A′, with the same set of states and acceptance condition of A and a set BE of2

directions, such that L(A′) = L(A) and so, L(〈A′,S〉) = L(〈A,S〉). Now, by Theorem3

5.9, we obtain an NPT N ?, with 2O((n·k)·log(n·k)+log(m)) states and index O(n · k), such4

that L(N ?) = L(〈A′,S〉). Intersecting N ? with N , we obtain a new NPT N ′ such that5

L(N ′) = L(〈A,S〉) ∩ L(N ), with n′ · 2O((n·k)·log(n·k)+log(m)) states and same index of N ?.6

Finally, we check the emptiness ofN ′ in time n′O(n·k) · 2O(log(h)+(n·k)·((n·k)·log(n·k)+log(m))).7

8

6 Decision Procedures9

In this section, we directly study the satisfiability and model-checking for the richer mpATL∗,10

since we prove a tight 2EXPTIME upper bound for both the problems.11

6.1 From path formulas to satellite12

As mentioned before, an mATL∗ path formula is satisfied at a certain node of a path by taking13

into account both the future and the past. Although the past is unlimited, it only requires a finite14

representation. This is due to the fact that LTL with past operators (pLTL, for short) [14, 22]15

can be translated into automata on infinite words of bounded size [39], and that it represents16

the temporal path core of mpATL∗ (as LTL is the corresponding one for ATL∗). Here, we show17

how to build the satellite that represents the memory on the past in order to solve satisfiability18

and model-checking for mpATL∗.19

To this aim, we first introduce the following notation, where ϕ is an enf state formula:20

APϕ = AP ∪ cl(ϕ), APrϕ = AP ∪ rcl(ϕ), and APprsϕ = APrϕ ∪ {present}. Intuitively, we are21

enriching the set of atomic propositions AP, to be used as input symbols of the automata, with22

the basic formulas of ϕ and the special proposition present.23

Before showing the full satellite construction, we first describe how to build it from a single24

basic formula b = 〈〈Ab〉〉ψb. Let ψ̂b be the pLTL formula obtained by replacing in ψb all the25

occurrences of a direct basic subformula b′ ∈ rcl(b) by the label b′ read as atomic proposition.26

By using a slight variation of the procedure developed in [39], we can translate ψ̂b into a27

universal co-Büchi word automaton Ub = 〈APprsb ,Qb, δb,Q0b,Fb〉, with a number of states at28

most exponential in lng(ψb), i.e., |Qb| = 2O(lng(ψb)), that accepts all and only the infinite traces29

on APprsb that are models of ψ̂b. By applying the classical subset construction to Ub [34], we30

obtain the satellite Db = 〈APrb , 2
Qb , ζb,Q0b〉, where ζb(p, σ) ,

⋃
q∈p δb(q, σ), for all states31

p ⊆ Qb and labels σ ⊆ APrb .32

To better understand the usefulness of the satellite Db, consider Ub after that a prefix33

ρ = $≤i of an infinite trace $ ∈ (APrb)
ω is read. Since Ub is universal, there exists a number34

of active states that are ready to continue with the evaluation of the remaining part $>i of35

the trace $. Consider now the satellite Db after that the same prefix ρ is read. Since Db36

is deterministic, there is only one active state that, by construction, is exactly the set of all37

the active states of Ub. It is clear then that, using Db, we are able to maintain all possible38

computations of Ub.39

We now define the product-satellite that maintains, at the same time, a memory for all path40

formulas ψb contained in a basic subformula b ∈ cl(ϕ) of the mpATL∗ formula ϕ we want to41

check.42
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DEFINITION 6.1 (Memory Satellite)
The memory satellite for a state formula ϕ is the satellite Sϕ , 〈APϕ,Pϕ, ζϕ, p0ϕ〉, where1

(i) Pϕ , {p ∈ (
⋃
b∈cl(ϕ) 2Qb)cl(ϕ) : ∀b ∈ cl(ϕ). p(b) ⊆ Qb}, (ii) p0ϕ(b) , Q0b, and (iii)2

ζϕ(p, σ)(b) ,
⋃
q∈p(b) δb(q, σ ∩APrb), for all p ∈ Pϕ, σ ⊆ APϕ, and b ∈ cl(ϕ).3

Intuitively, this satellite record the temporal evolution of the formula ϕ from the root of the4

tree model by means of its states, which are represented by functions mapping each basic5

subformula b ∈ cl(ϕ) to a set of active states of the related word automaton Ub. Note that the6

size of the satellite Sϕ is doubly-exponential in lng(ϕ), i.e., its number of states is 22
O(lng(ϕ))

.7

6.2 Satisfiability8

The satisfiability procedure we now propose technically extends that used for ATL∗ in [35]9

along with that for mCTL∗ in [19]. Such an extension is possible due to the fact that the10

memoryful quantification has no direct interaction with the strategic features of the logic. In11

particular as for ATL∗, it is possible to show that every CGS model of an mpATL∗ formula12

ϕ can be transformed into an explicit CGT model of ϕ. Such a model includes a certificate13

for both the truth of each of its basic subformula b ∈ cl(ϕ) in the respective node of the tree14

and the strategy used by the agents Ab to achieve the goal described by the corresponding15

path formula ψb (for a formal definition see [35]). The main difference of our definition of16

explicit models w.r.t. that given in [35] is in the fact that the witness of a basic formula b17

does not start in the node from which the path formula ψb needs to be satisfied, but from18

the node in which the quantification is applied, i.e., the present node. This difference, which19

directly derives from the memoryful feature of mpATL∗, is due to the request that ψb needs20

to be satisfied on a path that starts at the root of the model. The proof of an explicit model21

existence is exploited by constructing an SATAS that accepts all and only the explicit models22

of the specification. The proof follows that used in Theorem 4 of [35] and changes w.r.t. the23

use of the satellite Sϕ that helps the main automaton Aϕ whenever it needs to start with the24

verification of a given path formula ψb, with b ∈ cl(ϕ). In particular, Aϕ needs to send to the25

successors of a node x labeled with b in the tree given in input, all the states of the universal26

Co-Büchi automaton Ub that are active after Ub has read the word derived by the trace starting27

in the root of the tree and ending in x. By extending an idea given in [19], this requirement28

is satisfied by Aϕ by defining the transition function, for the part of interest, as follows:29

δ(qb, (σ, p)) = ((2,Ag), qb)∧
∧
q∈p(b)

∧
q′∈δb(q,σ∩APr

b∪{present})
((2,Ag), (q′, new)), where30

b ∈ σ and p(b) is the component relative to b of the product-state of Sϕ.31

Putting the above reasoning all together, the following result holds.32

THEOREM 6.2 (mpATL∗ Satisfiability)
Given an mpATL∗ formula ϕ, we can build a Co-Büchi SATAS 〈Aϕ,Sϕ〉, where Aϕ and Sϕ33

have, respectively, 2O(lng(ϕ)) and 22
O(lng(ϕ))

states, such that L(〈Aϕ,Sϕ〉) is exactly the set of34

all the tree models of ϕ.35

By using Theorems 6.2 and 5.10, we obtain that the check of the existence of a model for36

a given mpATL∗ specification ϕ can be done in time 22
O(lng(ϕ))

, resulting in a 2EXPTIME37

algorithm in the length of ϕ. Since mpATL∗ subsumes mCTL∗, which has a satisfiability38

problem 2EXPTIME-HARD [19], we then derive the following result.39

THEOREM 6.3 (mpATL∗ Satisfiability Complexity)
The satisfiability problem for mpATL∗ is 2EXPTIME-COMPLETE.40
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6.3 Model checking1

As for mCTL∗, for the new logic mpATL∗ we use a top-down model-checking algorithm that2

checks whether the initial state of the CGS under exam satisfies the formula. In particular, the3

procedure we propose is similar to that used for mCTL∗ in [19] and so, it is different from that4

used for ATL∗ in [1], which is bottom-up and uses a global model-checking method.5

With more details, from the CGS G and an mpATL∗ formula ϕ, we easily construct a safety6

NTA NG,ϕ that recognize all the extended unwindings of G itself, in which each state is7

also labeled by the basic subformulas ϕ′ ∈ cl(ϕ) of ϕ that are true in that state [20]. This8

automaton is simply linear in the size of G. Then, by calculating the product of NG,ϕ with the9

SATAS of Theorem 6.2, we obtain an automata that is empty iff the model does not satisfy10

the specification.11

Now, by a simple calculation based on the result of Theorem 5.11, we derive that the12

whole procedure takes time ‖G‖2
O(lng(ϕ))

, resulting in an algorithm that is in PTIME w.r.t. the13

size of G and in 2EXPTIME w.r.t. the size of ϕ. Since, by Item 1 of Theorem 4.1, there is14

a linear translation from ATL∗ to mpATL∗ and ATL∗ has a model-checking problem that is15

PTIME-HARD w.r.t. G and 2EXPTIME-HARD w.r.t ϕ [1], we then derive the following result.16

THEOREM 6.4 (mpATL∗ Model Checking Complexity)
The mpATL∗ model checking problem is PTIME-COMPLETE w.r.t. the size of the model and17

2EXPTIME-COMPLETE w.r.t. the size of the specification.18

7 Discussion and Future Work19

In this paper we have introduced mATL∗, a memoryful extension of ATL∗. We have studied its20

expressive power and its succinctness, w.r.t. ATL∗, as well as its related decision problems.21

Specifically, we have shown that mATL∗ is equivalent but at least exponentially more succinct22

than ATL∗. Moreover, both the satisfiability and the model-checking problems for mATL∗23

are 2EXPTIME-COMPLETE, as they are for ATL∗. Thus, this useful extension comes at no24

price. We have also investigated the extension of ATL∗ and mATL∗ with past operators (i.e.,25

backward modalities), respectively named pATL∗ and mpATL∗. We have shown that pATL∗26

(and thus mpATL∗) is equivalent to mATL∗ and, as the latter, it is at least exponentially more27

succinct than ATL∗. Then, we have shown that the complexity results we got for mATL∗ holds28

for mpATL∗ as well.29

As for mCTL∗, the interesting properties shown for mATL∗ make this logic not only useful30

at its own, but also advantageous to efficiently decide other logics (once it is shown a tight31

reduction to it). In the case of mCTL∗, we recall that this logic is useful to decide the embedded32

CTL∗ logic, recently introduced in [31]. This logic allows to quantify over good and bad33

system executions. In [31], the authors also introduce a new model-checking methodology,34

which allows to group the system executions as good and bad, w.r.t the satisfiability of a base35

LTL specification. By using an embedded CTL∗ specification, this model-checking algorithm36

allows checking not only whether the base specification holds or fails to hold in a system, but37

also how it does so. In [31], the authors use a polynomial translation of their logic into mCTL∗38

to solve efficiently its decision problems. In the context of coalition logics, the use of an39

“embedded” framework seems even more interesting. In particular, an embedded ATL∗ logic40

could allow to quantify coalition of agents over good and bad system executions. Analogously41

to the CTL∗ case, one may show a polynomial translation from embedded ATL∗ to mATL∗ and42

use this result to efficiently solve the related decision problems.43
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In [3, 4, 5], Graded Computation-Tree Logic (GCTL, for short) has been introduced as a1

modal logic that extends CTL by replacing the universal (A) and existential (E) quantifiers with2

their graded versions A<n and E≥n. It has been shown that, despite such extension is strictly3

more expressive than CTL, the satisfiability problem for GCTL is EXPTIME-COMPLETE, as it4

is for CTL, even in the case that the graded numbers are coded in binary. Graded modalities5

have been also investigated in case of backward modalities in [7, 6]. It would be interesting to6

lift the graded framework into mATL∗ and mpATL∗, and investigate both the expressive power7

and the complexities of the classical decision problems for the extended logics. To give an8

intuition, the graded extension of mATL∗ can be obtained by replacing the universal ([[A]]) and9

existential (〈〈A〉〉) strategy quantifiers of the logic with graded modalities of the form [[A]]
<n

10

and 〈〈A〉〉≥n. Informally speaking, these two operators have the meaning of “there exists at11

least n different non-equivalent strategies ...” and “for all except at most n non-equivalent12

strategies ...” respectively. Additionally, in the past modalities, we can predicate with a number13

of non-equivalent strategies in the past. Despite this extension is natural and most of the14

reasonings introduced in GCTL can be lifted to the new logics, there is a deep work to do15

regarding the formalization of equivalence among strategies.16

Recently, a logic more expressive than ATL∗, named Strategy Logic (SL, for short), has17

been introduced in [26]. The aim of this logic is to get a powerful framework for reasoning18

explicitly about strategic behaviors [8] in multi-agent concurrent games, by using first-order19

quantifications over strategies. Although SL model checking is non-elementary and the20

satisfiability even undecidable, there is a useful syntactic fragment of this logic, named21

One-Goal Strategy Logic (SL[1G], for short), which strictly subsumes ATL∗ and has both22

the above mentioned decision problems 2EXPTIME-COMPLETE, thus not harder than those23

for ATL∗ [24, 25, 28]. Analogously to mATL∗, one can investigate memoryful extensions24

of SL[1G]. Such extensions can translate to the multi-coalition framework, represented by25

the alternation of strategy quantifiers, the advantages of having a memoryful verification of26

temporal properties. This would be very important in the field of multi-agent planning and we27

aim to investigate this as future work.28

Related works29

We report that the authors of [13] have considered a sublogic of Strategy Logic, named30

ESL, which is orthogonal to SL[1G]. This logic uses a quantification over the history of the31

game, in which it is embedded a concept of memoryful quantification. Their aim was to32

propose a suitable framework for the synthesis of multi-player systems with rational agents.33

However, it is worth noting that the semantics of ESL is quite different form that one we use34

for mATL∗ and the two logics turn to be incomparable. In particular, ESL does not allow the35

requantification over paths as instead mATL∗ does (e.g., ESL cannot express mATL∗ formulas36

such as 〈〈A〉〉F [[B]]G p). In addition, mATL∗ is able to express in its framework the ESL history37

quantification. For example, consider the property “for every history of the game, player 138

has a strategy that force player 2 to satisfy ψ”. Moreover, ESL requires to use a quantification39

over history variables, while in mATL∗ this property simply becomes AG 〈〈1〉〉ψ. Finally, we40

enlighten that in [13], it is only addressed and solved the synthesis problem, while here we41

address and solve the satisfiability and the model-checking problems. Observe that their42

algorithm does not imply any result about ESL satisfiability, since they do not provide any43

bound on the width of ESL models. In particular, we can assert that such a bound in general44

does not exit, since it does not exist for SL, as it has been shown in [26] and the proof used45
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there can be easily lifted to ESL. Consequently and similarly to SL, we can also assert that1

ESL satisfiability is undecidable.2

Recently, in [40] a first-order variant of mpATL∗ has been also introduced and named3

FOmpATL∗. As in our framework, this logic allows to assert that, given any finite system-event4

history, no matter what future events are initiated by the an agent, the remaining agents are5

able to ensure that the history can be extended to an infinite trace that satisfies a given property.6

Additionally, such a property is based on first order relations, with the aim to formalize a7

privacy policy. Clearly, FOmpATL∗ strongly extends mpATL∗ and sharply refines the notion of8

strong compliance introduced in [2], by allowing agents to be either adversaries or cooperative.9

Indeed, we recall that in the classic strong compliance, the former is not allowed.10

A Mathematical Notation11

In this short reference appendix, we report the classical mathematical notation and some12

common definitions that are used along the whole work.13

Classic objects We consider N as the set of natural numbers and [m,n] , {k ∈ N :14

m ≤ k ≤ n}, [m,n[ , {k ∈ N : m ≤ k < n}, ]m,n] , {k ∈ N : m < k ≤ n}, and ]m,15

n[, {k ∈ N : m < k < n} as its interval subsets, with m ∈ N and n ∈ N̂ , N∪{ω}, where16

ω is the numerable infinity, i.e., the least infinite ordinal. Given a set X of objects, we denote17

by |X| ∈ N̂ ∪ {∞} the cardinality of X, i.e., the number of its elements, where∞ represents18

a more than countable cardinality, and by 2X , {Y : Y ⊆ X} the powerset of X, i.e., the set19

of all its subsets.20

Relations By R ⊆ X × Y we denote a relation between the domain dom(R) , X and21

codomain cod(R) , Y, whose range is indicated by rng(R) , {y ∈ Y : ∃x ∈ X.(x, y) ∈ R}.22

We use R−1 , {(y, x) ∈ Y ×X : (x, y) ∈ R} to represent the inverse of R itself. Moreover,23

by S ◦ R, with R ⊆ X × Y and S ⊆ Y × Z, we denote the composition of R with S , i.e.,24

the relation S ◦ R , {(x, z) ∈ X × Z : ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S}. We also use25

Rn , Rn−1 ◦ R, with n ∈ [1, ω[, to indicate the n-iteration of R ⊆ X × Y, where Y ⊆ X26

and R0 , {(y, y) : y ∈ Y} is the identity on Y. With R+ ,
⋃<ω
n=1 R

n and R∗ , R+ ∪ R0
27

we denote, respectively, the transitive and reflexive-transitive closure of R. Finally, for an28

equivalence relation R ⊆ X× X on X, we represent with (X/R) , {[x]R : x ∈ X}, where29

[x]R , {x′ ∈ X : (x, x′) ∈ R}, the quotient set of X w.r.t. R, i.e., the set of all related30

equivalence classes [·]R.31

Functions We use the symbol YX ⊆ 2X×Y to denote the set of total functions f from X to32

Y, i.e., the relations f ⊆ X × Y such that for all x ∈ dom(f) there is exactly one element33

y ∈ cod(f) such that (x, y) ∈ f. Often, we write f : X → Y and f : X ⇀ Y to indicate,34

respectively, f ∈ YX and f ∈
⋃

X′⊆X YX′ . Regarding the latter, note that we consider f as35

a partial function from X to Y, where dom(f) ⊆ X contains all and only the elements for36

which f is defined. Given a set Z, by f�Z , f ∩ (Z × Y) we denote the restriction of f to37

the set X ∩ Z, i.e., the function f�Z : X ∩ Z ⇀ Y such that, for all x ∈ dom(f) ∩ Z, it holds38

that f�Z(x) = f(x). Moreover, with ∅ we indicate a generic empty function, i.e., a function39

with empty domain. Note that X ∩ Z = ∅ implies f�Z = ∅. Finally, for two partial functions40

f, g : X ⇀ Y, we use f d g and f e g to represent, respectively, the union and intersection of41

these functions defined as follows: dom(f d g) , dom(f)∪ dom(g) \ {x ∈ dom(f)∩ dom(g)42

: f(x) 6= g(x)}, dom(f e g) , {x ∈ dom(f) ∩ dom(g) : f(x) = g(x)}, (f d g)(x) = f(x)43
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for x ∈ dom(f d g) ∩ dom(f), (f d g)(x) = g(x) for x ∈ dom(f d g) ∩ dom(g), and1

(f e g)(x) = f(x) for x ∈ dom(f e g).2

Words By Xn, with n ∈ N, we denote the set of all n-tuples of elements from X, by3

X∗ ,
⋃<ω
n=0 Xn the set of finite words on the alphabet X, by X+ , X∗ \ {ε} the set of4

non-empty words, and by Xω the set of infinite words, where, as usual, ε ∈ X∗ is the empty5

word. The length of a word w ∈ X∞ , X∗ ∪ Xω is represented with |w| ∈ N̂. By (w)i6

we indicate the i-th letter of the finite word w ∈ X+, with i ∈ [0, |w|[ . Furthermore, by7

fst(w) , (w)0 (resp., lst(w) , (w)|w|−1), we denote the first (resp., last) letter of w. In8

addition, by (w)≤i (resp., (w)>i), we indicate the prefix up to (resp., suffix after) the letter9

of index i of w, i.e., the finite word built by the first i + 1 (resp., last |w| − i − 1) letters10

(w)0, . . . , (w)i (resp., (w)i+1, . . . , (w)|w|−1). We also set, (w)<0 , ε, (w)<i , (w)≤i−1,11

(w)≥0 , w, and (w)≥i , (w)>i−1, for i ∈ [1, |w|[ . Mutatis mutandis, the notations of i-th12

letter, first, prefix, and suffix apply to infinite words too. Finally, by pfx(w1, w2) ∈ X∞ we13

denote the maximal common prefix of two different words w1, w2 ∈ X∞, i.e., the finite word14

w ∈ X∗ for which there are two words w′1, w
′
2 ∈ X∞ such that w1 = w · w′1, w2 = w · w′2,15

and fst(w′1) 6= fst(w′2). By convention, we set pfx(w,w) , w.16

Trees For a set ∆ of objects, called directions, a ∆-tree is a set T ⊆ ∆∗ closed under prefix,17

i.e., if t · d ∈ T, with d ∈ ∆, then also t ∈ T. We say that it is complete if it holds that18

t · d′ ∈ T whenever t · d ∈ T, for all d′ < d, where <⊆ ∆×∆ is an a priori fixed strict total19

order on the set of directions that is clear from the context. Moreover, it is full if T = ∆∗.20

The elements of T are called nodes and the empty word ε is the root of T. For every t ∈ T21

and d ∈ ∆, the node t · d ∈ T is a successor of t in T. The tree is b-bounded if the maximal22

number b of its successor nodes is finite, i.e., b = maxt∈T |{t · d ∈ T : d ∈ ∆}| < ω. A23

branch of the tree is an infinite word w ∈ ∆ω such that (w)≤i ∈ T, for all i ∈ N. For a finite24

set Σ of objects, called symbols, a Σ-labeled ∆-tree is a quadruple 〈Σ,∆,T, v〉, where T is a25

∆-tree and v : T→ Σ is a labeling function. When ∆ and Σ are clear from the context, we26

call 〈T, v〉 simply a (labeled) tree.27
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