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Algebraic semantics for a modal logic close to S1

Steffen Lewitzka

Abstract

The modal systems S1-S3 were introduced by C. |. Lewis asddgr strict
implication. While there are Kripke semantics for S2 and tB8re is no known
natural semantics for S1. We extend S1 by a SubstitutiorctenxSP which gen-
eralizes a reference rule of S1. In system S1+SP, the mlafistrict equivalence
p = 1 satisfies the identity axioms of R. Suszko’s non-Fregeait ladapted to
the language of modal logic (we call these axioms the axiofrirapositional
identity). This enables us to develop a framework of algiebsamantics which
captures S1+SP as well as the Lewis systems S3-S5. So fromethgoint of
algebraic semantics, S1+SP turns out to be an interestimginhagic. We show
that S1+SP is strictly contained between S1 and S3 and glfifem S2. It is the
weakest modal logic containing S1 such that strict equiadeas axiomatized by
propositional identity.

Keywords: modal logic, strict equivalence, propositiofd@ntity, non-Fregean
logic, algebraic semantics

1 Introduction

Discontented with the notion of material implication foundhePrincipia Mathemat-
ica, C. I. Lewis introduced axiomatizations sfrict implication [12,/13]. These sys-
tems are known as the non-normal modal logics S1, S2 and J33Jalso appeared
(deductively equivalent systems of) the modal logics S4 &&dvhich, however, are
not accepted by Lewis as systems for strict implication s®ds worlds semantics for
modal logics was introduced years later by S. Kripke and leasime the standard se-
mantics. Normal Kripke semantics involves rather stronglahprinciples such as the
Necessitation Rule. Some systems which do not validate duedsitation Rule, such
as S2 and S3, can be captured by Kripke semantics if one ig teadcept the concept
of anon-normal world The semantical treatment of other logics in the vicinitysaf,
however, seems to be more complicated. In fact, the knowrastes for S1 (M. J.
Cresswell[[6] 7], see also R. Girlel [8, 9]) and related systésre, e.g., B. F. Chellas
and K. Segerber@[3]) are technically more complex and mastintuitive.

In this paper, we are inspired by ideas coming from R. Susakon-Fregean logic
(2, 2Q], see also [16]). The essential feature of a non€aadogic is an identity
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connective= such that formulas of the forfy = ) — (p « ) are theorems but
the so-called Fregean Axiolip + 1) — (¢ = 1) is not a theoremy = ¢ can be
read as { andy have the same meaning” op‘andy denote the same propositidﬂﬂ.
If one forces the Fregean Axiom to be valid, then the undegyion-Fregean logic
specializes to classical logic where models contain ontygvopositions: the True and
the False; that is, a proposition is reduced to its trut I

Suszko, in his non-Fregean approach to modélity [[20, 2jpthtces necessity by
the equational axiom schemép = (¢ = T), where the tautological formul@
denoteghe necessary proposition (situationfie defines two theoried’r and Wy
whose models are certain topological Boolean algebras,calied interior algebras
in the literature. Applying a classical result due to Mckagpsand Tarski, Suszko then
is able to conclude that the theoriBs: andW g correspond to the modal logics S4
and S5, respectively. Similar axiomatic approaches, wherenodal operatadr] is
introduced by means of a given identity connective, werdistliby Cresswell [4,15],
Martens[[17] and other authors; see also the historical aiotee end ofi [20].

In contrast to Suszko’s approach, we shall work in this pagtr the pure lan-
guage of modal logic (i.e., the language of propositiongid@augmented with a modal
operator]). Instead of defining modality by means of an identity corivec we
go the other way arround and define an “identity connectiyestoict equivalence:
=1 :=0(p — ) AO(W — ¢). We require that the so defined connective satis-
fies what we call heréhe axioms of propositional identityrhese are the axioms that
result from the adaptation of the identity axioms of basin-ftwegean logic ((e)—(h) of
Definition 1.1. in [2]) to the language of modal logic. It terout that it is enough to
consider Lewis modal system S1 extended by an inferenceSRlgvhich is slightly
stronger than the S1-rule &ubstitution of Proved Strict Equivaler{tee, e.g./[10]).
Rule SR is equivalent with th8ubstitution PrincipléSP of non-Fregean logic and en-
sures that= has the desired properties in the resulting modal syster‘rSﬂThis
enables us to develop a non-Fregean semantics whose moegjiven by Boolean
algebras with some additional structure. Our semantiansée be similar to standard
algebraic semantics farormal modal logics which relies on Boolean algebras with
operators, sometimes calletbdal algebrasn the literature (see, e.gl, [ﬂ)A modal
algebra is a Boolean algebra with an unary operafigimore than one operation can
be considered) such tht(f) = f+ and fa(fa(m,m')) = fa(fo(m), fo(m')),
for all elementsn, m’ (of course,f is the top element ang, is the meet opera-
tion). These equations, however, are generally not satisfieur models. Formulating
certain semantic constraints, we obtain a framework oftagie semantics for the se-

IMotivated by Wittgenstein'sTractatus Suszko[[19] applies the tersituationinstead ofproposition
By a propositionwe mean the denotation of a sentence (a formula) in a nore&remodel under a given
valuation. In modal logic, a proposition is usually definedaaset of possible worlds. Both views on a
proposition are very similar (see, e.@..[L14] 18]).

2We call such models extensional. Among others, there aceirmisnsional models where a proposition
not only represents a truth-value but also the intensionsefidence (see, e.d.. [15]).

3Suszko's theoriedV andWy [20] rely on stronger assumptions. The coincidence of Saisittentity
= with strict equivalence derives as a theorem (see (12.1b}anfollowing Metatheorem VI on p. 21 in
[20]): (¢ = ) = O(p <> 9). Infact, the idea to identify propositional identity wittrist equivalence is
not only inherent in Suszko’s work but is also present ayeadCresswell's approach (se€ [5.117]).

4Note that the topological Boolean algebras used by Sus@ij@[2 special cases of such modal algebras.



quence of modal systems S1+SP, S3, S4, S5. A nice featuresdfamework is that
normal and non-normal systems are captured in a conceptuaform way. We ob-
tainstrongcompleteness theorems. We also show that the inclusionéSH#+SPLS3

are strict, and (S1+SES2. S1+SP can be characterized as the weakest modal logic
containing S1 such that the relation of strict equivalesgiien by propositional iden-

tity.

2 The modal logic S1+SP

The setF'm of formulas of modal propositional logic is defined in the alsway over
asetV = {xg,x1,z2, ...} of propositional variables, logical connectives— and the
modal operator] for necessity. Ifr is a variable ang, ¢ are formulas, then we write
plx = 4] for the formula that results from substitutiggfor all occurrences of: in
. We use the following abbreviations:

o T:=(x9g—xg), L :=-T

e o AP =(p = )

s o= (p2>Y)A{W =)
p=¢ =0 —=>¢Y) A0 = ¢)

In particular,p = 1 reads as strict equivalencegfandy. The following axioma-
tization of Lewis system S1 is due to E. J. Lemmion [11]. In casttto Lewis original
axiomatization found in [13], Lemmon’s axiomatization ggrhulated as an extension
of the calculus of (non-modal) propositional logic. All foulas of the following form,
and only those, are axioms:

(i) formulas which have the form of a propositional tautglog
(i) Op — ¢
(iii) (O(p = ¢) "D = x)) = O(e = x)

The inference rules of S1 are
e Modus Ponens MP: “From andy — ) infer).”
e Axiom Necessitation AN: “Ifp is an axiom, then infelllp.”

e Substitution of Proved Strict Equivalents SPSE:¢lf= v’ is a theorem, then
any formula of the fornp[z := ¢] = [z := ¢'] is a theorem.”

Lewis system S3 results from S1 by adding
3) Dy — v) — O(0p — Oy)
as axiom scheme. Rule AN now applies to the axioms (i)—(iig) also to (3). We write
S3=S1+(3). We shall see that S2 cannot be captured by ounsierapproach, so we
do not give an axiomatization of that system here (see, [A@] for a Lemmon-style
axiomatization).



S1 proves to be sound with respect to the algebraic semarisented below.
However, it is not complete: rule SPSE is too weak. Therefoeegeneralize SPSE to
the following Substitution Rule SR:

“If x = (¢ =) isatheorem,ther — (¢[z := Y] = @[z := ¢]) isatheorem.”

Then formulas of the form

sp (W =) = (plz =] = plz == ¢))

are theorems: choosg= (¢ = ') in rule SR. On the other hand, modulo S1, rule
SR derives from SP together with transitivity of implicatioThat is, SR and SP are
equivalent modulo S1.

Scheme SP is what we call the Substitution Principle of negé€an logic (see
also, e.g.,[[15], Lemma 3.3). Actually, it represents a galrmtological law known as
the Indiscernibility of Identicalsln basic non-Fregean logic SCI, principle SP follows
from the identity axioms (e)—(g) of Definition 1.1 inl [2]; saekso the remark following
Proposition 1.3 in[[2]. If we adapt Suszko’s identity axiotosghe modal language,
then SP is established by the following axioms:

(V) (p=9) = (mp =)
WM ((p=)A (@ =¢) = (¢ = ¢) =1 =)
(Vi) (p =) = (Hp =0y)

It is not hard to recognize that (iv)—(vi) are equivalentwstheme SP. That is, SP
can be seen as an abbreviation of (iv)—(vi). In the following consider the modal sys-
tem S1+SP which results from S1 by adding the axiom scheweg\(i) (and ignoring
rule SPSE which is weaker than SP). As in S1, the inferenes rale again MP and
AN. However, the application of rule AN remains restrictedtie axioms (i)—(iii) of
the original system S1. A derivation of a formytdrom a set of formula® in system
S1+SP is a finite sequence of formulas ..., v, = ¢ such that for each= 0, ..., n,
formulayp; is either an element @b, or it is an axiom, or it is the conclusion of rule AN
applied to an axiom of type (i)—(iii), or it is the conclusiofrule MP with premises
that appear ag; andyy, = (¢; — ¢;) in the sequence with k < j. We write® - ¢
if there exists a derivation @f from ® in deductive system S1+SP.

If we let rule AN be applicable to all axioms (i)—(vi), then \get a stronger system
which we denote by STH#SP. Both S1+SP and SIEP are sublogics of S3 as we shall
see below.

If we consider the Lemmon-style axiomatization of systems82h as given in
[10], then S3=S2+(3), where AN applies here to all axioms2f8d also to (3). S2
contains a rule called Becker’s Rule: flf(y — ) is a theorem, thefl(Op — Oy)
is a theorem.” Now observe that scheme (3) generalizes Beakse in exactly the
same way as SP generalizes the S1-rule SPSE. That i8] €orresponds to S1 in
the way as S3 corresponds to S2. The logic[S$P, however, is less important for our
purposes. In the present paper, we are interestedrimeanal modal logic which can
be integrated into the hierarchy of Lewis systems S1-S5 thathstrict equivalence
satisfies SP, i.e., the axioms (iv)—(vi). It turns out that+ S is strong enough for our



purposes. So we will focus on that system.

The following Deduction Theorem can be shown by inductiorttenlength of a
derivation, similarly as in [14], Lemma 2.3.

Lemma 2.1 (Deduction Theorem) B U {¢} - 4, then® - ¢ — ).

Lemma 2.2 Oy < (¢ = T) is a theorem, for any formula.

Proof. By rule AN we derive the followingd((¢ — T) = T),0(T — (¢ — T)),
O(T — ¢) = ¢) andd(e — (T — ¢)). This yields

@F(p—T)=Tand

(b)Y (T =) =¢.

Let x; be the formulddy < (Oz AO(T — ¢)), wherex is a fresh variable. By SP,
Flle—=T)=T)=xilz:=(p—=T)] =x1[z:=T]).

Then (a) and MP yield

©F Op + (O@—=TYAD(T = ¢))) = @« (OTAD(T = ¢))).

Now letx2 = Op < (OT A Oy), wherey is a fresh variable. By SP,

FUT =) =9) = (xaly = (T = 9)] = xaly := ).

Then (b) and MP yield

(dF e+ OTALDO(T = @) = (dp « (OT AQy)).

By axiom (jii), the identity connective is transitive. Thys) and (d) imply

FOp+ (O>@—=T)ADO(T = @) = (Op « (OT AQy)).

That s,

FOp+ (p=T)) = Op « (OT AQgp)).

The formula on the right hand side of the last equation is @lsly a theorem. Then
the formula on the left hand side is a theorem, too. Q.E.D.

We shall refer to the scheméy + (¢ = T) as principle N. It says that a propo-
sition denoted byp is necessary iffp and T denote the same proposition. In other
words, “There is exactly one necessary proposition”.

Lemma 2.3 Modal principle K is a theoremi- O(p — ¢) — (Op — Ov).

Proof. We have

{O@p — ), 0p} FO(p — 9)

{O(p — %), Op} F Op

{O(p = ¢),0p} F ¢ =T, by premiséJe, principle N and MP

B —=9),0pF(p=T) = (O(z = ¥z := 9] =0O(z — ¢)[z := T]), by SP,
wherez is a fresh variable

{B@—=¥),00tE(p=T) = (O(p = ¢) =0(T — ¢))

{O(p — ¢),0p} FO(p — ¥) =0(T — 4), by MP

),0p} EO(T — 4), by axiom scheme (ii) and MP

), 0} =0y — T), by AN

), Oet by =T

),0p} F (v = T) — Oy, by principle N



{O(e = ¢¥),0¢} - Oy, by MP
FO(e = v) = (Op — Ovy), by applying two times the Deduction Theorem. Q.E.D.

3 Semantics

A Boolean algebra is usually given by a non-empty univergettoer with operations
for join, meet, complement and two distinguished elemahtsgmallest and the great-
est element w.r.t. the induced lattice ordering) such thetain equations are satisfied.
In the following definition we make use of the fact that, byeiatefinability of opera-
tions, a Boolean algebra can be equivalently given by ojperafor complement and
implication.

Definition 3.1 A modelM = (M,TRUE, f-, f—, fo) is given by an universé/

of abstract entities, called propositions, a $eRUE C M of true propositions and
operationsf—, f_, for complement and implication which form a Boolean algebra
on M, and an unary operatiorf such that for allm, m’,m” € M the following
conditions (i)—(vi) are satisfied. By we denote the induced lattice ordering;, /.

are the greatest, the smallest element of the lattice, sy, andf, is the meet
operation of the Boolean algebra.

() fL ¢ TRUE, fr e TRUE

(i) f-(m) e TRUE< m¢TRUE
(i) f-(m,m’) € TRUE <& m ¢ TRUEorm’ € TRUE
(iv) fo(m) e TRUE < m = ft

V) fa(m) <m
i) falfo(f=(m,m)), fo(f-(m',m"))) < fo(f-(m,m"))

As every Boolean algebra, a model satisfiesn < m' < f_,(m,m’) = fr. We
will make tacitly use of this fact in some of the proofs bel@e conditions (i)—(iii) in
the definition ensure thgtRU E is an ultrafilter of the Boolean lattice. The conditions
(v) and (vi) are semantic counterparts of applications t& AN to the axioms (ii) and
(iii), respectively. Condition (iv) specifies the propesdiof the modal operator. Later,
we will strengthen that condition in order to obtain semesitor stronger modal logics,
namely for the Lewis systems S3-S5.

Definition 3.2 Let M be a model. An assignment of propositions to formulas is a
function : V' — M which extends in the canonical way to a functipn F'm — M

(we refer to the extension again by That iS,7(—) = f-(v(¥)), v(p = ) =
f=(y(@),v(¥)) and~(Og) = fo(y(p)). If M is a model andy is a corresponding
assignment, then we call the tufl#1, v) an interpretation. The satisfaction relation
between interpretations and formulas is defined 8y, ~) F ¢ :< ~(p) € TRUE.

5An assignment is sometimes called a valuation.



This definition extends in the usual way to sets of formulas.aFset of formulasb
we defineMod(®) = {(M, ) | (M,~) E ®}. The relation of logical consequence is
defined by® IF ¢ := Mod(®) C Mod({p}).

Now it is clear how to interpret the lattice orderirg of a given modelM. If
m,m’ € M, thenm < m’ means that propositiom strictly implies propositionn’ 4

The following result says that the defined connectivieas the intended semantics,
i.e., itis an identity connective:

Theorem 3.3 If (M, ~) is an interpretation andp, ) € F'm, then
M, 7)) Eo =1 e v(p) =1(¥).

Proof. SupposgM,v) E ¢ = . Thatis,(M,~) E O(p — ) AO@W) — ).
Letv(p) = m and~(y) = m’. Then follows thatfg(f_ (m,m’)) € TRUE and
fo(f=(m/,m)) e TRUE. Thus,m < m’ andm’ < m, and finallym = m’. On the
other hand, ify(p) = m = ~(¢), thenfo(f— (m,m)) € TRUE, sincem < m. It
follows that(M, v) E ¢ = 4. Q.E.D.

Corollary 3.4 Principle SP is validi- (¢ = ¢') — (p[z := 9] = p[z = ¢']).
Proof. SupposeM,~) E ¥ = ¢’. By Theoren 3By (v) = v(¢'). By induc-
tion on ¢ it follows that y(p[z = v¥]) = ~(plz := ¥’']). Theoren 3B implies

(M, ) E pla =] = ¢z :=¢']. Q.E.D.

This result also provides the following semantical intetption of SP. If), ¢’ and
o are formulas such that is a subformula ofy, andvy has the same denotation@s
theny has the same denotation@s wherey’ is the result of replacing in ¢ by v)'.

Our next goal is to prove that S1+SP is sound. Mtbe a model with universe
M. With a given assignment: V — M we may associate a truth—value assignment
By :V —{0,1} defined bys, (z) = 1 :< v(z) € TRUE. It follows that for all non-
modal propositional formulag, v(¢) € TRUE < 8,(¢) = 1. Thus,(M,~) E ¢,
for all propositional tautologieg. Now suppose is a modal formula having the form
of a propositional tautology, i.ep is the result of replacements of variables by modal
formulas within a propositional tautology. By soundnesSBf Corollary 34y has the
same denotation as the original tautology. This holds imeredel, thusp is valid.
Sinceft € TRUE, axiom (ii) is valid. Axiom (iii) says that the lattice ordeg of any
model is transitive. We have shown that the S1-axioms {i)-afie valid. The validity
of (iv)—(vi) is guaranteed by Corollafy 3.4. Obviously,@lMP is sound. It is well-
known that in any Boolean algebra, any assignment mapsadlgsitional tautologies
to the top element of the lattice. Thus,gfis an axiom of the form (i), thefly is
valid. The conditions (v) and (vi) of Definition_3.1 ensurattthe same holds for
axioms of the form (ii) and (iii), respectively. Thus, ruleNAs sound (recall that we

SWe havem < m/ iff f—.(m,m') = fr iff fo(f—(m,m’)) € TRUE. Choose variables, y and
an assignment such thaty(z) = m and~y(y) = m’. Then(M,~) EO(z — y) & m < m/'.



have restricted the application of AN to axioms of the forjn(ii)). The soundness of
the deductive system now follows by induction on the lendth derivation.

Theorem 3.5 (Soundnessfor any setb U {¢} C Fm: &+ ¢ = P I .

4 The Completeness Theorem

In order to prove strong completeness of S1+SP we follow tuablstrategy. We call
a set of formulas consistent if there is a formula which isdevable from that set. A
set which is not consistent is called inconsistent. A makioasistent set of formulas
is a consistent set such that every proper extension is #igtent. From standard
arguments it follows that each consistent set extends toxanmaé consistent set. It
remains to show that a maximal consistent set has a model.iNMfacitly make use of
the following well-known properties of a maximal consisteat®. These properties
follow from propositional logic:

e pedPs Py
e wedbspgd
e p—pedspeddory € P,

Definition 4.1 For a maximal consistent s@ we define a relationrzg on F'm by
Yo Y e O =1

Lemma 4.2 Let & be a maximal consistent set. The relatiog is an equivalence
relation onF'm with the following properties:

o If o1 ~g Y1 andpy =g o, then—p; ~e —1P1, Opy ~e Oy andp; —
P2 Ao Y1 = Pa.

o If o =g 1, thenp € & < ¢ € .
o If o =g 1, thenlp € & & Oy € D.

Proof. Symmetry ofx4 follows from propositional logic. Sincg — ¢ is an axiom,
we get (¢ — ) € ® by rule AN. Thusx is reflexive. Transitivity follows from the
scheme of axioms (iii). Now suppogg ~¢ 1, andy, ~g 1o. Letx # y be variables
such thatz does not occur iny; andy does not occur ip;. Then by SP and MP:
(1 = p2) = (o1 = Yy = @2] mo (o1 2> Y)y = Y2] = (g1 = p2) = (v —
Yo)[x = 1] ma (x = ¥o)[x := 1] = (1 — ¥2). The remaining cases of the first
item of the Lemma follow similarly. The second item of the Lrmanfollows from the
scheme of axioms (ii). Finally, the third item follows froiinet previous assertions of
the Lemma. Q.E.D.

Lemma 4.3 Any maximal consistent has a model.



Proof. Let ® be a maximal consistent set of formulas. Bywe denote the equiv-
alence class op € F'm modulo~4. We are going to construct a model with the
following ingredients:

o M :={p|pecFm}
e TRUE :={p| ¢ € ®}

i fU_nCtionSfﬂ, f*)!fD defined beﬂ(@) =T, f%(@v E) =p = 10' f‘:’(@) =
O, respectively

By Lemma4.2, all these ingredients are well-defined. We nefind operations
for join f,,, meetf,, top elementf+ and bottom element, by means of the given
operationsf_, and f_,. In order to prove that the defined operations form a Boolean
algebra onM it suffices to show that the elements &f satisfy the equations which
axiomatize the class of Boolean algebras. As an exampleho@se the commutativity
of the meet operationf.(@,v) = fA (¥, %), for anyg, ¢ € M. Since(p A ) +
(¥ A ) is a tautology of propositional logic, rule AN implies - O((¢ A ¢¥) —
W Ae)) AOWY Ap) = (pA)). Thatis,® = (o AY) = (¥ A ). Thus,
IA@, ) = Ay =0 ANp = fA(, ). Similarly, the remaining equational axioms
of Boolean algebras are verified via propositional taut@egnd rule AN. It is also
clear that (i)—(iii) of Definitior 3.1l of a model are satisfig@ondition (iv) follows from
Lemmd2.2. Finally, the conditions (v) and (vi) of a model guaranteed by rule AN.
Let M be the constructed model. We consider the canonical assigihim V' — M
defined byx — Z. By induction ony one shows thaf(y) = 3, for any formulap.
Thenp € ® & € TRUE < v(p) € TRUE < (M, ~) E ¢. Thus,(M,v) E ®.
Q.E.D.

Corollary 4.4 (Completeness Theorem)® I- ¢ = & F .

Proof. @ ¥ ¢ implies the consistency @ U {—y}. We extend this set to a maximal
consistent set which, by Lemrha}t.3, has a model. Consegquéntl . Q.E.D.

5 Conclusions

We saw that replacing rule SPSE with the stronger principleirsmodal logic S1
results in a non-normal modal logic which has a natural algetsemantics. In this
section, we discuss the relationships between S1+SP arldethis systems S1-S3.
We also show that our semantics extends straightforwaodbgmantics for the Lewis
systems S3-S5, given by certamodal algebrasAs a negative result, we shall see that
neither S1 nor S2 can be captured by our semantics.

The Substitution Principle SP, which is equivalent with thx@éoms (iv)—(vi), en-
sures that the identity connective, defined as strict etpriea, satisfies the following
identity axioms:

@p=¢p
B)(p=v) = (¢ =)



© (p=9) = (~p =)
@p=)A @ =9) = (p—=¢) =@ =)
) (p=v) = (Op =0y)

Obviously, (a)—(e) are an adaptation of Suszko’s identiipras of non-Fregean
logic [2] to the language of modal logic. We call (a)—(e) théoas of propositional
identity. Note that (c)—(e) are precisely the axioms (iv)}-6f S1+SP. (a) and (b) are
theorems of all Lewis modal systems: in order to obtain (@)yapN, (b) follows from
axiom (ii). Having in mind Suszko’s non-Fregean approachmumal logic [20], it is
not surprising that (c)—(e) are theorems of S4 and S5. Thifsléo the following

Question Are (c)—(e) theorems of all Lewis modal systems?

This is anwered by the next result which is taken from [12]edilem 5.3. For the
convenience of the reader, we reproduce here the proof.

Theorem 5.1 ([12]) In modal logic S3, the relatios of strict equivalence satisfies the
axioms of propositional identity. That is, (a)—(e) above derivable in S3. Moreover,
S3is the weakest Lewis modal logic with this property.

Proof. As before, the connective is defined as strict equivalence, i.e..= ¢ =
O(e — ) AO(W — ¢). We have to show that under this assumption the axioms of
propositional identity are derivable in S3. As already nard above, (a) and (b) are
theorems of any Lewis system. So we concentrate on (c)—(est, e observe that
(Op AOy) + O(e A ) is a theorem of S3 and strict equivalence betwgemdq)
can be expressed ly(p « w)ﬂ By rule AN we get((¢ + ¥) = (—p < —))).
By MP and axiom K we obtain (c). Similarly, we may derive (d)owwe consider
O(e — ) —» O0p — Ov) andO(yp — ¢) — OOy — ), which are axioms
of S3. We derivd(¢ — ) AO(W — ¢)) — (O0p — Oy) A DOy — Op))
and obtain (e). We have shown the first assertion of the Thedmte that axiom (e)
is the scheme(O(¢ — ¢¥) AW = ¢)) = (O0p — Ov) AO(OyY — Op)). This
formula, however, is not a theorem of S2. This can be showrobgteucting a Kripke
model of S2, i.e., a Kripke model with at least one normal @and reflexive accessi-
bility relation, where that formula is not satisfied (hinansider a model with exactly
three normal worlds and an accessibility relation whichastransitive). Hence, in S1
and S2, strict equivalence cannot be the relation of préipasil identity axiomatized

by (a)—(e). Q.E.D.
By Theoreni 5.1, principle SP is valid in S3 but not in S2. Wedtode:
Corollary 5.2 S1+SP is a sublogic of S3 and differs from S2.

Lemma 5.3 Formulas of the following form are theorems of S3:

e O((p=7) = (np =)

"The same holds true in S1+SP. This follows from applicatimimodal principle K.
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e J(lp=)N (¢ =¢) = ((p = ¢) = = ¥)))
e O((p =7) = (Op=0y)).

Proof. We will use

(3) O — 1) — OOy — 0y)

which is an axiom scheme of S3. By ANJ((¢ < ¥) — (—¢ + —)). By (3),
O((p ¢+ ) = (¢ ¢ ~0)) = O0(p « ) — O(~p « ). Then by MP,
O0(¢ < ) = Q(—¢ < —)). This is the first theorem given in the lemma. By
AN, O(((p > ) A (¢ & 0) = ((p = ¢) & (@ — ). By 3),0(((¢ ¢
YA (P o) = ((p = @) o (b= ¢) = O0((p © ) A (¢ ¥)) -
O((p = ¢) & (¥ = ¥')). By MP,OD((p + ¥)A(¢’ < 1)) = O((p — ¢')
(¢ — ¢))). Thisis equivalent witf(O(p < ) AO(¢’ < ¥')) = O((p = ¢') &
(v — 4'))). Thisis the second theorem given in the lemma. Weput O(p — ),
X2 == 0 — ¢), 51 = 00 — ), 62 := O(Ov — Op). Rule AN applied
to (3) yieldsO(x1 — 1) andO(x2 — d2). Thus,O(x1 — d1) A O(x2 — d2) is
derivable in S3, and therefore alstf(x1 — 1) A (x2 — d2)). By AN we also derive
D(((Xl — 51) A\ (XQ — 52)) — ((Xl A\ Xz) — (61 A\ 62))) Now axiom K and rule
MP yieldO((x1 A x2) — (41 A d2)). This is the third theorem in the lemma. Q.E.D.

Corollary 5.4 S1HISP is a sublogic of S3 (and differs from S2).

In the following we show that S1+SP differs from S3. Hences & proper sublogic
of S3. Recall that
3) O(p = ¢) = O0e — Oy)
is a theorem of S3. Interpreted in our semantics, (3) saysfthés a monotonic oper-
ation:m < m’ = fg(m) < fo(m’). We construct a model whepg; is not mono-
tonic. Consider the powerset algebra of the{det2} with the ultra-filterTRUE =
{{1,2},{1}} and the operatiorfy defined in the following way;fn({1,2}) = {1},
fo{2}) = {2} andfo({1}) = fo(@) = @. Of course, the lattice ordering is given
by set-theoretical inclusion. We have to show that this Banlalgebra is a model in
the sense of Definition 3.1. One easily checks that the dondili)—(v) are satisfied.
In order to verify condition (vi) it suffices to consider thalbwing cases:
A) fo(f=(m,m")) = {1}. This impliesf_,(m,m') = {1,2} = fr. That s,
m<m.
B) fa(f=(m,m')) = {2}. This impliesf_,(m,m’) = {2}. Thus, (n = {1} and
m’ = @) or (m = {1,2} andm’ = {2}).
(A fo(f—(m',m”)) = {1}. This impliesm’ < m".
(B) fa(f=(m',m")) = {2}. Thisimplies (' = {1} andm” = @) or (m’ = {1,2}
andm” = {2}).
Then it is enough to check the following two combinations){@d)’, (B)+(B)'. The
combination (B)+(B)’ is inconsistent. The remaining comddion (A)+(A)’ implies
m < m”. This is equivalent withf_, (m,m"”) = fr = {1,2}. Consequently,
fol(f=(m,m")) = fo({1,2}) = {1} and condition (vi) holds true. Now we ob-
serve that{2} C {1,2} and fo({2}) € fo({1,2}. Thus, the operatiorig is not
monotonic and scheme (3) is not valid in our semantics. TBengnnot be a theorem
of S1+SP.
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Corollary 5.5 S1+SP is a proper sublogic of S3.

Corollary 5.6 S1+SP is the smallest modal logic S such that S contains SInzout
ulo S, strict equivalence satisfies the axioms of propositional identity (a)—(e) abov
In this sense, modal logic S1+SP can be seen as the smallestragean theory that
contains modal logic S1.

From Lemma&513 it follows that we may write S3=S1+SP+(3), ielrale AN only
applies to the axioms of S1 and to (3) (but not to the axiomgoppsitional identity
SP). Finally, we observe that adding the scheme
4) Op — OO
to the non-normal modal system S3 such that rule AN also eppdi the axioms (4)
results in the normal modal logic S4. Recall that we only waith rule AN instead
of the full Necessitation Rule: “If ¢, thenk Ow.” This stronger rule, however, is
derivable in S1+SP+(3)+(4). We show this in a similar wayrelP], Lemma 2.5, by
induction on the length of the derivation ¢fin system S1+SP+(3)+(4)=S3+(4).f
is an axiom of the form (i)—(iii), (3) or (4), then we may ap@#. If ¢ is an axiom of
the form (iv)—(vi), then we may apply Lemrhab.3. In any case canclude thafly is
a theorem. Ify is the result of an application of AN to an axioptheny = Op. By
(4) and MP we geflCly, i.e.,[0y. Finally, lety be the result of an application of MP
to theorems — ¢ andyp. By induction hypothesig,](¢ — ) andCy are theorems.
Since modal law K is a theorem of S1+SP, we defilg.

Corollary 5.7 S4=S3+(4).

It is well-known that S5=S4+(5), where the axiom schemeg&jiven by
(5) Oy — O-0ep.

We have the following hierarchy of “Lewis-style” modal sgsts:
S1+SPC S1+SP+(3)=S8. S3+(4)=S4C S4+(5)=S5.

Let us look at the semantic counterparts. The class of alletsoghtisfying the addi-
tional condition
3) folfs (m,m)) < fa(f=(fo(m), fa(m))
generates a semantics for which S3 is sound and completeactndondition (3’)
corresponds to the theorem that results from an applicafigN to principle (3).
We strengthen condition (iv) of Definitidn 3.1 to
@) fo(m) = fr & m = fr,
which is the semantic counterpart of axiom scheme (4). Ta6# is sound and
complete with respect to the semantics determined by thetints (3') and (4).
Finally, it is not hard to show that models which have propét) and satisfy axiom
scheme (5) also satisfy the condition
5) falm) # fr & f-(fo(m) = fr.
This can be shorter written &s(m) # f+ < fo(m) = f1 (apply the operation of
negation to both sides of the second equation).

We would like to point out that models satisfying (3")+(41sa satisfy the condi-
tions fu(fr) = fr and fa(fa(m,m')) = fa(fo(m), fa(m)), for all m,m’. The
former equation follows readely from (4’) and the latter dokows from the fact that
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OO(p Ay) « (Op AT)) is a theorem of S4. Thus, models satisfying (3')+(4") are
specificmodal algebras

Now it is clear how to modify our original completeness proobrder to obtain
the following results.

Corollary 5.8 S3is sound and complete w.r.t. the semantics generateclyabs of
all models that satisfy the condition (3’). S4 is sound anchplete w.r.t. the semantics
given by the class of all models that satisfy (3') and (4')nddly, S5 is sound and
complete w.r.t. the class of models that satisfy the coimg43’), (4') and (57).

Of course, we gestrongcompleteness results such as formulated in Thebrem 4.4.
We conclude that our approach provides an uniform semarftezaework for the
“Lewis-like” modal logic S1+SP and the Lewis systems S3-B% Theoreni 5.1, the
systems S1 and S2 cannot be captured. If we enlarge the lg@tpyaa connectives,
then S1+SP augmented with the axiom schéme= ¢) + O(¢ + ) can be seen
as a minimal amalgam of Suszko’s basic non-Fregean logid&@nd Lewis modal
logic S1.
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