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4 Algebraic semantics for a modal logic close to S1

Steffen Lewitzka∗

Abstract

The modal systems S1–S3 were introduced by C. I. Lewis as logics for strict
implication. While there are Kripke semantics for S2 and S3,there is no known
natural semantics for S1. We extend S1 by a Substitution Principle SP which gen-
eralizes a reference rule of S1. In system S1+SP, the relation of strict equivalence
ϕ ≡ ψ satisfies the identity axioms of R. Suszko’s non-Fregean logic adapted to
the language of modal logic (we call these axioms the axioms of propositional
identity). This enables us to develop a framework of algebraic semantics which
captures S1+SP as well as the Lewis systems S3–S5. So from theviewpoint of
algebraic semantics, S1+SP turns out to be an interesting modal logic. We show
that S1+SP is strictly contained between S1 and S3 and differs from S2. It is the
weakest modal logic containing S1 such that strict equivalence is axiomatized by
propositional identity.

Keywords: modal logic, strict equivalence, propositionalidentity, non-Fregean
logic, algebraic semantics

1 Introduction

Discontented with the notion of material implication foundin thePrincipia Mathemat-
ica, C. I. Lewis introduced axiomatizations ofstrict implication [12, 13]. These sys-
tems are known as the non-normal modal logics S1, S2 and S3. In[13] also appeared
(deductively equivalent systems of) the modal logics S4 andS5 which, however, are
not accepted by Lewis as systems for strict implication. Possible worlds semantics for
modal logics was introduced years later by S. Kripke and has become the standard se-
mantics. Normal Kripke semantics involves rather strong modal principles such as the
Necessitation Rule. Some systems which do not validate the Necessitation Rule, such
as S2 and S3, can be captured by Kripke semantics if one is ready to accept the concept
of a non-normal world. The semantical treatment of other logics in the vicinity ofS1,
however, seems to be more complicated. In fact, the known semantics for S1 (M. J.
Cresswell [6, 7], see also R. Girle [8, 9]) and related systems (see, e.g., B. F. Chellas
and K. Segerberg [3]) are technically more complex and mostly unintuitive.

In this paper, we are inspired by ideas coming from R. Suszko’s non-Fregean logic
([2, 20], see also [16]). The essential feature of a non-Fregean logic is an identity
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connective≡ such that formulas of the form(ϕ ≡ ψ) → (ϕ ↔ ψ) are theorems but
the so-called Fregean Axiom(ϕ ↔ ψ) → (ϕ ≡ ψ) is not a theorem.ϕ ≡ ψ can be
read as “ϕ andψ have the same meaning” or “ϕ andψ denote the same proposition”.1

If one forces the Fregean Axiom to be valid, then the underlying non-Fregean logic
specializes to classical logic where models contain only two propositions: the True and
the False; that is, a proposition is reduced to its truth-value.2

Suszko, in his non-Fregean approach to modality [20, 2], introduces necessity by
the equational axiom scheme�ϕ ≡ (ϕ ≡ ⊤), where the tautological formula⊤
denotesthe necessary proposition (situation). He defines two theoriesWT andWH

whose models are certain topological Boolean algebras, also called interior algebras
in the literature. Applying a classical result due to McKinsey and Tarski, Suszko then
is able to conclude that the theoriesWT andWH correspond to the modal logics S4
and S5, respectively. Similar axiomatic approaches, wherethe modal operator� is
introduced by means of a given identity connective, were studied by Cresswell [4, 5],
Martens [17] and other authors; see also the historical noteat the end of [20].

In contrast to Suszko’s approach, we shall work in this paperwith the pure lan-
guage of modal logic (i.e., the language of propositional logic augmented with a modal
operator�). Instead of defining modality by means of an identity connective, we
go the other way arround and define an “identity connective” by strict equivalence:
ϕ ≡ ψ := �(ϕ → ψ) ∧ �(ψ → ϕ). We require that the so defined connective satis-
fies what we call herethe axioms of propositional identity. These are the axioms that
result from the adaptation of the identity axioms of basic non-Fregean logic ((e)–(h) of
Definition 1.1. in [2]) to the language of modal logic. It turns out that it is enough to
consider Lewis modal system S1 extended by an inference ruleSR which is slightly
stronger than the S1-rule ofSubstitution of Proved Strict Equivalents(see, e.g., [10]).
Rule SR is equivalent with theSubstitution PrincipleSP of non-Fregean logic and en-
sures that≡ has the desired properties in the resulting modal system S1+SP.3 This
enables us to develop a non-Fregean semantics whose models are given by Boolean
algebras with some additional structure. Our semantics seems to be similar to standard
algebraic semantics fornormal modal logics which relies on Boolean algebras with
operators, sometimes calledmodal algebrasin the literature (see, e.g., [1]).4 A modal
algebra is a Boolean algebra with an unary operationf� (more than one operation can
be considered) such thatf�(f⊤) = f⊤ andf�(f∧(m,m′)) = f∧(f�(m), f�(m

′)),
for all elementsm,m′ (of course,f⊤ is the top element andf∧ is the meet opera-
tion). These equations, however, are generally not satisfied in our models. Formulating
certain semantic constraints, we obtain a framework of algebraic semantics for the se-

1Motivated by Wittgenstein’sTractatus, Suszko [19] applies the termsituation instead ofproposition.
By a propositionwe mean the denotation of a sentence (a formula) in a non-Fregean model under a given
valuation. In modal logic, a proposition is usually defined as a set of possible worlds. Both views on a
proposition are very similar (see, e.g., [14, 18]).

2We call such models extensional. Among others, there are also intensional models where a proposition
not only represents a truth-value but also the intension of asentence (see, e.g., [15]).

3Suszko’s theoriesWT andWH [20] rely on stronger assumptions. The coincidence of Suszko’s identity
≡ with strict equivalence derives as a theorem (see (12.16) and the following Metatheorem VI on p. 21 in
[20]): (ϕ ≡ ψ) ≡ �(ϕ ↔ ψ). In fact, the idea to identify propositional identity with strict equivalence is
not only inherent in Suszko’s work but is also present already in Cresswell’s approach (see [5, 17]).

4Note that the topological Boolean algebras used by Suszko [20] are special cases of such modal algebras.
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quence of modal systems S1+SP, S3, S4, S5. A nice feature of this framework is that
normal and non-normal systems are captured in a conceptually uniform way. We ob-
tainstrongcompleteness theorems. We also show that the inclusions S1⊆(S1+SP)⊆S3
are strict, and (S1+SP)6=S2. S1+SP can be characterized as the weakest modal logic
containing S1 such that the relation of strict equivalence is given by propositional iden-
tity.

2 The modal logic S1+SP

The setFm of formulas of modal propositional logic is defined in the usual way over
a setV = {x0, x1, x2, ...} of propositional variables, logical connectives¬,→ and the
modal operator� for necessity. Ifx is a variable andϕ, ψ are formulas, then we write
ϕ[x := ψ] for the formula that results from substitutingψ for all occurrences ofx in
ϕ. We use the following abbreviations:

• ⊤ := (x0 → x0), ⊥ := ¬⊤

• ϕ ∧ ψ := ¬(ϕ→ ¬ψ)

• ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

• ϕ ≡ ψ := �(ϕ→ ψ) ∧�(ψ → ϕ)

In particular,ϕ ≡ ψ reads as strict equivalence ofϕ andψ. The following axioma-
tization of Lewis system S1 is due to E. J. Lemmon [11]. In contrast to Lewis original
axiomatization found in [13], Lemmon’s axiomatization is formulated as an extension
of the calculus of (non-modal) propositional logic. All formulas of the following form,
and only those, are axioms:

(i) formulas which have the form of a propositional tautology
(ii) �ϕ→ ϕ
(iii) (�(ϕ→ ψ) ∧�(ψ → χ)) → �(ϕ→ χ)

The inference rules of S1 are

• Modus Ponens MP: “Fromϕ andϕ→ ψ inferψ.”

• Axiom Necessitation AN: “Ifϕ is an axiom, then infer�ϕ.”

• Substitution of Proved Strict Equivalents SPSE: “Ifψ ≡ ψ′ is a theorem, then
any formula of the formϕ[x := ψ] ≡ ϕ[x := ψ′] is a theorem.”

Lewis system S3 results from S1 by adding
(3) �(ϕ→ ψ) → �(�ϕ→ �ψ)
as axiom scheme. Rule AN now applies to the axioms (i)–(iii) and also to (3). We write
S3=S1+(3). We shall see that S2 cannot be captured by our semantic approach, so we
do not give an axiomatization of that system here (see, e.g.,[10] for a Lemmon-style
axiomatization).
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S1 proves to be sound with respect to the algebraic semanticspresented below.
However, it is not complete: rule SPSE is too weak. Therefore, we generalize SPSE to
the following Substitution Rule SR:

“If χ→ (ψ ≡ ψ′) is a theorem, thenχ→ (ϕ[x := ψ] ≡ ϕ[x := ψ′]) is a theorem.”

Then formulas of the form
SP (ψ ≡ ψ′) → (ϕ[x := ψ] ≡ ϕ[x := ψ′])
are theorems: chooseχ = (ψ ≡ ψ′) in rule SR. On the other hand, modulo S1, rule
SR derives from SP together with transitivity of implication. That is, SR and SP are
equivalent modulo S1.

Scheme SP is what we call the Substitution Principle of non-Fregean logic (see
also, e.g., [15], Lemma 3.3). Actually, it represents a general ontological law known as
the Indiscernibility of Identicals. In basic non-Fregean logic SCI, principle SP follows
from the identity axioms (e)–(g) of Definition 1.1 in [2]; seealso the remark following
Proposition 1.3 in [2]. If we adapt Suszko’s identity axiomsto the modal language,
then SP is established by the following axioms:

(iv) (ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ)
(v) ((ϕ ≡ ψ) ∧ (ϕ′ ≡ ψ′)) → ((ϕ→ ϕ′) ≡ (ψ → ψ′))
(vi) (ϕ ≡ ψ) → (�ϕ ≡ �ψ)

It is not hard to recognize that (iv)–(vi) are equivalent with scheme SP. That is, SP
can be seen as an abbreviation of (iv)–(vi). In the following, we consider the modal sys-
tem S1+SP which results from S1 by adding the axiom schemes (iv)–(vi) (and ignoring
rule SPSE which is weaker than SP). As in S1, the inference rules are again MP and
AN. However, the application of rule AN remains restricted to the axioms (i)–(iii) of
the original system S1. A derivation of a formulaϕ from a set of formulasΦ in system
S1+SP is a finite sequence of formulasϕ0, ..., ϕn = ϕ such that for eachi = 0, ..., n,
formulaϕi is either an element ofΦ, or it is an axiom, or it is the conclusion of rule AN
applied to an axiom of type (i)–(iii), or it is the conclusionof rule MP with premises
that appear asϕj andϕk = (ϕj → ϕi) in the sequence withj, k < j. We writeΦ ⊢ ϕ
if there exists a derivation ofϕ fromΦ in deductive system S1+SP.

If we let rule AN be applicable to all axioms (i)–(vi), then weget a stronger system
which we denote by S1+�SP. Both S1+SP and S1+�SP are sublogics of S3 as we shall
see below.

If we consider the Lemmon-style axiomatization of system S2such as given in
[10], then S3=S2+(3), where AN applies here to all axioms of S2 and also to (3). S2
contains a rule called Becker’s Rule: “If�(ϕ→ ψ) is a theorem, then�(�ϕ→ �ψ)
is a theorem.” Now observe that scheme (3) generalizes Becker’s rule in exactly the
same way as SP generalizes the S1-rule SPSE. That is, S1+�SP corresponds to S1 in
the way as S3 corresponds to S2. The logic S1+�SP, however, is less important for our
purposes. In the present paper, we are interested in aminimalmodal logic which can
be integrated into the hierarchy of Lewis systems S1–S5 suchthat strict equivalence
satisfies SP, i.e., the axioms (iv)–(vi). It turns out that S1+SP is strong enough for our
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purposes. So we will focus on that system.

The following Deduction Theorem can be shown by induction onthe length of a
derivation, similarly as in [14], Lemma 2.3.

Lemma 2.1 (Deduction Theorem) IfΦ ∪ {ϕ} ⊢ ψ, thenΦ ⊢ ϕ→ ψ.

Lemma 2.2 �ϕ↔ (ϕ ≡ ⊤) is a theorem, for any formulaϕ.

Proof. By rule AN we derive the following:�((ϕ→ ⊤) → ⊤), �(⊤ → (ϕ→ ⊤)),
�((⊤ → ϕ) → ϕ) and�(ϕ→ (⊤ → ϕ)). This yields
(a)⊢ (ϕ→ ⊤) ≡ ⊤ and
(b)⊢ (⊤ → ϕ) ≡ ϕ.
Letχ1 be the formula�ϕ↔ (�x ∧�(⊤ → ϕ)), wherex is a fresh variable. By SP,
⊢ ((ϕ→ ⊤) ≡ ⊤) → χ1[x := (ϕ→ ⊤)] ≡ χ1[x := ⊤]).
Then (a) and MP yield
(c) ⊢ (�ϕ↔ (�(ϕ→ ⊤) ∧�(⊤ → ϕ))) ≡ (�ϕ↔ (�⊤ ∧�(⊤ → ϕ))).
Now letχ2 = �ϕ↔ (�⊤ ∧�y), wherey is a fresh variable. By SP,
⊢ ((⊤ → ϕ) ≡ ϕ) → (χ2[y := (⊤ → ϕ)] ≡ χ2[y := ϕ]).
Then (b) and MP yield
(d)⊢ (�ϕ↔ (�⊤ ∧�(⊤ → ϕ))) ≡ (�ϕ↔ (�⊤ ∧�ϕ)).
By axiom (iii), the identity connective is transitive. Thus, (c) and (d) imply
⊢ (�ϕ↔ (�(ϕ→ ⊤) ∧�(⊤ → ϕ))) ≡ (�ϕ↔ (�⊤ ∧�ϕ)).
That is,
⊢ (�ϕ↔ (ϕ ≡ ⊤)) ≡ (�ϕ↔ (�⊤ ∧�ϕ)).
The formula on the right hand side of the last equation is obviously a theorem. Then
the formula on the left hand side is a theorem, too. Q.E.D.

We shall refer to the scheme�ϕ ↔ (ϕ ≡ ⊤) as principle N. It says that a propo-
sition denoted byϕ is necessary iffϕ and⊤ denote the same proposition. In other
words, “There is exactly one necessary proposition”.

Lemma 2.3 Modal principle K is a theorem:⊢ �(ϕ→ ψ) → (�ϕ→ �ψ).

Proof. We have
{�(ϕ→ ψ),�ϕ} ⊢ �(ϕ→ ψ)
{�(ϕ→ ψ),�ϕ} ⊢ �ϕ
{�(ϕ→ ψ),�ϕ} ⊢ ϕ ≡ ⊤, by premise�ϕ, principle N and MP
{�(ϕ→ ψ),�ϕ} ⊢ (ϕ ≡ ⊤) → (�(x → ψ)[x := ϕ] ≡ �(x→ ψ)[x := ⊤]), by SP,
wherex is a fresh variable
{�(ϕ→ ψ),�ϕ} ⊢ (ϕ ≡ ⊤) → (�(ϕ→ ψ) ≡ �(⊤ → ψ))
{�(ϕ→ ψ),�ϕ} ⊢ �(ϕ→ ψ) ≡ �(⊤ → ψ), by MP
{�(ϕ→ ψ),�ϕ} ⊢ �(⊤ → ψ), by axiom scheme (ii) and MP
{�(ϕ→ ψ),�ϕ} ⊢ �(ψ → ⊤), by AN
{�(ϕ→ ψ),�ϕ} ⊢ ψ ≡ ⊤
{�(ϕ→ ψ),�ϕ} ⊢ (ψ ≡ ⊤) → �ψ, by principle N
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{�(ϕ→ ψ),�ϕ} ⊢ �ψ, by MP
⊢ �(ϕ→ ψ) → (�ϕ→ �ψ), by applying two times the Deduction Theorem. Q.E.D.

3 Semantics

A Boolean algebra is usually given by a non-empty universe together with operations
for join, meet, complement and two distinguished elements (the smallest and the great-
est element w.r.t. the induced lattice ordering) such that certain equations are satisfied.
In the following definition we make use of the fact that, by interdefinability of opera-
tions, a Boolean algebra can be equivalently given by operations for complement and
implication.

Definition 3.1 A modelM = (M,TRUE, f¬, f→, f�) is given by an universeM
of abstract entities, called propositions, a setTRUE ⊆ M of true propositions and
operationsf¬, f→ for complement and implication which form a Boolean algebra
on M , and an unary operationf� such that for allm,m′,m′′ ∈ M the following
conditions (i)–(vi) are satisfied. By≤ we denote the induced lattice ordering,f⊤, f⊥
are the greatest, the smallest element of the lattice, respectively, andf∧ is the meet
operation of the Boolean algebra.

(i) f⊥ /∈ TRUE, f⊤ ∈ TRUE

(ii) f¬(m) ∈ TRUE ⇔ m /∈ TRUE

(iii) f→(m,m′) ∈ TRUE ⇔ m /∈ TRUE or m′ ∈ TRUE

(iv) f�(m) ∈ TRUE ⇔ m = f⊤

(v) f�(m) ≤ m

(vi) f∧(f�(f→(m,m′)), f�(f→(m′,m′′))) ≤ f�(f→(m,m′′))

As every Boolean algebra, a modelM satisfiesm ≤ m′ ⇔ f→(m,m′) = f⊤. We
will make tacitly use of this fact in some of the proofs below.The conditions (i)–(iii) in
the definition ensure thatTRUE is an ultrafilter of the Boolean lattice. The conditions
(v) and (vi) are semantic counterparts of applications of rule AN to the axioms (ii) and
(iii), respectively. Condition (iv) specifies the properties of the modal operator. Later,
we will strengthen that condition in order to obtain semantics for stronger modal logics,
namely for the Lewis systems S3–S5.

Definition 3.2 Let M be a model. An assignment of propositions to formulas is a
functionγ : V → M which extends in the canonical way to a functionγ : Fm → M
(we refer to the extension again byγ).5 That is,γ(¬ϕ) = f¬(γ(ϕ)), γ(ϕ → ψ) =
f→(γ(ϕ), γ(ψ)) andγ(�ϕ) = f�(γ(ϕ)). If M is a model andγ is a corresponding
assignment, then we call the tuple(M, γ) an interpretation. The satisfaction relation
between interpretations and formulas is defined by(M, γ) � ϕ :⇔ γ(ϕ) ∈ TRUE.

5An assignment is sometimes called a valuation.
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This definition extends in the usual way to sets of formulas. For a set of formulasΦ
we defineMod(Φ) = {(M, γ) | (M, γ) � Φ}. The relation of logical consequence is
defined by:Φ 
 ϕ :⇔ Mod(Φ) ⊆Mod({ϕ}).

Now it is clear how to interpret the lattice ordering≤ of a given modelM. If
m,m′ ∈M , thenm ≤ m′ means that propositionm strictly implies propositionm′.6

The following result says that the defined connective≡ has the intended semantics,
i.e., it is an identity connective:

Theorem 3.3 If (M, γ) is an interpretation andϕ, ψ ∈ Fm, then

(M, γ) � ϕ ≡ ψ ⇔ γ(ϕ) = γ(ψ).

Proof. Suppose(M, γ) � ϕ ≡ ψ. That is,(M, γ) � �(ϕ → ψ) ∧ �(ψ → ϕ).
Let γ(ϕ) = m andγ(ψ) = m′. Then follows thatf�(f→(m,m′)) ∈ TRUE and
f�(f→(m′,m)) ∈ TRUE. Thus,m ≤ m′ andm′ ≤ m, and finallym = m′. On the
other hand, ifγ(ϕ) = m = γ(ψ), thenf�(f→(m,m)) ∈ TRUE, sincem ≤ m. It
follows that(M, γ) � ϕ ≡ ψ. Q.E.D.

Corollary 3.4 Principle SP is valid:
 (ψ ≡ ψ′) → (ϕ[x := ψ] ≡ ϕ[x := ψ′]).

Proof. Suppose(M, γ) � ψ ≡ ψ′. By Theorem 3.3,γ(ψ) = γ(ψ′). By induc-
tion on ϕ it follows that γ(ϕ[x := ψ]) = γ(ϕ[x := ψ′]). Theorem 3.3 implies
(M, γ) � ϕ[x := ψ] ≡ ϕ[x := ψ′]. Q.E.D.

This result also provides the following semantical interpretation of SP. Ifψ, ψ′ and
ϕ are formulas such thatψ is a subformula ofϕ, andψ has the same denotation asψ′,
thenϕ has the same denotation asϕ′, whereϕ′ is the result of replacingψ in ϕ byψ′.

Our next goal is to prove that S1+SP is sound. LetM be a model with universe
M . With a given assignmentγ : V → M we may associate a truth–value assignment
βγ : V → {0, 1} defined byβγ(x) = 1 :⇔ γ(x) ∈ TRUE. It follows that for all non-
modal propositional formulasϕ, γ(ϕ) ∈ TRUE ⇔ βγ(ϕ) = 1. Thus,(M, γ) � ϕ,
for all propositional tautologiesϕ. Now supposeϕ is a modal formula having the form
of a propositional tautology, i.e.ϕ is the result of replacements of variables by modal
formulas within a propositional tautology. By soundness ofSP, Corollary 3.4,ϕ has the
same denotation as the original tautology. This holds in every model, thusϕ is valid.
Sincef⊤ ∈ TRUE, axiom (ii) is valid. Axiom (iii) says that the lattice ordering of any
model is transitive. We have shown that the S1-axioms (i)–(iii) are valid. The validity
of (iv)–(vi) is guaranteed by Corollary 3.4. Obviously, rule MP is sound. It is well-
known that in any Boolean algebra, any assignment maps all propositional tautologies
to the top element of the lattice. Thus, ifϕ is an axiom of the form (i), then�ϕ is
valid. The conditions (v) and (vi) of Definition 3.1 ensure that the same holds for
axioms of the form (ii) and (iii), respectively. Thus, rule AN is sound (recall that we

6We havem ≤ m′ iff f→(m,m′) = f⊤ iff f�(f→(m,m′)) ∈ TRUE. Choose variablesx, y and
an assignmentγ such thatγ(x) = m andγ(y) = m′. Then(M, γ) � �(x → y) ⇔ m ≤ m′.
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have restricted the application of AN to axioms of the form (i)–(iii)). The soundness of
the deductive system now follows by induction on the length of a derivation.

Theorem 3.5 (Soundness)For any setΦ ∪ {ϕ} ⊆ Fm: Φ ⊢ ϕ⇒ Φ 
 ϕ.

4 The Completeness Theorem

In order to prove strong completeness of S1+SP we follow the usual strategy. We call
a set of formulas consistent if there is a formula which is notderivable from that set. A
set which is not consistent is called inconsistent. A maximal consistent set of formulas
is a consistent set such that every proper extension is inconsistent. From standard
arguments it follows that each consistent set extends to a maximal consistent set. It
remains to show that a maximal consistent set has a model. We will tacitly make use of
the following well-known properties of a maximal consistent setΦ. These properties
follow from propositional logic:

• ϕ ∈ Φ ⇔ Φ ⊢ ϕ

• ¬ϕ ∈ Φ ⇔ ϕ /∈ Φ

• ϕ→ ψ ∈ Φ ⇔ ϕ /∈ Φ orψ ∈ Φ.

Definition 4.1 For a maximal consistent setΦ we define a relation≈Φ on Fm by
ϕ ≈Φ ψ :⇔ Φ ⊢ ϕ ≡ ψ.

Lemma 4.2 Let Φ be a maximal consistent set. The relation≈Φ is an equivalence
relation onFm with the following properties:

• If ϕ1 ≈Φ ψ1 andϕ2 ≈Φ ψ2, then¬ϕ1 ≈Φ ¬ψ1, �ϕ1 ≈Φ �ψ1 andϕ1 →
ϕ2 ≈Φ ψ1 → ψ2.

• If ϕ ≈Φ ψ, thenϕ ∈ Φ ⇔ ψ ∈ Φ.

• If ϕ ≈Φ ψ, then�ϕ ∈ Φ ⇔ �ψ ∈ Φ.

Proof. Symmetry of≈Φ follows from propositional logic. Sinceϕ→ ϕ is an axiom,
we get�(ϕ→ ϕ) ∈ Φ by rule AN. Thus,≈Φ is reflexive. Transitivity follows from the
scheme of axioms (iii). Now supposeϕ1 ≈Φ ψ1 andϕ2 ≈Φ ψ2. Letx 6= y be variables
such thatx does not occur inψ2 andy does not occur inϕ1. Then by SP and MP:
(ϕ1 → ϕ2) = (ϕ1 → y)[y := ϕ2] ≈Φ (ϕ1 → y)[y := ψ2] = (ϕ1 → ψ2) = (x →
ψ2)[x := ϕ1] ≈Φ (x → ψ2)[x := ψ1] = (ψ1 → ψ2). The remaining cases of the first
item of the Lemma follow similarly. The second item of the Lemma follows from the
scheme of axioms (ii). Finally, the third item follows from the previous assertions of
the Lemma. Q.E.D.

Lemma 4.3 Any maximal consistent has a model.
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Proof. Let Φ be a maximal consistent set of formulas. Byϕ we denote the equiv-
alence class ofϕ ∈ Fm modulo≈Φ. We are going to construct a model with the
following ingredients:

• M := {ϕ | ϕ ∈ Fm}

• TRUE := {ϕ | ϕ ∈ Φ}

• functionsf¬, f→,f� defined byf¬(ϕ) := ¬ϕ, f→(ϕ, ψ) := ϕ→ ψ, f�(ϕ) :=
�ϕ, respectively

By Lemma 4.2, all these ingredients are well-defined. We may define operations
for join f∨, meetf∧, top elementf⊤ and bottom elementf⊥ by means of the given
operationsf¬ andf→. In order to prove that the defined operations form a Boolean
algebra onM it suffices to show that the elements ofM satisfy the equations which
axiomatize the class of Boolean algebras. As an example, we choose the commutativity
of the meet operation:f∧(ϕ, ψ) = f∧(ψ, ϕ), for anyϕ, ψ ∈ M . Since(ϕ ∧ ψ) ↔
(ψ ∧ ϕ) is a tautology of propositional logic, rule AN impliesΦ ⊢ �((ϕ ∧ ψ) →
(ψ ∧ ϕ)) ∧ �((ψ ∧ ϕ) → (ϕ ∧ ψ)). That is,Φ ⊢ (ϕ ∧ ψ) ≡ (ψ ∧ ϕ). Thus,
f∧(ϕ, ψ) = ϕ ∧ ψ = ψ ∧ ϕ = f∧(ψ, ϕ). Similarly, the remaining equational axioms
of Boolean algebras are verified via propositional tautologies and rule AN. It is also
clear that (i)–(iii) of Definition 3.1 of a model are satisfied. Condition (iv) follows from
Lemma 2.2. Finally, the conditions (v) and (vi) of a model areguaranteed by rule AN.
Let M be the constructed model. We consider the canonical assignmentγ : V → M
defined byx 7→ x. By induction onϕ one shows thatγ(ϕ) = ϕ, for any formulaϕ.
Thenϕ ∈ Φ ⇔ ϕ ∈ TRUE ⇔ γ(ϕ) ∈ TRUE ⇔ (M, γ) � ϕ. Thus,(M, γ) � Φ.
Q.E.D.

Corollary 4.4 (Completeness Theorem)Φ 
 ϕ⇒ Φ ⊢ ϕ.

Proof. Φ 0 ϕ implies the consistency ofΦ ∪ {¬ϕ}. We extend this set to a maximal
consistent set which, by Lemma 4.3, has a model. Consequently,Φ 1 ϕ. Q.E.D.

5 Conclusions

We saw that replacing rule SPSE with the stronger principle SP in modal logic S1
results in a non-normal modal logic which has a natural algebraic semantics. In this
section, we discuss the relationships between S1+SP and theLewis systems S1–S3.
We also show that our semantics extends straightforwardly to semantics for the Lewis
systems S3–S5, given by certainmodal algebras. As a negative result, we shall see that
neither S1 nor S2 can be captured by our semantics.

The Substitution Principle SP, which is equivalent with theaxioms (iv)–(vi), en-
sures that the identity connective, defined as strict equivalence, satisfies the following
identity axioms:

(a)ϕ ≡ ϕ
(b) (ϕ ≡ ψ) → (ϕ→ ψ)
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(c) (ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ)
(d) ((ϕ ≡ ψ) ∧ (ϕ′ ≡ ψ′)) → ((ϕ→ ϕ′) ≡ (ψ → ψ′))
(e) (ϕ ≡ ψ) → (�ϕ ≡ �ψ)

Obviously, (a)–(e) are an adaptation of Suszko’s identity axioms of non-Fregean
logic [2] to the language of modal logic. We call (a)–(e) the axioms of propositional
identity. Note that (c)–(e) are precisely the axioms (iv)–(vi) of S1+SP. (a) and (b) are
theorems of all Lewis modal systems: in order to obtain (a) apply AN, (b) follows from
axiom (ii). Having in mind Suszko’s non-Fregean approach tomodal logic [20], it is
not surprising that (c)–(e) are theorems of S4 and S5. This leads to the following

Question: Are (c)–(e) theorems of all Lewis modal systems?

This is anwered by the next result which is taken from [12], Theorem 5.3. For the
convenience of the reader, we reproduce here the proof.

Theorem 5.1 ([12]) In modal logic S3, the relation≡ of strict equivalence satisfies the
axioms of propositional identity. That is, (a)–(e) above are derivable in S3. Moreover,
S3 is the weakest Lewis modal logic with this property.

Proof. As before, the connective≡ is defined as strict equivalence, i.e.,ϕ ≡ ψ :=
�(ϕ → ψ) ∧ �(ψ → ϕ). We have to show that under this assumption the axioms of
propositional identity are derivable in S3. As already mentioned above, (a) and (b) are
theorems of any Lewis system. So we concentrate on (c)–(e). First, we observe that
(�ϕ ∧ �ψ) ↔ �(ϕ ∧ ψ) is a theorem of S3 and strict equivalence betweenϕ andψ
can be expressed by�(ϕ ↔ ψ).7 By rule AN we get�((ϕ ↔ ψ) → (¬ϕ ↔ ¬ψ)).
By MP and axiom K we obtain (c). Similarly, we may derive (d). Now we consider
�(ϕ → ψ) → �(�ϕ → �ψ) and�(ψ → ϕ) → �(�ψ → �ϕ), which are axioms
of S3. We derive(�(ϕ → ψ) ∧ �(ψ → ϕ)) → (�(�ϕ → �ψ) ∧ �(�ψ → �ϕ))
and obtain (e). We have shown the first assertion of the Theorem. Note that axiom (e)
is the scheme:(�(ϕ→ ψ) ∧�(ψ → ϕ)) → (�(�ϕ→ �ψ) ∧�(�ψ → �ϕ)). This
formula, however, is not a theorem of S2. This can be shown by constructing a Kripke
model of S2, i.e., a Kripke model with at least one normal world and reflexive accessi-
bility relation, where that formula is not satisfied (hint: consider a model with exactly
three normal worlds and an accessibility relation which is not transitive). Hence, in S1
and S2, strict equivalence cannot be the relation of propositional identity axiomatized
by (a)–(e). Q.E.D.

By Theorem 5.1, principle SP is valid in S3 but not in S2. We conclude:

Corollary 5.2 S1+SP is a sublogic of S3 and differs from S2.

Lemma 5.3 Formulas of the following form are theorems of S3:

• �((ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ))

7The same holds true in S1+SP. This follows from applicationsof modal principle K.
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• �(((ϕ ≡ ψ) ∧ (ϕ′ ≡ ψ′)) → ((ϕ→ ϕ′) ≡ (ψ → ψ′)))

• �((ϕ ≡ ψ) → (�ϕ ≡ �ψ)).

Proof. We will use
(3) �(ϕ→ ψ) → �(�ϕ→ �ψ)
which is an axiom scheme of S3. By AN,�((ϕ ↔ ψ) → (¬ϕ ↔ ¬ψ)). By (3),
�((ϕ ↔ ψ) → (¬ϕ ↔ ¬ψ)) → �(�(ϕ ↔ ψ) → �(¬ϕ ↔ ¬ψ)). Then by MP,
�(�(ϕ ↔ ψ) → �(¬ϕ ↔ ¬ψ)). This is the first theorem given in the lemma. By
AN, �(((ϕ ↔ ψ) ∧ (ϕ′ ↔ ψ′)) → ((ϕ → ϕ′) ↔ (ψ → ψ′))). By (3),�(((ϕ ↔
ψ) ∧ (ϕ′ ↔ ψ′)) → ((ϕ → ϕ′) ↔ (ψ → ψ′))) → �(�((ϕ ↔ ψ) ∧ (ϕ′ ↔ ψ′)) →
�((ϕ→ ϕ′) ↔ (ψ → ψ′))). By MP,�(�((ϕ↔ ψ)∧(ϕ′ ↔ ψ′)) → �((ϕ→ ϕ′) ↔
(ψ → ψ′))). This is equivalent with�(�(ϕ↔ ψ)∧�(ϕ′ ↔ ψ′)) → �((ϕ→ ϕ′) ↔
(ψ → ψ′))). This is the second theorem given in the lemma. We putχ1 := �(ϕ→ ψ),
χ2 := �(ψ → ϕ), δ1 := �(�ϕ → �ψ), δ2 := �(�ψ → �ϕ). Rule AN applied
to (3) yields�(χ1 → δ1) and�(χ2 → δ2). Thus,�(χ1 → δ1) ∧ �(χ2 → δ2) is
derivable in S3, and therefore also�((χ1 → δ1) ∧ (χ2 → δ2)). By AN we also derive
�(((χ1 → δ1) ∧ (χ2 → δ2)) → ((χ1 ∧ χ2) → (δ1 ∧ δ2))). Now axiom K and rule
MP yield�((χ1 ∧ χ2) → (δ1 ∧ δ2)). This is the third theorem in the lemma. Q.E.D.

Corollary 5.4 S1+�SP is a sublogic of S3 (and differs from S2).

In the following we show that S1+SP differs from S3. Hence, itis a proper sublogic
of S3. Recall that
(3) �(ϕ→ ψ) → �(�ϕ→ �ψ)
is a theorem of S3. Interpreted in our semantics, (3) says that f� is a monotonic oper-
ation:m ≤ m′ ⇒ f�(m) ≤ f�(m

′). We construct a model wheref� is not mono-
tonic. Consider the powerset algebra of the set{1, 2} with the ultra-filterTRUE =
{{1, 2}, {1}} and the operationf� defined in the following way:f�({1, 2}) = {1},
f�({2}) = {2} andf�({1}) = f�(∅) = ∅. Of course, the lattice ordering is given
by set-theoretical inclusion. We have to show that this Boolean algebra is a model in
the sense of Definition 3.1. One easily checks that the conditions (i)–(v) are satisfied.
In order to verify condition (vi) it suffices to consider the following cases:
(A) f�(f→(m,m′)) = {1}. This impliesf→(m,m′) = {1, 2} = f⊤. That is,
m ≤ m′.
(B) f�(f→(m,m′)) = {2}. This impliesf→(m,m′) = {2}. Thus, (m = {1} and
m′ = ∅) or (m = {1, 2} andm′ = {2}).
(A)’ f�(f→(m′,m′′)) = {1}. This impliesm′ ≤ m′′.
(B)’ f�(f→(m′,m′′)) = {2}. This implies (m′ = {1} andm′′ = ∅) or (m′ = {1, 2}
andm′′ = {2}).
Then it is enough to check the following two combinations: (A)+(A)’, (B)+(B)’. The
combination (B)+(B)’ is inconsistent. The remaining combination (A)+(A)’ implies
m ≤ m′′. This is equivalent withf→(m,m′′) = f⊤ = {1, 2}. Consequently,
f�(f→(m,m′′)) = f�({1, 2}) = {1} and condition (vi) holds true. Now we ob-
serve that{2} ⊆ {1, 2} andf�({2}) * f�({1, 2}. Thus, the operationf� is not
monotonic and scheme (3) is not valid in our semantics. Then (3) cannot be a theorem
of S1+SP.
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Corollary 5.5 S1+SP is a proper sublogic of S3.

Corollary 5.6 S1+SP is the smallest modal logic S such that S contains S1 and, mod-
ulo S, strict equivalence≡ satisfies the axioms of propositional identity (a)–(e) above.
In this sense, modal logic S1+SP can be seen as the smallest non-Fregean theory that
contains modal logic S1.

From Lemma 5.3 it follows that we may write S3=S1+SP+(3), where rule AN only
applies to the axioms of S1 and to (3) (but not to the axioms of propositional identity
SP). Finally, we observe that adding the scheme
(4) �ϕ→ ��ϕ
to the non-normal modal system S3 such that rule AN also applies to the axioms (4)
results in the normal modal logic S4. Recall that we only workwith rule AN instead
of the full Necessitation Rule: “If⊢ ψ, then⊢ �ψ.” This stronger rule, however, is
derivable in S1+SP+(3)+(4). We show this in a similar way as in [12], Lemma 2.5, by
induction on the length of the derivation ofψ in system S1+SP+(3)+(4)=S3+(4). Ifψ
is an axiom of the form (i)–(iii), (3) or (4), then we may applyAN. If ψ is an axiom of
the form (iv)–(vi), then we may apply Lemma 5.3. In any case, we conclude that�ψ is
a theorem. Ifψ is the result of an application of AN to an axiomϕ, thenψ = �ϕ. By
(4) and MP we get��ϕ, i.e.,�ψ. Finally, letψ be the result of an application of MP
to theoremsϕ→ ψ andϕ. By induction hypothesis,�(ϕ→ ψ) and�ϕ are theorems.
Since modal law K is a theorem of S1+SP, we derive�ψ.

Corollary 5.7 S4=S3+(4).

It is well-known that S5=S4+(5), where the axiom scheme (5) is given by
(5) ¬�ϕ→ �¬�ϕ.

We have the following hierarchy of “Lewis-style” modal systems:
S1+SP( S1+SP+(3)=S3( S3+(4)=S4( S4+(5)=S5.

Let us look at the semantic counterparts. The class of all models satisfying the addi-
tional condition
(3’) f�(f→(m,m′)) ≤ f�(f→(f�(m), f�(m

′)))
generates a semantics for which S3 is sound and complete. In fact, condition (3’)
corresponds to the theorem that results from an applicationof AN to principle (3).
We strengthen condition (iv) of Definition 3.1 to
(4’) f�(m) = f⊤ ⇔ m = f⊤,
which is the semantic counterpart of axiom scheme (4). That is, S4 is sound and
complete with respect to the semantics determined by the constraints (3’) and (4’).
Finally, it is not hard to show that models which have property (4’) and satisfy axiom
scheme (5) also satisfy the condition
(5’) f�(m) 6= f⊤ ⇔ f¬(f�(m)) = f⊤.
This can be shorter written asf�(m) 6= f⊤ ⇔ f�(m) = f⊥ (apply the operation of
negation to both sides of the second equation).

We would like to point out that models satisfying (3’)+(4’) also satisfy the condi-
tionsf�(f⊤) = f⊤ andf�(f∧(m,m′)) = f∧(f�(m), f�(m

′)), for all m,m′. The
former equation follows readely from (4’) and the latter onefollows from the fact that
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�(�(ϕ∧ψ) ↔ (�ϕ∧�ψ)) is a theorem of S4. Thus, models satisfying (3’)+(4’) are
specificmodal algebras.

Now it is clear how to modify our original completeness proofin order to obtain
the following results.

Corollary 5.8 S3 is sound and complete w.r.t. the semantics generated by the class of
all models that satisfy the condition (3’). S4 is sound and complete w.r.t. the semantics
given by the class of all models that satisfy (3’) and (4’). Finally, S5 is sound and
complete w.r.t. the class of models that satisfy the constraints (3’), (4’) and (5’).

Of course, we getstrongcompleteness results such as formulated in Theorem 4.4.
We conclude that our approach provides an uniform semantical framework for the
“Lewis-like” modal logic S1+SP and the Lewis systems S3–S5.By Theorem 5.1, the
systems S1 and S2 cannot be captured. If we enlarge the language by a connective≡,
then S1+SP augmented with the axiom scheme(ϕ ≡ ψ) ↔ �(ϕ ↔ ψ) can be seen
as a minimal amalgam of Suszko’s basic non-Fregean logic SCI[2] and Lewis modal
logic S1.
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