
The Collapse of the Bounded Width Hierarchy

Libor Barto∗

June 18, 2014

Abstract

We show that every constraint satisfaction problem over a fixed
constraint language that has bounded relational width has also rela-
tional width (2, 3). Together with known results this gives a trichotomy
for width: a constraint satisfaction problem has either relational width
1, or relational width (2, 3) (and no smaller width), or does not have
bounded relational width.

Keywords: constraint satisfaction problem, bounded width, relational width,

local consistency, Prague instance

1 Introduction

The constraint satisfaction problem (CSP) provides a common framework
for expressing a wide range of computational problems. An instance of the
CSP consists of variables and constraints, where each constraint is presented
as a list of admissible evaluations for some of the variables.

The decision problem for CSP asks whether a given instance admits an
evaluation of variables satisfying all the constraints. While this problem
is NP-complete, a number of subclasses have been shown to be tractable
(that is, in P). One way to define a subclass of the CSP is to restrict the
constraint relations that occur in an instance to a fixed set of relations Γ
(on a finite set), called a constraint language. Examples of computational
problems that can be viewed as CSPs over a fixed language include various
Boolean satisfiability problems (eg. k-SAT, HORN-SAT), the problem q-
LIN of solving systems of linear equations over the field GF(q), or graph

∗Department of Algebra, Faculty of Mathematics and Physics, Charles University in
Prague, Sokolovská 83, 18675 Praha 8, Czech Republic, libor.barto@gmail.com.

1

homomorphism problems with fixed target graph (eg. k-coloring, graph
reachability).

One of the central problems in this area is the dichotomy conjecture [14]
postulating that every CSP over a fixed language Γ is either NP-complete,
or tractable. The original conjecture was in fact formulated for finite Γ, the
more general version would follow from the local-global conjecture from [8]
stating that the CSP over Γ is tractable whenever the CSP over every finite
Γ′ ⊆ Γ is tractable.

All known tractable cases are solvable either by the few subpowers al-
gorithm [16], by local consistency algorithms [1, 14], or by a combination
of these two. This paper sharpens a result of [1] that characterizes the
applicability of local consistency algorithms for finite constraint languages.
1

The idea of local consistency algorithms is to derive as much information
as possible about evaluations for small number of variables. More specifi-
cally, for fixed k ≤ l, we find all possible constraints on k variables which can
be derived by “considering” l variables at a time. Precise definition depends
on what information is considered, we work with so called relational width.
The instance is rejected iff a contradiction (an empty constraint) is derived.
This algorithm can have false positives. If this is never the case for CSPs
over a language Γ, we say that Γ, or the CSP over Γ, has relational width
(k, l). We say that Γ has bounded relational width if it has relational width
(k, l) for some k, l.

As an example, consider the language Γ = {=, 6=}, where =, 6= are under-
stood as binary relations on {0, 1}, and the instance over Γ containing the
constraints x = y, y = z, z = w, x 6= w. By considering variables {x, y, z}
we can derive x = z. Then, by considering {x, z, w}, we derive x = w, which
is a contradiction with the last constraint. In fact, Γ has relational width
(2, 3), that is, a contradiction can be found in such a way for any unsolvable
instance of the CSP over Γ. A more general problem of relational width
(2, 3) is the CSP over the language consisting of all unary and binary rela-
tions on {0, 1} (this includes 2-SAT). An example of a “thinner” problem
is HORN-SAT, which has relational width (1, 1). No examples of “thicker”
problems than (2, 3) are known; for a good reason – the main result of this
paper shows that all languages of bounded relational width have relational
width (2, 3).

Typical problems which do not have bounded relational width are the

1The paper [4] generalizes [1] in a different direction. The approach in this paper
combines [1] and [4].

2

problems q-LIN [14]. No language which can, in some sense, simulate q-
LIN has thus bounded relational width [18]. In [1, 4], it was proved that
this is the only obstacle in case of finite languages. The parameters (k, l)
depend there on the maximum arity of a relation in Γ. It turned out that
when definitions in [1] are properly modified, then the proof can be adjusted
to give our stronger result. An interesting consequence is that there is an
algorithm for testing whether a given finite Γ has bounded relational width.
This algorithm is polynomial for so called core languages or when the size
of the domain is fixed.

Essentially the same result was independently obtained by Bulatov [7].
His proof is rather different. He works directly with relational width and the
proof is based on detailed local analysis of the instance. The proof presented
in this paper uses more global arguments and works with a different (weaker)
consistency notion, a Prague instance, which is of independent interest.

2 Notation and terminology

For a positive integer n, we define [n] = {1, 2, . . . , n}.
An n-ary relation on a set D is a subset of Dn, an n-ary operation on D

is a mapping Dn → D.
We use DV to denote the set of all mappings from V to D and f|W to

denote the restriction of f ∈ DV to a subseteq W ⊆ V . The projection of a
subset C of DV onto W ⊆ V is denoted by

C|W = {f|W : f ∈ C} ⊆ DW .

For W = {x} we simply write C|x and sometimes view it as a subset of D

(rather than D{x}).
By an ordering of C ⊆ DV we mean a |V |-ary relation of the form

{(f(x1), . . . , f(xk)) : f ∈ C} where (x1, . . . , xk) is a list of all elements of V .
If t is an n-ary operation onD and f1, . . . , fn ∈ DV , we write t(f1, . . . , fn)

for the element of DV defined by

(t(f1, . . . , fn))(x) = t(f1(x), . . . , fn(x)), x ∈ V ,

that is, operations are applied coordinate-wise. Similarly, we can apply an
n-ary operation to an n-tuple of members of a k-ary relation.

3

3 CSP

There are three definitions of the decision problem for CSP widely used in
the literature: homomorphism version, satisfiability version and variable-
value version. We use a variation of the variable-value form.

In the standard variable-value definition, an instance of the CSP consists
of a set of variables V , a domain D and a list (or a set) of constraints, where
each constraint (x, R) comprises a k-tuple of variables x = (x1, . . . , xk) ∈ V k

and a k-ary relation R ⊆ Dk (so called constraint relation). The question is
whether there exists a mapping f : V → A which satisfies all the constraints,
that is, f(x) ∈ R for every constraint (x, R).

Constraints with repetition of variables can be replaced with constraints
without repetitions. For instance, a constraint ((x, y, x), R) can be replaced
by a pair of constraints ((x, y, z), R), ((x, z),=), where z is a new variable.
Moreover, order of variables can be changed arbitrarily; for instance, a con-
straint ((x, y), R) is equivalent to ((y, x), R−1), where R−1 is obtained from
R by swapping the coordinates. This leads to the following “unordered”
version of the definition which is more convenient for our purposes.

Definition 3.1. An instance of the constraint satisfaction problem (CSP)
is a triple I = (V,D, C) with

• V a nonempty, finite set of variables,

• D a nonempty, finite domain,

• C a finite nonempty set of constraints, where each constraint is a
subset C of DW . Here W is a subset of V called the scope of C and
the cardinality |W | of W is referred to as the arity of C.

An instance is trivial if it contains the empty constraint.
The question is whether there exists a solution to I, that is, a function

f : V → D such that, for each constraint C ∈ C, say with scope W , the
restriction f|W is in C.

A CSP instance can be viewed as a multipartite colored hypergraph.
Partite sets are copies of D, one for each variable, and a constraint C ∈ C is
a set of hyperedges (between partite sets corresponding to variables in the
scope of C) colored by C.

We consider the restriction of this problem to a fixed set of allowed
constraint relations.

4

Definition 3.2. A constraint language Γ is a set of relations on a finite
set D containing the binary equality relation. The constraint satisfaction
problem over Γ, denoted CSP(Γ), is the subclass of the CSP defined by the
property that any constraint has an ordering belonging to Γ.

The definition also slightly deviates from the standard one: in order to
be able to simulate repetitions of variables we always demand the equality
relation to be in a constraint language. However, this tweak do not sig-
nificantly change the complexity of the problem [8] nor (relational) width
[18].

4 Consistency

In this section, we first introduce relational width and state the main result
about the collapse of the relational width hierarchy. Next, we discuss a
more technical notion of a (k, l)-system which gives an additional insight
into (relational) width and which was used in several papers on the subject
(e.g. [1]). Finally, we compare relational width to width.

4.1 Relational width

An elegant way to introduce relational width (k, l) is via the notion of a
(k, l)-minimal instance. It is a refinement of the notion of a k-minimal
instance used in e.g. [9].

Definition 4.1. Let l ≥ k > 0 be natural numbers. An instance I =
(V,D, C) of the CSP is (k, l)-minimal, if:

(M1) Every at most l-element set of variables is contained in the scope of
some constraint in C.

(M2) For every set W of at most k variables and every pair of constraints
C1 and C2 from C whose scopes contain W , the projections of the
constraints C1 and C2 onto W are the same.

A (k, k)-minimal instance is also called k-minimal.

A (k, l)-minimal instance is (k′, l′)-minimal for any l′ ≥ k′ > 0 such that
k′ ≤ k and l′ ≤ l.

For fixed k, l, every instance I of the CSP can be converted to an equiva-
lent (k, l)-minimal instance (that is, a (k, l)-minimal instance with the same
set of solutions) in polynomial time. A straightforward way to do this is as
follows. We call this algorithm the (k, l)-minimality algorithm.

5

1. For each l-element set W ⊂ V add a “dummy” constraint AW . (This is
only necessary whenW is not contained in the scope of any constraint.)

2. Repeat the following process until it stabilizes: For every set W of at
most k variables and every pair of constraints C1 and C2 from C whose
scopes contain W , remove from C1 and C2 all functions f such that
f|W 6∈ C1|W ∩ C2|W

It is explained below that the obtained (k, l)-minimal instance J does not
depend on the particular order in which we perform the removals, thus we
will call J the (k, l)-minimal instance associated to I.

This instance J is equivalent to the original one as removals in the second
step clearly do not change the set of solutions. Therefore, if J is trivial,
then I does not have a solution. However, in the opposite case, we cannot
in general conclude that the original instance does have a solution. Those
constraint languages for which this converse implication is true are said to
have relational width (k, l).

Definition 4.2. A constraint language Γ has relational width (k, l) if, for
every instance I of CSP(Γ), I has a solution provided that the (k, l)-minimal
instance associated to I is nontrivial.

Γ has relational width k if it has width (k, k), Γ has bounded relational
width if it has relational width (k, l) for some k, l.

In particular, if a constraint language Γ has bounded relational width,
then CSP(Γ) is tractable.

It follows from [14] that every language of width (1, k) for some k has
width 1. The main result of [13] proves that every language of width 2 has
width 1. A consequence of the main result of this paper (see Corollary 6.7) is
that every language of bounded width has width (2, 3). Therefore we obtain
the following trichotomy for relational width.

Theorem 4.3. For every constraint language Γ precisely one of the follow-
ing statements are true.

1. Γ has relational width 1.

2. Γ has relational width (2, 3) and does not have relational width 2, nor
(1, l) for any l ≥ 1.

3. Γ does not have bounded relational width.

6

4.2 (k, l)-system

Every (k, l)-minimal instance J implicitly contains a unique constraint PW

with any given at most k-element scope W . Indeed, for W ⊆ V , |W | ≤ k,
there exists a constraint C whose scope contains W (by (M1)) and the
projection PW = C|W does not depend on the choice of W (by (M2)).

Moreover, these induced constraints and any constraint C ⊆ DU in J satisfy
the following property:

(k-forth property for C) For every W ⊆ U of size at most k and every
f ∈ PW there exists g ∈ C such that g|W = f and g|Z ∈ PZ for every
Z, |Z| ≤ k.

Indeed, as C|W = PW (by (M2)) there exists g ∈ C such that g|W = f
and, by (M2) again, g|Z ∈ PZ for every Z of size at most k.

From (M1) it follows that, for any set U ⊆ V of size l, the instance J
satisfies the k-forth property for some constraint with scope U , therefore it
satisfies this property for the constraint DU .

Definition 4.4. An instance K = (V,D, {PW : W ⊆ V, |W | ≤ k}) is called
a (k, l)-system if (PW)|Z = PZ for every Z,W ⊆ V , Z ⊆ W , |W | ≤ k and

K satisfies the k-forth property for DU for every U of size l.
An instance I is said to be compatible with a (k, l)-system K if I and

K have the same set of variables and the same domain, and K satisfies the
k-forth property for every constraint in I.

In the discussion above we started with a (k, l)-minimal instance J and
associated to it a compatible (k, l)-system K. Now we start with an arbitrary
CSP instance I and establish a connection between the output of the (k, l)-
minimality algorithm and (k, l)-systems compatible with I.

Let J be the (k, l)-minimal instance associated to I and letK = (V,D, {PW })
be the (k, l)-system associated to J . We claim that K is equal to the largest
(with respect to inclusion of constraints with the same scope) (k, l)-system
K′ = (V,D, {P ′W }) compatible with I. Such a largest system exists since, as
is easily seen, a union 2 of (k, l)-systems compatible with I is a (k, l)-system
compatible with I. The system K itself is compatible with I, therefore
K is included in K′. On the other hand, no mapping g ∈ C proving the
compatibility of K′ with I is removed form C during the execution of the
(k, l)-minimality algorithm, thus K′ is contained in K. We conclude that
K = K′.

2By the union of (k, l)-systems Ki = (V,D, {P i
W : W ⊆ V, |W | ≤ k}) we mean the

(k, l)-system (V,D, {∪P i
W : W ⊆ V, |W | ≤ k})

7

Observation 4.5. Let I be an instance of the CSP and l ≥ k > 0 natural
numbers. The (k, l)-minimality algorithm returns a nontrivial instance if
and only if there exists a nontrivial (k, l)-system compatible with I.

In particular, a constraint language Γ has relational width (k, l) if and
only if every instance of CSP(Γ) which admits a compatible nontrivial (k, l)-
system has a solution.

It is also readily seen that a mapping g in a constraint C ⊆ DU survives
the execution of the (k, l)-minimality algorithm if and only if g|W ∈ PW

for every W ⊆ U of size at most k. It follows that the result of the (k, l)-
minimality algorithm does not depend on a particular order of removals.

Observation 4.5 can also be used to give a more efficient algorithm for
CSPs of width (k, l) than the presented naive algorithm: Instead of adding
all the dummy constraints of arity l, it is enough to add constraints of arity k
and enforce the k-forth property for every constraint and every DU , |U | = l.

4.3 Width

The notion of width is natural in the homomorphism viewpoint on the CSP.
We provide a straightforward translation of the standard definition via (k, l)-
consistency to the variable-value form. For alternative definitions using
Datalog programs, pebble games, or tree width duality we refer to [14, 10].

For our hierarchy collapse result, relational width is better suited since
(2, 3)-consistency handles unary and binary constraints in the same way as
(2, 3)-minimality, derives unnecessarily more information for ternary con-
straints, and ignores constraints of arity greater than three.

For the translation of width to the variable-value form, we need the
concept of a partial solution. Let I = (V,D, C) be an instance of the CSP.
A mapping f ∈ DU (where U ⊆ V) is a partial solution of I, if f|W ∈ C for
every W ⊆ U and every constraint C with scope W .

Now we can describe the (k, l)-consistency algorithm.

1. Create a new instance I ′ formed by all partial solutions on every l-
element subset of variables, formally

I ′ = (V,D, {SU : U ⊆ V, |U | = l}),
SU = {f ∈ DU : f is a partial solution of I} .

2. Run the (k, l)-minimality algorithm for the instance I ′.

8

We say that a constraint language Γ has width (k, l) if, for every instance
I of CSP(Γ), I has a solution provided that the (k, l)-consistency algorithm
returns a nontrivial instance. Similarly, a constraint language Γ has bounded
width if it has width (k, l) for some k, l.

An analogue to Observation 4.5 is true with suitable modification of
compatibility. We say that a (k, l)-system K is compatible* with an instance
I if

for every U of size at most l, W ⊆ U of size at most k, and every f ∈ PW ,
there exists a partial solution g ∈ DU such that g|W = f and g|Z ∈ PZ

for every Z, |Z| ≤ k.

It is left as an exercise that the (k, l)-consistency algorithm returns a nontriv-
ial instance if and only if there exists a nontrivial (k, l)-system compatible*
with I. In particular, a constraint language Γ has width (k, l) if and only
if every instance of CSP(Γ) which admits a compatible* nontrivial (k, l)-
system has a solution.

If a constraint language Γ contains only relations of arity less than or
equal to k then there is no difference between relational width (k, l) and
width (k, l) since the two notions of compatibility coincide. In particular, a
finite constraint language has bounded width if and only if it has bounded
relational width.

For relations of arity between k+1 and l, the (k, l)-consistency algorithm
is in general stronger than the (k, l)-minimality algorithm. More precisely,
if the (k, l)-consistency algorithm returns a nontrivial instance then so does
the (k, l)-minimality algorithm, but the converse is not true in general.

Example 4.6. The instance I = (V,D, {C0, C1}), where

V = {x, y, z},
D = {0, 1},
Ci = {f ∈ DV : (f(x) + f(y) + f(z)) mod 2 = i}, i ∈ {0, 1} ,

is (2, 3)-minimal, but the (2, 3)-consistency algorithm returns a trivial in-
stance since there is no partial solution f ∈ DV .

The result of the (k, l)-consistency algorithm does not depend on con-
straints of arity greater than l, so this algorithm is not well suited for con-
straint languages containing “interesting” relations of high arity. A natural
modification which partially overcomes this problem is to change the notion
of a partial solution f ∈ DU in such a way that f is required to satisfy

9

f|W ∈ C|W for every W ⊆ U and every constraint C whose scope con-
tains W . The next example shows that this modification is not sufficient to
guarantee width (2, 3) for all bounded width problems.

Example 4.7. The instance I = (V,D, {C0, C1, . . . , C4}), where

V = {x1, x2, x3, x4},
D = {0, 1},
C0 = {f ∈ DV : (f(x1), f(x2), f(x3), f(x4)) 6= (0, 0, 0, 0)},
Ci = {f ∈ D{xi} : f(xi) = 0}

does not have a solution while the modified (2, 3)-consistency algorithm re-
turns a nontrivial instance. It may be checked using, for instance, Theo-
rem 5.3 and Corollary 6.6 that the constraint language Γ = {=, {0}, {1}, {0, 1}4\
{(0, 0, 0, 0)}} has relational width (2, 3) (and therefore also width (2, 4)).

In terms of width, Theorem 4.3 has the following consequence.

Corollary 4.8. Let Γ be a finite constraint language of bounded width. Then
Γ has width (2,max{3, k}), where k is the maximum arity of a relation in
Γ.

Proof. As discussed above, if Γ has bounded width then it has bounded
relational width, hence relational width (2, 3) by Theorem 4.3. But the
(2,max{3, k})-consistency algorithm is, under the assumption on maximum
arity of relations, stronger than (2, 3)-minimality algorithm, and the claim
follows.

5 Characterization of bounded width

Systems of linear equations over a finite field GF(q) are resistant to local
consistency methods, even when restricted to systems consisting of equations
in at most 3 variables. More precisely, the language Γq−3−LIN formed by all
affine subspaces of GF(q)3 does not have bounded (relational) width [14].

The obvious necessary condition for a language Γ to have bounded (rela-
tional) width is thus that Γ cannot “simulate” Γq−3−LIN . 3 Not so obvious
is what precisely “simulate” should mean. From today’s perspective, the

3Similar “obvious” necessary conditions were found for CSP(Γ) being tractable (assum-
ing P 6= NP), or belonging to the complexity classes L, NL (with suitable assumptions),
and for some other properties.

10

short, slightly imprecise, answer is that “simulates” simply means “posi-
tively primitively interprets”. 4

Positive primitive interpretability is closely related to central objects of
interest in universal algebra – varieties and Mal’tsev conditions. This is the
basis for the success of the algebraic approach to the CSP. We refer to [8, 11]
for an introduction to the algebraic approach and to [6] for the connection
to positive primitive interpretability. Here we only define algebraic notions
required for the proof of the main result.

An algebra A is a set A, called the universe of A, together with a set
of operations on A. An algebra A is a clone if it contains all projection
operations (of all arities) and is closed under superposition. A subset B of
the universe A of an algebra A is its subuniverse, written B ≤ A, if it is
closed under all operations in A. In such a situation, we call B, together
with restrictions of all operations of A to B, a subalgebra of A, we denote
this subalgebra B and write B ≤ A. (We will abuse the notation by using
the same letter for an operation in an algebra and in its subalgebra.) More
generaly, a subset C of AW is a subpower of A if C is closed under all
operations in A (applied coordinate-wise, see Section 2). It is easily seen
that the projection of a subpower C ≤ AW onto any subset U ⊆ W is a
subpower of D. In particular, the projection onto any coordinate x ∈ W is
a subuniverse of A.

Let Γ be a constraint language on a finite domain D. An operation t
on D is called a polymorphism of Γ if every R ∈ Γ is closed under t. The
set D together with all polymorphisms of Γ forms a clone D, the clone of
polymorphism of Γ.

A constraint language Γ is a core if all of its unary polymorphisms are
bijections. To every Γ we can associate an essentially unique core Γ′ such
that Γ has relational width (k, l) iff Γ′ does. Moreover, if Γ is a core, then
bounded relational width is preserved by adding all the singleton unary
relations {d}, d ∈ D [18] (the cited paper works with width, but the proofs
can be done in a similar way for relational width).

Lemma 5.1. [18]

1. For any k ≤ l, a constraint language has relational width (k, l) iff its
core does.

2. A core constraint language Γ has bounded width iff Γ together with all
singletons does.

4More precisely, Γ can simulate Γq−3−LIN if the core of Γ positively primitively inter-
prets a language whose core is Γq−3−LIN .

11

Note that if Γ is a constraint language with all singletons then the clone
D of polymorphisms is idempotent, that is, for every operation t of D we
have t(a, . . . , a) = a for all a ∈ D.

A constraint language Γ with all singletons cannot simulate Γq−3−LIN
if and only if the clone of polymorphisms D satisfies a certain algebraic
property, namely that the variety generated by D is congruence meet semi-
distributive, or D is SD(∧) for short. It will require further definitions to
explain this properly. We only state a nice characterization of such clones
from [19]. (Using Corollary 6.5 this characterization was improved in [17],
see Section 8.)

Definition 5.2. An operation t : Dn → D, n ≥ 2, is called a weak near-
unanimity operation if t(a, a, . . . , a) = a and

t(b, a, . . . , a) = t(a, b, a, . . . , a) = · · · = t(a, . . . , a, b)

for every a, b ∈ D.

Theorem 5.3. [19] An idempotent clone D with finite universe D is SD(∧)
iff there exists n such that D has a weak near unanimity operation t of arity
m for every m ≥ n.

For the proof of the main result, we will only use two properties of SD(∧)
clones stated in Theorems 7.2 and 7.3.

As discussed, a necessary condition for bounded width is that the clone
of polymorphisms is SD(∧).

Theorem 5.4. [18] Let Γ be a constraint language with all singletons and
D be its clone of polymorphisms. If Γ has bounded relational width, then D
is SD(∧).

For finite constraint languages, this necessary condition is also sufficient:

Theorem 5.5. [1, 4] Let Γ be a finite constraint language with all singletons
and D its clone of polymorphisms. If D is SD(∧), then Γ has bounded
(relational) width.

Corollary 6.6 generalize this theorem to arbitrary constraint languages
and strengthens bounded width to relational width (2, 3). The collapse
result (Theorem 4.3) then easily follows, see Corollary 6.7.

It will be convenient for us to parametrize the CSP by algebras.

Definition 5.6. Let D be an algebra. The CSP over D, denoted CSP(D),
is the CSP restricted to instances where each constraint is a subpower of D.

12

By the definition of a polymorphism, if Γ is a constraint language and D
its clone of polymorphisms, then every constraint in an instance of CSP(Γ)
is a subpower of D, thus an instance of CSP(Γ) is an instance of CSP(D).

The following lemma is a folklore.

Lemma 5.7. Let D be an algebra and k ≤ l. Then the (k, l)-minimal
instance associated to an instance of CSP(D) is an instance of CSP(D).

Proof. It is enough to observe that removals in step 2 of the (k, l)-minimality
algorithms will result in subpowers of D provided we started with subpowers
of D. To see that, let W be a set of variables, let C1, C2 be constraints
whose scopes contain W , and assume that C1, C2 are subpowers of D. Let
P = C1|W ∩C2|W . Since P is an instersection of projections of subpowers, P
is a subpower of D. After the removals, Ci becomes C ′i = {f ∈ Ci : f|W ∈ P}
which is, again, a subpower of D.

6 Prague instance

Why does the relational width hierarchy stop precisely at the level (2, 3)? An
explanation for this phenomenon is that the full strength of (2, 3)-minimality
is not needed to guarantee a solution. It is enough when the instance is 1-
minimal and satisfies a certain global connectivity property which is implied
by (2, 3)-minimality (and not implied by (k, l)-minimality for k < 2 or l < 3).

Instances satisfying this weaker consistency property are called Prague
instances. This concept is used here as a tool for the proof of the main
result. However, it may be of independent importance since a result in [3] on
robust satisfiability shows a connection (of a similar notion) to the canonical
semidefinite programing relaxations of the CSP.

We proceed to define Prague instances. From now on, all instances we
shall work with are 1-minimal. For such an instance I = (V,D, C) and a
variable x ∈ V we write Px instead of P{x} (see Section 4.2 for a definition).

In situations when we wish to emphasize the instance, we write P
(I)
x . Recall

that the projection C|x of any constraint C ∈ C whose scope contains x onto
x is equal to Px.

The following definitions can be nicely visualized on the multipartite
hypergraph described after Definition 3.1 of the CSP. One can restrict the
x-th partite set to Px (instead of considering the whole D) since the other
elements play no role.

Definition 6.1. Let I = (V,D, C) be a 1-minimal instance of the CSP. A

13

pattern of length k − 1 > 0 from x1 to xk (in I) is a tuple

p = (x1, C1, x2, C2, . . . , xk−1, Ck−1, xk) ,

where xi ∈ V for every i ∈ [k], Ci ∈ C, and {xi, xi+1} is in the scope of Ci

for every i ∈ [k − 1]. The set of all variables in p is denoted by [[p]], that is,
[[p]] = {x1, x2, . . . , xk}. The pattern p is closed if x1 = xk.

A realization of p in I is a tuple (f1, . . . , fk−1) such that, for every
i ∈ [k − 1], fi ∈ Ci and fi(xi+1) = fi+1(xi). We say that this realization
connects f1(x1) to fk−1(xk). We say that p connects a ∈ Px to b ∈ Py if
there exists a realization of p that connects a to b.

For X ⊆ V , x ∈ X, and a, b ∈ Px, we say that a and b are connected
in X if there exists a pattern p from x to x which connects a to b such that
[[p]] ⊆ X. (The notion depends on the variable x, which should always be
clear from the context.)

If p is a pattern from x to y and A ⊆ Px, we define a subset A+ p of Py

by
A+ p = {b ∈ Py : (∃a ∈ A) p connects a to b} .

If p = (x1, C1, . . . , xk) and q = (y1, C
′
1, . . . , yl) are patterns such that

xk = y1 we define p + q = (x1, C1, . . . , xk = y1, C
′
1, . . . , yl) and −p =

(xk, . . . , C1, x1). For a closed pattern p and m ≥ 1 we put

m× p = p+ p+ · · ·+ p︸ ︷︷ ︸
m×

.

We write A − p instead of A + (−p). Since (A + p) + q = A + (p + q)
(whenever the expressions make sense) we can simply write A+ p+ q. Also
observe that Px + p = Py, A ⊆ A+ p− p and A+ (x,C, x) = A, where p is a
pattern from x to y, A ⊆ Px, and C is a constraint whose scope contains x.

We are ready for the main definition.

Definition 6.2. An instance I = (V,D, C) of the CSP is a Prague instance
if it is 1-minimal and for any x ∈ V , any closed pattern p from x to x, and
any a, b ∈ Px, if a and b are connected in [[p]] then there exists k > 0 such
that k × p connects a to b.

Prague instance is a weaker notion than (2, 3)-minimal instance:

Lemma 6.3. Every (2, 3)-minimal instance is a Prague instance.

14

Proof sketch, for details see Lemma IV.8. in [1]. The lemma is easily proved
using the following claim: If I = (V,D, C) is a (2, 3)-minimal instance,
x, y ∈ V , and a, b ∈ D are such that (a, b) = (h(x), h(y)) for some h ∈ P{x,y},
then any pattern q = (x = x1, C1, . . . , xl = y) connects a to b.

To prove the claim, let a1 = a, al = b, h1 = h. By the 2-forth property
for D{x1,x2,xl} there exists a2 ∈ Px2 such that (a1, a2) = (g(x1), g(x2)) for
some g ∈ P{x1,x2} and (a2, al) = (h2(a2), h2(al)) for some h2 ∈ P{x2,xl}. By
the 2-forth property for C1, there exists f1 ∈ C1 such that f1(x1) = a1 and
f1(x2) = a2. In a similar way, we can find a3 ∈ Px3 and f2 ∈ C2 such that
f2(x2) = a2 and f2(x3) = a3, and so on. After l−1 steps we get a realization
(f1, . . . , fl−1) connecting a1 = a to al = b.

The next theorem is the core result of the paper. Its proof covers Sec-
tion 7.

Theorem 6.4. Let D be an idempotent SD(∧) clone. Then every nontrivial
Prague instance of CSP(D) has a solution.

Before moving further, we state some immediate consequences.

Corollary 6.5. Let D be an idempotent SD(∧) clone. Then every (2, 3)-
minimal instance of CSP(D) has a solution.

Proof. The claim follows from Lemma 6.3 and Theorem 6.4.

Corollary 6.6. Let Γ be a constraint language with all singletons and D be
its clone of polymorphisms. Then the following are equivalent.

1. D is SD(∧).

2. Γ has relational width (2, 3).

3. Γ has bounded relational width.

Proof. Assume that D is SD(∧) and let I be an instance of CSP(Γ). Then
I is an instance of CSP(D) and, by Lemma 5.7, the (2, 3)-minimal instance
J associated to I is an instance of CSP(D). If J is nontrivial then it has a
solution by Corollary 6.5, as required.

The implication “2⇒ 3” is trivial and “3⇒ 1” follows from Theorem 5.4.

Corollary 6.7. Let Γ be a constraint language. If Γ has bounded relational
width, then Γ has relational width (2, 3).

15

Proof. Assume that Γ has bounded relational width. Let Γ′ be the core of
Γ expanded with all singleton unary relations and let D be the algebra of
polymorphisms of Γ′. By Lemma 5.1, Γ′ has bounded relational width and
thus, by Theorem 5.4, D is SD(∧). By Corollary 6.6, Γ′ has relational width
(2, 3), consequently, Γ has relational width (2, 3).

Two useful properties of Prague instances are stated in the following
lemmata.

Lemma 6.8. Let I = (V,D, C) be a Prague instance, x ∈ V , and p a closed
pattern from x to x. Then there exists m > 0 such that for every k ≥ m and
every a, b ∈ Px, if a and b are connected in [[p]] then k × p connects a to b.

Proof sketch, for details see Lemma IV.10 in [1] part (Pα). It is enough to
find such an m for a fixed a = b ∈ Px. From the definition of Prague
instance, there exists l such that l × p connects a to a. Let c ∈ Px be such
that p connects a to c and (l− 1)× p connects c to a. From the definition of
Prague instance again, this time used for a, c and the pattern l×p, we get l′

such that l′× (l×p) = (ll′)×p connects a to c. Now l×p and (l′l+ l−1)×p
both connect a to a. Since l and l′l+ l− 1 are coprime, it follows that k× p
connects a to a for all sufficiently large k, as required.

Lemma 6.9. Let I = (V,D, C) be a Prague instance, x, y ∈ V , p a pattern
from x to y, q a pattern from y to x, A ⊆ Px, B ⊆ Py, and C ∈ C a
constraint whose scope contains {x, y}. If A + p = B and B + q = A, then
A+ (x,C, y) = B.

Proof sketch, for details see Lemma IV.10 in [1] part (Pβ). Every element
of A+(x,C, y) is connected in [[p+q]] to an element of B. Using B+q+p = B
and the definition of Prague instance we get A + (x,C, y) ⊆ B. Similarly
B + (y, C, x) ⊆ A. Now B ⊆ B + (y, C, x) − (y, C, x) ⊆ A + (x,C, y) and
A+ (x,C, y) = B follows. .

Note that in case that x = y the conclusion of the lemma is that A = B.
The following properties of Prague instances are proved by induction

from Lemma 6.9.

(P2) For every closed pattern p from x to x and every A ⊆ Px, if A+p = A,
then A+ p− p = A.

(P3) For every closed patterns p, q from x to x and every A ⊆ Px, if A +
p+ q = A, then A+ p = A.

16

Those 1-minimal instances which satisfy (P2) and (P3) and contain only
binary constraints, at most one for each pair of variables, were called weak
Prague instances in [4] and an analogue of Theorem 6.4 was proved in that
paper. We do not know whether conditions (P2) and (P3) are sufficient in
general.

7 Proof of Theorem 6.4

The strategy for the proof is to gradually make the Prague instance smaller
until all the sets Px are one-element. Then the mapping sending x to the
unique element of Px is clearly a solution.

Let D be an idempotent SD(∧) clone and let I = (P,D, C) be a Prague
instance of CSP(D) such that |Px| > 1 for some x ∈ V . Each set Px is
a subuniverse of D (since it is a projection of a subpower), we denote the
corresponding subalgebra of D by Px.

We will find an n-ary operation t of D, a nonempty subset X ⊆ V , and
subsets P i

x ⊆ Px, x ∈ V , i ∈ {0, . . . , n} such that

(D1) P 0
x is a proper subset of Px for every x ∈ X,
P i
x = Px for every x ∈ V \X, i ∈ {0, . . . , n},

(D2) P i
x is a subuniverse of Px for every x ∈ V , i ∈ {0, . . . , n},

(D3) P i
x + (x,C, y) = P i

y for every x ∈ X, y ∈ V , i ∈ {0, . . . , n} and every
constraint C ∈ C whose scope contains {x, y},

(D4) t(a1, . . . , an) ∈ P 0
x for every x ∈ V , a1, . . . , an ∈ Px such that ai ∈ P i

x

holds for all but at most one i ∈ [n].

The construction depends on the presence or absence of so called ab-
sorbing subuniverses.

Definition 7.1. A subuniverse A of an idempotent clone P is absorbing if
there exists an operation t of P of arity n > 1 such that t(a1, . . . , an) ∈ A
whenever ai ∈ P for all i ∈ [n] and ai ∈ A for all but at most one i ∈ [n].

An absorbing subuniverse A of P is proper if ∅ 6= A 6= P .

The case where some Px, x ∈ V has a proper absorbing subuniverse is
handled in Subsection 7.1. The operation t will be any operation witnessing
the absorption.

The case where no Px has a proper absorbing subuniverse is dealt with
in Subsection 7.2. We will get the operation t from the following theorem.

17

Theorem 7.2. Let P be an idempotent SD(∧) clone. Then there exists an
operation t of P and elements c1, . . . , cn, b ∈ P such that t(a1, . . . , an) = b
whenever ai ∈ P for all i ∈ [n] and ai = ci for all but at most one i ∈ [n].

Remarks. This theorem was proved in [4] under an additional assumption
that P is simple. Such a weaker version would be sufficient for our purposes.
However, to avoid some technicalities, we use this general version from [5].

The construction is a bit more involved than in the absorption case. A
crucial fact is that lack of absorption has strong impact on shape of relations,
as witnessed by the following theorem. Here a subset R of P × Q is called
linked if the projection to the first (the second, resp.) coordinate is equal to
P (Q, resp.) and the transitive closure of the relation

{(a, b) ∈ P 2 : (∃c ∈ Q) (a, c), (b, c) ∈ R}

is equal to P 2. In other words, R is connected when viewed as a bipartite
graph with partite sets P and Q.

Theorem 7.3. Let D be an SD(∧) clone, R be a subuniverse of D2, P,Q
be the projections of R to the first and the second coordinate, respectively,
and let P,Q be the corresponding sublagebras of D. If neither P nor Q has
a proper absorbing subuniverse and R is linked then R = P ×Q.

Remarks. This theorem holds under a weaker algebraic assumption on D –
it is enough when D is Taylor [2]. We remark that, by [19], D is Taylor if and
only if D has a weak near-unanimity operation (compare to Theorem 5.3).

In Subsection 7.3, we show that by removing tuples outside the sets P 0
x

we get a Prague instance J of CSP(D) with P
(J)
x = P 0

x for all x ∈ V .
This will finish the proof since, by (D2), at least one of the sets Px becomes
smaller, so by repeating this procedure we obtain an instance with |Px| = 1
for all x ∈ V .

Some straightforward algebraic facts used throughout are summarized
in the following two lemmata.

Lemma 7.4. Let x, y ∈ V , p a pattern from x to y.

(1) The set S = {(a, b) ∈ Px × Py : p connects a to b } is a subuniverse
of D and its projection to the first (the second, resp.) coordinate is Px

(Py, resp.).

18

(2) If s is a k-ary operation of D, A1, . . . , Ak, B ⊆ Px and s(a1, . . . , ak) ∈
B for any ai ∈ Ai, i ∈ [k], then for any a′1, . . . , a

′
k ∈ Py such that

a′i ∈ Ai + p, i ∈ [k] we have s(a′1, . . . , a
′
k) ∈ B + p.

(3) If A is a subuniverse (an absorbing subuniverse, resp.) of Px, then
A+ p is a subuniverse (an absorbing subuniverse, resp.) of Py.

Proof. The first part of (1) follows from the fact that an operation of D
applied (component-wise) to realizations of p is a realization of p. The
second part follows from 1-minimality.

(2) follows from (1).
To prove (3), apply (2) to A1 = · · · = Ak = B = A (for the absorption

part we set Ai = Px for one i).

Lemma 7.5. If R,S ≤ D2 then the relational composition

R ◦ S = {(a, c) ∈ D ×D : (∃b ∈ D) (a, b) ∈ R and (b, c) ∈ S}

is also a subuniverse of D2.

Proof. Straightforward.

7.1 Absorption

We assume that z ∈ V is such that Pz has a proper absorbing subuniverse
E. Let t be an operation of Pz (and D) witnessing the absorption and n be
its arity.

We define a quasiorder (that is, a reflexive and transitive relation) on
the set of all pairs (A, x) such that x ∈ V and A (Px by

(A, x) ≤ (B, y) iff B = A+ p for some pattern p from x to y .

LetM be a maximal component of this quasiorder greater or equal to (E, z)

Claim. For any x ∈ V , if (A, x), (B, x) ∈M, then A = B.

Proof. Since (A, x) ≤ (B, x) ≤ (A, x) there are closed patterns p, q from x
to x such that A + p = B and B + q = A. Then A + p + q = A and, by
property (P2) from the previous section we get A = A+ p = B.

Let X be the set of all variables which appear in a pair from M. For
every x ∈ X, the previous claim allows us to define P 0

x = P 1
x = · · · = Pn

x as
the unique subset of Px such that (P i

x, x) ∈M. Thus we have

M = {(P i
x, x) : x ∈ X} .

19

For x ∈ V \X we set P i
x = Px for all i ∈ {0, . . . , n}.

It remains to verify properties (D1) through (D4). (D1) is satisfied by
construction. (D2) and (D4) are trivial for x ∈ V \X. For variables x ∈ X
we use part (3) of Lemma 7.4: As each P i

x, x ∈ X, i ∈ {0, . . . , n} is obtained
from (E, z) by adding a pattern from z to x, P i

x is an absorbing subuniverse
of Px, and thus properties (D2) and (D4) are satisfied,

To verify (D3), we take x ∈ X, y ∈ V , i ∈ {0, . . . , n}, and a constraint
C ∈ C whose scope contains {x, y}. If y ∈ X then, since (P i

x, x) ≤ (P i
y, y) ≤

(P i
x, x), there exist patterns p from x yo y and q from y to x such that

P i
x + p = P i

y and P i
y + q = P i

x. Now P i
x + (x,C, y) = P i

y by Lemma 6.9. If,
on the other hand, y ∈ V \X, then P i

x + (x,C, y) = Py = P i
y since otherwise

(P i
x + (x,C, y), y) would belong to the quosiordered set and then y would

belong to X by maximality of M.

7.2 No absorption

Throughout this subsection we assume that no Px has a proper absorbing
subuniverse.

We first recall the notion of a congruence. We say that an equivalence
∼⊆ P ×P on P is a congruence of an algebra P if ∼≤ P2. A congruence ∼
on P is maximal if the unique congruence properly containing ∼ is the trivial
congruence P 2. Since the diagonal {(a, a) : a ∈ P} is always a congruence
of P, every at least two-element finite algebra has a maximal congruence.

Let z ∈ V be any variable such that |Pz| > 1 and let ∼ be a maximal
congruence of Pz. From Theorem 7.2 we get an n-ary operation t of Pz and
elements c1, . . . , cn, b ∈ Pz such that t(a1, . . . , an) = b whenever ai ∈ Pz and
|{i : ai 6= ci}| ≤ 1. We set P 0

z = b/∼ and P i
z = ci/∼ for all i ∈ [n].

The set X is defined by

X = {x ∈ V : there exists a pattern px from z to x such that P 0
z +p (Px} .

We fix patterns px from the definition of X (if there are more choices we
take any of them). For x ∈ X we set P i

x = P i
z + px for all i ∈ {0, . . . , n},

and for x ∈ V \X we set P i
x = Px.

It remains to verify properties (D1) through (D4). Property (D1) is
satisfied by construction.

Properties (D2) and (D4) are trivial for x ∈ V \X. Now we verify them
for x = z.

Claim. Properties (D2) and (D4) are satisfied for x = z.

20

Proof. (D2) follows from idempotency of D: If s is a k-ary operation of Px

and a1, . . . , ak ∈ P i
z , then t(a1, . . . , ak) ∼ t(a1, . . . , a1) = a1, so t(a1, . . . , ak) ∈

a1/∼ = P i
z .

(D4). If ai ∈ Pz for all i and ai ∈ P i
z for all but at most one i, say i = 1,

then t(a1, . . . , an) ∼ t(a1, c2, . . . , cn) = b, so t(a1, . . . , an) ∈ P 0
z .

To prove (D4) for x ∈ X, we use part (2) of Lemma 7.4 with p = px,
B = P 0

z , and Ai = P i
z for all but one i, for which we choose Ai = Pz.

Similarly, (D2) follows from part (3) of the same lemma.
To verify (D3) we use the following consequence of Theorem 7.3.

Claim. For every x ∈ V and every pattern p from z to x either

(1) for any i, j ∈ {0, . . . , n} with P i
z 6= P j

z , the sets P i
z + p and P j

z + p are
disjoint, or

(2) P i
z + p = Px for all i ∈ {0, . . . , n}.

Proof. Let S = {(a, b) ∈ Pz × Px : p connects a to b} and

R = α ◦ S = {(a, b) ∈ Pz × Px : p connects some a′ ∼ a to b} ,
R−1 = {(b, a) : (a, b) ∈ R} .

Since S (see part (1) of Lemma 7.4) and α are subpowers of D, the relational
composition R = α ◦ S is, by Lemma 7.5, a subpower of D. Clearly, the
projection of R onto the first coordinate is equal to Pz and the projection
to the second coordinate is equal to Px.

Let β be the transitive closure of {(a, b) ∈ Pz×Pz : (∃c ∈ Px)(a, c), (b, c) ∈
R}. This equivalence is a congruence of Pz by Lemma 7.5, because R ≤
(Pz)

2 and β = R ◦R−1 ◦R . . . (finitely many times).
As α ⊆ β and α is a maximal congruence, either β = α, or β = Px×Px.

The first case is a restatement of (1). In the second case we have R = Pz×Px

by Theorem 7.3, and this is a restatement of (2).

For any x ∈ X, case (1) for the pattern px takes plays, since for the
∼-block b/ ∼= P 0

z we have P 0
z + px (Px. Therefore, if P i

z 6= P j
z , then

P i
x = P i

z + px and P j
x = P j

z + px are disjoint. It follows that for every
i ∈ {0, . . . , n} we have P i

x − px = P i
z .

Now we are ready to prove (P3). Consider x ∈ X, y ∈ V , and a con-
straint C ∈ C whose scope contains {x, y}. If y ∈ V \ X, then P 0

z + px +
(x,C, y) = Py, otherwise y would be in X according to the definition. This
means that case (2) for the pattern p = px + (x,C, y) in the claim takes

21

plays and thus P i
z + px + (x,C, y) = Py. Since P i

x = P i
z + px, we get

P i
x+(x,C, y) = Py = P i

y. If, on the other hand, y ∈ X, we have P i
x−px = P i

z

and P i
y − py = P i

z by the previous paragraph. Then P i
x − px + py = P i

y and
P i
y − py + px = P i

x, so, by Lemma 6.9, P i
x + (x,C, y) = P i

y.

7.3 Smaller instance

We are now in the situation that we have an n-ary operation t of D, a
nonempty subset X ⊆ V and subsets P i

x ⊆ Px, x ∈ V , i ∈ {0, . . . , n}
satisfying (D1) through (D4).

We define instances Ii = (V,D, Ci) for each i ∈ {0, . . . , n} by restricting
I to the subsets P i

x. More precisely, we put Ci = {Ci : C ∈ C}, where for a
constraint C with scope W

Ci = {f ∈ C : (∀x ∈W) f(x) ∈ P i
x} .

Every P i
x is, by (D2), a subuniverse of Px and therefore is a subuniverse

of D. It follows that each Ci is a subpower of D. The instance Ii is thus
an instance of CSP(D).

Claim. For every i ∈ {0, . . . , n}, the instance Ii is 1-minimal with P
(Ii)
x =

P i
x for each x ∈ V .

Proof. We need to show that, for each C ∈ C and each x in the scope W of
C, the projection A of Ci onto x is equal to P i

x. The inclusion A ⊆ P i
x is

trivial, so let us take a ∈ P i
x and prove that a ∈ A.

Assume first that x ∈ X. Let f be any element of C with f(x) = a. By
(D3), for every y ∈ W it holds that P i

x + (x,C, y) = P i
y, hence f(y) ∈ P i

y.
Therefore f ∈ Ci and so a = f(x) ∈ A.

Next assume that x 6∈ X and there exists y ∈ W \ X. Then, by (D3)
and the second part of (D1), we get P i

y + (y, C, x) = Px. Therefore, there
exists f ∈ C such that f(y) ∈ P i

y and f(x) = a. The same argument as in
the previous paragraph (using y instead of x) shows that f ∈ Ci and then
a ∈ A.

Finally, if X ∩W = ∅, then, by the second part of (D1), we have C = Ci

and thus A = Px = P i
x.

It remains to show that J = I0 is a Prague instance. To distinguish
patterns in I and in the instances Ii we use the following notation. If
p = (x1, C1, x2, C2, . . .) is a pattern in I we write pi for the corresponding
pattern in Ii, that is, the pattern pi = (x1, C

i
1, x2, C

i
2, . . .).

22

Let x ∈ V , a, b ∈ P
(J)
x = P 0

x , let p be a closed pattern from x to x,
and assume that a and b are connected in [[p]] in the instance I. We aim to
prove that k × p0 connects a to b for some k. (To prove that J is a Prague
instance we could use a stronger assumption that a and b are connected in
[[p]] in the instance I0.)

Let m be an integer provided by Lemma 6.8. In particular, if a′, b′ ∈ P 0
x

are connected in [[p]] then m× p connects a′ to b′.
For simplicity, let us assume x ∈ V \X (the other case is an easy conse-

quence and is handled afterwards). We show that nm× p0 connects a to b
by applying the operation t to an n-tuple of realizations

f i = (f i1,1, . . . , f
i
1,ml, f

i
2,1, . . . , f

i
2,ml, . . . , . . . , f

i
n,ml), i ∈ [n]

of the pattern nm× p, where l denotes the length of p. We construct these
realizations so that

• for every i ∈ [n], the realization f i starts at a and ends at b, that is,
f i1,1(x) = a and f in,ml(x) = a.

• for every i, j ∈ [n] with i 6= j, the j-th fragment (f ij,1, . . . , f
i
j,ml) of f i

is a realization of m× pi.

The i-th realization f i is found as follows. Since a ∈ Px = P i
x (recall that x ∈

V \X) there exists a realization (f i1,1, . . . , f
i
i−1,ml) of the pattern (i−1)m×pi

with f i1,1(x) = a. Similarly, there exists a realization (f ii+1,1, . . . , f
i
n,ml) of

the pattern (n − i)m × pi with f in,ml(x) = b. It remains to fill in the i-th

segment. Let a′ = f ii−1,ml(x), b′ = f ii+1,1(x) (for i = 1 we set a′ = a, for
i = n we set b′ = b). The elements a′ and b′ are connected in [[p]] in the
instance I since the pattern −(i − 1)m × p connects a′ to a, the elements
a and b are connected in [[p]], and (n − i)m × p connects b to b′. Therefore
m× p connects a′, b′. We take any realization (f ii,1, . . . , f

i
ml−1) witnessing it.

This finishes the construction of f i.
Now we define fi,j = t(f1i,j , . . . , f

n
i,j) for every i ∈ [n], j ∈ [ml]. For every

x in the domain of fi,j and for every i′ ∈ n, i 6= i′ we have f i
′

i,j(x) ∈ P i
x,

therefore fi,j(x) ∈ P 0
x by (D4). It follows that f = (f1,1, . . . , fn,ml) is a re-

alization of p0. Moreover, since t is idempotent, f1,1(x) = t(f11,1, . . . , f
n
1,1) =

t(a, . . . , a) = a and fn,ml(x) = b. Thus f witness that nm × p0 connects a
and b, as promised.

It remains to deal with the case x ∈ X. If every variable in [[p]] is in X,
then, by (D3), every realization ofm×p witnessing that this pattern connects

23

a to b is in fact a realization of m×p0. We can thus assume that some y ∈ [[p]]
does not belong to X. We can write p = p1+p2, where p2 stars at y. Clearly,
we can find a′, b′ ∈ P 0

y such that p1 connects a to a′ and p2 connects b′ to
b. The previous case used for the pattern p2 + p1 and elements a′, b′ (note
that these elements are connected in [[p2 +p1]]) gives us that mn× (p2 +p1)

0

connects a′ to b′. Then the pattern (p1+mn×(p2+p1)+p2)
0 = (mn+1)×p0

connects a to b. The proof of Theorem 6.4 is concluded.

8 Consequences

8.1 The intersection property

An immediate consequence of Corollary 6.5 is a positive answer to Conjec-
ture 1 in [20] about the following intersection property of subuniverses.

Definition 8.1. For k > 0 and B,C ⊆ Dn, we say that B and C are k-
equal if for every subset I of [n] of size at most k, the projection of B and
C onto the coordinates I are equal.

We say that a clone D (with a finite universe D) has the k-intersection
property if for every n > 0 and every B ≤ Dn⋂

{C ≤ Dn : C and B are k-equal } 6= ∅ .

Valeriote proved [20] that if an idempotent clone D is not SD(∧), then
D fails the k-intersection property for every k > 0, and conjectured the
converse. From our results it follows that the converse is true even for
k = 2.

Corollary 8.2. Every idempotent SD(∧) clone D on a finite set satisfies
the 2-intersection property.

Proof. Let n > 0, B ≤ Dn and R1, . . . , Rk ≤ Dn be a list of all subpowers
which are 2-equal to B. We need to show that ∩ki=1Ri 6= ∅. The claim is
trivial for n ≤ 2, so assume n ≥ 3. We can look at the relations Ri as
constraints of an instance I = (D,V, C) with V = [n]. The instance I is
(2, 3)-minimal since all Ri’s are 2-equal to B, therefore it has a solution by
Corollary 6.5. A solution gives us an element of the intersection R1 ∩ · · · ∩
Rk.

8.2 Deciding bounded width

A deeper consequence of Corollary 6.5 is the following characterization of
SD(∧) clones.

24

Theorem 8.3. [17] An idempotent clone D with finite universe D is SD(∧)
iff D has weak near-unanimity operations t1 and t2 of arity 3 and 4, respec-
tively, such that, for any a, b ∈ D,

t1(a, a, b) = t2(a, a, a, b) .

For a constraint language Γ with all singletons, the existence of poly-
morphisms t1, t2 satisfying the properties in Theorem 8.3 can be viewed as
an instance of CSP(Γ). This idea can be used to obtain an efficient deci-
sion algorithm for such polymoprhisms. The following result was observed
by Marcin Kozik, Miklós Maróti and the author (and possibly others). A
different proof is by Bulatov [7].

Corollary 8.4. There exists a polynomial time algorithm that decides whether
the clone of polymorphism D of a given finite constraint language Γ with all
singletons is SD(∧). (If D is SD(∧), the algorithm can return a certificate
– pair of operations (t1, t2) of D as in Theorem 8.3.)

Proof. We form an instance I = (V,D, C) of CSP(Γ). The set V of variables
will be the disjoint union of D3 and D4. A function V → D can be identified
with a pair of mappings (t1 : D3 → D, t2 : D4 → D).

The first type of constraints will ensure that t1 of every solution (t1, t2)
is a polymorphism of Γ: For every relation R in Γ of arity k and all triples
of k-tuples a1 = (a11, . . . , a1k), a2 = (a21, . . . , a2k),a3 = (a31, . . . , a3k) in R,
we add to C the constraint

CR,a1,a2,a3 = {f ∈ D{(a11,a21,a31),...,(a1k,a2k,a3k)} :

(f(a11, a21, a31), . . . , f(a1k, a2k, a3k)) ∈ R} .

Similarly, we ensure that t2 in every solution (t1, t2) is a polymorphism of
Γ. Lastly, we add constraints to ensure that, in every solution (t1, t2), both
operations are weak near-unanimity operations and t1(a, a, b) = t2(a, a, a, b).
For instance, to take care of the last identity we add constraints

Ca,b = {f ∈ D{(a,a,b),(a,a,a,b)} : f(a, a, b) = f(a, a, a, b)}

for every a, b ∈ D. (Alternatively, we could have identified some variables
to force all the identities but idempotency.)

Clearly, the size of I is polynomial in the size of the input and (t1, t2) is
a solution if and only if t1, t2 are weak near-unanimity polymorphisms of Γ
satisfying t1(a, a, b) = t2(a, a, a, b). By Theorem 8.3, I has a solution if and
only if D is SD(∧).

25

The algorithm will try to find a solution f : V → D of I by gradually
fixing values for variables in some order V = {x1, x2, . . . }. In the k-th
step we run the (2, 3)-minimality algorithm |D|-times, for every d ∈ D, on
the instance I with an extra constraint enforcing f(xk) = d. If the (2, 3)-
minimality returns a nontrivial instance for some d ∈ D, we add to I the
constraint f(xk) = d and move to the next step. In the other case, when
(2, 3)-minimality returns a trivial instance for every d ∈ D, the algorithm
terminates with a negative answer.

Now, if the algorithm succeeds, then the solution f = (t1, t2) certifies
(by Theorem 8.3) that D is SD(∧). Moreover, if D is SD(∧) then (2, 3)-
minimality is a correct procedure for deciding whether a solution exists
(see Corollary 6.6), therefore the algorithm succeeds. This shows that the
algorithms succeeds (and returns a correct certificate) if and only if D is
SD(∧), as required.

Corollary 8.5. There exists a polynomial time algorithm that decides whether
a finite core constraint language Γ has bounded (relational) width.

Proof. First we add all singleton unary relations to Γ and call this constraint
language Γ′. The algebra D is SD(∧) if and only if the algebra of polymor-
phisms D′ of the constraint language Γ′ is SD(∧) since the operations t1, t2
from Theorem 8.3 are idempotent. Also, by part (2) of Lemma 5.1, Γ′

has bounded width iff Γ has bounded width. The claim now follows from
Theorem 8.3 and Corollary 6.6.

It is hard to find the core of a constraint language since it is NP-complete
to even test whether a graph is a core [15]. Therefore it seems unlikely that
testing for bounded width can be done efficiently in general. Is this problem
NP-complete?

9 Conclusion and open problems

We have proved that a constraint satisfaction problem over a fixed language
(on a finite domain) that can be solved by checking local consistency has
relational width (2, 3). Modulo previously known results, this amounts to
showing that every (2, 3)-minimal over a language which cannot simulate
q-LIN has a solution.

A stronger theorem has been obtained – every Prague instance over
such a language has a solution. Is 1-minimality together with properties
(P2) and (P3) from Section 6 sufficient to guarantee a solution? Or even
just 1-minimality with (P3)?

26

A different weakening of (2, 3)-minimality is singleton arc consistency
(see [12]). An instance is singleton arc consistent if it is 1-minimal and the
1-minimality algorithm succeeds even when we add any constraint of the
form “x = a”, where x is a variable and a ∈ Px. The authors in [12] ask
whether any singleton arc consistent instance over a bounded width language
has a solution. A positive answer would give a more efficient algorithm for
solving CSPs over bounded width languages.

Funding

This work was supported by the Grant Agency of the Czech Republic [13-
01832S].

Acknowledgement

I would like to thank Marcin Kozik for many discussions on this article.

References

[1] Libor Barto and Marcin Kozik. Constraint satisfaction problems of
bounded width. In FOCS’09: Proceedings of the 50th Symposium on
Foundations of Computer Science, pages 595–603, 2009.

[2] Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms,
and the constraint satisfaction problem. Logical Methods in Computer
Science, 8(1), 2012.

[3] Libor Barto and Marcin Kozik. Robust satisfiability of constraint sat-
isfaction problems. In Proceedings of the 44th symposium on Theory
of Computing, STOC ’12, pages 931–940, New York, NY, USA, 2012.
ACM.

[4] Libor Barto and Marcin Kozik. Constraint satisfaction problems solv-
able by local consistency methods. J. ACM, 61(1):3:1–3:19, January
2014.

[5] Libor Barto, Marcin Kozik, and David Stanovský. Mal’tsev conditions,
lack of absorption, and solvability. submitted, 2013.

[6] Manuel Bodirsky. Constraint satisfaction problems with infinite tem-
plates. In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer,

27

editors, Complexity of Constraints, volume 5250 of Lecture Notes in
Computer Science, pages 196–228. Springer, 2008.

[7] Andrei Bulatov. Bounded relational width. manuscript, 2009.

[8] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the
complexity of constraints using finite algebras. SIAM J. Comput.,
34:720–742, March 2005.

[9] Andrei A. Bulatov. Combinatorial problems raised from 2-semilattices.
J. Algebra, 298(2):321–339, 2006.

[10] Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. Complexity
of constraints. chapter Dualities for Constraint Satisfaction Problems,
pages 93–124. Springer-Verlag, Berlin, Heidelberg, 2008.

[11] Andrei A. Bulatov and Matthew Valeriote. Recent results on the alge-
braic approach to the CSP. In Nadia Creignou, Phokion G. Kolaitis,
and Heribert Vollmer, editors, Complexity of Constraints, volume 5250
of Lecture Notes in Computer Science, pages 68–92. Springer, 2008.

[12] Hubie Chen, Victor Dalmau, and Berit Gruß ien. Arc consistency and
friends. J. Log. and Comput., 23(1):87–108, February 2013.

[13] Vı́ctor Dalmau. There are no pure relational width 2 constraint satis-
faction problems. Inf. Process. Lett., 109(4):213–218, January 2009.

[14] Tomás Feder and Moshe Y. Vardi. The computational structure of
monotone monadic snp and constraint satisfaction: A study through
datalog and group theory. SIAM Journal on Computing, 28(1):57–104,
1998.

[15] Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Math-
ematics, 109(13):117 – 126, 1992.

[16] Pawel Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote,
and Ross Willard. Tractability and learnability arising from algebras
with few subpowers. In Proceedings of the Twenty-Second Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), pages 213–222.
IEEE Computer Society Press, July 2007.

[17] Marcin Kozik, Andrei Krokhin, Matthew Valeriote, and Ross Willard.
Characterizations of several Maltsev conditions. submitted, 2014.

28

[18] Benoit Larose and László Zádori. Bounded width problems and alge-
bras. Algebra Universalis, 56(3-4):439–466, 2007.

[19] Miklós Maróti and Ralph McKenzie. Existence theorems for weakly
symmetric operations. Algebra Universalis, 59(3-4):463–489, 2008.

[20] Matthew A. Valeriote. A subalgebra intersection property for congru-
ence distributive varieties. Canad. J. Math., 61(2):451–464, 2009.

29

