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Abstract
Suppose we are given a set � of m Boolean formulas with the information that e of these formulas are unconfirmed, while
the actual set of unconfirmed formulas is not disclosed to us. Let us denote by Rest(�,e) the family of all subsets of� having
m−e elements. We are interested in the problem whether a Boolean formula ω is a consequence of� for each�∈Rest(�,e).
More generally, given for each i=1,...,h a set�i of mi Boolean formulas and an integer 0≤ei<mi,will ω be a consequence
of �1 ∧ ...∧�h for every choice of �i ∈Rest(�i,ei)? We construct a quadratic reduction of this problem to the consequence
problem in infinite-valued Łukasiewicz propositional logic Ł∞. Our reduction shows the usefulness of Ł∞ for the formal
handling of unreliable Boolean information.

Keywords: Reasoning under uncertainty, Łukasiewicz calculus, Boolean logic, approximate reasoning, stable consequence,
unreliable premises, polynomial time reduction, NP-complete, Rényi–Ulam games, Twenty Questions with Lies.

1 Foreword

Throughout, Boolean formulas are strings on the alphabet {X ,|,¬,∧,∨, ), ( } as given by the usual
syntax of propositional logic. Strings of the form X |,X ||,... are called variables.

The Stable Consequence problem is defined as follows:

INSTANCE: A list �1,...,�k together with integers e1,...,ek , where for each i=1,...,k, �i is a
set of mi Boolean formulas, and 0≤ei<mi.

QUESTION: Is the conjunction �1 ∧ ...∧�k unsatisfiable for every possible choice of �i ∈
Rest(�i,ei)?

Again, Rest(�i,ei) denotes the family of all subsets of �i having mi −ei elements.

The problem introduced in the abstract is the special case of the Stable Consequence problem with
�h ={¬ω} and eh =0.

A moment’s reflection shows that the Stable Consequence problem is coNP-complete: for, it
contains the Boolean unsatisfiability problem UNSAT, and is trivially in coNP.

In Theorem 5.2 and Corollary 5.3 we will construct a polytime reduction ρ of the Stable
Consequence problem to the consequence problem θ �∞φ in Łukasiewicz infinite-valued logic Ł∞.

1Dedicated to Alexander Leitsch.
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Of course, other reductions can be extracted from the existing proofs of coNP-completeness of the 
consequence problem in Ł∞. However, since all these proofs (see e.g. [5, 18.3] and [2, 4.13(ii)]) are 
quite complex, so are the resulting reductions. By contrast, for any instance I = (�1,...,�k ;e1,...,ek ) 
of the Stable Consequence problem, letting vI be the number of distinct variables in I , and |I | its 
length (i.e. the number of occurrences of symbols in I ), Corollary 5.3(ii) shows

|ρ(I )|<c ·vI ·|I |<c ·|I |2,
for some constant c independent of I . ρ(I ) is a pair (θI ,φI ) of Ł∞-formulas such that I belongs 
to the Stable Consequence problem iff θI �∞ φI . Further, I and ρ(I ) have the same variables. If
Ł∞-formulas were also equipped with the operation of n-fold disjunction n�φ,  (n=1,2,...), then 
|ρ(I )|<c|I |.

The succinct pair (θI ,φI ) of [0,1]-valued Ł∞-formulas yields an interpretation of consequence in 
many-valued logic Ł∞ as an extension of the Stable Consequence problem: as above, suppose � is 
a set of m Boolean formulas, but we are kept unaware of the number of unconfirmed formulas in �. 
For definiteness let us further assume ��ω and ω is not a tautology. For each 0≤e <m we have an 
instance Ie = (�,{¬ω};e,0) of the Stable Consequence problem; writing for short (θe,φe) instead of 
(θIe ,φIe ), the pair of Ł∞-formulas ρ(Ie)= (θe,φe) has the following property:

θe �∞φe iff in Boolean logic ��ω for each �∈Rest(�,e).

Intuitively, θe �∞φe iff the deduction ��ω tolerates up to e unconfirmed premises. Let 0≤emax
= largest integer e such that θe �∞φe. Binary search yields emax after checking θe �∞φe for only
logarithmically few different values of e. Then a large emax signifies that ω, almost like a tautology,
is largely independent of �. At the other extreme, if emax is small, the reliability of ω too critically
depends on the unconfirmed formulas in �.

Generalizing the familiar ‘Guess a Number’ game, in the Rényi–Ulam game [1, Section 5] one
has the problem of guessing an unknown number x in a search space S ={0,...,2n −1} by asking
(a minimum number of adaptive) yes–no questions Q1,...,Qt in such a way that x can be uniquely
recovered from the answers A1,...,At , even if up to e of them may be wrong/inaccurate/mendacious.
By a ‘question’ we mean a subset of S. By an ‘answer’ Aj we mean a bit Aj ∈{0,1}={no,yes}.
Identifying each number y∈S with its binary notation as an n-bit string αy (i.e. a Boolean valuation
αy over the n variables X1,...,Xn), each question Qj can be written down as a Boolean formula
χj(X1,...,Xn), in such a way that y∈Qj iff αy satisfies χj. Then for each i=1,...,t, the information
given by the pair (Qi,Ai) is represented by the Boolean formula θi, where θi =χi (if Ai =1) and
θi =¬χi (if Ai =0). Given now a Boolean formula ω(X1,...,Xn), the problem whether ‘ω follows
from θ1,...,θt in the Rényi–Ulam game with e lies’ is immediately seen to be a special case of the
Stable Consequence problem.

Within the fault-tolerant framework of the Rényi–Ulam game with lies one may perhaps give a
reasonable justification of the adjective ‘stable’ in the Stable Consequence problem: here, from the
premises θ1,...,θt one wishes to infallibly draw consequencesω, no matter the instability (uncertainty,
unpredictability, dubiety, unsureness) caused by the fact that some of the θi may be false/wrong.

2 Consequence in infinite-valued Łukasiewicz logic

We refer to [1, Section 4] for background on Łukasiewicz propositional logic Ł∞, and to [4, Section 7]
for (always polynomial time) reductions and NP-completeness.
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To efficiently write down Ł∞-formulas it will be convenient to use the richer alphabet 
{X ,|,¬,�,⊕,∧,∨,),( }. The symbols ¬,�,⊕ are called the negation, conjunction and disjunction 
connective, respectively. We call ∧ and ∨ the idempotent conjunction and disjunction. As shown in 
[1, (1.2), 1.1.5], the connective �, as well as the idempotent connectives are definable in terms of ¬ 
and ⊕. Following [1, (4.1)], we write α→β as an abbreviation of β ⊕¬α. Further, α↔β stands for 
(α→β)�(β →α).

To increase readability we assume that the negation connective ¬ is more binding than �, and the 
latter is more binding than ⊕; the idempotent connectives ∨ and ∧ are less binding than any other 
connective.

For each n=1,2,..., we let FORMn denote the set of formulas ψ(X1,...,Xn) whose variables are 
contained in the set {X1,...,Xn}. More generally, for any set X of variables, FORMX denotes the 
set of formulas whose variables are contained in X . For each formula φ we let var(φ) be the set of 
variables occurring in φ.

For any formula φ ∈FORMn and integer k =1,2,..., the iterated conjunction φk is defined by

φ1 =φ, φ2 =φ�φ, φ3 =φ�φ�φ,.... (1)

The iterated disjunction k �φ is defined by

1�φ=φ, 2�φ=φ⊕φ, 3�φ=φ⊕φ⊕φ,.... (2)

Definition 2.1
A valuation (of FORMn in Ł∞) is a function V : FORMn →[0,1] such that

V (¬φ)=1−V (φ), V (φ⊕ψ)=min(1,V (φ)+V (ψ))

and, for the derived connectives �,∨,∧,
V (φ�ψ)=max(0,V (φ)+V (ψ)−1)=V (¬(¬φ⊕¬ψ))

V (φ∨ψ)=max(V (φ),V (ψ))=V (¬(¬φ⊕ψ)⊕ψ)

V (φ∧ψ)=min(V (φ),V (ψ))=V (¬(¬φ∨¬ψ)).

We denote by VALn the set of valuations of FORMn. More generally, for any set X of variables,
VALX denotes the set of valuations V : FORMX →[0,1].

Since Łukasiewicz logic Ł∞ is truth-functional, each V ∈VALn is uniquely determined by its
restriction to {X1,...,Xn}.Thus, for every point x= (x1,...,xn)∈[0,1]n there is a uniquely determined
valuation Vx ∈VALn such that

Vx(Xi)=xi for all i=1,...,n. (3)

Conversely, upon identifying the two sets [0,1]n and [0,1]{X1,...,Xn}, we can write x=Vx |̀{X1,...,Xn}.
For any set �⊆FORMX and V ∈VALX we say that V satisfies � if V (ψ)=1 for all ψ ∈�. A

formula φ is a tautology if it is satisfied by all valuations V ∈VALvar(φ).

Proposition 2.2 (Hay–Wójcicki theorem, [3, 5, 6])
For all n=1,2,... and θ,φ∈FORMn the following conditions are equivalent:

(i) Every valuation V ∈VALn satisfying θ also satisfies φ. In other words, φ is a semantic Ł∞-
consequence of θ ;
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(ii) For some integer k>0 the formula θk →φ is a tautology. (Notation of (1)).
(iii) For some integer k>0 the formula

θ→ (θ→ (θ→···→ (θ→ (θ→φ))···))︸ ︷︷ ︸
k occurrences of θ

(4)

is a tautology.
(iv) For some integer k>0 there is a sequence of formulas χ0,...,χk+1 such that χ0 =θ , χk+1 =φ,

and for each i=1,...,k +1 either χi is a tautology, or there are p,q∈{0,...,i−1} such that χq
is the formula χp →χi.

(v) For some integer k>0 there is a sequence of formulas χ0,...,χk+1 such that χ0 =θ ,
χk+1 =φ, and for each i=1,...,k +1 either χi is a tautology in FORMn, or there are p,q∈
{0,...,i−1} such that χq is the formula χp →χi. In other words, φ is a syntactic Ł∞-
consequence of θ .

Proof. (ii)⇔(iii) is promptly verified, because the two formulas (4) and θk →φ are equivalent in
Ł∞. (iv)⇔(i) follows from [1, 4.5.2, 4.6.7]. (iv)⇔(iii) follows from [1, 4.6.4]. (v)⇒(iv) is trivial.
Finally, to prove (iii)⇒(v), arguing by induction on k, one verifies that φ can be obtained as the final
formula χk+1 of a sequence χ0,...,χk+1 as in (v), which only requires the assumed tautology (4).
Also see [5, 1.7]. �

We write θ �∞φ if θ and φ satisfy the equivalent conditions above, and we say that φ is an
Ł∞-consequence of θ without fear of ambiguity.

An instance of the Ł∞-consequence problem is a pair of formulas (θ,φ). The problem asks if φ is
an Ł∞-consequence of θ .

3 The function φ̂ associated with an Ł∞-formula φ

Proposition 3.1
With every formula φ=φ(X1,...,Xn)∈FORMn let us associate a function, denoted φ̂ : [0,1]n →
[0,1], via the following inductive procedure: for all x= (x1,...,xn)∈[0,1]n,

X̂i(x) = xi (i=1,...,n),

¬̂ψ(x) = 1−ψ̂(x),

̂ψ⊕χ (x) = min(1,ψ̂(x)+χ̂ (x)),

̂ψ�χ (x) = max(0,ψ̂(x)+χ̂ (x)−1),

̂ψ∧χ (x) = min(ψ̂(x),χ̂ (x)),

̂ψ∨χ (x) = max(ψ̂(x),χ̂ (x)).

Then generalizing (3) we have the identity

φ̂(x)=Vx(φ) for all x∈[0,1]n. (5)

Proof. Immediate by Definition 2.1, arguing by induction on the number of connectives in φ. �
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Proposition 3.2
For each n=1,2,..., e =2,3,..., and valuation V : FORMn →[0,1], the following conditions are 
equivalent:

(i) V satisfies
∧n

i=1(X e
i ↔¬Xi)∨(Xi ↔¬e �Xi). (Notation of (1)–(2)).

(ii) For each i=1,...,n, V (Xi)∈
{

1
e+1 ,

e
e+1

}
.

Proof. Let ξe be the Ł∞-formula X e ↔¬X , and ξ̂e : [0,1]→[0,1] its associated function. Recalling
(5) and the definition of the↔ connective, for every y∈[0,1], we can write ξ̂e(y)=1 iff X̂ e(y)=1−y.
Further, by induction on e,

X̂ e(y)=y�···�y︸ ︷︷ ︸
e times

=max(0,ey−e+1)=
{

0 if 0≤y< e−1
e

ey−e+1 if e−1
e ≤y≤1.

Thus, ξ̂e(y)=1 iff ey−e+1=1−y iff y= e
e+1 . In other words, a valuation satisfies X e ↔¬X iff it

evaluates X to e
e+1 .

Similarly, letting χe be the formula X ↔¬e �X we obtain χ̂e(y)= ξ̂e(1−y), whence χ̂e(y)=1 iff
ξ̂e(1−y)=1 iff 1−y= e

e+1 iff y= 1
e+1 . Thus, a valuation satisfies X ↔¬e �X iff it evaluates X to

1
e+1 .

Summing up, a valuation satisfies
∧n

i=1(X e
i ↔¬Xi)∨(Xi ↔¬e �Xi) iff it evaluates each Xi either

to 1
e+1 or to e

e+1 . �

4 The ‡-transform of a Boolean formula

As the reader will recall, every Boolean formula ψ in this article is constructed from the variables
using the connectives ¬,∨,∧.ABoolean formula is said to be in negation normal form if the negation
symbol can only precede a variable. Any Boolean formula ψ can be immediately reduced into an
equivalent formula ψ† in negation normal form by using De Morgan’s laws to push negation inside
all conjunctions and disjunctions, and eliminating double negations. The same variables occur in ψ
and ψ†. Further, the number of occurrences of variables in ψ is the same as in ψ†.

Definition 4.1
Let ψ=ψ(X1,...,Xn) be a Boolean formula. We denote by ψ‡ the Ł∞-formula obtained from ψ by
the following procedure:

— write the negation normal form ψ†, and for each i=1,...,n,
— replace every occurrence of ¬Xi in ψ† by the formula Xi ∨¬(Xi �Xi),
— and simultaneously replace every occurrence of the non-negated variable Xi by the formula

¬Xi ∨(Xi ⊕Xi), i=1,...,n.

In other words, the ‡-transform ψ‡ of ψ is the Ł∞-formula defined by:

(¬Xi)
‡ = Xi ∨¬(Xi �Xi),

X ‡
i = ¬Xi ∨(Xi ⊕Xi), if Xi is not preceded by ¬
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and by induction on the number of binary connectives in ψ†,

(σ ∧τ )‡ = σ ‡ ∧τ ‡
(σ ∨τ )‡ = σ ‡ ∨τ ‡.

Definition 4.2
Fix e =2,3,.... For each y ∈{0,1} we let y〈e〉 be the only point of [0,1] lying at a distance 1

e 1

from y. More generally, for any x = (x1,...,xm)∈{0,1}m, the point x〈e〉 ∈[0,1]m is defined by x〈e〉+=
(x〈

1
e〉
,...,x〈

m
e〉).

Proposition 4.3
For any Boolean valuation

W : {Boolean formulas in the variables X1,...,Xn}→{0,1},
let w ∈{0,1}{X1,...,Xn} ={0,1}n be the restriction of W to the set {X1,...,Xn}. Then for every Boolean 
formula ψ(X1,...,Xn) and e =2,3,... we have:

W satisfiesψ iff ψ̂‡(w〈e〉)=1

W does not satisfyψ iff ψ̂‡(w〈e〉)= e

e+1
.

Proof. Our assumption about e ensures that 0〈e〉<1〈e〉. For each variable X we first prove (see
Figure 1):

(i) X̂ ‡( 1
e+1 )= e

e+1 ,

(ii) X̂ ‡( e
e+1 )=1,

(iii) ¬̂X ‡( 1
e+1 )=1,

(iv) ¬̂X ‡( e
e+1 )= e

e+1 .

(i)–(ii) By (5), for all y∈[0,1] we can write X̂ ‡(y)=max(¬̂X (y),̂X ⊕X (y)) =
max(1−y,min(1,2y)). Thus,

X̂ ‡
(

1

e+1

)
=max

(
e

e+1
,min(1,

2

e+1
)

)
=max

(
e

e+1
,

2

e+1

)
= e

e+1
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and

X̂ ‡
(

e

e+1

)
=max

(
1

e+1
,min(1,

2e

e+1
)

)
=max

(
1

e+1
,1

)
=1.

(iii)–(iv) Again by (5), we can write ¬̂X ‡(y)=max(X̂ (y), ̂¬(X �X )(y))=max(y,1−max(0,
2y−1))=max(y,min(1,2−2y)), whence

¬̂X ‡
(

1

e+1

)
=max

(
1

e+1
,min(1,2− 2

e+1
)

)
=max

(
1

e+1
,1

)
=1

and

¬̂X ‡
(

e

e+1

)
=max

(
e

e+1
,min(1,2− 2e

e+1
)

)
=max

(
e

e+1
,

2

e+1

)
= e

e+1
.

Having thus settled (i)–(iv), the proof now proceeds by induction on the number b of binary
connectives in ψ†, the equivalent counterpart of ψ in negation normal form as in 4.1:

Basis, b=0. Then ψ† ∈{Xi,¬Xi}.
In case ψ† =Xi we have

W satisfies ψ

iff W satisfies Xi, (because ψ† is equivalent to ψ)

iff wi =1, by definition of w

iff w〈e〉
i = e

e+1
, by definition of wi

〈e〉

iff X̂ ‡
i (w〈e〉

i )= ψ̂‡(w〈e〉
i )=1.

The (⇓)-direction of the last bi-implication follows from (ii). Conversely, for the (⇑)-direction, if

w〈e〉
i �= e

e+1 then w〈e〉
i = 1

e+1 , whence by (i), X̂ ‡
i (w〈e〉

i )= e
e+1 �=1.

The case ψ† =¬Xi is similarly proved using (iii)–(iv).

Induction step. Suppose ψ† =σ ∧τ . Then

W satisfies ψ

iff W satisfies ψ†

iff W satisfies both σ † and τ †

iff W satisfies both σ and τ

iff σ̂ ‡(w〈e〉)= τ̂ ‡(w〈e〉)=1, by induction hypothesis.

Thus, if W satisfies ψ then

ψ̂‡(w〈e〉)= (σ̂ ‡ ∧ τ̂ ‡)(w〈e〉)=min(1,1)=1.
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Conversely,

W does not satisfy ψ

iff either σ or τ is not satisfied by W

iff either σ̂ ‡(w〈e〉)= e

e+1
or τ̂ ‡(w〈e〉)= e

e+1
,

whence ψ̂‡(w〈e〉)=min(σ̂ ‡(w〈e〉),τ̂ ‡(w〈e〉))= e

e+1
.

The case ψ† =σ ∨τ is similar. �

5 Main results

The incorporation into Ł∞-formulas of the numerical parameters ei of the Stable Consequence
problem relies on the following:

Proposition 5.1
For�={φ1,...,φu} a finite set of Boolean formulas in the variables X1 ...,Xn, let the integers d and
e satisfy the conditions 0≤d<u and e≥max(2,d ). Then the following conditions are equivalent:

(i) Every subset � of � obtained by deleting d elements of � is unsatisfiable.
(i’) Every subset � of � obtained by deleting up to d elements of � is unsatisfiable.

(ii) For each valuation V ∈VALn such that V (Xi)∈
{

1
e+1 ,

e
e+1

}
for all i=1,...,n, we have

V
((⊙u

j=1φ
‡
j

)
→ (X1 ∨¬X1)d+1

)
=1.

Proof. (i)⇔(i’) is trivial. (i’) ⇒ (ii) Let V be a counter-example to (ii). Since for all

i=1,...,n, V (Xi)∈
{

1
e+1 ,

e
e+1

}
, upon identifying the restriction V |̀{X1,...,Xn} with the point

(V (X1),...,V (Xn))∈[0,1]n we can write

V |̀{X1,...,Xn}= (W |̀{X1,...,Xn})〈e〉 (6)

for a unique Boolean valuation W of the set of Boolean formulas in the variables X1,...,Xn. Since
(ii) fails for V , by definition of the implication connective in Ł∞ we can write

V

⎛⎝ u⊙
j=1

φ
‡
j

⎞⎠>V ((X1 ∨¬X1)d+1).

From

V (X1 ∨¬X1)=max

(
1

e+1
,

e

e+1

)
= e

e+1

we obtain

V ((X1 ∨¬X1)d+1)=1− d +1

e+1
,

whence

V

⎛⎝ u⊙
j=1

φ
‡
j

⎞⎠>1− d +1

e+1
. (7)
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Our assumption about V is to the effect that V
(⊙u

j=1φ
‡
j

)
is an integer multiple of 1

e+1 , whence by

(7),

V

⎛⎝ u⊙
j=1

φ
‡
j

⎞⎠≥1− d

e+1
, (8)

and by Definition 4.1,

V
(
φ

‡
j

)
∈

{
e

e+1
,1

}
, for all j=1,...,u.

Thus by (8), at most d among the formulas φ‡
1 ,...,φ

‡
u are evaluated to e/e+1 by V . By (6) together

with Propositions 3.1 and 4.3, at most d among the formulas φ1,...,φu are evaluated to 0 by W .
Thus, at least u−d are satisfied by W , against assumption (i’).

(ii) ⇒ (i) If (i) fails then without loss of generality we can assume the set�={φ1,...,φu−d } to be
satisfiable by some Boolean valuation Y . Let the point z = (Y (X1),...,Y (Xn))∈{0,1}n be (identified
with) the restriction of Y to the set of variables {X1,...,Xn}. Let U ∈VALn be uniquely determined
by the stipulation U |̀{X1,...,Xn}=z〈e〉. Then U satisfies the hypothesis of (ii),

U (Xi)∈
{

1

e+1
,

e

e+1

}
for all i=1,...,n,

whence

U ((X1 ∨¬X1)d+1)=1− d +1

e+1
.

Since Y satisfies �, from Proposition 4.3 we get

U

⎛⎝ u⊙
j=1

φ
‡
j

⎞⎠≥1− d

e+1
.

Thus,

U

⎛⎝ u⊙
j=1

φ
‡
j

⎞⎠>1− d +1

e+1
=U ((X1 ∨¬X1)d+1),

and, by definition of the → connective, (ii) fails. �
Theorem 5.2
Let n and k be integers>0. For each i=1,...,k let�i ={φi1,φi2,...,φiu(i)} be a finite set of Boolean
formulas in the variables X1,...,Xn. Further, let the integer ei satisfy 0≤ei<u(i). Then the following
conditions are equivalent:

(i) For each i=1,...,k and �i ∈Rest(�i,ei), the Boolean formula
∧k

i=1�i is unsatisfiable.
(ii) In infinite-valued Łukasiewicz logic Ł∞ we have

n∧
t=1

(
(X e

t ↔¬Xt)∨(Xt ↔¬e �Xt)
) �∞

k∧
i=1

⎛⎝⎛⎝ u(i)⊙
j=1

φ
‡
ij

⎞⎠→ (X1 ∨¬X1)ei+1

⎞⎠,
where e=max(2,e1,...,ek ).
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Proof. Immediate from∧ Pr e characterization (Proposition 3.2) of all
n
t=1

(
(X e

t ↔¬Xt)∨(Xt ↔¬e �Xt)
)
. �

Corollary 5.3
For any instance

I =({φ11,...,φ1u(1)},...,{φk1,...,φku(k)};e1,...,ek
)

of the Stable Consequence problem for Boolean formulas in the variables X1,...,Xn, let ρ(I ) be the
pair of Ł∞-formulas⎛⎝ n∧

t=1

(
(X e

t ↔¬Xt)∨(Xt ↔¬e �Xt)
)
,

k∧
i=1

⎛⎝⎛⎝ u(i)⊙
j=1

φ
‡
ij

⎞⎠→ (X1 ∨¬X1)ei+1

⎞⎠⎞⎠,
where e=max(2,e1,...,ek ).

(i) Then ρ reduces in polynomial time the Stable Consequence problem to the Ł∞-consequence
problem.

(ii) There is a constant c such that

|ρ(I )|≤c ·n·|I |<c ·|I |2 (9)

for all n and I .

Proof. (i) By Theorem 5.2, ρ(I ) belongs to the Ł∞-consequence problem iff I belongs to the
Stable Consequence problem. Trivially, ρ is computable in polynomial time. (ii) These inequalities
immediately follow by direct inspection. �
Remark 5.4
With reference to the notational conventions (1)–(2), it should be noted that we do not have in Ł∞
an exponentiation connective for ψe, nor a multiplication connective for e �ψ : these would further
simplify ρ(I ), reducing (9) to |ρ(I )|≤d ·|I | for some fixed constant d .
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