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Abstract

A simple notion of quantum Turing machine with deterministic,
classical control is proposed and shown to be powerful enough to com-
pute any unitary transformation which is computable by a finitely gen-
erated quantum circuit. An efficient universal machine with the s-m-n
property is presented. The BQP class is recovered. A robust notion of
plain Kolmogorov complexity of quantum states is proposed and com-
pared with those previously reported in the literature.

Keywords: quantum computation, computational complexity, quan-
tum Kolmogorov complexity.

1 Introduction

The original notion of quantum Turing machine was proposed by Deutsch
in [6] and its main properties established in [2]. However, most of the work
in quantum computation has been carried out using quantum circuits, since
the seminal papers by Deutsch—Jozsa [7], Shor [I8] and Grover [9]. In fact,
the original notion of Turing machine raised some difficulties with the halting
condition. This issue was addressed by several authors. For instance, in [20,
16] notions of quantum Turing machine are proposed using probabilistic,
classical control and, thus, completely avoiding the issue. Herein, we propose
yet another notion of quantum Turing machine using deterministic, classical
control.

Such a deterministic-control quantum Turing machine, in short dcq Tur-
ing machine, is a classical Turing machine enriched with a quantum tape



on which the machine can apply unitary quantum operations but cannot
make measurements. Like in quantum circuits, our approach follows the
idea that one can carry out quantum computations by following a classical
procedure that in some steps may involve quantum manipulations but no
measurements which are delayed to the end. The control and the halting
condition of dcq Turing machines are, thus, completely classical and deter-
ministic. Once the computation halts the contents of the quantum tape
can be accessed by a suitable measurement. During the computation the
contents of the quantum tape do not affect the behavior of the machine.

After the detailed presentation in Section [2] of dcq Turing machines and
how they can be used for computing unitary quantum operators and deciding
classical problems, we proceed to establish the key results that are required
for accepting dcq Turing machines as model of quantum computation.

In Section [3| we show that, for a given n, every quantum circuit on n
qubits can be efficiently emulated by a dcq Turing machine. This fibered
emulation of quantum circuits is improved in Section [5| where it is shown
that every computable family of quantum circuits can be efficiently emulated
by a dcq Turing machine which allows the recovery of BQP. The uniform
emulation of quantum circuits relies on the techniques used in Section {4 for
establishing the existence of a universal dcq Turing machine that can effi-
ciently emulate any dcq Turing machine — the counterpart for dcq Turing
machines of the Hennie-Stearns theorem [I0]. In fact, universality is ob-
tained as a corollary of a stronger result — the counterpart for deq Turing
machines of Kleene’s s-m-n theorem. The latter is a polynomial translata-
bility result which plays an important role in Section [6] for defining a robust
notion of plain quantum Kolmogorov complexity using universal dcq Turing
machines.

With these results in hand, dcq Turing machines appear as a viable
model of quantum computation with some obvious advantages over quantum
circuits for the development of quantum computability and complexity which
are discussed in Section [Tl

2 Deterministic control of quantum computations

By a deterministic-control quantum Turing machine (in short, dcq Turing
machine) we mean a variant of a binary Turing machine with two tapes,
one classical and the other with quantum contents, which are infinite in
both directions. Depending only on the state of the classical finite control
automaton and the symbol being read by the classical head, the quantum



head acts upon the quantum tape, a symbol can be written by the classical
head, both heads can be moved independently of each other and the state
of the control automaton can be changed.

A computation ends if and when the control automaton reaches the
halting state (q,). Notice that the contents of the quantum tape do not
affect the computation flow, hence the deterministic control and, so, the
deterministic halting criterion. In particular, the contents of the quantum
tape do not influence at all if and when the computation ends.

The quantum head can act upon one or two consecutive qubits in the
quantum tape. In the former case, it can apply any of the following operators
to the qubit under the head: identity (ld), Hadamard (H), phase (S) and =
over 8 (7/8). In the latter case, the head acts on the qubit under it and the
one immediately to the right by applying swap (Sw) or control-not (c-Not)
with the control qubit being the qubit under the head.

Initially, the control automaton is in the starting state (q), the classical
tape is filled with blanks (that is, with [0’s) outside the finite input sequence
x of bits, the classical head is positioned over the rightmost blank before
the input bits, the quantum tape contains three independent sequences of
qubits — an infinite sequence of |0)’s followed by the finite input sequence
|1} of possibly entangled qubits followed by an infinite sequence of |0)’s,
and the quantum head is positioned over the rightmost |0) before the input
qubits. In this situation, we say that the machine starts with input (z, [¢)).

The control automaton is defined by the partial function

0:QxA—-UxDxAxDx@

where: @ is the finite set of control states containing at least the two distinct
states q, and q;, mentioned above; A is the alphabet composed of 0, 1 and
00; U is the set {Id,H,S, 7/8,Sw, c-Not} of primitive unitary operators that
can be applied to the quantum tape; and D is the set {L, N, R} of possible
head displacements — one position to the left, none, and one position to the
right.

For the sake of a simple halting criterion, we assume that (q;,,a) ¢ dom§
for every a € A and (q,a) € domd for every a € A and ¢ # q;,. Thus, as
envisaged, the computation carried out by the machine does not terminate
if and only if the halting state q;, is not reached.

The machine evolves according to d as expected:

5(Q’ a) = (U7 d’ a’,’ d/? q,)

imposes that if the machine is at state ¢ and reads a on the classical tape,
then the machine applies the unitary operator U to the quantum tape, dis-



places the quantum head according to d, writes symbol a’ on the classical
tape, displaces the classical head according to d’, and changes its control
state to ¢'.

In short, by a deq Turing machine we understand a pair (@, d) where @
and J are as above.

Concerning computations, the following terminology becomes handy.
The machine is said to start from (z,|)) or to receive input (x,[1))) if:
(i) the initial content of the classical tape is  surrounded by blanks and the
classical head is positioned in the rightmost blank before the classical input
x; (ii) the initial content of the quantum tape is |¢) surrounded by |0)’s and
the quantum head is positioned in the rightmost |0) before the quantum
input [¢)). Observe that the qubits containing the quantum input are not
entangled with the other qubits of the quantum tape. When the quantum
tape is completely filled with |0)’s we say that the quantum input is |e).

Furthermore, the machine is said to halt at (y,|p)) or to produce out-
put (y, |¢)) if the computation terminates and: (i) the final content of the
classical tape is y surrounded by blanks and the classical head is positioned
in the rightmost blank before the classical output y; (ii) the final content of
the quantum tape is |p) surrounded by |0)’s and the quantum head is posi-
tioned in the rightmost |0) before the quantum output |p). In this situation
we may write

M (z,|4)) = (y,[#))-

Clearly, the qubits containing the quantum output are not entangled with
the other qubits of the quantum tape.
For each n € NT, denote by H" the Hilbert space of dimension 2". A
unitary operator
U:H"— H"
is said to be dcg computable if there is a dcq Turing machine (@, ¢) that,
for every unit vector |[¢)) € H", when starting from (g, |¢))) produces the
quantum output Uly). Note that the final content of the classical tape is
immaterial.
A (classical) problem
X c{o,1}*

is said to be dcq decidable if there is a dcq Turing machine (Q, d) that, for
every x € {0,1}*, when starting from (z,|¢)) produces a quantum output
|¢) such that:

Prob (Proj;|p) =1) >2/3 if x € X
Prob (Proj,|p) =0) >2/3 if = & X.
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Moreover, problem X is said to be (time) dcg bounded error quantum poly-
nomial, in short in dcBQP, if there are polynomial £ — P(§) and a dcq
Turing machine deciding X that, for each z, produces the output within
P(|z|) steps.

As expected, we shall establish in due course that the quantum com-
putation concepts above coincide with those previously introduced in the
literature using quantum circuits.

It is straightforward to see that dcq decidability coincides with the clas-
sical notion. It is enough to take into account that the dcq Turing machines
can be emulated by classical Turing machines using a classical representation
of the contents of the quantum tape that might be reached from (z, |e}).

In the sequel we also need the following notion that capitalizes on the
fact that dcq Turing machines can work like classical machines by ignoring
the quantum tape. A function

f{0, 13" = {0, 1}

is said to be classically deq computable if there is a deq Turing machine (Q, 6)
that, for every z € {0,1}*, when starting from input (z,|¢)) produces the
classical output f(x) if € dom f and fails to halt with a meaningful classical
output if z € dom f.

Again, it is straightforward to show that classical deq computability
coincides with classical computability.

3 Emulating quantum circuits

Our goal now is to prove that every unitary operator U : H" — H" that can
be computed by a quantum circuit is also dcq computable. To this end, we
need some preliminary concepts and results concerning quantum circuits.

Recall that, as shown in [4], for any unitary operator U : H" — H™ and
e € RT, there is a quantum circuit C built only with gates in

{H,S,7/8,c-Not}
that approximates U up to e:

max (U= O <e.

Accordingly, one says that U : H" — H" is quantum-circuit computable
(in short, gc computable) if there is a quantum circuit C' built only with



gates in {H,S, 7/8,c-Not} such that Uly) = C|¢) for each |¢p) € H". The
result above amounts to saying that the set of unitary operators which are
computable by such finitely generated quantum circutis is dense in the set
of unitary operators.

Observe that, a fortiori, any unitary operator can be approximated by
a quantum circuit using gates in U. We included Id and Sw in the set U
of primitive operators only as a matter of convenience. For instance, Id
coincides with H o H.

By a seesaw quantum circuit we mean a circuit only using gates in U and
such that:

(i) Two-qubit gates are applied only to adjacent qubits.
(i

) The control qubit of each c-Not gate is the topmost one.
(iii) The first gate and the last gate are applied to the top qubit.
)

(iv) The topmost qubit of each subsequent gate is the topmost qubit of the
previous gate or adjacent to it.

As the next lemma shows, it is enough to work with seesaw quantum circuits,
incurring only in a polynomial penalty on the number of gates. Recall that
|C'| denotes the number of gates of quantum circuit C.

Lemma 1 There is a polynomial (£1,&2) — P(&1,&2) such that, for any
quantum circuit C' on n qubits with gates in U, there is a seesaw quantum
circuit C’ with at most P(n,|C|) gates that computes the same unitary
operator.

Proof: Let C' be a quantum circuit operating in n qubits and assume that
C =Ugjo---oU; with each U; € U.

Observe that, since in a seesaw circuit the first and last gate are applied
to the first qubit, the composition of two seesaw circuits is still a seesaw
circuit. Thus, we start by showing that each gate of the circuit can be
emulated by a seesaw circuit incurring in a polynomial cost on the number
of qubits. The proof proceeds by case analysis.

1. A one-qubit gate U applied to qubit j can be emulated by the following
seesaw circuit with at most 2n — 1 gates:

Id[1]o---old[j —1]o  (get back to the top qubit)
Ulj] o (apply the gate)
Id[j — 1] o---old[1]. (reach the target qubit)



2. The gate Sw applied to qubits j and [ with j < [ can be emulated by
the following seesaw circuit with at most 2n — 3 gates:

ld[1Jo---old[j — 1] o
Swlj,j+1]o---oSw[l—2,l—1]o

Swll —1,] o
Swll —2,1—1]o---oSw[j,j+1]o

Id[j — 1] o -+ o ld[1]

(get back to the top qubit)

(move the second target qubit
to position j
pushing down
the intermediate qubits)

(swap the target qubits)

(move the first target qubit
to position [ — 1
pushing up
the intermediate qubits)

(reach the first target qubit).

3. The gate c-Not applied to qubit [ controlled by qubit j with j < [ can
be emulated by the following seesaw circuit with at most 2n — 3 gates:

ld[1Jo---old[j — 1] o
Swlj,j+1]o---oSw[l—2,l—1]o

c-Not[l — 1,1] o
Sw[l—2,1—1]o---oSw[j,j+ 1] o

Id[j — 1] o---old[1]

(get back to the top qubit)

(move the control qubit
back to position j
pushing down
the intermediate qubits)

(apply c-Not as required)

(move the control qubit
to position [ — 1
pushing up
the intermediate qubits)

(reach the control qubit).

4. The gate c-Not applied to qubit j controlled by qubit [ with j <[ can



be emulated by the following seesaw circuit with at most 2n — 1 gates:

Id[1]o---old[j —1]o (get back to the top qubit)

Swlj,j+1]o---oSw[l —2,l—1]o (move the target qubit
back to position j
pushing down
the intermediate qubits)

Sw[l—1,1]o (swap the control qubit
with the target qubit)

c-Not[l — 1,1] o (apply c-Not as required)

Sw[l — 1,1] o (swap the target qubit

with the control qubit)

Sw[l—2,1—1]o---oSw[j,j+1]o (move the target qubit
to position [ — 1
pushing up
the intermediate qubits)

Id[j —1]o---old[1] (reach the target qubit).

To the simulate the circuit C we compose sequentially the seesaw circuits
that emulate each gate of C. Therefore, such composite seesaw circuit has
at most |C|(2n — 1) gates and emulates C. QED

It pays off to introduce the notion of seesaw circuits since it is quite easy
to emulate them by dcq Turing machines.

Lemma 2 There is a polynomial £ — P(&) such that, for any seesaw quan-
tum circuit C' on n qubits with gates in U, there is a dcq Turing machine
such that, for every unit vector |¢) € H", the computation starting from
(¢, |1)) produces the quantum output C|¢) in at most P(|C]) steps.

Proof: Let C' = Ujgj o -+ o Uy be a seesaw circuit acting on n qubits.
Consider the dcq Turing machine (Q,0) where Q = {q.,q1,-..,qk, a9y} and
d is as follows:

(qs?a) - (Id7R7a7N7q1)
(qi,a) = (Ui,di,a, Np‘]i—i—l) for each i = 1, ceey |C‘ -1
5(Q\C|7a) = (U|C|a L,a, N)qh)a

0
0



for each a € {OJ,0, 1}, with

L if the topmost qubit acted upon by U;y; is above
the topmost qubit acted upon by U;

N if the topmost qubit acted upon by U; 41 is

di = the topmost qubit acted upon by U;
R if the topmost qubit acted upon by U1 is below
the topmost qubit acted upon by U;
for each i = 1,...,|C| — 1. Clearly, this machine emulates seesaw circuit
C and, for each [¢) € H" produces the required quantum output C|v¢) in
precisely |C| + 2 steps. QED

The following result is an immediate consequence of the two lemmas
above.

Theorem 3 (Fibered emulation of quantum circuits)

There is a polynomial (&1,&2) — P(&1,&2) such that, for any quantum circuit
C on n qubits with gates in U, there is a dcq Turing machine such that, for
every unit vector [¢) € H™, the computation starting from (e, [¢)) produces
the quantum output C|¢)) in at most P(n, |C|) steps.

In fact, it is possible to establish a stronger result showing that a single
dcq Turing machine is enough for emulating a uniform family of quantum
circuits. We establish the stronger result only in Section [5| because its proof
relies on techniques used in Section [4] for building universal machines. Ob-
serve that uniform emulation is necessary for verifying that problems decid-
able by quantum circuits are decidable by dcq Turing machines, a fact that
is also established in Section [5l

With Theorem |3 in hand, we are ready to establish the equivalence be-
tween the two models of quantum computation only with respect to unitary
transformations.

Theorem 4 For each n € N*, a unitary transformation U : H* — H" is qc
computable if and only if it is dcq computable.

Proof:

(=) If U is qc computable then, by definition, there exists a quantum circuit
with gates in {H,S,7/8,c-Not} (and, so, a fortiori with gates in U) that
computes it. Hence, by Theorem[3] U is computed by a dcq Turing machine.



(<) Assume that there exists a dcq Turing machine that, for every |¢)) € H™,
starting on input (e, 1)) produces the output U(|¢)) in a finite number of
steps. Observe that the sequence of unitary operators in U applied by any
dcq Turing machine to qubits in the quantum tape does not depend on the
|4) at hand. Clearly, the finite sequence of operators applied by the machine
computing U defines a (seesaw) quantum circuit that computes U.  QED

4 Universal machines

The existence of universal dcq Turing machines is proved below as a corollary
of the following result — the counterpart for dcq Turing machines of the s-
m-n theorem. Both are established with polynomial bounds as required for
the subsequent development of complexity theory.

Theorem 5 (Polynomial translatability)
There is a dcq Turing machine T such that, for any dcq Turing machine
M = (Q,6), there is a map

s:{0,17" — {0,1}*

which is classically deq computable in linear time and fulfills the following
conditions:

¥,z € {0,1}, |¥) € Hn € N* - M0z, [4)) = T(s(p)T, 1)
JceN Vpe {01} 1s()] < lp| +c.

Moreover, there is a polynomial (£1,&2,&3) — P(&1,&2,&3) such that if M
starting from (pOx, [1)) produces the output in & steps then T" produces the
same output in at most

P(lpl + [z}, 1@l k)
steps when starting from (s(p)0z, |¢)).

Proof: Without any of loss of generality assume that

Q = {QO7q17 v 7QV7qy+1}

with g, = qo and q,, = ¢u+1. Hence, |Q| = v + 2. Consider the map
s=p—dlllp:{0,1}* = {0,1}*

where § encodes § as follows.
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Encoding of §

with each

d(g,0) =Udd'd ¢’ € {0,1}"

where
(000 if U=1Id
001 if U=H
U — 010 if U=S
- 011 if U=mn/8
100 if U =Sw
( 101 if U =c-Not
00 if d=L
d = 01 if d=N
11 if d=R
00 if d=0
ad = 11 if d=1
10 if o =0
00 if d=1L
d = 01 if d=N
11 if d =R
g = 171100

assuming that 6(¢,a) = (U,d,d’,d’,¢') and ¢’ = g;.

Notice that one can identify in s(p) the end of the encoding of ¢ since
each 0(q,a) starts with U and the sequence 111 does not encode any gate.
Clearly, as defined, s can be dcq computed in linear time and fulfills the
conditions in the statement of the theorem by taking ¢ = |d| + 3.

Encoding of configurations

It is necessary to encode in the classical tape of 1" the current classical
configuration of M (composed of the current contents of the classical tape,
the current position of the classical head and the current state of the control
automaton). There is no need to encode the quantum configuration of M
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since in a deq Turing machine it does not affect its transitions. In due course,
when explaining how M computations are emulated by 1" computations we
shall see how quantum configurations of 1" are made to follow those of M.
The following notation becomes handy for describing classical configurations
of deq Turing machines.

We write
q

w 4w

for stating that the machine in hand is at state g, its classical head is over a
tape cell containing symbol a, with the finite sequence w of symbols to the
left of the head, with the finite sequence w’ of symbols to the right of the
head, and with the rest of the classical tape filled with blanks.

Before we describe how a classical configuration of M is encoded in T
we need to introduce some notation. Recall that a symbol a € {0,1,0} is
encoded as

00 if a=0
a = 11 if a=1
10 if a=0.

We denote by a; and ay the first and second bit of a, respectively. The
reverse encoding of a is @ = aya;. Given a string w = wy ... wy, € {0,1,0}*,
we denote its encoding by w = wy ... Wy, and its reverse encoding by w =
Wy - - - W1 a
"~ The classical configuration

of M should be encoded as the following classical configuration of T’

/

q

v
wO1l...10 1...1D§111%’Q2g1
v4i—1 i+1

ai
where ¢’ is a state of T representing the stage where the machine is able
to start emulating a transition of M. As we shall see later, whenever a

transition of M has just been emulated by T" and the resulting state is not
the halting state of M, T is at state ¢'.
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Initial classical configuration
The initial classical configuration of M is
q0
Y4
OpOx
and, moreover, the initial classical configuration of T is
a0
v
06111 p O,
——
s(p)

where ¢, is the initial state of T'. The objective of this stage is to change the
initial classical configuration of T to the encoding of the initial configuration
of M, as described before, that is:

/

q
V

1...101 06111 OpOa.

—

encoding of qo

Writing the encoding of gy can be done straightforwardly in O(k) steps. It
remains to describe how to encode Oplz in reverse order within O((|p| +
|z])?) steps, keeping & 111 unchanged:

1. Encoding of x Recall that x = x1...x,, has no blanks, and therefore
T = Tix]...TymTy. Lhe idea is to shift x5 ...x,, to the right, duplicate
in the vacated cell and then iterate this process to zs ... x,,. First, the head
moves on top of xo and copies the contents of x5 . .. x,, one cell to the right,
leaving the original cell of o with a blank. Then the head moves back to
x1 and copies its contents to the cell on its right. The process is iterated for
To...xT, until the last symbol of x is reached. Since shifting to the right the
contents of m cells, leaving the first one blank, can be done with a linear
number of steps in m, this operation takes a quadratic number of steps on
the size of x.

2. Encoding the [J in plx First, the encoding of z is shifted one cell to
the right and then, the head is moved back to the top of the first two blanks
separating p and z. Finally, the head replaces the two blanks by 10 and it
is parked in the 1. Note that this can be done with a linear number of steps
on the size of z, and moreover, the encoding of [Jx has no blanks.

13



3. Encoding of p Let [ be the size of p. The encoding of p is similar
to the encoding of x. First the encoding of [x is shifted three cells to the
right. Then the head of the machine is moved to the beginning of p. Notice
that the machine can identify it as the first cell on the right of § 111. Next,
p is shifted one cell to the right (which leaves two blanks before [Jz) and the
head of the machine is moved to the cell containing p;. The machine copies
p; to the two cell immediately on its right and writes [] in the original cell.
After these steps, the content of the classical tape is:

/

q
\Y4
0111 0py...p—q O pOx.

Next p;x is shifted one cell to the right and the process of writing the
encoding of p; in the tape is repeated for p;_1, p;_2, ... until p;. The end of
this construction is reached whenever the symbol [ is placed after ¢ 111 is
read. Finally, p O z is shifted two cells to the left.

4. Reversing the encoding of plJr Assume that plx =y, ...y, Where
m = |p| + |z| + 2 is the contents of the cells containing the encoding of
plz. The objective is to replace this contents by y,, ...y1. First, the cell
containing y; is replaced by a blank and y; is copied to the right cell of y,,.
Second, the sequence ¥s ...y, is shifted one cell to the left. This process
is repeated with ys ...y, in such a way that yo is copied to the left of 3,
and until the contents of the tape is Ly, ...y;. Finally, the blank symbol
is removed when y,, ...y; is shifted one cell to the left. Observe that the
operations leading to Oy, . .. y1, take O(m?) steps. Moreover, the final shift
is linear, and so the overall stage takes a quadratic number of steps.

5. Placing the reverse encoding of a blank at the right end The
head is moved to the right until the first blank is found. Then, the head
writes a 0 and moves one cell to the right, where it writes a 1. Finally, the
head is moved to left until the first blank is found.

It is straightforward to check that the overall cost of these operations is
quadratic on |p| + |z| and that the five stages above require just a constant
number of states in 7' (that is, the number of states does not depend on p
and ).

14



Transition emulation

We describe the steps needed to emulate in T" one step by M. Assume that
the transition to be emulated is §(g;,a) = (U,d,d’,d’, q;) and that T is at
the following classical configuration:

\Y4
wl---10 1---1D§111£a72ﬂ.
v—i—1 i+1
encoding of g;

The objective is to set T' at the following classical configuration

encoding of g;

where, depending on the move of the classical head, three cases may occur:
e if d = N then w = w” and w"” = d'w;

o if d' = L then w” = wy ... w},—1 and w"" = wy,aw’;

o if d' = R then " = wa’ and w"" = wj ... w],.

Next, we detail how T performs the emulation of d(g;, a).

1. Identifying the value ¢ The head of the classical tape of T is moved
to a; which is the rightmost cell that is not blank. The head reads the
contents of that cell and the contents of the cell on its left, which has a,
and goes to a different state of 7" depending on the value a. The cost of this
operation is linear in the the number of states of M and on the space used
by M.

2. Parking the head at the encoding of §(¢;,a) in §. First the head
is moved to the cell containing the rightmost 1 of the encoding of ¢;. Notice
that, such encoding has at least one 1 to the right of the blank. Since the
head starts from position a,, such 1 is on the left to the first blank that the
head finds while reading the classical tape from right to the left. So, this
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operation is at most linear in the size of the space used by M. Recall that
¢ is encoded as

0 = 9(q0,0)6(q0,1)(q0,0) ... 5(g;,0)0(gi, 1)d(g;,0) ... 6(q,0)6(qv, 1)0(qy, O).

Moreover, each 6(g;,a) ends with 00 and starts with nine cells correspond-
ing to U -d-d -d and a sequence of 1’s, encoding the resulting state of
that transition. This stage consists in a loop with progress variable, say r,
starting from r = 1 until » = ¢ + 1. The goal of the loop is to replace the r
rightmost 1’s of encoding of ¢; by 0’s while the 00, at the end of 6(g,—1,0),
are replaced by L. The end of the loop r =i+ 1, is detected when a blank
symbol is read in the encoding of ¢;. For each value of r we keep only a pair
of OO in §: those at the end of §(¢,—1,). When r =i + 1, the encoding of
d(g;, O) is marked in § with OO, and so, it remains to park the head in the
first cell of the encoding of §(¢;, a). This movement can be achieved taking
into account the symbol a read in the previous stage.

Observe that all the operations performed in this stage depend linearly
on the space used by M (on the right of its classical head) and quadratically
on the number of states of M.

3. Identifying and applying U Using the first three cells of d(g;, a), the
machine 7' identifies the unitary transformation and applies it to its own
quantum tape.

4. Performing the d-move of the quantum head Using the fourth
and fifth cells of §(¢;,a), T identifies the movement of the quantum head
and operates accordingly on its own quantum head.

5. Identifying and writting ¢’ Using the sixth and seventh cells of
d(qi, a), T identifies the encoding of the symbol a’ to be written under aya;.
The encoding of @’ in §(¢;, a) is marked with two blanks and d’ is copied in
reversed order to asa;, which are the two rightmost non-blank cells. After
completing the last operation, the head returns to the original position and
restores ¢’ in §(g;,a).

Notice that the operations of this stage can be done in a linear number
of steps on the space used by M the input and linearly in the number of
states.

6. Performing the d’-move of the classical head The ninth and tenth
cells of §(g;,a) store the movement of the classical head. If d = N nothing
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has to be done. W.l.o.g. assume d’ = R. First, the encoding of d’ is marked
with two blanks. Then the rightmost non-blank cells have to be copied
(in reverse order) to the left of the leftmost non-blank cells. Clearly the
rightmost non-blank cells have to be replaced by two blanks if |w'| > 0,
and have to be replaced by 01 (the reverse encoding of a blank) if |w'| = 0.
Mutatis mutandis if ' = L

This stage can be done in a linear number of steps on the space in the
classical tape used by M.

7. Updating the emulated state to ¢; Assume that g; is not the
halting state and recall that ¢; is encoded as 17100 at the rightmost part
of 0(¢i,a). The idea is to update the emulated state g; to g; by replacing
each 1 in 171100 at §(¢;,a) by a [ while updating the cells used to encode
the current state of M. Given Stage 2, the cells used to encode ¢; contain
1¥==100"*!. If j < 4 then we replace j + 1 rightmost 0’s by 1’s and then
place a O left to them. If j > 4, then the i 4 1 rightmost 0’s are replaced by
1’s and after, the blank has to be carried to the left while being replaced by
a 1, until there are (j +1) 1’s. This process ends when all 1’s in 177100 have
been replaced by blanks. After the cells encoding the emulated state are
updated, the encoding of ¢; in §(g;, a) is restored, by replacing the blanks
by 1’s.

This stage does not depend on the input of M, but only quadratically
in the number of states of M.

If g; is the halting state, we have to restore the contents of the classi-
cal tape to wa’w’, with the head positioned over a’. This corresponds to
inverting the process used to prepare the initial configuration, erasing the
encoding of g; and §. Such stage can be done in a number of steps quadratic
to the space used by M and linearly in the number of states of M.

Efficiency of the emulation

Since the space used by M is bounded by k, the overall emulation is poly-
nomial (in fact quadratic) on |p| + |z|, v and k. QED

A machine T fulfilling the conditions of Theorem [5] is said to enjoy the
s-m-n property. Any such machine is universal as shown in the next result.

Theorem 6 (Polynomial universality)
Let T be a dcq Turing machine enjoying the s-m-n property. Then, for any
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dcq Turing machine M = (Q, ), there is p € {0,1}* such that
M(z,|¢)) = T(P0z,|4)) V€ {0,1}",]) € H",n € NT.

Moreover, there is a polynomial (§1,&2,8&3) — P(&1,&2,&3) such that if M,
when starting from (z, [¢)), produces the output in & steps then 7' produces
the same output in at most

P(|z],1Ql, k)
steps when starting from (pOlz, [¢)).

Proof: Consider M’ such that M'(eOx, |¢))) = M(z,|¢)). By applying
Theorem |5 to M’ and choosing p = s(e) the result follows. QED

5 Recovering the BQP class

Using the approach adopted in the proof of Theorem [5, we are ready to
establish the uniform variant of Theorem [3] and to prove that problems
decidable by quantum circuits are also decidable by dcq Turing machines.
Both results are obtained with polynomial bounds, as required for recovering
the BQP class using dcq Turing machines.

Recall that a set X C {0, 1}* is said to be quantum-circuit decidable (in
short, qc decidable) if there is a computable sequence of quantum circuits

k+— Ck
such that, for each k, we have:
1. The circuit C}, operates in H™ with n; > k.

2. The following holds for each = with & > |z|. The circuit C} when
presented with input |z) (padded to the top with |0)’s as needed)
produces some output |¢) € H™ such that

Prob (Proj;|¢) =1) >2/3 if z € X
Prob (Proj;|¢) =0) > 2/3 if = & X.

Theorem 7 (Uniform emulation of quantum circuits)

There is a polynomial (£1,&2) — P(&1,&2) such that, for each computable
sequence of quantum circuits k — C}, there are a dcq Turing machine T and
a classically dcq computable map ¢ : {0,1}* — {0,1}* such that, for every
n € NT and |¢) € H™, the computation starting from (g(1¥),|)) produces
quantum output Cg|¢) in at most P(k,|Cy|) steps.
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Proof: Assume some (efficient) description of quantum circuits in {0, 1}*.
The computable sequence of quantum circuits & — C} is a computable
map c : {0,1}* — {0,1}* such that ¢(1%) is the description of Cj. Given the
constructive proof of Lemma there is a polynomial-time map w : {0,1}* —
{0,1}* that receives a description of a circuit C' and outputs the description
of a seesaw circuit equivalent to C. By the proof of Lemma [2 there is a
polynomial-time map ¢ : {0,1}* — {0,1}* that receives a description of a
seesaw circuit C and outputs the encoding of a Turing machine that emulates
it. We consider that the encoding of a machine M = (Q,J) is

11ei-1ps111

where ¢ is the encoding of § described in the proof of Theorem

Consider g = t o w o ¢. Observe that, thanks to proof of Lemma [I| and
Lemma [2| there is a polynomial (£1,&2) — P’(&1,&2) such that the number
of steps the Turing machine encoded by t(w(c(1¥))) takes to emulate Cy is
Pk, |Cy)):

It remains to present a Turing machine 7" that emulates, with polynomial
overhead, the one encoded in ¢g(1¥) with no classical input. To this end, we
adapt the Turing machine described in the proof of Theorem [5| As we shall
see, we only need to modify the initial classical configuration.

Initial classical configuration The initial classical configuration of the
machine M encoded by g(1%) is

q0
4
O

and, moreover, the initial classical configuration of T is

0
4
01...1 068111
—
Q11

The objective of this stage is to change the initial classical configuration of
T to the encoding of the initial configuration of M, as described in the proof
of Theorem [5], that is:

/

q

\Y4
1...101 0O 111 0.
— =

encoding of qo
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This is achieved by replacing the first blank by a 1, and then moving the
head to the right until a 0 is found. When a 0 is found, it is replaced by a
blank and then the head moves two cells to the left, where it writes a blank.
Next, the head moves to the right until it passes the rightmost 111, and
writes the encoding of [J. Finally, the head moves to the first blank found
to the left, and changes the states of T' to ¢/. Recall that ¢ is the state of T
representing the stage where T is able to start emulating a transition of M.

Transition emulation Precisely the same as that in the proof of Theo-
rem 5

Observe that T' emulates the machine encoded by ¢(1*) with polynomial
overhead, and, moreover, the machine encoded by ¢(1¥) requires P'(k, |Cy|)
steps. Thus, there is a polynomial (£1,&2) — P(&1,&2) such that the com-
putation of T starting from input (g(1¥),]v)) with |¢) in H™ produces
quantum output Cg|¢) in at most P(k,|Cy|) steps. QED

With the uniform emulation of quantum circuits by dcq Turing machines
in hand, it is straightforward to show that dcq decidability is entailed by
qc decidability. In fact, the two concepts coincide. The converse capital-
izes on the fact that quantum circuit decidability coincides with classical
decidability.

Theorem 8 A set is qc decidable if and only if it is dcq decidable.

Proof:

(=) Assume that X is qc decidable. The goal is to build a dcq Turing
machine 7" that, upon receiving (z, |¢)), produces quantum output |¢) such
that

Prob (Proj;|p) =1) >2/3 if z€ X
Prob (Proj;|¢) =0) >2/3 if = & X.

Since X is qc decidable, there is a computable map ¢ : {0,1}* — {0,1}*
such that c(lk) is the description of the quantum circuit Cj operating in
ny qubits. Consider the map g = t o w o ¢ presented in the proof of The-
orem [ The Turing machine 7" works as follows. First, it writes z0|z| in
the classical tape. Next, it writes |x) in the quantum tape using nj qubits
(eventually, padded to the top with |0)’s as needed). Next, it emulates g(|z|)
by mimicking the Turing machine presented in the proof of Theorem [7] This
dcq Turing machine will decide precisely the same set as that of the uniform
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family of quantum circuits.

(<) The sketch of the proof is as follows. Start by noticing that qc decidabil-
ity coincides with Turing decidability [I3]. Thus, quantum circuits access-
ing an oracle for a computable map only decide Turing decidable problems.
Let (@,9) be a deq Turing machine that decides X. Then, (@Q,J) starting
from (z, |€)), produces a quantum output |p) for which the outcome of the
measurement of its first qubit is used to decide whether x € X. For each
k € N, let o be the highest dimension of a quantum output |¢) produced
by (@, ) for some input (z, |¢)) with |z| < k. Observe that (Q, ), starting
from (z, |e)), applies to the quantum tape a sequence (Ui(x). .., Up, (x)) of
primitive unitary operators, where each U;(x) is applied to the j;-th qubit
of the quantum tape with j; € {1,...,0r}. By definition of a dqc Turing
machine, if the primitive gate is binary, only adjacent qubits are modified.
In particular, if U; is a Sw gate, we assume that the j; qubit is the topmost
one; if U; is a c-Not gate, the topmost qubit is the control qubit, and we
assume that j; is the index of that control qubit.
Let G(z) be some encoding of the sequence

((U1<1'),j1>, R (Uma: (w)7jma:))

that unambiguously define the sequence of applications such that
G(z) =GUi(x),j1) ... G(Un, (), jm,)-

Clearly, z — G(z) is decidable, and moreover, |G(U;(x), j;)| € O(log(ox)).
Furthermore, let nj = k + oy + max, < |G(7)].

We are now able to describe the uniform family of quantum circuits
k — Cj that emulate (@, ) such that each C} operates in H"* and it can
access an oracle for = — G(z). The circuit starts with input [0)%™*|z)
and then, calls the oracle, resulting in the state |0)®%|G(z))|z). Finally a
universal circuit reads G(x) and applies sequentially the primitive unitary
operators U;(x) to the j;-th topmost qubit. Since the size of G(z) is upper-
bounded for |z| < k, such universal circuit exists and we sketch it briefly.
Observe that such circuit can be built so that each pair (U;(z),j;) of the
sequence is emulated with a linear number of gates in ng. Indeed, this emu-
lation can be achieved by making a sequence of control operations over the
O(log(ok)) qubits that encode (U;(x), j;), where each control operation takes
into account one of the six primitive quantum gates applied to one of the o
topmost qubits. Upon applying the previously presented universal circuit,
the ny qubits of the circuit are in state |¢)|G(x))|z). So, by measuring the
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first qubit we obtain precisely the same distribution as the output by (@, ¢)
for input (z, |e)). QED

Taking into account that the deq Turing machine presented in (=) of the
proof above emulates the given uniform family of quantum circuits with a
polynomial-time overhead, it is immediate to show that BQP C dcBQP. The
converse relies on the fact that the class BQP is closed for the consultation
of oracles for polynomial-time maps.

Theorem 9 dcBQP = BQP

Proof:

(D) To obtain that dcBQP D BQP it is enough to note that the Turing
machine presented in (=) of the proof of Theorem [§] emulates a uniform
family of quantum circuits with polynomial-time overhead.

(C) To show that dcBQP C BQP we use the fact that BQPP = BQP
as proved in [2]. Let (Q,0) be a deq Turing machine that decides X in
polynomial time, then the map = +— G(z) used in (<) of the proof of
Theorem [§] for (Q,d) can be computed in polynomial time. The uniform
family of circuits k — Cj emulating (Q, ) is precisely the same as that in
(«<=) of the proof of Theorem |8 using an oracle for x — G(z). We only need
to observe that the size of G(x) is polynomial in k£ and so, the universal
quantum circuit has a polynomial number of gates in k, since each primitive
quantum gate applied by (Q, ) can be emulated in this universal quantum

circuit with a linear number of gates in ng. Since z — G(z) is a polynomial-
time map, X € BQPP = BQP. QED

6 Quantum Kolmogorov complexity

Kolmogorov complexity aims at measuring the quantity of information con-
tained in an object. When the object is classical, i.e. a bit string, one can
measure that quantity via the length of the shortest program that computes
the string in a given universal Turing machine. In consequence of Kleene’s
s-m-n theorem, this classical notion of Kolmogorov complexity is robust in
the sense that it does depend (up to a constant) on the adopted universal
Turing machine. For a recent survey see [I].

When the object is a quantum state, it is not yet clear how one should
proceed. Several definitions of quantum Kolmogorov complexity have been
reported in the literature with different approaches and motivations.
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In [19], the Kolmogorov complexity of a pure quantum state |p) is cal-
culated as the minimum value of the sum of (i) the length of a classical
program computing (in the chosen quantum Turing machine) an approxi-
mation |¢) of |p), and (ii) the negative log-fidelity of the approximation of
[¥) to [p).

In 3, 12], the Kolmogorov complexity of a qubit string is defined as the
length of the shortest quantum bit string that given to a given quantum
universal Turing machine produces the qubit string with high fidelity. This
notion has a similar flavor to Vitanyi’s approach, but, rather than consider-
ing only classical programs, it considers the possibility of quantum ones.

In [8], using the concept of universal semi-density matrix p, a general-
ization of the notion of universal semimeasure, two variants of Kolmogorov
complexity of a pure quantum state |¢) are defined (H(|¢)) = — (| log p|e)
and H(|¢)) = —log {¢|u|¢)), compared and carried over to density matrices.

Later, in [I1], the Kolmogorov complexity of a pure quantum state |p) is
defined as the length of the shortest description of a quantum circuit capable
of producing such state (or an approximation of it).

Herein, we propose to define plain quantum Kolmogorov complexity using
a dcq Turing machine 7" enjoying the s-m-n property. Recall that there are
dcq Turing machines enjoying the s-m-n property, thanks to Theorem
More concretely,

Cly, o)/, |4)) = min{|p| : T(pQz, |[4)) = (y,|¢))}

is defined to be the conditional plain descriptive complezity (for T') of the
pair (y, |¢)) given the pair (z,|v¢)). In particular,

C(l¢)) = Cle;[¥)/e, [e)) = min{|p| : T(plle, |€)) = (& [#))}

is the unconditional plain descriptive complezity (for T) of |p). Other par-
ticular cases can be of interest.

Our notion of quantum Kolmogorov complexity is robust — it does not
depend on the choice of T" as long as T' enjoys the s-m-n property.

Indeed, given two dcq Turing machines T, 7" enjoying the s-m-n prop-
erty, let s be a map that translates T’-programs to T-programs and ¢ € N be
such that |s(p)| < |p| + ¢ for every p € {0,1}*. Clearly, by Theorem [5 such
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s and such c exist since T' is assumed to enjoy the s-m-n property. Then,

C'y, le)/z, |[4)) + ¢ min{[p| : 7"(p0z, [))) = (y, )} + ¢
min{|p| : T'(s(p)Uz, |[¥)) = (y,[#))} + ¢
min{[s(p)| : T'(s(p)Dz, |[4) = (y[#))}
min{|p| : T'(pUz, |)) = (y,[¢))}

Cly, [}/, [1)-

By a symmetric argument, since 7" is also assumed to enjoy the s-m-n
property, there is ¢’ € N such that:

Cly. |}/, [¥)) + ¢ = C'(y, )/, [¥)).

That is, C(y, |¢)/x, [¢)) and C'(y, |¢)/z, |1)) are identical up to a constant.

Our definition of quantum Kolmogorov complexity is plain since it is not
prefix free. However, it is straightforward to introduce the notion of prefix-
free dcq Turing machine and establish the existence of prefix-free dcq Turing
machines enjoying the s-m-n property, for instance, by adding a write-only
quantum tape to the classical prefix-free Turing machine used in [I7]. Using
such machines for defining Kolmogorov complexity will lead to a prefix-free
notion.

For a comparison between plain and prefix-free classical Kolmogorov
complexities see, for example, [1]. In the quantum case, the definition pro-
posed in [I9] is prefix free since it is based on a prefix-free variant of the
Deutsch machine, while the definition in [3] is plain. The latter paper con-
tains a preliminary comparison between the two approaches by capitalizing
on results presented in [g].

Our notion of unconditional plain Kolmogorov complexity of a pure
quantum state |p) is very close to the one proposed in [I1] which uses quan-
tum circuits. Indeed, recall from Section [3] that dcq Turing machines work
like seesaw circuits. Furthermore, there is ¢ € N such that for every seesaw
circuit there is a dcq Turing machine that emulates it such that the length
of the description of the machine coincides, up to ¢, with the length of the
description of the circuit. Recall also that there is d € N such that for every
arbitrary quantum circuit C' there is an equivalent seesaw circuit C’ such
that the length of the description of C” coincides, up to d, with the length
of the description of C. Therefore,

AV AV |

JeeN V]p) C(lg) < Cums(lp) +e
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where Cyg(|p)) is the Kolomogorov complexity of |¢) according to [I1].
Indeed, just take e = ¢ + d. It is easy to see that the converse bounding

JdeeN Vi]p) Cume(le) <C(lp))+e

also holds provided that U is adopted in the definition of Cyg. Observe that
in [I1] there is no robustness analysis concerning different choices of the set
of primitive gates and no definition of conditional Kolmorogov complexity
is given.

7 Outlook

By endowing a classical Turing machine with a quantum tape on which the
machine can apply unitary operators but cannot make measurements, we
were able to avoid the difficulties of the halting condition of the original
quantum Turing machine, while keeping its advantages over circuits which
follow from the existence of efficient universal machines. In particular, we
established that deterministic-control quantum (dcq) Turing machines can
efficiently emulate finitely generated quantum circuits, paving the way for re-
covering, for instance, the BQP complexity class. We also proved an efficient
counterpart of the s-m-n theorem for dcq Turing machines and obtained as
an immediate corollary the existence of efficient universal dcq Turing ma-
chines. The s-m-n result allowed the definition of a robust notion of quantum
Kolmogorov complexity.

Notwithstanding the well known equivalence between quantum circuits
and Deutsch machines [I4] [15], the results we established in this paper show
that a quantum transition table is not required for achieving similar equiv-
alence results, at least in the Monte Carlo scenario.

The power of dcq Turing machines (that do not have access to the con-
tents of the quantum tape during the computation) comes as no surprise
since it is well known that, in a quantum computation, measurements can
be delayed until the end, thanks to Schmidt’s decomposition theorem.

Most of the work in quantum computation has been developed using
quantum circuits. The availability of a viable Turing model of quantum
computation — like the one proposed herein — opens the door to shifting the
attention towards problems which are better addressed using machines.

For instance, one should look at interactive dcq Turing machines for
applications in information security concerning universal composability [5].
In another direction, one should use dcq Turing machines for developing the
theory and applications of prefix-free quantum Kolomogorov complexity,
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possibly with bounded resources (including space), and comparing these
notions with physical measures of the complexity of quantum states, like
fidelity [21]. In due course, one should extend our approach to dcq machines
acting on density operators instead of pure quantum states. It seems also
interesting to investigate the power of dcq Turing machines for computing
Las Vegas algorithms, and to study space complexity classes obtained with
dcq Turing machines and compare them with those obtained by Watrous
in [20] using quantum Turing machines with probabilistic control.
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