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A modal logic amalgam of classical and
Intuitionistic logic

Steffen Lewitzka

Abstract

A famous result, conjectured by Godel in 1932 and proved biKisey
and Tarski in 1948, says thatis a theorem of intuitionistic propositional
logic IPC iff its Godel-translatio’ is a theorem of modal logic S4. In this
paper, we extend an intuitionistic version of modal logie-SP, introduced
in our previous paper [14], to a classical modal logic L andvprthe fol-
lowing: a propositional formuleg is a theorem of IPC iffJy is a theorem
of L (actually, we show® F;pe o iff O® k5 Oy, for propositional®, ().
Thus, the map — Oy is an embedding of IPC into L, i.e. L contains a
copy of IPC. Moreover, L is a conservative extension of atadgproposi-
tional logic CPC. In this sense, L is an amalgam of CPC and WR&€show
that L is sound and complete w.r.t. a class of special Heylggbras with
a (non-normal) modal operator.

1 Introduction

According to the informal Brouwer-Heyting-Kolmogorov sentics (BHK) of in-
tuitionistic propositional logic (IPC), intuitionisticuth is provability: a formula
istrueif there is a proof for it. Logical connectives then have astarctive mean-
ing. For instance, a proof of Vv ¢ is given by a proof ofp or by a proof ofi. In
an attempt to formalize BHK, Godel [11] interprets IPC in adal extension of
classical propositional logic (namely Lewis system S4) bfirdng atranslation
¢ — ¢ that maps any propositional formulato a modal formulay” such that
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the following holds: ify is a theorem of IPC, the@’ is a theorem of S4. Godel
also conjectured the converse, i.e.

(1.1) Fipc p & Faa

for any propositionap. This conjecture was later proved by McKinsey and Tarski
[16]@] Thus, Brouwer’s intuitionistic logic, as axiomatized byyiag, can be
recovered from modal system S4 by the equivalence (1.1)ealidowever, since
the Godel translationp — ¢’ is not trivial, S4 contains IPC only in indirect,
codified form. In particular, the modal operator of systens&=sannot be seen as
a predicate for intuitionistic truth in the following sense

(1.2) Oy is true in S iffo belongs to a given prime theory of IPC

for any propositionado@

In this paper, we present a modal logic L such thaf (1.2) abolas with S=L.
Soundness of L then implies the right-to-left direction loé tfollowing equiva-
lence [1.B). The left-to-right direction can easily be shdwy an induction on the
length of a derivation. For any propositional

(13) l_[pC Y = l_L DQO
Actually, we will show the following stronger result:
(1.4) O bpep < O Op,

for any set of propositional formulas U {¢}. Thus, derivations in IPC are mir-
rored by corresponding derivations in L by means of the mogalator. In par-
ticular, the mappingr — Uy defines an embedding of IPC into L. That is, L
contains a copy of IPC and behaves in a similar way as a caatsar\extension.
Moreover, L is a conservative extension of classical prijposl logic CPC. In
this sense, L can be viewed as an amalgam or a combinatiorCcdiiel CPC. In
the combined logic L, IPC is separated from CPC by means ofnibdal opera-
tor, which avoids the collapsing of both logics. Combinas®f logics in a much
more general context have been studied extensively oveashgears (see [4]

LFor much more details and historical background, we referé¢lader to [17,11].

20f coursejruth is a semantic notion which is defined relative to a given moReicall that
the set of formulas true at a given possible world of a Kripkadel of intuitionistic logic forms
a prime theory, and each prime theory corresponds to a wdréd Kripke model. Hence, in
intuitionistic logic, “p is true” means thap belongs to a given prime theory of IPC.
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for an excellent overview). Known combining techniquegddy rely on the con-
cept offibring originally introduced by Gabbay (se€ [8)/9] 10]). These héphes
generally assume that the object logics are defined ovardiit languages. The
so-calledcollapsing problenwas first identified in[[8, 9] for the special case of
combining intuitionistic and classical propositional login the semantics of the
combined logic, the logical connectives of the composeduage have classi-
cal behaviour. That is, the combination results in a collap®f intuitionistic
logic into classical logic. A logical system that combinéassical and intuition-
istic logic avoiding the problem is found in![6]. A first gemaésolution to the
collapsing problem, based anodulated fibringis presented in_[5]. In_[3], the
authors proposeryptofibring semanticas a generalization of fibring semantics
and show that this provides a solution to the collapsing lerab Other solutions
to the problem are given bgraph-theoretic fibrind18,[19] and, more recently,
by a new method callesheet combination of logidR0,21].

The present paper is not in the traditiorfibfing or related techniques of com-
bining logics, neither it pretends to compete with the ssptated techniques de-
veloped in that research line. In fact, our approach reliegifferent assumptions
and motivations, which makes a direct comparison to comiitbexg techniques
a difficult task. One of the main differences is the fact that @bject logics IPC
and CPC are given in exactly the same propositional langulaggne combined
system, the object logics then are distinguished by a mapldador. Semanti-
cally, the intuitionistic part of the amalgam is, roughlyegging, given by spe-
cial Heyting algebras whereas the classical part is givealtogfilters contained
in those Heyting algebras. This represents a very compatarsécal solution
which, together with the mentioned syntactical simplifizas, ensures that, in
our view, the approach is technically simpler and less cemghian known fib-
ring techniques. We believe that the proposed solution eaadapted to similar
cases of combining logics. To what extent this can be donewdmich are the
limitations in comparison to fibring techniques remainsedurther investigated.
We would like to point out that the original motivation foretlpresent approach
was not to develop new combining techniques but rather todioldssical modal
logic L with the properties[(112) £ (1.4) above. Of courseyduld be nice to
have aminimallogic with those properties. Lewis modal system S1 turnstout
be a promising base. In our previous paper [14], we found gebahic semantics
for the slightly stronger system S1+SP. The semantics gallgmelies on prin-
ciples of non-Fregean logic![2] paired with the idea to idfgrdtrict equivalence
O(¢ <« ) with propositional identityp = . That is, we define an identity
connective byy = ¢ := O(yp <> ). If a denotational semantics is available, then

3



an identity connective should fulfill the following conditi: ¢ = v is satisfied

in a model iff o and« denote the same proposition, i.e. the same element of the
underlying model-theoretic universe. In this paper, wesstimt it is enough to
extend an intuitionistic version of S1+SP by an axiom schémérepresents a
certaindisjunction propertyand a scheme of theorems that represents the classi-
cal principle oftertium non daturin order to obtain a logic L with the desired
properties.

2 Modal logic L

The setF'm of formulas is inductively defined in the usual way over amid set
V = {zg,x1, 2, ...} Of propositional variables, logical connectiveés—, Vv, A,
and the modal operatds. If = is a variable ang, v are formulas, then we write
plx = 4] for the formula that results from substitutigigfor « in ¢. By F'm, we
denote the set of (non-modal) propositional formulas faanulas without modal
operator]. We use the following abbreviations:

s v Y=(p 2PN (Y =)

o ~p:=p— 1

o [ :=—1

o v =1 :=0(p — ) AO(W — ) (strict equivalence)
o IO := {0y | p € ®}, for any setd C F'm.

In particular, we define an identity connective by strictigglence.

In current logics, the meaning (denotati®@edeutunyof a formula remains
unchanged if we replace a subformula by a formula with theesareaning. Ac-
tually, this property represents a general ontologicaldawetimes called in the
literature thelndiscernibility of Identicals In a propositional language with (de-
finable) connectives for identity and implication, that lean be expressed by the
following Substitution Principle SP:

(e =) = (x[z == ¢] = x[r =)

If propositional identity,p, = 1 is given by strict equivalence, then most of
current modal logics (including non-normal modal logic S8g [14]) satisfy SP.
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An exception is Lewis modal system S1, where that law is fatfiin a weaker
form, namely as the rule Gubstitution of Proved Strict EquivaleiS8PSE): “If
¢ = v is a theorem, then any formula of the forgir := ¢] = x|z := ¢] is
a theorem”. There is no known intuitive semantics for S1, gredmain reason
for that fact seems to be the weakness of rule SPSE. Inde§]inve define a
natural algebraic semantics for modal system S1+SP, ilegiethat results from
S1 by replacing rule SPSE with the stronger scheme of thep&#n

The axioms are given by the following schemes (i)—(iv):
() intuitionistic propositional tautologies and theirbmtitution-instancés
(i) Op — ¢
(i) O(p = ¢) = (O — x) = O(e = x))
(iv) O(p Vv y) — (Op v Oy) (disjunction property)
The inference rules are:
e Modus Ponens MP: “From andp — 1 infer ¢.”

e Axiom Necessitation AN: “Ify is an axiom of scheme (i)—(iv), then infer
Oep.”

Logic L is given by the above system of axiomes and rples theorems of
the formy V —p and SP. We writ® I, ¢ or shorterd + ¢ if there is a derivation
of ¢ from @ in logic L. (Rule AN applies only to axioms but not to theorejns
Let (i)’ be as (i) above, but with all classical tautologiastead of only intuition-
istic ones. Then logic S1+SP, as introducedLin [14], is gikgrthe system of
axioms (i)",(ii) and (iii), rules MP and AN, and all formulasd the form SP as
theorems.

Note that because of scheme (iv), L is contained in no Lewidahsystem. In

fact, it might be hard to find any natural Kripke-style sen@vhere (iv) would
be valid.

The Deduction Theorem can be proved in the usual way by im@uohn the
length of a derivation. Also the following results will beafal. Their proofs can
be found in[[14] (Lemma 2.3 and Lemma 2.4, respectively).

3By a substitution-instance of a formutac F'm,, we mean a formula which results from
by replacing some of its variables by formulas.
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Lemma 2.1 [14] For all formulas p, v:
eFOp+ (p=T)
o FU(p = ¢) = (Op — )

The first item of Lemma_2]1 says that there is exactly one sacgproposi-
tion, namely the proposition denoted By The second item is the well-known
modal lawK . A further usefull fact is

Lemma 2.2 Lety, ) € F'm. Then:k O(p A ) < (Op A OY).

Proof. (p AY) — ¢ and(p A ¢) — 1 are (substitution-instances of) in-
tuitionistic theorems. Rule AN together with modal law K ande MP yield
FO(eAY) — Op andk O(pAw) — . By propositional logict- O(pAy) —
(0e A O¢). On the other handy — (v — (¢ A v)) is an intuitionistic theo-
rem. Again, rule AN and principle K yieldt O — O — (¢ A ¥)). By
transitivity of implication and principle K- Oy — (Oy — O(p A v)). Thus,
F (Op AOy) — O(e A 9). Now, the assertion follows. Q.E.D.

By Lemmal 2.2, strict equivalence modulo L can be writtenlyy <> )
instead of J(¢ — ¥) AD(¢ — ).

For propositional formula® U {¢} C Fmg, we write® ;p¢ ¢ if there is a
derivation ofy from & in intuitionistic propositional logic. Now, we are already
able to show the easy part of our Main Theorem:

Lemma 2.3 Letd U {p} C Fmy. Then® t;pc ¢ impliesOd® F .

Proof. Supposeb ;pc . We show the assertion by induction on a derivation.
If © is an intuitionistic axiom, then we apply rule AN to obtailp. If ¢ € ®, then
obviouslylly € [J®. Finally, suppose is obtained in intuitionistic propositional
logic by Modus Ponens from andy — ¢. By induction hypothesig,1® - [y
and®  O(i» — ¢). Then modal lawk” and rule MP yieldJ® + Op. Q.E.D.



3 Semantics

Recall that a Heyting algebra is a bounded lat#te= (H, fr, f1, fv, fo) With
an additional binary operatiofi, which maps any two elements, m’ € H to
the greatest elemerft, (m, m') = m” € H with the propertyf.(m,m”) < m/,
where< is the lattice ordering. Given such an operation for imgiaa an op-
eration f_ for complement is defined as followg:(m) = f.(m, f,), for any
m € H. A Heyting algebra is a Boolean algebrgif (m, m') = f,(f-(m),m)),
for all elementsn, m’. On the other hand, every Boolean algebra gives rise to a
Heyting algebra if one defines an implication operation &t thiay. A filter of a
Heyting algebrd is a non-empty subsét C H such that for alin, m’ € H the
following hold:

(@)m € F andm < m’ impliesm’ € F,

(b)m € Fandm’ € F implies f,(m,m') € F,

() fL ¢ F.

A filter F'is prime if for allm, m’ € H the following condition is fulfilled:

(d) fu(m,m’) € F impliesm € Form’ € F.

Finally, an ultrafilter is a filter which is maximal with resgéeo inclusion. A filter
F'is an ultrafilter iff it has the following propertyn ¢ F iff f_(m) € F, for all
m € H. Every ultrafilter is prime. If the underlying Heyting algelis a Boolean
algebra, then it also holds the converse: every prime fitemi ultrafilter. The
intersection of a non-empty set of filters is a filter. The dewlfilter is the set
{fr}. Itfollows from Zorn’s Lemma that every filter extends to dtrafilter.

Notice that the smallest filtef f+} of a Heyting algebra is not necessarily
prime. For instance, in any Boolean algebra we hauven, f-(m)) = fr, for
any elementn. If this is not the two-element algebra, then we do not nerdgs
havem = fr or f_(m) = fr (consider a powerset algebra). On the other hand,
the Lowenheim-Tarski algebra of intuitionistic propasital logic is an example
of a Heyting algebra with the disjunction property (in facts well-known that
the smallest theory of intuitionistic logic, i.e. the setimtuitionistic theorems, is
a prime theory; see, e.g../[7]).

Definition 3.1 LetH be an Heyting algebra with top elemefit. We say tha#{
has the disjunction property if the smallest filfefr } is prime.

In a Heyting algebra with the disjunction property, it holds following prop-
erty for all elementsn, m': f,,(m,m’) = fr & m = frorm’ = fy. Thereis, up



to isomorphism, only one non-trivial Boolean algebra whk tisjunction prop-
erty:

Lemma 3.2 Let B be a Boolean algebra. Thes has the disjunction property iff
B has at most two elements.

Proof. It is clear that any Boolean algebra with no more than two el&s
has the disjunction property. Suppose a Boolean algBhnas the disjunction
property. Then for all its elements: f,(m, f-(m)) = fr. Thus,m = fr or
f-(m) = fr, for all elementsm. In a Boolean algebra, the latter equation is
equivalent withm = f,. That is, any element df is either the greatest element
or it is the smallest element. Q.E.D.

Definition 3.3 A modelM = (M, TRUE, f+, f1, f-, fv, fr, fo) IS @ Heyting
algebra with an ultrafilter’RUE C M and an additional operatiorf; such that
for all m,m',;m” € M and the induced lattice ordering the following truth
conditions hold:

(i) fo(m) <

(m) <
(i) folfs(m,m) < fo(folfs(m,m"), fa(f-(m,m")))
(
(

m

(i) fa(fv(m,m)) < fu(fa(m), fa(m'))
(V) fo(m) € TRUE < m = fr

The elements of/ are called propositions’RUFE is the set of true proposi-
tions, andf+ is the necessary (or the proved) proposition. An assignmoera
model M is a functiony: V' — M which extends in the canonical way to a
functiony: Fm — M, i.e. v(L) = fi, v(O¢) = fo(y(e)) andv(e x ) =
fe(v(),7(¥)), wherex € {—,V, A},

Lemma 3.4 Every model has the disjunction property.

Proof. By conditions (iv) and (iii) of a model and the fact thBRUFE is a prime
filter, we may argue in the following wayf, (m,m’) = fr = fo(fy(m,m’)) €
TRUE = fy(fao(m), fa(m')) € TRUE = fa(m) € TRUE or fag(m') €
TRUE = m = frorm’ = f+. Q.E.D.



Definition 3.5 An interpretation is a tuplé M, ~) consisting of a modeM and
an assignment: V' — M. The relation of satisfaction (truth) is given by

(M,7) E v (p) € TRUE.

This notion extends in the usual way to sets of formulas. Rataf formulasp,
we defineMod(®) := {(M,~) | (M,~) E ®}. This gives rise to the following
relation of logical consequence:

O IF & Mod(P) C Mod({p}).

Recall that in any Heyting algebran < m' < f.(m/,m) = fr, for all
elementsn, m’. We will tacitly make use of this fact. The next result follew
readily from the definitions. It says that the defined conmect has actually the
intended meaning of an identity connective.

Theorem 3.6 (M,v) E o =1 < () = ().

Corollary 3.7 (Substitution Principle) For allp, ¢, ' € Fm:
F(p=v) = X[z = ¢] = x[z = ¢]).

Proof. Let (M,~) E ¢ = 1. Thatis,v(p) = ~(¢). By induction ony, one
shows thaty(x[z := ¢]) = v(x[z := ¢]). Thatis,(M.,v) E x|z == ¢] = x|z =
¥]. Q.E.D.

We say that a formula is valid if ¢ denotes a true proposition in every Heyt-
ing algebra under every assignment. It is well-known thatiatuitonistic tau-
tology denotes the top element in any Heyting algebra unaeaasignment. By
Corollary[3.7, the same holds true for any substitutiortainse of an intuitionistic
tautology. Moreover, by the truth conditions of a model,aadioms of the form
(i)—(iv) denote the top element. Thus, all axioms are vaitd rule AN is sound.
By Corollary[3.T, scheme SP is valid. SinG& UF is an ultrafilter, also all for-
mulas of the formpy VV — are valid (although such a formula does not necessarily
denote the top element of a given Heyting algebra). Finsllppose we are given
a Heyting algebra such that € TRUE andf_,(m,m’) € TRUE. SinceTRUE
is a filter, we havef,(m, f,(m,m')) € TRUE. If <is the lattice ordering, then
Fa(m, f-(m,m')) < m/, as in any Heyting algebra. Thus, € TRUE. This
shows that the rule of Modus Ponens is sound. Soundness caltidus now
follows by induction on the length of a derivation.
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Theorem 3.8 (Soundness}or any setd U {¢} C Fm, ® I ¢ implies® I ¢.

Corollary 3.9 Logic L is a conservative extension of classical proposdidogic.
That is, for anypy € F'my, ¢ is a theorem of CPC ifp is a theorem of L.

Proof. By definition of L as a deductive system, it contains all dieassporopo-
sitional tautologies as theorems. Thus, L extends CPC. bw be a proposi-
tional formula witht- . By soundnessy is valid in L. In particular,p denotes
the unique true proposition (the top element) of the twonelet Boolean algebra,
under any assignment. This means thatvaluates térue under any boolean, i.e.
bivalent, truth-value assignment. Thysis valid in CPC. Q.E.D.

4 Completeness

The notions of a consistent, maximally consistent, incstesit set of formulas
w.r.t. the deductive system L are defined in the usual way. edithis a set of
formulas which is consistent and deductively closed. Foaaimal theory®, i.e.
a maximally consistent set of formulés we define

YR Y PE =1,

Since L extends CPC and is itself a classical logic, a maxtimedry ® has
the well-known properties of a maximally consistent setsagp € ® iff  F ¢,
O pord - —p, for anyyp, etc. In particulard is a prime theory.

Lemma 4.1 Let ® be a maximal theory. Theng is an equivalence relation on
F'm with the following properties:

o If o1 =g 1 @Ndis ~g 12, thenlp, ~g Ly and (@1 * p2) R (Y1 * 1),
wherex € {V, A, —}.

o If o =g ¢, thenp € & & oy € D,
o If ¢ =g ¢, thenlyp € & < [y € .
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Proof. It follows from axioms of (intuitionistic) propositionabgic and rule AN
that= is reflexive and symmetric. Transitivity follows from apgdtions of ax-
iom (iii). Thus, ~4 is an equivalence relation afim. Now supposey; ~¢ 1
andyp, ~¢ 1,. Letx # y be variables such that does not occur in), andy
does not occur ip;. Then by SP and rule MRy, * p2) = (@1 *y)[y := 2] ~o
(prxy)ly := Vo] = (priha) = (wxiha) [ := 1] mo (wx12)[z := th] = (Yrxea).

By transitivity of ~4, we get(p; * ¢2) ~¢ (Y1 * 1). Similarly, one shows
Oy =~ ;. The second item of the Lemma follows from axiom (ii) and MP.
The third item follows from the previous items of the LemmaE@.

Lemma 4.2 Every consistent set is satisfiable.

Proof. By Zorn’s Lemma (or even by weaker assumptions), a congistti
extends to a maximal theody. Fory € F'm, let® be the equivalence class of
modulo=4. We define a modeM with the following ingredients:

o M :={p|pe Fm}
e TRUE :={p| ¢ € d}

e functionsfr, fi, fo, f., wherex € {V, A, =}, defined byfr := T, f, :=
L, fa(®@) == O, f.(@,1) := ¢ * 1, respectively.

By Lemmal4.1, all these ingredients are well-defined. We stiauM has
the properties of a model established in Definifiod 3.3. Aftitgyalgebra can be
characterized as a bounded lattice with an operafiorsuch that certain equa-
tions are satisfied such g5,(m,m) = fr, etc. All these equations are in-
terpretations of intuitionistic theorems which are of tloenfi of biconditionals
such as(¢ — ¢) < T, etc. Sinced is a theory, it contains all intuitionistic
theorems, particularly those of the form < ¢,. By rule AN, ® then con-
tains(p; <> ¢9). Hence,p7 = $,. This shows that\M satisfies all equa-
tional axioms which characterize the class of Heyting algeb Recall that the
underlying lattice ordering< can be recovered by the equivalenge< ) <
¢ — Y = fr. Now one easily checks th&tRUF is an ultrafilter onM. By
Lemma2Zldp € ® & ¢ = T € ®. Thus,fo(p) € TRUE < % = fr. That
is, truth condition (iv) of a model (see Definition B.3) isiséied. ¢ contains, in
particular, the axioms (ii)—(iv). By applying rule AN oneahs that also the truth
conditions (i)—(iii) of a model are satisfied. Thu%{ is a model in the sense of
Definition[3.3. We consider the assignmentl” — M defined byz — Z. Then
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by induction on formulas one easily shows thaf) = 3, for any formulayp.
Thus:p € ® & @ € TRUE < ~(p) € TRUE < (M, ) E ¢. Q.E.D.

In the same way as in CP@,¥ ¢ implies that the seb U {—¢} is consistent.
The Completeness Theorem then follows from Lerima 4.2.

Corollary 4.3 (Completeness Theorem)Let ® U {9} C Fm. Thend I ¢
implies® - .

5 Main Theorem and Conclusions

Godel's result[11] which says that o © impliestg4 ¢, where the map — ¢’

is Godel's translation, can be shown by induction on déioves in IPC. Godel’s
conjecture that also the converse is true is harder to prod&as first established
years later by McKinsey and Tarski [16]. Fortunately, tlirage somewhat less
complicated in the case of our embedding of IPC into logic lickhs managed
by the simpler map — Op. The proofthatb -;pc ¢ implies® +; Cp relies on
a straightforward induction on derivations in IPC, see Lai#h3. In this section,
we will show that for propositionab, ¢ the converse holds, too.

Theorem 5.1 Let® U {x} C Fmy. Thend® +, Oy < @ Fpe x.

Proof. The direction from right to left is Lemma 2.3. Suppcké“;pc x. By

a standard construction (see, e.gl, [7]), we may exfetala prime theoryd, C
Fmg of IPC such thatb, ¥;p- x. By a standard application of Zorn’s Lemma,
¢, is contained in a maximal theody,,,, € F'm, of IPC. Then®,,,, is also a
maximal theory of CPC. In fact, a Kripke model @f,,... is a singleton, i.e. a
classical truth-value assignment. Note that possiy ®,,.... We now construct
a model of®,,... that identifies precisely those formulasy € F'mq which are
intuitionistically equivalent modulo prime theody, C &,,,,. For this purpose,
we define the relatiors on F'mg by

(p%iﬂ:@q)pl_[pc(pHiﬂ.

Notice that~ is defined onF'mq, C F'm and not on the whole sétm. By IPC,~
is a congruence oA'my, i.e. ~ is an equivalence relation and =~ 1, @y ~ 1
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imply (1 * @2) = (11 *x1hy) for x € {V,A,—}. Letp denote the congruence
class ofpy € FFmy modulo=. We define

M:={p|pe€ Fmo}
TRUE = {@ | (oS (I)mam}

fo=1

fT =1 — 1

f@0) == pxifors e {V,A —}
L Jr, ifp=fr

fa(®) = { ., else.

Since= is a congruence oli'my, these operations are well-defined. It is clear
thaty, ¢ € @, implies®, F;pc ¢ < 9. It follows that f+ = ®,. Recall that
Heyting algebras can be axiomatized by equations that sqoored to theorems
of IPC which are given in the fornp <+ . Then by construction, the above
defined operations form a Heyting algebra @hwith ultrafilter TRUE and an
operationfm. It remains to show that the truth conditions (i)—(iv) of Dutiion[3.3
are satisfied. Condition (iv) follows readily from the defion of f. Let us look
at condition (i), fo(@) < @, for anyp € M, where< is the underlying lattice
ordering. By definition, there are only two possibilitiesi(@) = fr or fo(p) =
f1. Inthe latter case, there is nothing to show, sifices the bottom element of
the Heyting lattice. We assume the former case. Then, byitefirof f, we
gety = fr. Hence, condition (i) is satisfied. Now, we consider comwdit(ii),
folf=@ ) < fo(falf=@.%), falf=(7.X). Again, if fo(f-(7,9)) =
f1, there is nothing to show. So we may assufnéf_, (¢, v)) = fr,i.e.@ < 9.
Moreover, we may assumg(f_(¥,x)) = fr, since otherwise we are ready.
This impliesy < x. Transitivity of < yieldsp < x, i.e. fa(f~(?,X))) = fr-
It follows that f_, (fo(f= (¥, %)), fa(f=(®,X))) = fr. Hence, condition (ii) is
verified. Finally, let us check condition (iiif5 (£ (@, V) < fo(fa(®), fa()).
Supposefa(fv(@,¢)) = fr- Thenf,(p,¢) = fr = ®,. Thus,pV ¢ = @,
and thereforep vV ¢ € ®,. Since®, is a prime theoryp € &, ory) € ®,. This
means thasp = fr ory = fr. Thatis,f5(®) = ft or fa(¥) = fr. In any case,
fv(fa(®), fa(¥)) = f+, and condition (iii) is satisfied. We have shown thatis
a model in the sense of Definitidn B8.3.

Now, we consider the assignmentV — M defined byr — Z. By induction,
e(¢) = @, for any formulay € Fm,. By construction® C ¢, andy ¢ @,.
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Furthermore, for every € F'my:
(M,e)EQp & e(0p) = fo(p) e TRUE 5= fr=0,& 0 € D,

Hence,(M,¢) E O® and (M, ¢e) ¥ Oy. Thus,0P ¥ Oy. Soundness yields
0o ¥ Uy. Q.E.D.

In Kripke semantics of IPC, truth means satisfaction at amgpossible world.
The set of all formulas which are true at a given world form enprtheory of
IPC. Thus, intuitionistic truth of a formula means thaty belongs to a given
prime theory of IPC. The next two results show that the mogatator, restricted
to propositional formulas, is a predicate for intuitiorggtuth. In this sense, the
modal operator of L can be viewed as a provability predicate.

Corollary 5.2 For any prime theoryp,, C F'm, of IPC there is an interpretation
(M, ¢) such that for allp € F'my:

(M,e)EQp & ¢ € D,

Proof. This follows immediately from the construction given in theoof of
Theorem 5.11. Q.E.D.

Proposition 5.3 For every interpretation(M, ~) there is a unique prime theory
o, C F'my of IPC such that for allp € F'my:

(M,y)EOp & p e 9,

That is, the modal operatdr], restricted to propositional formulas, can be seen
as a predicate for intuitionistic truth.

Proof. Let®, := {¢ € Fmg | 7v(¢) = fr}. Then by truth conditions of a
model: (M, ) E Oy iff v(Og) € TRUE iff fo(y(p)) € TRUEiff v(p) = fr

iff o € ®,, foranyy € Fm,. We show by induction on a derivation that
¢, Fipc ¢ impliesy € @, for anyy € EF'myg. If 1 is an intuitionistic ax-
iom, then it denotes the top elemefit of the Heyting algebra, i.ey(v) = fr
andy € ®,. Finally, suppose) is obtained by Modus Ponens from formulas
andy — . By induction hypothesisy(¢) = fr andv(p — ¢) = fr. The
latter meansy(y) < ~(v), where< is the lattice ordering. Thusy(v) = fr
andy € ¢,. We have shown thab, is deductively closed in IPC. Then follows
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that @, is also consistent in IPC. Thug,, is an intuitionistic theory. Suppose
eV e d, Theny(p V) = f,(v(p),v(¥)) = fr. Since every model has the
disjunction propertyy(p) = fr orv(¢) = fr. Thatis,p € &, or¢ € ¢,, and

®,, is a prime theory. Itis clear that, is unique with the asserted property. Q.E.D.

It is known that the set of intuitionistic theorems is a pritheory. This fact is
called thedisjunction propertyf intuitionistic logic (see, e.g., [7]). We conclude:

Corollary 5.4 There is an interpretatioiM;p¢, ) such that for all proposi-
tional p € F'my:
(M[PC,E) = DQO = l_[pc Q.

By Lemmal22} ¢ = ¢ iff - O(¢ < ¢). Then Corollanyz5}4 (or, more
directly, the model construction given in the proof of Thewf5.1) implies the
following.

Corollary 5.5 There is an interpretationfM;pc, ) such that for allp, v €
Fmo,

(M[pc,€) E (pE’l/J<=> |—[pc o @D

Thatis, model M ¢, €) identifies exactly those propositional formulas which
are intuitionistically equivalent. In general, howevemadel satisfies more equa-
tions. In the two-element Boolean algebra, for examplegtiigationsy = ——p
andy = Oy are true. A result stronger than Corollaryl5.5 would be thsterce
of a model( M, ~) with the following property. For alp, ¢ € Fm:

M NEe=9 e Freo=1.

We call such an interpretatiorcanonical modelA canonical model satisfies only
those equations which are satisfied in all models. We haveauaf for the exis-
tence of such a model for logic L and leave this question agpan problem. The
models of CPC can be regarded as two-element Boolean atgdibiras, proposi-
tional identity = 1 collapses with material equivalenge« ) in CPC. Then
it is clear that a canonical model cannot exist. In IPC, psijamnal identity col-
lapses with intuitionistic equivalence. In fact, if we rega proposition denoted
by ¢ as the set of possible worlds wheréds true and which are accessible from
the current worldv (see, e.g.,[15]), thep «+» ¢ is true atw iff at each accessible
world, both formulas are true or both formulas are not trukisTs the same as
to say that (at the actual wortd) ¢ andv denote the same propositiop:= .
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A canonical model for IPC is the root of the Kripke frame catisig of all prime
theories as possible worlds and settheoretic inclusion@ssaibility relation. The
rootwy, i.e. the smallest prime theory, is the set of intuitiomiskieorems. Then
© <> Y istrue atwy iff F7pe @ < 1.

It is not hard to construct a canonical model for Suszko’sdoasn-Fregean

logic SCI [2] such thatp = v is satisfied iffp = v (see [12]). Consequently,
Fsor ¢ = Y iff ¢ = 4. In [13], a canonical modeM for a non-Fregean logic
with propositional quantifiers is constructed such thatfoy two sentences and
1 it holds thatM E ¢ = ¢ iff p andv differ at most on bound variables.
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