

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 02, 2024

Completeness and Termination for a Seligman-style Tableau System

Blackburn, Patrick Rowan; Bolander, Thomas; Braüner, Torben; Jørgensen, Klaus Frovin

Published in:
Journal of Logic and Computation

Link to article, DOI:
10.1093/logcom/exv052

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Blackburn, P. R., Bolander, T., Braüner, T., & Jørgensen, K. F. (2015). Completeness and Termination for a
Seligman-style Tableau System. Journal of Logic and Computation, 27(1), 81-107.
https://doi.org/10.1093/logcom/exv052

https://doi.org/10.1093/logcom/exv052
https://orbit.dtu.dk/en/publications/a5b0c349-daa7-4075-a9d7-2654d9cfa645
https://doi.org/10.1093/logcom/exv052

Completeness and Termination

for a Seligman-style Tableau System

Patrick Blackburn∗ Thomas Bolander† Torben Braüner‡

Klaus Frovin Jørgensen§

Abstract

Proof systems for hybrid logic typically use @-operators to access information
hidden behind modalities; this labelling approach lies at the heart of the best
known hybrid resolution, natural deduction, and tableau systems. But there
is another approach, which we have come to believe is conceptually clearer. We
call this Seligman-style inference, as it was first introduced and explored by Jerry
Seligman in natural deduction [22] and sequent calculus [23] in the 1990s. The
purpose of this paper is to introduce a Seligman-style tableau system, to prove
its completeness, and to show how it can be made to terminate.

The most obvious feature of Seligman-style systems is that they work with
arbitrary formulas, not just statements prefixed by @-operators. They do so
by introducing machinery for switching to other proof contexts. We capture
this idea in the setting of tableaus by introducing a rule called GoTo which al-
lows us to “jump to a named world” on a tableau branch. We first develop a
Seligman-style tableau system for basic hybrid logic and prove its completeness.
We then prove termination of a restricted version of the system without resorting
to loop checking, and show that the restrictions do not effect completeness. Both
completeness and termination results are proved constructively: we give trans-
lations which transform tableaus in a standard labelled system into tableaus in
our Seligman-system and vice-versa.

Keywords: Tableau systems, hybrid logic, completeness, termination, Jerry Seligman.

1 Introduction

Hybrid logic is an extension of ordinary modal logic in which worlds (or epistemic
states, or times, or whatever is required for the application at hand) can be named.
Special propositional symbols called nominals are added to the underlying modal
language. These symbols are true at exactly one world, and a nominal i ‘names’ the
unique world it is true at. In addition, a collection of modal operators of the form @i

is added. These have the obvious interpretation: @iϕ is true at any world iff ϕ is true

∗Department of Philosophy and Science Studies, Roskilde University. E-mail: patrickb@ruc.dk.
†Department of Applied Mathematics and Computer Science, Technical University of Denmark.

E-mail: tobo@dtu.dk.
‡Department of Communication, Business and Information Technologies, Roskilde University. E-

mail: torben@ruc.dk.
§Department of Philosophy and Science Studies, Roskilde University. E-mail: frovin@ruc.dk.

1

at the (unique) world named by the nominal i. Expressions of this form are called
satisfaction statements.

It is relatively straightforward to define proof systems for hybrid logic in a wide
range of reasoning styles, including tableau [4, 7, 10, 11, 25], natural deduction [13], and
resolution [1, 2]. There is a resolution theorem prover (the HyLoRes system [3]) and at
least two high-performance tableau provers (namely HTab [19, 20] and Spartacus [18]).
Indeed, even hybrid Hilbert system are well-behaved [8, 9]. Moreover, proof systems
in different styles exist for intuitionistic hybrid logic too; see [13, 16, 17] for options.

But behind this apparent diversity lies a common strategy, labelling. Of course,
labelled deduction methods are used for a wide range of non-classical logics, but the link
between labelling and hybrid logic is particularly intimate—nominals and satisfaction
operators are essentially labelling apparatus built into the object language itself. So
there is a tendency to think that inference in hybrid logic has to be (some form of)
labelled deduction. But this is not so. Another approach, which we call Seligman-
style inference, offers an interesting alternative. The purpose of this paper is to explore
Seligman-style inference in the setting of tableau-based reasoning, and to investigate
its relationship with the labelling approach.

The difference between label-driven and Seligman-style inference is best introduced
by example. Let’s consider two ways of formulating the ♦-elimination rule in a natural
deduction framework for hybrid logic. Here’s the rule that the label-driven approach
naturally leads to:1

@i♦ϕ

[@i♦j] [@jϕ]
···

@kψ
(♦E)

@kψ

Here we make two assumptions: first that at the world named i we can see a world
named j (which is what the satisfaction statement @i♦j says), and second that ϕ
holds at j (which is what the satisfaction statement @jϕ says). We assume nothing
else about j beyond this: in effect we have said “let j be an arbitrary world accessible
from i at which ϕ is true”. Now, if from these two assumptions we can prove some
formula @kψ (which says that ψ holds at the world named k) then from a proof of an
existential statement @i♦ϕ (which says that at i it is the case that ϕ holds at some
accessible world) then we get a proof of @kψ.

This is a sound rule of proof, but note its form. In particular, note that all the
formulas used in this rule are satisfaction statements. Now, satisfaction statements
(and their negations) are global. This is easy to see. If ϕ is indeed true at the world
named i, then @iϕ is true at all worlds. On the other hand, if ϕ is false at the
world named i, then @iϕ is false at all worlds. Thus satisfaction statements (and
their negations) embody global information. And this means that the labelled natural-
deduction rule just formulated controls the reasoning by adopting a global perspective.

Contrast this with Seligman systems. In a Seligman-style natural deduction system

1For this rule to be correctly applied, j has to be a fresh nominal, that is, j has to be different
from both i and k, and j must not occur in either ϕ or ψ or in any undischarged assumptions of the
proof other than those specified. The formulas @i♦j and @jϕ occurring in the sub-proof on the right
are discharged in the application of the rule, which is indicated by putting brackets [. . .] around the
formulas. For more on natural deduction in hybrid logic, see Braüner [13].

2

the ♦-elimination rule would look like this:2

♦ϕ

[♦j] [@jϕ]
···
ψ

(♦E)
ψ

Notice the local perspective illustrated by the rule. The premises are not packed
inside satisfaction statements. We assume that j is a possible world. We may not
know the name of the world where we are currently evaluating formulas; we only know
that there is a possible world accessible from it (named j) at which ϕ holds. Now,
if it is possible for us, given this information, to prove some formula ψ (in which j
doesn’t occur), then we actually have a proof of ψ given a proof of ♦ϕ. The core of
the argument is similar to that used in the labelled rule, but (so to speak) we use
naked ♦ information: we don’t wrap it up in the protection of satisfaction statements.
In particular, we don’t bother to specify a global name for the world in which we are
working (which is what the @i operator does in the labelled version of the rule) and,
as it turns out, we don’t need to. Moreover, the subtree on the right is a free-floating
proof context. It is linked to the world in which we are working only by a simple local
claim, namely ♦j (that is: there is an accessible world called j).

This is interesting for at least two reasons. The first is that it holds out the promise
of more modular proof systems: if we don’t have to wrap all our rules in a protective
cocoon of satisfaction statements, perhaps we can work directly with the original rules
for each connective. The second reason is conceptual. Modal logic is sometimes said
to be interesting (see, for example, [8]) because of the local perspective it takes on
possible worlds. But if hybrid logic relies on label-driven deduction, then it may be
relying too much on the global encodings that satisfaction statements make possible.
So it is worth investigating whether the more local approach to inference underlying
Seligman-style reasoning adapts naturally to tableau systems, as this is probably the
most widely used proof style in hybrid logic.

Little has been written on Seligman-style systems. They were introduced in two
papers, both by Jerry Seligman, namely the natural deduction based [22] and the
Gentzen sequent calculus based [23].3 The first of these gives a natural deduction
system for a logic of situations, similar to hybrid logic. A characteristic feature of this
system is that it has a proof rule enabling travel to another situation, the performance
of some hypothetical reasoning there, followed by a journey back again (we’ll look at
this rule shortly; a similar idea underlies the GoTo rule in our tableau-based approach).
This natural deduction system was later modified in Braüner [12] with the aim of
obtaining a proof-theoretic property called closure under substitution, which requires
keeping more detailed track of hypothetical reasoning. The modified system kept track
of hypothetical reasoning, by using what are known as explicit substitutions.

The authors of this paper became interested in Seligman-style reasoning because
of reasoning problems involving perspective shifts and contextual information. First,
Braüner [14] (later journal version [15]) has used his Seligman-style natural deduc-
tion system to formalize two well-known false-belief task in cognitive psychology, the

2The side-condition for this rule is that j must not occur in ϕ, nor ψ or in any undischarged
assumptions other than those specified.

3Another sequent system for hybrid logic that allows arbitrary formulas to occur in derivations can
be found in the paper [21]. This system makes use of standard sequent machinery for the ordinary
(non-hybrid) modal logic K, which makes it quite different from the Seligman-style system of [23].

3

Smarties task and the Sally-Anne task (see [24]). To solve such tasks, the subject has
to perform a shift of perspective, either to another person’s view of the world, or to
the subject’s own view at an earlier time. Such shifts lie at the heart of Seligman-
style natural deduction, which makes it a natural tool for modeling such problems.
Also recently, Blackburn and Jørgensen [6] used hybrid logic to investigate temporal
indexicals, context-sensitive terms such as now, yesterday, today, and tomorrow. In
the course of this work it became clear that a Seligman-style tableau approach might
allow a simpler presentation of the reasoning involved, but no such calculus existed.
The system described here arose as an attempt to fill this gap.

We took Seligman’s sequent system [23] as our starting point. We experimented
with a variety of options, some very different from the system ST presented below,
before we settled on the key idea: dividing tableau branches into blocks which record
partial information about worlds. In the course of these experiments, three things
became clear. First, the new systems were flexible and natural to work with. Second,
precisely because of their flexibility, obtaining a terminating system would not be a
trivial task. Third, understanding in detail how the system ST related to standard
labelled tableau systems was likely to be both important and enlightening. Hence
the technical core of this paper is a detailed specification of how to transform tableau
proofs in our Seligman system ST into tableau proofs in a standard labelling system
(called LC) and vice-versa.

We proceed as follows. In Section 2 we motivate and define the Seligman-style
tableau system ST. In Section 3 we prove its completeness by showing how to transform
LC proofs into ST proofs. In Section 4 we briefly compare ST with the sequent calculus
that inspired it, before turning, in Section 5, to the issue of termination. For a number
of more-or-less trivial reasons it is immediate that ST does not terminate, but there are
two deeper reasons as well. We analyze these in detail, and define a restricted system
which we call ST?. We then prove (again using a proof transformation argument) that
ST? terminates, and that the restrictions we have imposed do not effect completeness.
Section 6 concludes with a discussion of ongoing and future work.4

2 The Seligman-style Tableau Calculus ST

We work with a basic hybrid language built over a countable set of propositional
symbols, a countable set of nominals, the propositional connectives ¬ and ∧, the modal
diamond ♦, and for each nominal i an @i-operator. Formulas are built as follows (with
i ranging over nominals and p over propositional symbols):

ϕ ::= i | p | ⊥ | ¬ϕ | ϕ ∧ ψ | ♦ϕ | @iϕ.

Other boolean connectives are defined as usual, and the dual box-form �ϕ is defined
to be ¬♦¬ϕ. Note that nominals can occur either as subscripts to @ (“in operator
position”) or as formulas in their own right (“in formula position”). We typically use
i, j and k for nominals and p, q and r for ordinary propositional symbols.

We interpret the language of basic hybrid logic in models based on frames (W,R).
Here W is a non-empty set (we call its elements worlds) and R is a binary relation
on this set (the accessibility relation). To fully specify a model, we also need an
information distribution, together with a specification of names for worlds of interest.

4This paper is a continuation of work initiated in [5]. In the present paper we have refined the ST

system and prove termination of it.

4

ϕ ∧ ψ
(∧)

ψ
ϕ

¬(ϕ ∧ ψ)

(¬∧)

¬ψ¬ϕ

¬¬ϕ
(¬¬)

ϕ

Figure 1: Tableau rules for propositional logic.

Both tasks are performed by a valuation function V , which takes ordinary propositional
symbols and nominals to subsets of W satisfying the following two conditions:

1. V (p) is an arbitrary subset of W , when p is an ordinary propositional symbol.

2. V (i) is a singleton subset of W , when i is a nominal.

Satisfiability in a model is defined in the usual way as a relation between a model
M = (W,R, V), a world w ∈W , and a formula ϕ:

M, w |= ⊥ iff falsum

M, w |= a iff a is atomic and w ∈ V (a)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= ♦ϕ iff for some w′, wRw′ and M, w′ |= ϕ

M, w |= @iϕ iff M, w′ |= ϕ and w′ ∈ V (i).

A formula ϕ is true in M = (W,R, V) when for all worlds w ∈ W we have that
M, w |= ϕ. A formula is valid if it is true in all models.

Now for our tableau system. An appealing aspect of Seligman systems is their
modularity, so we simply use standard tableau rules for propositional logic in our
system. The rules we have chosen are shown in Figure 1.

Now for the hybrid logical rules. We want to escape the global form of the labelled
rules that are typically used in hybrid tableau systems,5 but how can we do so? To
find an answer, let us consider another Seligman-style natural deduction rule, the
Term rule. A central idea of natural deduction is to allow hypothetical reasoning. The
Term rule adds a hybrid-logical dimension to this: it allows us to perform hypothetical
reasoning at a world named by some nominal i. Or to put it another way: it allows us
switch our perspective to another world, and carry out hypothetical reasoning there:

ϕ1 . . . ϕn

[ϕ1] . . . [ϕn][i]
···
ψ

(Term)
ψ

The rule has a side condition: the formulas ϕ1, . . . , ϕn, and ψ are all @-prefixed,
and there must be no undischarged assumptions in the derivation of ψ besides the

5The rules are given in Figure 4.

5

1 ♦@iϕ ∧ ¬@iϕ root formula
2 ♦@iϕ (∧) on 1
3 ¬@iϕ (∧) on 1
4 ♦j (♦) on 2
5 @j@iϕ (♦) on 2

6 j GoTo
7 @iϕ (@) on 5, 6

8 i GoTo
9 ¬ϕ (¬@) on 3, 8

10 ϕ (@) on 7, 8
×

Figure 2: A tableau in the ST calculus.

specified occurrences of ϕ1, . . . , ϕn, and i. This side-condition ensures that the truth-
values of the assumptions are unaffected when the evaluation world is shifted (see [13]
for more information).

A similar perspective-shifting intuition underlies our Seligman-style tableau system.
A central concept of tableau reasoning is branch expansion. We are going to add a
hybrid-logical dimension to this and allow ourselves to perform branch expansion at
a world named by some nominal i. We do so by dividing branches into blocks, with
blocks separated by horizontal lines. A block on a branch is a partial description of
the information in a specific world, and our tableau system is driven by a rule called
GoTo which lets us switch between blocks.

Let’s see an example. Figure 2 is a tableau showing that ♦@iϕ ∧ ¬@iϕ is unsatis-
fiable. The tableau has three blocks: lines 1-5 are a block, as are lines 6-7 and 8-10.
In the first block, we eliminate the ♦ in line 2 which gives us ♦j and @j@iϕ. Now
our perspective-shifting intuition comes into play: to use this derived information, we
should shift to world j. We do so at line 5 by applying GoTo, the core rule of our
system. At line 7 we use our new j-perspective to retrieve @iϕ from line 5. We then
realize that if we shift perspective to i we can extract a contradiction, so we apply
GoTo again, and the tableau closes because of line 9 and 10. The division of branches
into blocks, and the ability GoTo gives us to shift our attention between them, are at
the very centre of our approach to Seligman-style tableau reasoning.

Before leaving this example, another remark. Both blocks opened by GoTo start
with a nominal: the second block begins with j, and the third with i. Moreover,
note that the initial block is not named in this way. Both points are general: in
our tableau system, blocks introduced by GoTo will always open with a nominal.
However, although we can always name the initial block with some nominal, we don’t
always have to, and sometimes we don’t want to. For example, if our input formula
contains no modalities or @-operators, it would be pointless to start naming worlds:
the propositional rules given in Figure 1 are capable of handling such formulas in the
familiar fashion.

Bearing this motivating example in mind, let us be more precise about blocks, and
how they are created. We work with the usual notion of branch in a (tableau) tree.
Given a branch Θ in a tableau, we define a block to be one of the following:

• The initial block, consisting of all the formulas on Θ until the first horizontal line
(or all formulas if there is no such line).

• The current block, consisting of all formulas below the last horizontal line (or all

6

formulas if there is no such line).

• All formulas that occur between a pair of two consecutive horizontal lines.

The rule allowing us to close down one block and start up a new one is GoTo. Its
precise formulation is given in Figure 3. All blocks except the initial one are opened
by an application of GoTo, and hence they all contain a nominal as their first formula.
This nominal is called the opening nominal of the block. In the tableau of Figure 2,
the opening nominal of the block in lines 6–7 is j, and the opening nominal of the block
in lines 8–10 is i. If the initial block contains an application of the Name rule (see
Figure 3), then the nominal introduced by this rule will be called the opening nominal
of the initial block. Otherwise, the initial block will have no opening nominal. The
initial block of the tableau in Figure 2 has no opening nominal. A block with opening
nominal i is called an i-block.

The crucial rules of the Seligman-style tableau calculus are given in Figure 3. The
general conditions on rule applications are as follows:

• The propositional rules (∧), (¬∧), (¬¬) as well as (♦) and (¬♦) can only be
applied to premises that belong to the current block or a previous block with the
same opening nominal.

• In the rules (@) and (¬@), the first premise i must either belong to the current
block or a previous block with the same opening nominal. The second premise
@iϕ (¬@iϕ) can appear anywhere on the branch.

• GoTo and Name can always be applied as they have no premises.

• Nom can be applied as described in the rule itself: if ϕ and i belong to some
block distinct from the current block, and i belongs to the current block, then ϕ
can be added to the current block.

It should be clear that the first four rules are simply the obvious (positive and
negative) rules for ♦ and @. It is the last three rules that really drive the system.
The first of these, Name, simply allows us to give a brand new name to a block.
This is reminiscent of what GoTo does, and indeed, with a suitable side condition we
could have collapsed Name and GoTo into a single rule. But the two rules play rather
different roles in our system. Moreover (as we shall see) the role played by Name,
though important, is relatively restricted: as our completeness proof shows, it is never
necessary to apply Name except possibly to name the initial block. So we prefer to
keep the two rules distinct.

What does the Nom rule do? Recall that the GoTo rule enables us to close down
a block and create a new one. But in the course of inference we may create multiple
blocks, each of which embodies partial information about some particular world named
by (say) the nominal i. We sometimes need to combine this information, and Nom lets
us do this. Basically, it says that if i and ϕ occur together in some block, then, if you
later find yourself at some block that also contains i, you are free to recall that ϕ is
true. The point is simply that both i-containing blocks are partial descriptions of the
same world, namely the one named by i.

Summing up, our Seligman-style tableau calculus consists of Modules 1 and 2 given
in Figure 1 and 3. We call this system ST (short for Seligman-style Tableau). Tableaus
are built in the expected way, but we should be explicit about our closure condition:

7

♦ϕ

(♦)1

♦i
@iϕ

¬♦ϕ
♦i

(¬♦)

¬@iϕ

i
@iϕ

(@)

ϕ

i
¬@iϕ

(¬@)

¬ϕ

Name2

i

ϕ
i

——–
i

ϕ

Nom3
——–
i

GoTo4

1 The nominal i is fresh and ϕ is not a nominal.
2 The nominal i is fresh.
3 The horizontal line below the two uppermost premises signifies that these premises
belong to a block distinct from the current one, whereas the third premise (the lower-
most occurrence of i) belongs to the current block.
4 The nominal i must already occur on the branch.

Figure 3: ST tableau rules for basic hybrid logic.

A branch closes either by having ϕ and ¬ϕ inside a block, or inside two
distinct blocks with the same opening nominal.

It is instructive to compare proofs in our Seligman-style calculus ST with the proofs
in the labelled calculus. The rules of the labelled calculus LC are found in Figure 4.
These come from Bolander and Blackburn [10] and are going to be used in both the
completeness proof and the termination proof of ST. The side condition on the Id
rule makes use of the following concept. A formula @i♦j in an LC tableau is an
accessibility formula if it is the first conclusion of an application of the (♦) rule. All
LC rule applications are subject to the following two constraints:

(R1′) A formula is never added to a branch where it already occurs.

(R2′) The (♦) rule can not be applied twice to the same formula occurrence.

With these constraints in place, the rules of Figure 4 provide a sound, complete and
terminating calculus for propositional hybrid logic [10]. The rules of Figure 4 only
differ from the rules of [10] in the side condition on the (♦) rule: here we require that
ϕ is not a nominal, whereas the rule of [10] requires that the premise @i♦ϕ is not an
accessibility formula. The rule used here is slightly more restrictive, but it is simple
to prove that this doesn’t affect the completeness of LC.

Consider the two different proofs given in Figure 5 of @ij∧@jk → @ik, a standard
hybrid validity which says that naming with nominals is transitive.6 This is a nice
example, as it requires reasoning about the identity of worlds. The tableau on the left

6When giving examples, we make free use of a selection of derivable rules for the defined connec-
tives. Here we give three rules which are particularly useful. In the (¬�) rule the i must be a fresh

8

@i¬j
(¬)

@jj

@i¬¬ϕ
(¬¬)

@iϕ

@i(ϕ ∧ ψ)

(∧)

@iψ
@iϕ

@i¬(ϕ ∧ ψ)

(¬∧)

@i¬ψ@i¬ϕ

@i@jϕ

(@)

@jϕ

@i¬@jϕ

(¬@)

@j¬ϕ

@i♦ϕ

(♦)1

@i♦j
@jϕ

@i¬♦ϕ
@i♦j

(¬♦)

@j¬ϕ

@ij
@iϕ

Id2

@jϕ

1 The nominal j is fresh and ϕ is not a nominal.
2 The formula @iϕ is not an accessibility formula.

Figure 4: Propositional LC tableau rules.

is in the calculus ST, the one on the right in LC. The Seligman-style proof makes the
form of the argument clearer, and hides the book-keeping details involving prefixing
@-operators.

1 ¬(@ij ∧@jk → @ik) 1 @l¬(@ij ∧@jk → @ik)
2 @ij (¬→), (∧) on 1 2 @l@ij (¬→), (∧) on 1
3 @jk (¬→), (∧) on 1 3 @l@jk (¬→), (∧) on 1
4 ¬@ik (¬→) on 1 4 @l¬@ik (¬→) on 1
5 i GoTo 5 @ij (@) on 2
6 j (@) on 2, 5 6 @jk (@) on 3
7 k (@) on 3, 6 7 @i¬k (¬@) on 4
8 ¬k (¬@) on 4, 5 8 @j¬k Id on 5, 7

× ×

Figure 5: Two tableaus that compare ST and LC.

3 Soundness and Completeness

Theorem 3.1 (Soundness). If there exists a closed tableau in ST having ¬ϕ as the
root formula, then the formula ϕ is valid.

Proof. Let Θ be a branch of a tableau of the calculus ST. Let B be a block on Θ
and let M = (W,R, V) be a model. We say that B is satisfiable by M if and only
if there exists a world w ∈ W such that for any formula ψ in B, it is the case that

nominal. ¬(ϕ→ ψ)

(¬→)

ϕ
¬ψ

¬�ϕ

(¬�)

♦i
¬@iϕ

�ϕ
♦i

(�)

@iϕ

9

M, w |= ψ. Moreover, we say that Θ is block-wise satisfiable by M if and only if every
block on Θ is satisfiable by M. We say that Θ is block-wise satisfiable if and only if
Θ is block-wise satisfiable by some model M.

Now, the contrapositive of soundness follows from the observation that if a tableau
T of the calculus ST has a branch which is block-wise satisfiable, then the tableau
obtained by applying a rule to T also has a branch which is block-wise satisfiable.
This can be seen simply by inspecting each rule in ST.

We now proceed to prove completeness of ST. We do so by providing a translation
from tableaus in the labelled calculus LC into tableaus in ST. The translation allows us
to reduce completeness of ST to completeness of LC (see [4]), and thus is a first step to-
wards clarifying the relationship between the Seligman-style and labelling approaches.
It also yields some extra information, for example that the Name rule only ever needs
to be used once in any ST tableau construction.

Let Θ be a tableau branch of the calculus ST. A formula @iϕ is said to occur as
an induced formula on Θ if there is an i-block B on Θ such that ϕ ∈ B.

Lemma 3.2. Let ϕ be any formula and i any nominal not in ϕ. Assume TLC is a
tableau with root @iϕ in the calculus LC. Then there exists a tableau TST with root ϕ
in the calculus ST, and a bijection

π : {Θ | Θ is a branch of TLC} → {Θ′ | Θ′ is a branch of TST}

such that:

1. Given any branch Θ of TLC, any formula @jψ ∈ Θ with j 6= ψ occurs as induced
formula on π(Θ).

2. All nominals that occur on π(Θ) also occur on Θ.

Proof. By induction on the number of rule applications made on TLC.
Base case. No rules have been applied, thus TLC is simply @iϕ, where i does not

occur in ϕ. So let TST be the following tableau in ST:

1 ϕ
2 i Name

Both TLC and TST have a single branch; call them ΘLC and ΘST respectively. Define π
by π(ΘLC) = ΘST. The branch ΘLC only contains the formula @iϕ and this occurs as
an induced formula on ΘST, since the current block of ΘST is an i-block containing ϕ.
Hence condition 1 above holds. Condition 2 holds trivially. This concludes the base
case. This is the only place in the translation where we use the Name rule.

Induction step. Assume TLC, TST and π are given that satisfy the conditions of the
lemma. This means that π is a bijection between the branches of TLC and TST satisfying
the following conditions:

ih1. Given any branch Θ of TLC, any formula @jψ ∈ Θ with j 6= ψ occurs as induced
formula on π(Θ).

ih2. All nominals that occur on π(Θ) also occur on Θ.

We need to prove that if TLC is extended into T ′LC by a single rule application, we can
construct a similar extension T ′ST of TST and a bijection π′ such that conditions 1 and 2
still hold. We do so by examining each possible case of a rule application building

10

...
————

i GoTo

...
ϕ ∧ ψ

...
————...

GoTo

————
i GoTo

ϕ (∧)

ψ (∧)

B π(ΘLC)

(a) Case (∧).

...
————

i GoTo

...
♦ϕ
...

————...
GoTo

————
i GoTo

♦j (♦)

@jϕ (♦)

————
j GoTo

ϕ (@)

B π(ΘLC)

(b) Case (♦).

Figure 6: The extended branches Θ′ST of T ′ST referred to in the proof of Lemma 3.2.

T ′LC from TLC. For each such rule application, we can assume that at least one of its
conclusions can be added without violating (R1′) and (R2′), since otherwise T ′LC = TLC
and there is nothing to prove.

Case (∧). Suppose TLC is extended into T ′LC by an application of (∧) to a formula
@i(ϕ∧ψ) on a branch ΘLC of TLC. In T ′LC the branch ΘLC has become extended to include
@iϕ or @iψ or both (depending on whether they already occur on the branch, cf. (R2′)).
We can assume that both @iϕ and @iψ are being added, the other cases being treated
similarly. Call the extended branch Θ′LC. By ih1, π(ΘLC) contains an i-block B with
ϕ ∧ ψ (since @i(ϕ ∧ ψ) occurs induced on π(ΘLC)). Note that this block need not be
the current one. We can now extend π(ΘLC) as shown in Figure 6(a), first using GoTo
to start a new block with opening nominal i and then applying (∧) to the occurrence
of ϕ∧ψ in B. Call this extended branch Θ′ST, and let T ′ST denote the tableau in which
π(ΘLC) has been extended to Θ′ST. Now define π′ = (π−{(ΘLC, π(ΘLC))})∪{(Θ′LC,Θ′ST)},
and note that π′ is a bijection from the set of branches of T ′LC onto the set of branches
of T ′ST.

We now need to show that any formula @jγ with j 6= γ occurring on any branch
Θ of T ′LC also occurs as induced formula on π′(Θ). There are two subcases, either i)
@jγ is @iϕ or @iψ on Θ′LC or ii) @jγ is some other formula. In the first case it follows
from the construction of T ′ST that @jγ occurs induced; in the latter it follows from ih1
together with the fact that T ′ST is constructed as an extension of TST and that π′ is
based on π. Condition 2 of the lemma holds by ih2, as no new nominals have been
introduced in the construction of T ′ST from TST.

We omit the proof of the (¬¬) case, as the (¬¬) rule is structurally a special case
of the (∧) rule. For the (¬) rule, there is nothing to prove, as any application of (¬) on
TLC will only result in the addition of a formula on the form @jj, and these formulas
are not part of condition 1.

Case (¬∧). Suppose TLC is extended into T ′LC by an application of (¬∧) to a formula
@i¬(ϕ∧ ψ) on a branch ΘLC. We can assume that neither @i¬ϕ nor @i¬ψ belongs to
ΘLC, because otherwise the rule application will not lead to branching, and the entire
case becomes a simple variant of the (∧) case. Under this assumption, the branch
ΘLC is split into Θ1

LC and Θ2
LC by adding @i¬ϕ and @i¬ψ, respectively. The resulting

tableau is T ′LC. By ih1, we have an i-block B on π(ΘLC) containing ¬(ϕ ∧ ψ). Extend

11

this branch by applying GoTo with conclusion i and apply (¬∧) to ¬(ϕ∧ψ) occurring
on B. π(ΘLC) thus extends into two different branches. Let Θ1

ST be the left branch
containing ¬ϕ, and let the right branch containing ¬ψ be Θ2

ST.
Now we define π′ as the simple modification of π that removes (ΘLC, π(ΘLC)) and

replaces it by (Θ1
LC,Θ

1
ST) and (Θ2

LC,Θ
2
ST). The extended tableaus are called T ′LC and

T ′ST, respectively. By the induction hypothesis and the construction of π′ from π we
have that π′ is a bijection between the set of branches of T ′LC and the set of branches
of T ′ST. Clearly condition 2 is satisfied. For condition 1, we need to prove that any
formula @jγ with j 6= γ occurring on any branch Θ of T ′LC occurs induced on π′(Θ).
Let @jγ on some Θ be given with j 6= γ. If Θ is different from Θn

ST, for n = 1, 2 or
@jγ is different from @i¬ϕ or @i¬ψ the claim follows from the induction hypothesis.
Say therefore, that Θ is Θ1

LC and @jγ is @i¬ϕ. By construction, π′(Θ1
LC) = Θ1

ST and
on Θ1

ST there is an i-block (namely the current one) with element ¬ϕ. Therefore @i¬ϕ
occurs on π′(Θ1

LC) in induced form. It’s similar when Θ is Θ2
LC and @jγ is @i¬ψ.

Case (¬@). Suppose TLC is extended into T ′LC by an application of (¬@) to a formula
@i¬@jϕ on a branch ΘLC. In T ′LC the branch ΘLC has become extended by the addition
of @j¬ϕ. Call the extended branch Θ′LC. By ih1, the branch π(ΘLC) must contain
an i-block with ¬@jϕ. Extend this branch by first applying GoTo with conclusion j
and then applying (¬@) to the premise ¬@jϕ to get ¬ϕ. Call the extended branch
Θ′ST. As before, let π′ be constructed from π by replacing the pair (ΘLC, π(ΘLC)) by
(Θ′LC,Θ

′
ST). Since ¬ϕ occurs in a j-block of Θ′ST, the formula @j¬ϕ occurs induced on

Θ′ST. This gives us that condition 1 still holds for the extended tableaus. Condition 2
holds trivially as in the previous cases. Case (@) is completely symmetric and is hence
omitted.

Case (♦). Suppose TLC is extended into T ′LC by an application of (♦) to a formula
@i♦ϕ on a branch ΘLC. In T ′LC the branch ΘLC has become extended into a branch Θ′LC
by the addition of @i♦j and @jϕ for some fresh nominal j. By the condition on the
(♦) rule, ϕ is not a nominal. By ih1, the branch π(ΘLC) contains an i-block B with
♦ϕ. As j is fresh to ΘLC, it is also, by ih2, fresh to π(ΘLC). Extend π(ΘLC) by first
applying GoTo with conclusion i to open a new i-block. Since ϕ is not a nominal, we
can afterwards apply (♦) to the premise ♦ϕ occurring at the earlier i-block B, which
will result in the addition of ♦k and @kϕ for some fresh nominal k. Since j is fresh
to ΘLC, we can choose k = j, see Figure 6(b). As shown in Figure 6(b), we can now
apply GoTo to open a j-block, and finally we can apply (@) to the premise @jϕ to add
ϕ to this j-block. Call the resulting branch Θ′ST. In this branch, both @i♦j and @jϕ
occur induced. Hence by letting π′(Θ′LC) = Θ′ST, we get that condition 1 is satisfied in
the extended tableaus. Condition 2 also holds, as the only new nominal introduced
in the construction of the Seligman tableau T ′ST is j which was also introduced in the
construction of the labelled tableau T ′LC from TLC.

Case (¬♦). In this case T ′LC is obtained from TLC by an application of (¬♦) to
formulas @i¬♦ϕ and @i♦j on the branch ΘLC. In T ′LC the branch ΘLC has been extended
by @j¬ϕ. Call the extended branch Θ′LC. By ih1, π(ΘLC) contains i-blocks B1 and
B2 (not necessarily distinct) such that ¬♦ϕ ∈ B1 and ♦j ∈ B2. Following the same
overall strategy as in the case of (♦), we can extend π(ΘLC) as follows: 1) First apply
GoTo with conclusion i; 2) Then apply (¬♦) to ¬♦ϕ ∈ B1 and ♦j ∈ B2 in order to
get ¬@jϕ; 3) Now apply GoTo with conclusion j; 4) Finally apply (@) to ¬@jϕ in
order to get ¬ϕ. The extended branch contains @j¬ϕ in induced form, which leads to
satisfaction of condition 1. Condition 2 holds trivially.

Case Id. In this case T ′LC is obtained from TLC by an application of Id to premises
@ij and @iϕ occurring on a branch ΘLC. In T ′LC the branch ΘLC has become extended

12

into a branch Θ′LC by the addition of @jϕ. By the condition on the Id rule, @iϕ is not
an accessibility formula. Furthermore, we must have i 6= j, since otherwise @iϕ and
@jϕ are the same formula, and then the addition of @jϕ to ΘLC would be in conflict
with (R2′). Finally, we can assume j 6= ϕ, since otherwise the added formula is @jj,
and conditions 1 and 2 then hold by simply letting T ′ST = TST. By ih1, π(ΘLC) contains
i-blocks B1 and B2 with j ∈ B1 and ϕ ∈ B2. We need to show that π(ΘLC) can be
extended into a branch containing ϕ in a j-block. First step is to extend π(ΘLC) by
applying GoTo with conclusion j to open a new j-block. Afterwards we can apply Nom
to the premises i and j of block B1 to add i to the current block. The current block is
now a j-block containing i. If i = ϕ, we do not apply additional rules, since then the
current block already contains ϕ. Otherwise, we apply Nom again, this time to the
premises i and ϕ of block B2 to add ϕ to the current block (this is possible since the
current block contains i). In both case we now have that ϕ is contained in a j-block,
as required. From this conditions 1 and 2 of the extended tableaus immediately follow
as in the previous cases.

Theorem 3.3 (Completeness). If the formula ϕ is valid, then there exists a closed
tableau in ST having ¬ϕ as the root formula.

Proof. Assume ϕ is valid. As LC is complete, there exists a closed LC-tableau TLC
with root @i¬ϕ, where i is a nominal not occurring in ϕ. By Lemma 3.2 there is
an ST-tableau TST with root ¬ϕ and a bijection π from the branches of TLC into the
branches of TST such that conditions 1 and 2 of the lemma holds. We now show that
TST is closed. Let ΘST denote an arbitrary branch of TST. We need to show that ΘST

is closed. As TLC is a closed LC-tableau, π−1(ΘST) is a closed branch, meaning that it
contains a pair of formulas @jψ and @j¬ψ. If j 6= ψ then condition 1 of the lemma
implies that @jψ and @j¬ψ occur induced on ΘST. Thus in this case ΘST contains a
pair of j-blocks B1 and B2 with ψ ∈ B1 and ¬ψ ∈ B2. This means that ΘST is closed,
by definition. Assume instead j = ψ. Then condition 1 of the lemma only gives us
that @j¬ψ occurs induced on ΘST. But since j = ψ, this means that ΘST contains a
j-block B with ¬j ∈ B. Since B hence contains both j and ¬j, we again have that
the branch is closed.

4 Remarks on Seligman-style Sequent Calculus

We now know that the tableau system ST is complete, but before we turn to the more
demanding task of ensuring termination, we will note some links with Jerry Seligman’s
sequent calculus. In [23], Seligman develops a first sequent calculus for hybrid logic
from a sequent system for classical first-order predicate logic by using a sequence of
transformations which step-by-step internalize the semantics of hybrid logic. In the
resulting system, the only symbols that occur in formulas are symbols of the hybrid
object language. However this first sequent system only takes us halfway, for all
the formulas in its rules are prefixed by @-operators (so this first sequent calculus is
somewhat reminiscent of the labelled tableau system LC). But in the second stage,
Seligman transforms the prefixed system into a system in which formulas are not
required to be @-prefixed: the rules deal directly with unprefixed formulas. According
to [23], page 684, the resulting calculus is “a more egalitarian logic in which there are
Rules for All”. This calculus inspired our search for a tableau system with similar
properties, so let’s briefly compare it with ST.

13

As should by now be clear, the crucial rules in ST are those that handle the nominals
and the @-operator in a way that does not require formulas to be @-prefixed. In his
system, Seligman uses the following six sequent rules for this purpose; he calls them
Nominal Rules (see [23], page 685):

∨@L i, ϕ,Γ −→ ∆ ⇒ i,@iϕ,Γ −→ ∆
∨@R i,Γ −→ ∆, ϕ ⇒ i,Γ −→ ∆,@iϕ
∧@L i,@iϕ,Γ −→ ∆ ⇒ i, ϕ,Γ −→ ∆
∧@R i,Γ −→ ∆,@iϕ ⇒ i,Γ −→ ∆, ϕ
name i,Γ −→ ∆ ⇒ Γ −→ ∆, if i does not occur in Γ,∆
term i,Γ −→ ∆ ⇒ Γ −→ ∆, if all formulas in Γ,∆ are @-prefixed.

First the easy part. Tableau rules can often be seen as reversed sequent rules,
where the formulas on the right of the sequent arrow −→ are negated. If we read the
listed rules this way (that is, if we read them from right to left) our (@) and (¬@)
rules are simply Seligman’s ∨@L and ∨@R rules, and our Name rule is his name-rule.

The divergences stem from the remaining three rules. Our first attempt at a tableau
system contained the obvious tableau correlates of Seligman’s ∧@L and ∧@R rules.
These rules introduced @-prefixes, and with these rules we were able to @-prefix entire
tableau branches, thereby globalizing the information they contain. Our GoTo rule is
the tableau corrolate of Seligman’s term-rule, but note his side condition: it only lets
us jump to a world if all information is @-prefixed, that is, if all information is global
(recall that the Seligman-style natural deduction rule Term, which was discussed on
page 5, works this way too). Our first version of GoTo had the same side condition,
so proofs in our early systems would typically contain multiple applications of the
∧@L and ∧@R rules (to globalize the information on a tableau branch) followed by an
application of GoTo. But we were dissatisfied notationally, and due to the excessive
applicability of rules, there was no promising path to a terminating system. Moreover,
the @-prefixing permitted by the ∧@L and ∧@R rules interacted badly with (our
tableau correlates of) the rules ∨@L and ∨@R. Sometimes we would be forced to
prefix an @, only to immediately strip it off, an obvious proof redundancy which we
couldn’t get rid of in a principled way.

These inter-related issues led us to introduce blocks. In essence, by making use
of blocks, we avoid having to give explicit tableau rules corresponding to sequent
rules ∧@L and ∧@R; these rules are now absorbed into the concept of a block. This
simultaneously eliminates these tableau rules, and bypasses the proof redundancy just
mentioned. Moreover, by having GoTo create a local proof context (rather than only
be applicable when all the information on the branch has been @-prefixed) we avoid
having to impose the side condition.

Despite its use of blocks, we believe our system is a fairly natural tableau analog of
Seligman’s system. Compare, for example, the following sequent derivation with the
tableaux derivation given in Figure 5 on page 9:

i, j, k −→ k
∨@L

i, j,@jk −→ k
∨@L

i,@ij,@jk −→ k
∨@R

i,@ij,@jk −→ @ik
term

@ij,@jk −→ @ik
∧L

@ij ∧@jk −→ @ik

14

This example also illustrates that the sequent term-rule is more of a GoFrom rule than
a GoTo rule. Of course, this simply reflects the fact that tableau rules are, in a sense,
reversed sequent rules.

The use of blocks reverses a longstanding trend in hybrid logic (reliance on the
labelling apparatus built into the object language) in favor of imposing more structure
at the meta-level. Dividing branches into blocks externalizes (passes up to the meta-
language) some of the work done by rules dealing with the @-operator. The use of the
notion of induced satisfaction statement in our completeness proofs (which reflects the
way that Seligman’s ∧@L and ∧@R are absorbed into the concept of a block) is the
clearest expression of this externalization.

5 Termination

Can the tableau system ST be used as a decision procedure? It is not difficult to
see that unrestricted use of the calculus can lead to non-terminating computations;
indeed, repeatedly applying Name is a trivial way of doing this. Still, by imposing
natural restrictions on the application of rules, we can get a terminating calculus
without resorting to loop checks (the first tableau-based decision procedure for hybrid
logic, presented in [11], made use of loop checks, but shortly thereafter a procedure
not requiring loop checks was devised [10]).

The first step towards a terminating calculus is to adopt standard rule application
restrictions for tableau calculi to our block-based setting. On page 8 we presented the
restrictions (R1′) and (R2′) imposed on LC. These restrictions adapt straightforwardly
to the block-based setting in ST:

(R1) A formula is never added to an i-block if it already occurs in an i-block on the
same branch.

(R2) The (♦) rule can not be applied twice to the same formula occurrence.

Note that (R2) and (R2′) use exactly the same formulation. However, since they
appear in the context of two different proof systems, they still express slightly different
conditions. In LC, no formula can occur twice on the same branch due to (R1′). So
in LC, condition (R2′) is equivalent to the following: Any two applications of (♦) to
a formula @i♦ϕ must occur on distinct branches. This is different in ST. In ST, the
(♦) rule applies to formulas of the form ♦ϕ, and (R1) doesn’t prevent a branch from
containing several occurrences of the same such formula—as long as these occurrences
appear in blocks with distinct opening nominals. Hence in ST, the (♦) rule might be
applied several times to the same formula ♦ϕ on the same branch without violating
(R2). This can happen if ♦ϕ occurs multiple times on the branch in blocks with
distinct opening nominals.

As mentioned earlier, the Name rule is only necessary to provide an opening nom-
inal for the initial block. To avoid the trivial form of non-termination that repeated
applications of Name can lead to (indefinitely coming up with new names for the same
block), we impose the following restriction:

(R3) The Name rule is only ever applied as the very first rule in a tableau.

Another rule that can produce non-termination by repeated applications is GoTo;
indeed, this can be applied an arbitrary number of times consecutively with the same

15

1 i0∧(♦>∧�(♦>∧(i0∧>)))
2 i0 (∧) on 1
3 ♦> ∧�(♦> ∧ (i0 ∧ >)) (∧) on 1
4 ♦> (∧) on 3
5 �(♦> ∧ (i0 ∧ >)) (∧) on 3
6 ♦i1 (♦) on 4
7 @i1> (♦) on 4
8 @i1(♦> ∧ (i0 ∧ >)) (�) on 5, 6

X



9 i1 GoTo
10 ♦> ∧ (i0 ∧ >) (@) on 8, 9
11 ♦> (∧) on 10
12 i0 ∧ > (∧) on 10
13 ♦i2 (♦) on 11
14 @i2> (♦) on 11
15 i0 (∧) on 12
16 > (∧) on 12
17 �(♦> ∧ (i0 ∧ >)) Nom on 2, 5, 15
18 @i2(♦> ∧ (i0 ∧ >)) (�) on 13, 17

X[i2/i1, i3/i2]



19 i2 GoTo
20 ♦> ∧ (i0 ∧ >) (@) on 18, 19
21 ♦> (∧) on 20
22 i0 ∧ > (∧) on 20
23 ♦i3 (♦) on 21
24 @i3> (♦) on 21
25 i0 (∧) on 22
26 > (∧) on 22
27 �(♦> ∧ (i0 ∧ >)) Nom on 2, 5, 25
28 @i3(♦> ∧ (i0 ∧ >)) (�) on 23, 27
...

...

Figure 7: A non-terminating computation under restrictions (R1)–(R4).

nominal in the conclusion every time. To avoid this trivial form of non-termination,
we add the following restriction:

(R4) The GoTo rule can not be applied twice in a row.

Restriction (R4) means that GoTo can not be applied on a branch Θ if the previous
rule applied on Θ was also GoTo. In other words, if we at some point use GoTo to open
a new block, we are also required to “do something” with the block before we close it
again and open another block.

However the restrictions (R1)–(R4) are not sufficient to ensure termination, as the
example in Figure 7 shows (note that the example makes use of the derived (�) rule
of Footnote 6). In this tableau, the (♦) rule is applied in lines 13 + 10n, n ≥ 0, to
produce new successor worlds ♦i2,♦i3, . . . Each of these applications of (♦) is to a
formula of the form ♦>. One might argue that we should see all these applications
of (♦) as the same rule instance, since they all occur in blocks ending up containing
i0, that is, they are all applied in blocks that ultimately end up referring to the same
world. But the “trick” used in each block to produce a successor ♦in+2 occurs at
line 13+10n. Crucially, this is before we realise (at line 15+10n) that the block refers

16

to the same world as all the previous ones (because of the presence of i0). Since each of
the successors ♦in+2 that we produce is fresh, each application of (�) in lines 18+10n
is to a new pair of premises ♦in+2,�(♦>∧ (i0 ∧>)). Such applications are legitimate;
there is no principled way to rule out them out.

To understand the problem we are facing, let us look at how termination is usually
ensured in labelled tableau calculi for hybrid logic. The standard way to prove termina-
tion in such calculi without resorting to loop-checks is by a decreasing length argument.
It goes as follows. We say that a formula ϕ is true at a nominal i on a tableau branch
Θ in a labelled calculus if @iϕ occurs on Θ.7 For a pair of nominals i, j on Θ, j is said
to be generated by i on Θ if j was introduced to the branch by an application of (♦)
to a formula true at i. Now the core of the decreasing length argument is to establish
that if j is generated by i on Θ, then the syntactic complexity of any formula true
at j on Θ is strictly less than the maximal syntactic complexity of the formulas true
at i. This immediately implies the non-existence of an infinite sequence of nominals
i0, i1, i2, . . . on Θ, where each nominal is generated by its predecessor. And this can
then, ultimately, be shown to ensure termination.

Now consider the case of the Seligman calculus. There are two possible ways to
define true at in this calculus:

1. ϕ is true at i on Θ if there is an i-block on Θ containing ϕ.

2. ϕ is true at i on Θ if there is a block on Θ containing both i and ϕ.

What we are about to show will apply equally to both possible definitions. The
definition of generating nominals is as for the labelled calculus: j is generated by i
on Θ if j was introduced to Θ by an application of (♦) to a formula true at i.8 Now
consider again the tableau branch of Figure 7. Clearly, i0, i1, i2, . . . is a sequence of
nominals where each has been generated by its predecessor (independent of whether
true at is defined by 1 or 2 above). Equally clearly, the maximal syntactic complexity
of all formulas true at in is the same for all n > 0. So the ordinary decreasing length
argument breaks down in this case.

It is obviously the Nom rule which is responsible for the break-down of the de-
creasing length argument: this rule allows us to copy the formula �(♦> ∧ (i0 ∧ >))
to arbitrary blocks containing the nominal i0, independently of any ordering on the
nominals. The lesson to be learned is that we, as in labelled calculi, have to enforce
some control on the “direction” we allow the copying of formulas, so that we can es-
tablish a decreasing length argument. It is OK to copy a formula true at a nominal i
to a nominal j if j generated i, but not if i generated j.

A version of the Nom rule that only allows the copying of formulas in the “right
direction”, the direction of the generating nominals, is given below. First we need a
couple of new definitions. Similar to LC, a formula of the form ♦i occurring in an ST

tableau is called an accessibility formula if it is the first conclusion of an application
of the (♦) rule. In the tableau of Figure 7, the formulas in lines 6 and 13 + 10n, n ≥ 0,
are accessibility formulas. A quasi-root subformula in a tableau is a formula of the
form ϕ, ¬ϕ, @iϕ or ¬@iϕ, where ϕ is a subformula of the root of the tableau. By
inspecting the rules of ST, it is clear that the only formulas in a tableau that are not

7This is the definition for internalised labelled calculi, like the one in [4] and the last calculus
of [10]. For prefixed calculi, we would say that ϕ is true at the prefix σ if the prefixed formula σϕ
occurs on Θ [10].

8Note that if we define true at by condition 2, then a nominal can be generated by more than one
other nominal.

17

————
i
j
ϕ

————
j

ϕ

Nom?
a

1

————
i
j

————
i
ϕ

————
j

ϕ

Nom?
b

1

————
i
j

————
j

i

Nom?
c

2

1 i, j and ϕ are all distinct, and ϕ is a quasi-root subformula.
2 i is a root nominal and i 6= j.

Figure 8: The three special cases of Nom?.

quasi-root subformulas are accessibility formulas and non-root nominals. We are now
ready for the new Nom rule, called Nom?.

Nom? Suppose i and j are nominals, ϕ is a quasi-root subformula and j 6= i, ϕ. If j
and ϕ both occur in i-blocks on a branch Θ, then ϕ can be added to any j-block
on Θ.

The Nom? rule splits up into three simple cases that we will now investigate. Assume
first that i, j and ϕ are premises in an application of Nom? with i 6= ϕ. Then all of
i, j and ϕ are distinct, since the rule already requires j 6= i, ϕ. The rule requires that
both j and ϕ occur in i-blocks, which means that they either occur in the same i-block
or in two distinct ones. This gives us the first two special cases of Nom? shown in
Figure 8: Nom?

a and Nom?
b . Now assume that we instead have i = ϕ. Then i will be

a root nominal, since ϕ is required to be a quasi-root subformula. In this case Nom?

becomes the last special case, Nom?
c , shown in Figure 8. This last special case is a

kind of restricted symmetry principle for root nominals.
Note that each of the special cases of Nom? is immediately derivable from the

original Nom rule. The special cases Nom?
a and Nom?

c are just two special cases of
Nom, and Nom?

b can be derived by two consecutive applications of Nom: one to add
i to the j-block, and then another to add ϕ. Note also that the non-termination of
Figure 7 disappears when Nom is replaced by Nom?: we can not add �(♦>∧ (i0 ∧>))
by Nom? in line 17, because this would require us to have an i0-block containing i1.
Even though we have an i1-block containing i0, we can not produce the opposite, since
the symmetry principle of Nom?

c only applies to an i1-block containing i0 when i1 is a
root nominal.

The requirement of ϕ being a quasi-root subformula in Nom? is essential. If we
allowed ϕ to be an accessibility formula, we could produce a non-terminating tableau
with root i0 ∧ ♦>∧�(♦>∧ i0) (we leave out the derivation to save space). A similar
example can be used to show non-termination if ϕ is allowed to be a non-root nominal.

Still, we are not quite finished. Consider the tableau in Figure 9. This tableau
is non-terminating, even though no applications of Nom or Nom? are involved. The
problem here is that the (@) rule is used repeatedly to “copy” the formula ♦(> ∧ i0)

18

1 @i0♦(> ∧ i0)
2 i0 GoTo
3 ♦(> ∧ i0) (@) on 1, 2
4 ♦i1 (♦) on 3
5 @i1(> ∧ i0) (♦) on 3

X



6 i1 GoTo
7 > ∧ i0 (@) on 5, 6
8 > (∧) on 7
9 i0 (∧) on 7
10 ♦(> ∧ i0) (@) on 1, 9
11 ♦i2 (♦) on 10
12 @i2(> ∧ i0) (♦) on 10

X[i2/i1, i3/i2]



13 i2 GoTo
14 > ∧ i0 (@) on 12, 13
15 > (∧) on 14
16 i0 (∧) on 14
17 ♦(> ∧ i0) (@) on 1, 16
18 ♦i3 (♦) on 17
19 @i3(> ∧ i0) (♦) on 17
...

...

Figure 9: Another non-terminating computation under restrictions (R1)–(R4).

to all later nominals, hence destroying the possibility of a decreasing length argument.
But can deal with this last problem straightforwardly: when we want to copy a formula
ϕ to a block containing a nominal i, then i must be the opening nominal of that block;
as we saw with the restriction on the Nom rule, opening nominals are special. The
corresponding restriction for the (@) rule is the following:

(R5) (@) and (¬@) can only be applied to premises i and @iϕ (¬@iϕ) when the current
block is an i-block.

With (R5) in place, the application of (@) in line 7 of Figure 9 is still OK, but the
application in line 10 is not.

We now have the full set of rule restrictions required to show termination. For
the sake of the reader, we have collected them all in Figure 10. We are now ready to
prove termination and completeness of the restricted calculus. We call this calculus
ST?. It consists of the same rules as ST, except that Nom is replaced by Nom?, and
restrictions (R1)–(R5) are imposed. To prove termination of ST?, we first show that
any ST?-tableau can be translated into an LC-tableau. This can then be used to show
termination of ST?, as LC is already known to be terminating [10].

Lemma 5.1. Assume that ΘST is a branch of an ST?-tableau in which Name is applied
as the first rule. Then there exists an LC-tableau branch ΘLC such that:

1. If @iϕ ∈ ΘST then @iϕ ∈ ΘLC.

2. If ¬@iϕ ∈ ΘST then @i¬ϕ ∈ ΘLC.

3. If an occurrence of a formula ψ in a j-block of ΘST is not of the form @iϕ or
¬@iϕ or is j itself, then @jψ ∈ ΘLC.

19

(R1) A formula is never added to an i-block if it already occurs in an i-block on the same
branch.

(R2) The (♦) rule can not be applied twice to the same formula occurrence.

(R3) The Name rule is only ever applied as the very first rule in a tableau.

(R4) The GoTo rule can not be applied twice in a row.

(R5) (@) and (¬@) can only be applied to premises i and @iϕ (¬@iϕ) when the current block
is an i-block.

Figure 10: The full set of restrictions, (R1)–(R5), imposed on the terminating calculus
ST?.

4. The same nominals occur in ΘST and ΘLC.

Proof. The proof is by induction on the number of rule applications made on ΘST.
Base case. We choose our base case to be after the first rule application on ΘST,

which by assumption is an application of Name. So in the base case, ΘST has the
following form:

1 ϕ0

2 i0 Name

where i0 is a nominal not occurring in ϕ0. Let i1, . . . , in denote the nominals in ϕ0.
We let the root of ΘLC be the formula @i0(ϕ0 ∧

∧
k=0,...,n @ik ik). This is the same as

the root formula of ΘST, except we have added a conjunct of the form @ik ik for each
root nominal ik. This is for a technical reason that will become clear when we cover
the case of Nom? below. We now apply (∧) to the root of ΘLC, so that ΘLC becomes:

1 @i0(ϕ0 ∧
∧

k=0,...,n @ik ik)

2 @i0ϕ0 (∧) on 1
3 @i0

∧
k=0,...,n @ik ik (∧) on 1

Note that ΘST is an i0-block containing only a single formula ϕ0 distinct from i0 itself.
Assume first that ϕ0 is not on the form @iϕ or ¬@iϕ, that is, it is not a satisfaction
statement or negated satisfaction statement. In this case, conditions 1 and 2 of the
lemma hold trivially. Condition 3 holds by the occurrence of @i0ϕ0 in ΘLC. Condition
4 holds trivially by construction of ΘLC from ΘST. If ϕ0 is a satisfaction statement, we
extend ΘLC by applying (@) to line 2. This results in adding ϕ0 to ΘLC, hence satisfying
condition 1. Conditions 2–4 are trivially satisfied in this case. The case where ϕ0 is a
negated satisfaction statement is completely analogous.

Induction step. Assume ΘST and ΘLC satisfy conditions 1–4. We need to prove that
if ΘST is extended into Θ′ST by a single rule application, then we can construct a similar
extension Θ′LC of ΘLC so that 1–4 still hold. We prove this by examining each possible
case of a rule application building Θ′ST from ΘST. For each such rule application, we can
assume that at least one of its conclusions can be added without violating (R1)–(R5),
since otherwise Θ′ST = ΘST and there is nothing to prove.

Case (¬¬). Suppose Θ′ST is obtained from ΘST by an application of (¬¬) to a
premise ¬¬ϕ. Then Θ′ST is ΘST extended by ϕ. The premise ¬¬ϕ either belongs to the
current block of ΘST or a previous block with the same opening nominal. Let i be this
nominal. By the induction hypothesis, @i¬¬ϕ ∈ ΘLC (by condition 3). We split into
subcases depending on the form of ϕ. If ϕ is not a satisfaction statement or negated

20

satisfaction statement, then conditions 1–2 hold trivially, and we only need to ensure
conditions 3–4. Conversely, if ϕ is a satisfaction statement or negated satisfaction
statement, then condition 3 holds trivially, and we only need to ensure condition 4
and either 1 or 2. We first consider the case where ϕ is not a satisfaction statement
or negated satisfaction statement. In this case we satisfy condition 3 by constructing
Θ′LC such that it contains @iϕ. If ΘLC already contains @iϕ, we simply let Θ′LC = ΘLC.
Otherwise, we can apply (¬¬) to @i¬¬ϕ on ΘLC, which will add @iϕ to the branch.
We then let Θ′LC be the resulting branch. Alternatively, if ϕ is a satisfaction statement,
we satisfy condition 1 by constructing Θ′LC such that it contains ϕ. Let Θ′LC be the
extension of ΘLC obtained by applying first (¬¬) to @i¬¬ϕ (if @iϕ is not already on
ΘLC), and then applying (@) to @iϕ (if ϕ is not already on ΘLC). If ϕ is a negated
satisfaction statement, we apply (¬@) instead of (@), ensuring that condition 2 is
satisfied. Since condition 4 is trivially satisfied, this concludes the case of (¬¬). The
other propositional cases, as well as the case of (¬♦), are similar.

Case (@). Θ′ST is obtained from ΘST by applying (@) to formulas i and @iϕ. Then
Θ′ST is ΘST extended by ϕ. By (R5), the current block must be an i-block. We split
into subcases depending on the form of ϕ, as for the (¬¬) case above. If ϕ is not
a satisfaction statement or a negated satisfaction statement, we satisfy condition 3
by constructing Θ′LC such that it contains @iϕ. But by the induction hypothesis we
already have @iϕ ∈ ΘLC, since @iϕ ∈ ΘST (using condition 1). Hence we can let
Θ′LC = ΘLC and we’re done. If ϕ is a satisfaction statement, we satisfy condition 1 by
applying (@) on ΘLC as appropriate. If ϕ is a negated satisfaction statement, we satisfy
condition 2 by applying (¬@) as appropriate. The case of the (¬@) rule is similar.

Case Nom?. Θ′ST is obtained from ΘST by an application of Nom? of one of the three
types shown in Figure 8. Let us consider the cases of Nom?

a and Nom?
b first. In these

cases, Θ′ST is obtained from ΘST by the addition of a formula ϕ to a j-block, where: i)
ΘST contains an i-block with j; ii) ΘST contains an i-block with ϕ; iii) all of i, j and
ϕ are distinct; iv) ϕ is a quasi-root subformula. If ϕ is not a satisfaction statement or
a negated satisfaction statement, we show that we can extend ΘLC into a branch Θ′LC
containing @jϕ. By the induction hypothesis, ΘLC must contain @ij and @iϕ (from i
and ii). Since ϕ is not an accessibility formula, we can apply Id to the pair of premises
@ij, @iϕ on ΘLC and get @jϕ. Let Θ′LC be ΘLC extended by this rule application (again,
the addition of @iϕ to ΘLC will only be blocked if @iϕ already occurs there). We now
have that conditions 1–4 are satisfied for Θ′ST and Θ′LC. The subcases where ϕ is a
satisfaction statement or a negated satisfaction statement are trivial applications of
the induction hypothesis. This concludes cases Nom?

a and Nom?
b . Now consider Nom?

c .
In this case, ΘST contains j in an i-block, and Θ′ST extends ΘST by the addition of i to
a j-block. Furthermore, i is a root nominal and i 6= j. We need to show that we can
extend ΘLC into a branch Θ′LC containing @ji. By the induction hypothesis we have
@ij ∈ ΘLC. Now recall from the base case of this proof that line 3 of ΘLC is the formula
@i0

∧
k=0,...,n @ik ik. Since i is a root nominal, it must be one of the ik. By repeated

applications of (∧) to this formula, we can thus extend ΘLC into a branch containing
@i0@ii; and by an additional application of (@) into a branch containing @ii. Now we
can apply Id to the pair of premises @ij, @ii and get @ji. Letting Θ′ST be the branch
thus extended, we have shown what was required.

Case (GoTo). Θ′ST is obtained from ΘST by an application of (GoTo). In this case
we simply let Θ′LC = ΘLC, and 1–4 will hold trivially by the induction hypothesis.

Case (♦). Θ′ST is obtained from ΘST by applying (♦) to a formula ♦ϕ that either
belongs to the current block or a previous block with the same opening nominal i.
By the side condition on the (♦) rule, ϕ can not be a nominal. By the induction

21

hypothesis, @i♦ϕ ∈ ΘLC. Θ′ST is ΘST extended by ♦j and @jϕ for some fresh nominal
j. By condition 4 of the induction hypothesis, j is fresh to ΘLC as well. We need to
construct Θ′LC from ΘLC such that it contains @i♦j and @jϕ (to satisfy conditions 1,
3 and 4). Since j is fresh to ΘLC, it suffices to show that (♦) is applicable to @i♦ϕ
on ΘLC. Assume for the sake of contradiction that this rule application is blocked.
Since ϕ is not a nominal, ♦ϕ can not be an accessibility formula, and hence the only
condition that can be blocking the rule application is (R2′). And this can only happen
if ΘLC already contains an application of (♦) to this formula occurrence. Since all
applications of (♦) on ΘLC are induced by applications of (♦) on ΘST, this implies that
ΘST contains an application of (♦) to an occurrence of ♦ϕ in an i-block. By (R1),
there can only be one occurrence of ♦ϕ in an i-block on ΘST. Hence, we get that ΘST

contains an application of (♦) to the i-block occurrence of ♦ϕ. Because of (R2), we
can not reapply (♦) to this formula occurrence, contradicting our assumption on how
Θ′ST is built from ΘST. This concludes the case of (♦) and the entire proof.

We can now prove termination.

Theorem 5.2. Any ST?-tableau branch is finite.

Proof. Let ΘST be the branch of an ST?-tableau. We need to show that ΘST is finite.
We can without loss of generality assume that the first rule applied on ΘST is Name.
To show this, assume Θ′ST is an infinite branch of ST? not including any applications of
Name (recall that by (R3), either Name is applied as the first rule or never applied).
Let Θ′′ST be obtained from Θ′ST by inserting Name as the first rule application. Then
Θ′′ST is still a valid, infinite tableau branch of ST?. This shows that if it is possible to
construct an infinite ST? branch, then it is possible to construct one in which Name
is the first rule applied. So in the following we can without loss of generality assume
Name to be the first rule applied on ΘST.

By Lemma 5.1, there exists an LC-tableau branch ΘLC satisfying conditions 1–4.
Since LC is a terminating calculus, ΘLC must be finite and hence only contains finitely
many nominals. By condition 4 of Lemma 5.1, ΘST then contains only finitely many
nominals as well. Hence the number of distinct formulas on ΘST must also be finite,
since any formula on ΘST is either a quasi-root subformula or ♦i or i for some nominal.
This implies that any block on ΘST must be finite, using (R2). Now assume for the
sake of contradiction that ΘST is infinite. Then for some i, ΘST must contain infinitely
many i-blocks (since each block is finite and there are only finitely many nominals).
By (R2), none of these i-blocks contain a formula already contained in a previous
i-block—except if it is the opening nominal itself. Hence, each i-block either contains
a new formula not occurring in any previous i-block, or it only contains the opening
nominal. Since there are only finitely many distinct formulas but infinitely many i-
blocks, infinitely many of the i-blocks can then only contain the opening nominal. But
this contradicts (R4): GoTo can not be applied twice in a row.

In Section 3 we proved that the calculus ST is complete. We now wish to prove that
ST? is complete as well, that is, the replacement of Nom by Nom? and the introduction
of restrictions (R1)–(R5) doesn’t destroy completeness. It suffices to prove an analog
of Lemma 3.2 for ST?, which we shall now do.

Lemma 5.3. Let ϕ be any formula and i any nominal not in ϕ. Assume TLC is a
tableau with root @iϕ in the calculus LC. Then there exists a tableau TST with root ϕ
in the calculus ST?, and a bijection

π : {Θ | Θ is a branch of TLC} → {Θ′ | Θ′ is a branch of TST}

22

such that:

1. Given any branch Θ of TLC, any formula @jψ ∈ Θ with j 6= ψ occurs as induced
formula on π(Θ).

2. All nominals that occur on π(Θ) also occur on Θ.

Proof. We need to prove that the induction proof of Lemma 3.2 still goes through when
ST is replaced by ST?. First we show that any application of Nom in the induction
proof of Lemma 3.2 can be replaced by an application of Nom?. The rule Nom is only
applied in the Id case of the induction step, so let us consider that case.

Case Id. As in the Id case of the proof of Lemma 3.2, we assume the following (see
the proof of Lemma 3.2 for details): i) @ij,@iϕ ∈ ΘLC; ii) @iϕ is not an accessibility
formula on ΘLC; iii) Θ′LC is ΘLC extended by @jϕ; iv) j 6= i, ϕ; v) π(ΘLC) contains
i-blocks B1 and B2 with j ∈ B1 and ϕ ∈ B2. We need to show that π(ΘLC) can be
extended into a branch containing ϕ in a j-block. We can assume that ϕ does not
already occur in a j-block on π(ΘLC), since otherwise there is nothing to prove. First
apply GoTo on π(ΘLC) with conclusion j to open a new j-block. Let @i0ϕ0 denote
the root of ΘLC. The root of π(ΘLC) is then ϕ0, by construction. Since @iϕ is not an
accessibility formula on ΘLC, Lemma 6.1 of [10] (Quasi-subformula Property) gives us
that ϕ is of the form ψ or ¬ψ where ψ is a subformula of ϕ0. Since ϕ0 is the root of
π(ΘLC) this immediately implies that ϕ is a quasi-root subformula on π(ΘLC). Hence
on π(ΘLC) we have that ϕ is a quasi-root subformula, j 6= i, ϕ and j and ϕ both occur
in i-blocks. This is exactly the set of conditions mentioned in the Nom? rule, so we
can now apply Nom? at the current j-block to add ϕ. This shows that π(ΘLC) can be
extended into a branch containing ϕ in a j-block, as required.

In the following we will use the term “the modified proof of Lemma 3.2” to refer
to the proof of Lemma 3.2 where the Id case has been modified as above to use Nom?

instead of Nom. What is now left is to prove that all of the restrictions (R1)–(R5) are
satisfied in the inductive construction of TST in the modified proof of Lemma 3.2. We
consider the 5 restrictions in turn below.

(R1). This restriction is not necessarily satisfied in the current construction of
TST, but the construction can easily be modified to satisfy it, as we will now show.
Consider the application of a rule distinct from GoTo on a branch ΘST in the inductive
construction of TST. Let i denote the opening nominal of the current block. If the
considered rule application has a conclusion ϕ that already occurs in an i-block on ΘST,
we simply choose not to add ϕ again. This omission doesn’t prevent any other rules
from being applied later that would otherwise have been applicable, and it obviously
doesn’t affect conditions 1 and 2 either (the set of formulas occurring induced on ΘST

remains the same).
(R2). Assume for the sake of contradiction that TST contains a branch ΘST on

which (♦) has been applied twice to the same formula occurrence ♦ϕ in some i-block.
Consulting the (modified) proof of Lemma 3.2, it is seen that both of these applications
must be induced by applications of (♦) to @i♦ϕ on π−1(ΘST) (the only applications of
(♦) in the inductive construction of TST is in the (♦) case of the proof). However, this
directly contradicts that π−1(ΘST) is built under restriction (R2′).

(R3). In the (modified) proof of Lemma 3.2, Name is only applied as the very first
rule, so (R3) is trivially satisfied.

(R4). Consulting the (modified) proof of Lemma 3.2, it is possible to show that
GoTo is never applied twice in a row in the inductive construction of TST.

9

9But even if GoTo was applied twice in a row, we would always be able to get rid of it: simply

23

(R5). In the modified proof of Lemma 3.2, the (@) and (¬@) rules of ST are being
applied only in the (¬@), (@), (♦) and (¬♦) cases of the induction step. Inspecting
these cases it is seen that the (@) and (¬@) rules are only applied to premises of the
form @iϕ or ¬@iϕ when the current block is an i-block. Hence (R5) is satisfied.

Theorem 5.4 (Completeness of ST?). If the formula ϕ is valid, then there exists a
closed tableau in ST? having ¬ϕ as the root formula.

Proof. The proof is a copy of the proof of Theorem 3.3, except that ST is replaced by
ST? and references to Lemma 3.2 are replaced by references to Lemma 5.3.

6 Concluding Remarks

In this paper we introduced a Seligman-style tableau system for basic hybrid logic.
By imposing a block structure on tableaus, and introducing rules (notably the GoTo
rule) to exploit this structure we were able to externalize (push up to the meta-level)
the basic proof mechanisms. We thus arrived (to use Seligman’s words) at “a more
egalitarian logic in which there are Rules for All”. Indeed, we ended up with two such
logics, namely ST and ST?.

Interesting work remains to be done. For a start, there are tricky questions about
rule derivability. For example, some important labelled hybrid tableau systems (as
found for instance in [7]) make use of rules not found in LC, such as the Bridge rule:

@i♦j
@jk

Bridge

@i♦k

We are interested in finding interpretations of such rules in ST and ST? in the way we
in these systems have interpreted the rules of LC. A way of approaching such issues
might be to show the derivability of an appropriately restricted version of the EM rule
(the excluded middle rule, also called the cut rule), which says that for any formula
ϕ of some specified type, any leaf of the tableau tree can be split by extending to the
left with ϕ and to the right with ¬ϕ:

·
EM

¬ϕϕ

For example, if we could show that EM was derivable in, say, ST for ϕ having the form
@i♦k, we could show interpretability of the Bridge rule in the style of Lemma 3.2 as
indicated by the following diagram:

omit all applications of GoTo except the last in any sequence of consecutive applications of GoTo.
As in the case of (R2), this would neither affect the applicability of later rules nor the fulfilment of
conditions 1 and 2.

24

———–
i1
♦j2

———–
j3

k4
———–

i5

♦k ¬♦k
¬@jk8

6 7
(¬♦) on 2,7

———–
j9
¬k
×

EM EM

GoTo

10 (¬@) on 8, 9

GoTo

Given by the
induction hypothesis

Soundness of the unrestricted EM rule, to be precise, soundness of the system
ST + EM, together with our first completeness result, shows that the unrestricted EM
rule is admissible in ST (that is, if ST + EM ` ϕ then ST ` ϕ), but the EM rule is
not derivable without restrictions on the formula ϕ. However, it is an open question
whether it is derivable when ϕ has the form ♦k.

The issue of rule derivability also bears our current work. Our next goal is to
provide completeness proofs covering the standard extensions of basic hybrid logic,
such as tense logical extensions, the difference operator and universal modalities, the
downarrow binder and the strong Priorean binders, and first-order hybrid logic. All
these extensions have natural Seligman-style treatments, and in some cases complete-
ness can be established by proving suitable rule derivability results and drawing on
the corresponding results for labelled calculi (indeed, we suspect that if we could prove
the derivability of the above mentioned restriction version of EM, we could prove com-
pleteness of most, perhaps all, of these extensions in this way). But we are currently
working on model-theoretic completeness proofs, as we suspect that this may provide
more straightforward and general answers. Moreover, although we introduced ST? sim-
ply as a terminating version of ST, we find the three cases of the Nom? rule interesting
in their own right. We hope to show model-theoretically that ST? can replace ST as
the core inference engine in all extended systems.

References

[1] Areces, C., Heguiabehere, J.: Direct Resolution for Modal-like Logics. In: Pro-
ceedings of the 3rd International Workshop on the Implementation of Logics. pp.
3–16. Tbilisi, Georgia (2002)

[2] Areces, C., Goŕın, D.: Ordered Resolution with Selection for H(@). In: LPAR.
pp. 125–141 (2004)

[3] Areces, C., Goŕın, D.: Resolution with Order and Selection for Hybrid Logics. J.
Autom. Reasoning 46(1), 1–42 (2011)

[4] Blackburn, P.: Internalizing labelled deduction. Journal of Logic and Computa-
tion 10(1), 137–168 (2000)

[5] Blackburn, P., Bolander, T., Braüner, T., Jørgensen, K.F.: A Seligman Tableau
System for Hybrid Logic. Lecture Notes in Computer Science 8312, 147–163 (2013)

25

[6] Blackburn, P., Jørgensen, K.F.: Indexical Hybrid Tense Logic. In: Bolander, T.,
Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic. vol. 9, pp.
144–60 (2012)

[7] Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U.,
Fernmüller, C. (eds.) Automated Reasoning with Analytic Tableaux and Related
Methods, International Conference, TABLEAUX 2002, pp. 38–52. Copenhagen,
Denmark (2002)

[8] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press, Cambridge (2001)

[9] Blackburn, P., Tzakova, M.: Hybrid Languages and Temporal Logic. Logic Jour-
nal of the IGPL 7(1), 27–54 (1999)

[10] Bolander, T., Blackburn, P.: Termination for Hybrid Tableaus. Journal of Logic
and Computation 17(3), 517–554 (2007)

[11] Bolander, T., Braüner, T.: Tableau-Based Decision Procedures for Hybrid Logic.
Journal of Logic and Computation 16, 737–63 (2006)

[12] Braüner, T.: Two natural deduction systems for hybrid logic: A comparison.
Journal of Logic, Language and Information 13, 1–23 (2004)

[13] Braüner, T.: Hybrid Logic and its Proof-Theory, Applied Logic Series, vol. 37.
Springer (2011)

[14] Braüner, T.: Hybrid-logical Reasoning in False-Belief Tasks. In: Schipper, B.
(ed.) Proceedings of Fourteenth Conference on Theoretical Aspects of Rationality
and Knowledge (TARK). pp. 186–195 (2013), available at http://tark.org

[15] Braüner, T.: Hybrid-logical reasoning in the Smarties and Sally-Anne tasks. Jour-
nal of Logic, Language and Information 23, 415–439 (2014), revised and extended
version of [14]

[16] Chadha, R., Macedonio, D., Sassone, V.: A hybrid intuitionistic logic: Semantics
and decidability. Journal of Logic and Computation 16, 27–59 (2006)

[17] Galmiche, D., Salhi, Y.: Sequent calculi and decidability for intuitionistic hybrid
logic. Information and Computation 209, 1447–1463 (2011)

[18] Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: A Tableau Prover for
Hybrid Logic. Electr. Notes Theor. Comput. Sci. 262, 127–139 (2010)

[19] Hoffmann, G., Areces, C.: HTab: A Terminating Tableaux System for Hybrid
Logic. In: Proceedings of Methods for Modalities 5 (November 2007)

[20] Hoffmann, G.: Tâches de raisonnement en logiques hybrides.
Ph.D. thesis, Université Henri Poincaré - Nancy I (Dec 2010),
http://tel.archives-ouvertes.fr/tel-00541664

[21] Kushida, H., Okada, M.: A Proof-Theoretic Study of the Correspondence of
Hybrid Logic and Classical Logic. Journal of Logic, Language and Information
16, 35–61 (2007)

26

[22] Seligman, J.: The Logic of Correct Description. In: de Rijke, M. (ed.) Advances
in Intensional Logic, Applied Logic Series, vol. 7, pp. 107 – 135. Kluwer (1997)

[23] Seligman, J.: Internalisation: The Case of Hybrid Logics. Journal of Logic and
Computation 11, 671–689 (2001), special Issue on Hybrid Logics. C. Areces and
P. Blackburn (eds.)

[24] Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT
Press (2008)

[25] Tzakova, M.: Tableau Calculi for Hybrid Logics. Lecture Notes in Computer
Science 1617, 278–92 (1999)

27

