
ar
X

iv
:1

60
8.

00
30

2v
2

 [
cs

.A
I]

 2
8

N
ov

 2
01

6

Formulating Semantics of Probabilistic Argumentation

by Characterizing Subgraphs: Theory and Empirical

Results✩

Beishui Liaoa,b,c, Kang Xua,b, Huaxin Huanga,b

aCenter for the Study of Language and Cognition, Zhejiang University, China
bInstitute of Logic and Cognition, Zhejiang University, China

cUniversity of Luxembourg, Luxembourg

Abstract

The existing approaches to formulate the semantics of probabilistic argu-
mentation are based on the notion of possible world. Given a probabilistic
argument graph (PrAG) with n nodes, up to 2n subgraphs are blindly con-
structed and their extensions under a given semantics are computed. Then,
the probability of a set of arguments E being an extension under a given
semantics σ (denoted as ppEσq) is equal to the sum of the probabilities of
all subgraphs each of which has the extension E. Since many irrelevant
subgraphs are constructed, and in many cases, computing extensions of sub-
graphs is computationally intractable, these approaches are fundamentally
inefficient or infeasible. In existing literature, while approximate approaches
based on the Monte-Carlo simulation technique have been proposed to esti-
mate the probability of extensions, how to improve the efficiency of computa-
tion without using the simulation technique is still an open problem. In this
paper, we address this problem from the following two perspectives. First,
conceptually, we define specific properties to characterize the subgraphs of a
PrAG with respect to a given extension, such that the probability of a set of
arguments E being an extension can be defined in terms of these properties,
without (or with less) construction of subgraphs. Second, computationally,
we take preferred semantics as an example, and develop algorithms to eval-
uate the efficiency of our approach. The results show that our approach not

Email addresses: baiseliao@zju.edu.cn (Beishui Liao), xukanguuu@163.com
(Kang Xu), rw211@zju.edu.cn (Huaxin Huang)

Preprint submitted to Journal of Logic and Computation November 30, 2016

http://arxiv.org/abs/1608.00302v2

only dramatically decreases the time for computing ppEσq, but also has an
attractive property, which is contrary to that of existing approaches: the
denser the edges of a PrAG are or the bigger the size of a given extension E

is, the more efficient our approach computes ppEσq. Meanwhile, it is shown
that under complete and preferred semantics, the problems of determining
ppEσq are fixed-parameter tractable.

Keywords: Probabilistic Argumentation, Computational Complexity,
Computational Efficiency, Characterized Subgraphs, Fixed-Parameter
Tractability

1. Introduction

In the past two decades, argumentation has been a very active research
area in the field of knowledge representation and reasoning, as a nonmono-
tonic formalism to handle inconsistent and incomplete information by means
of constructing, comparing and evaluating arguments. In 1995, Dung pro-
posed a notion of abstract argumentation framework [1], which can be viewed
as a directed graph (called argument graph, or defeat graph) G “ pA,Rq, in
which A is a set of arguments and R Ď A ˆ A is a set of attacks. Given an
argument graph, specific evaluation criteria are defined to determine which
arguments can be regarded as justified or acceptable. A set of arguments ac-
ceptable together is often called an extension, and the evaluation criteria or
sets of extensions of an argument graph are called argumentation semantics.
Dung’s abstract argumentation framework and argumentation semantics lay
a concrete foundation for the development of various argument systems.

However, in classical argumentation theory, the uncertainty of arguments
and/or attacks is not considered. So, it could be regarded as a purely quali-
tative formalism. But, in the real world, arguments and/or attacks are often
uncertain. So, in recent years, the importance of combining argumentation
and uncertainty has been well recognized, and probability-based argumenta-
tion is gaining momentum [2, 3, 4, 5, 6]. In a probabilistic argument graph
(or PrAG in brief), each argument is assigned with a probability, denoting
the likelihood of the argument appearing in the graph1.

1A probabilistic argument graph can be defined by assigning probabilities to arguments
[2, 3, 7], or attacks [6], or both arguments and attacks [4]. For simplicity, in this paper
we only consider the probabilistic argument graph in which only arguments are associated

2

Similar to classical argumentation theory, given a PrAG, a basic problem
is to define the status of arguments. The existing approaches are based on
the notion of possible worlds [2, 3, 4, 7]. Given a PrAG with n nodes, up to 2n

subgraphs are blindly constructed. Each subgraph corresponds to a possible
world where some arguments appear while other arguments do not appear.
The extensions of each subgraph are computed according to classical argu-
mentation semantics. Then, the probability of a set of arguments E being an
extension under a given semantics σ (denoted as ppEσq) is equal to the sum
of the probabilities of all subgraphs each of which has the extension E. Since
many irrelevant subgraphs are constructed, and in many cases, computing
extensions of subgraphs is computationally intractable, these approaches are
fundamentally inefficient or infeasible. In existing literature, while approxi-
mate approaches based on the Monte-Carlo simulation technique have been
proposed to estimate the probability of extensions [4, 8], how to improve the
efficiency of computation without using simulation technique is still an open
problem.

Since the complexity of computing ppEσq by the existing approaches is
mainly caused by blindly constructing subgraphs and computing extensions
of each subgraph, an intuitive question arises:

Intuitive question Is it possible to compute ppEσq without (or with less)
construction and computation of subgraphs?

This question has been partially answered by Fazzinga et al [9]. When
analyzing the complexity of probabilistic abstract argumentation, they pro-
vided a lemma to prove that under admissible and stable semantics, the
problem of computing ppEσq is tractable. In this lemma, ppEσq is deter-
mined by evaluating an expression which only involves the probabilities of
the arguments and defeats (attacks) of a probabilistic argument graph2. So,
in these cases, no subgraphs are constructed and computed. However, under
other semantics (including complete, grounded, preferred and ideal), they
only stated that the problem of computing ppEσq is FP 7P -complete, without
further work on how the above idea can be exploited to improve the efficiency
of computation under these semantics.

with probabilities.
2In [9], probabilities are assinged to both arguments and attacks.

3

Motivated by the intuitive question and the state of the art of compu-
tation of probabilistic argumentation, the research problems of the present
paper are as follows.

Research problem 1 Under various argumentation semantics (including
not only admissible and stable, but also complete, grounded and pre-
ferred, etc.), how to define properties to characterize the subgraphs of
a PrAG with respect to an extension E, such that ppEσq can be com-
puted by using these properties, rather than by blindly constructing
and computing all subgraphs of the PrAG?

Research problem 2 How to evaluate the efficiency of the new approach?

With these two research problems in mind, the rest of this paper is or-
ganized as follows. In Section 2, some notions of abstract argumentation
and probabilistic abstract argumentation are reviewed to make this paper
self-contained. In Sections 3 and 4, to address the first research problem,
we define properties to characterize subgraphs (with respect to an exten-
sion) under different semantics (admissible, complete, grounded, preferred,
and stable), and specify how the probability of a conflict-free set E being an
extension can be computed by using these properties. In Section 5, to ad-
dress the second research problem, algorithms are developed to evaluate the
performance of the new approach (with a comparison to an existing possible
worlds based approach). In Section 6, some computational properties of the
new approach are briefly discussed. In Section 7, some existing work closely
related to this paper is introduced and discussed. Finally, in Section 8, we
conclude the paper and point out some future work.

This paper is a substantial extension of the paper introduced in [10]. The
extension mainly consists of the following aspects:

• We reformulate the approach of characterizing subgraphs of a PrAG
with respect to a given extension, with a more detailed analysis of the
properties used to characterize subgraphs;

• further study the semantics of probabilistic argumentation by directly
using properties for characterizing subgraphs;

• develop algorithms to evaluate the efficiency of the new approach; and

• analyze the computational properties of the new approach from the
perspective parameterized complexity theory.

4

2. Preliminaries

2.1. Classical abstract argumentation

The notions of (classical) abstract argumentation were originally intro-
duced in [1] and then extended by many researchers (please refer to [11] for an
excellent introduction), including abstract argumentation framework (called
argument graph, or classical argument graph, in this paper), extension-based
semantics and labelling-based semantics.

An argument graph is a directed graph G “ pA,Rq, in which A is a set
of nodes representing arguments and R is a set of edges representing attacks
between the arguments.

Definition 1. An argument graph is a tuple G “ pA,Rq, where A is a set of
nodes representing arguments, and R Ď Aˆ A is a set of edges representing
attacks.

As usual, we say that α P A attacks β P A if and only if pα, βq P R. If
E Ď A and α P A then we say that α attacks E if and only if there exists
β P E such that α attacks β, that E attacks α if and only if there exists β P E
such that β attacks α, and that E attacks E 1 if and only if there exist β P E
and α P E 1 such that β attacks α. Given G “ pA,Rq, for α P A we write α´

G

for tβ | pβ, αq P Ru; for E Ď A we write E´
G for tβ | Dα P E : pβ, αq P Ru and

E`
G for tβ | Dα P E : pα, βq P Ru. Formally, we have the following formulas.

α´
G “ tβ | pβ, αq P Ru (1)

E´
G “ tβ | Dα P E : pβ, αq P Ru (2)

E`
G “ tβ | Dα P E : pα, βq P Ru (3)

If without confusion, we write α´, E´ and E` for α´
G, E

´
G and E`

G re-
spectively.

Given an argument graph, according to certain evaluation criteria, sets of
arguments (called extensions) are identified as acceptable together. Two im-
portant notions for the definitions of various kinds of extensions are conflict-
freeness and acceptability of arguments.

Definition 2. Let G “ pA,Rq be an argument graph, and E Ď A be a set of
arguments.

• E is conflict-free if and only if Eα, β P E, such that pα, βq P R.

5

• An argument α P A is acceptable with respect to (defended by) E, if
and only if @pβ, αq P R, Dγ P E, such that pγ, βq P R.

Based on the above two notions, several classes of (classical) extensions
can be defined as follows.

Definition 3. Let G “ pA,Rq be an argument graph, and E Ď A a set of
arguments.

• E is admissible if and only if E is conflict-free, and each argument in
E is acceptable with respect to E.

• E is preferred if and only if E is a maximal (with respect to set-
inclusion) admissible set.

• E is complete if and only if E is admissible, and each argument that is
acceptable with respect to E is in E.

• E is grounded if and only if E is the minimal (with respect to set-
inclusion) complete extension.

• E is stable if and only if E is conflict-free, and each argument in AzE
is attacked by E.

In this paper, for convenience, we use σ P tad, co, pr, gr, stu to repre-
sent a semantics (admissible, complete, preferred, grounded or stable). An
extension under semantics σ is called a σ-extension. The set of σ-extensions
of G is denoted as EσpGq. In G “ pA,Rq, if A “ R “ H, then EσpGq “ tHu.

Example 1. Let G1 “ pA1, R1q be an argument graph illustrated as follows.

a // boo // c // doo
yy

According to Definition 3, G1 has four admissible sets: H, tau, tbu and
ta, cu, in which H, tbu and ta, cu are complete extensions, tbu and ta, cu
are preferred extensions, ta, cu is the only stable extension, H is the unique
grounded extension.

Corresponding to the extension-based approach introduced above, the
labelling-based approach is another way to formulate argumentation seman-
tics. Since we will use labelling-based approach to develop algorithms in

6

Section 5.1, some basic notions of this approach are briefly introduced here.
The idea underlying the labelling-based approach is to give each argument
a label, which is defined in advance. In existing literature, the set of labels
is usually defined as: IN, OUT and UNDEC. The label IN indicates that
the argument is explicitly accepted, the label OUT indicates that the argu-
ment is explicitly rejected, and the label UNDEC indicates that the status
of the argument is undecided, meaning that one abstains from an opinion
on whether the argument is accepted or rejected. Meanwhile, there could be
some other choices for the set of labels. For instance, in [12], a four-valued
labelling is considered. In this paper, we choose the three-valued-labelling,
which can be formally defined as follows.

Definition 4 (Labelling). Given an argument graph G “ pA,Rq and three
labels IN, OUT and UNDEC, a labelling is a total function:

L : A ÞÑ tIN,OUT,UNDECu (4)

Let inpLq “ tα | Lpαq “ INu, outpLq “ tα | Lpαq “ OUTu, and
undecpLq “ tα | Lpαq “ UNDECu. A labelling L is often represented as
a triple of the form pinpLq, outpLq, undecpLqq.

One of criteria for labeling-based semantics is whether a label assigned to
an argument is legal. According to Definition 4, given a labeling L, the status
assigned to each argument might not be legal. We say that assigning IN to
an argument is legal if and only if all its attackers have been assigned OUT;
assigning OUT to an argument is legal if and only if one of its attackers has
been assigned IN; and assigning UNDEC to an argument is legal if and only
if not all its attacks are labeled OUT and it does not have an attacker that
is labeled IN. Formally, we have the following definition.

Definition 5 (Legal labelling). Let L be a labeling of an argument graph
G “ pA,Rq and α P A.

• α is legally IN if and only if Lpαq “ IN and for all β P A, if pβ, αq P R,
then Lpβq “ OUT.

• α is legally OUT if and only if Lpαq “ OUT and there exists β P A,
such that pβ, αq P R, and Lpβq “ IN.

• α is legally UNDEC if and only if Lpαq “ UNDEC and
(1) there exists β P A, such that pβ, αq P R, and Lpβq ‰ OUT, and
(2) for all β P A, if pβ, αq P R, then Lpβq ‰ IN.

7

According to the notion of legal labelling, the notion of illegal labelling
can be defined as follows.

Definition 6 (Illegal labelling). Let L be a labeling of an argument graph
G “ pA,Rq and α P A.

• α is illegally IN if and only if Lpαq “ IN, but α is not legally IN.

• α is illegally OUT if and only if Lpαq “ OUT, but α is not legally
OUT.

• α is illegally UNDEC if and only if Lpαq “ UNDEC, but α is not
legally UNDEC.

Based on the notions of legal labelling, labeling-based semantics can be
defined as follows.

Definition 7 (Labeling-Based Semantics). Let L be a labeling of an ar-
gument graph G “ pA,Rq.

• L is an admissible labeling, if and only if each argument that is labeled
IN is legally IN, and each argument that is labeled OUT is legally OUT.

• L is a complete labeling, if and only if it is an admissible labeling, and
each argument that is labeled UNDEC is legally UNDEC.

• L is a grounded labeling, if and only if it is a complete labeling, and
inpLq is minimal (with respect to set inclusion).

• L is a preferred labeling, if and only if it is a complete labeling, and
inpLq is maximal (with respect to set inclusion).

• L is a stable labeling, if and only if it is a complete labeling, and
undecpLq “ H.

Based on the above notions, Modgil and Caminada developed algorithms
(called MC algorithms)[13] to compute the preferred labellings and the grounded

8

labelling of an argument graph3.
The MC algorithm for computing preferred labellings is realized by com-

puting admissible labellings that maximize the number of arguments that
are legally IN. Here, admissible labellings are generated by starting with a
labelling that labels all arguments IN and then iteratively, selects arguments
that are illegally IN (or super-illegally IN) and applies a transition step to
obtain a new labelling, until a labelling is reached in which no argument is
illegally IN. In this algorithm, the notions of super-illegally IN and transition
step are introduced as follows. For more details about the MC algorithms,
please refer to [13].

First, since all arguments are initially labelled IN, some of which might be
illegal. To get an admissible labelling which might be a preferred labelling,
it is necessary to change the label of each argument that is illegally IN,
preferably without creating any arguments that are illegally OUT. The notion
of a transition step is used for this purpose. In other words, a transition step
basically takes an argument that is illegally IN and relabels it to OUT. It then
checks if, as a result of this, one or more arguments have become illegally
OUT. If this is the case, then these arguments are relabelled to UNDEC.
Formally, the notion of transition step is defined as follows [13].

Definition 8 (Transition step). Let L be a labelling for G “ pA,Rq and α

be an argument that is illegally IN in L. A transition step on α in L consists
of the following:

• the label of α is changed from IN to OUT;

• for every β P tαuYtγ | pα, γq P Ru, if β is illegally OUT, then the label
of β is changed from OUT to UNDEC.

Second, if we select arbitrarily the arguments that are illegally IN to do
transition steps, then we might obtain some admissible labellings that are not

3It is worth to mention that in recent years, there are various approaches for computing
the semantics of argumentation, including reduction approaches (e.g. the alrogithms based
on ASP slovers) and direct approaches (e.g. the MC algorithms). Some of them have
appeared in the International Competition on Computational Models of Argumentation
(http://argumentationcompetition.org/2015/solvers.html). Since the choice of different
implemention approaches does not basically affect the empirical results of our approach, for
simplicity and without loss of generarity, we only introduce and exploit the MC algorithm
for computing preferred labellings.

9

http://argumentationcompetition.org/2015/solvers.html

complete labellings (and therefore not preferred labellings). To improve the
efficiency of computation, in the MC algorithm for preferred labellings, they
proposed a notion, called super-illegally IN. It is said that an argument α in
L that is illegally IN, is also super-illegally IN if and only if it is attacked by
an argument β that is legally IN in L, or UNDEC in L. This notion can be
used to guide the choice of arguments on which to perform transition steps,
such that the non-complete labellings can be avoided.

2.2. Probabilistic abstract argumentation

The notions of probabilistic abstract argumentation are defined by com-
bining the notions of classical abstract argumentation and those of proba-
bilistic theory, including probabilistic argument graph and its semantics.

According to [7], we have the following definition.

Definition 9. A probabilistic argument graph (or PrAG for short) is a triple
Gp “ pA,R, pq where G “ pA,Rq is an argument graph and p : AÑ r0, 1s is
a probability function assigning to every argument α P A a probability ppαq
that α appears (and hence a probability 1´ ppαq that α does not appear).

In existing literature, the semantics of a PrAG is defined according to
the notion of possible world. Given a PrAG, a possible world represents
a scenario consisting of some subset of the arguments and attacks in the
graph. So, given a PrAG with n nodes, there are up to 2n subgraphs with
nonzero probability. A subgraph induced by a set A1 Ď A is represented as
G1 “ pA1, R1q, in which R1 “ RXpA1ˆA1q. For convenience, we also use GÓA1

to denote a subgraph G1 “ pA1, R1q. Under a semantics σ P tad, co, pr, gr, stu,
the extensions of each subgraph are computed according to the definition of
classical argumentation semantics. Then, the probability that a set of argu-
ments E Ď A is a σ-extension, denoted as ppEσq, is the sum of the probability
of each subgraph for which E is a σ-extension. In calculating the probabil-
ity of each subgraph, we assume independence of arguments appearing in a
graph. A discussion about the assumption of independence of arguments is
presented in Section 7.1.

For simplicity, let us abuse the notation, using ppᾱq to denote 1 ´ ppαq.
Then, the probability of subgraph G1, denoted ppG1q, can be defined as fol-
lows.

ppG1q “ pΠαPA1 ppαqq ˆ pΠαPAzA1 ppᾱqq (5)

10

Given a PrAG Gp “ pA,R, pq, let QσpEq denote the set of subgraphs of
G, each of which has an extension E under a given semantics σ P tad, co,
pr, gr, stu. Based on formula (5), ppEσq is defined as follows [7].

ppEσq “ ΣG1PQσpEq ppG1q (6)

Example 2. Let Gp
1 “ pA1, R1, pq be a PrAG (illustrated as follows), where

ppaq “ 0.5, ppbq “ 0.8, ppcq “ 0.4 and ppdq “ 0.5.

a // boo // c // doo
yy

0.5 0.8 0.4 0.5

The subgraphs of Gp
1 are presented in Table 1.

According to formula (6), there are 5 preferred extensions with non-zero
probability:

ppHprq “ ppG15
1 q ` ppG16

1 q “ 0.06

pptauprq “ ppG3
1q ` ppG4

1q ` ppG7
1q ` ppG8

1q “ 0.3

pptbuprq “ ppG1
1q ` ppG2

1q ` ppG3
1q ` ppG4

1q ` ppG9
1q ` ppG10

1 q

`ppG11
1 q ` ppG12

1 q “ 0.8

pptcuprq “ ppG13
1 q ` ppG14

1 q “ 0.04

ppta, cuprq “ ppG1
1q ` ppG2

1q ` ppG5
1q ` ppG6

1q “ 0.2

This example shows that by using the existing possible worlds based ap-
proach, in order to obtain the probability that a set E of arguments is an
extension under a given semantics (i.e., ppEσq), one has to compute the exten-
sions of all subgraphs under this semantics, although some of these subgraphs
have no extension E. Since many irrelevant subgraphs are constructed and
computed, and in many cases, computing extensions of subgraphs is compu-
tationally intractable, this possible worlds based approach is fundamentally
inefficient or infeasible. In [8], Fazzinga et al proposed a new approach and
proved that under admissible and stable semantics, the problem of determin-
ing ppEσq is tractable. However, under complete, grounded and preferred se-
mantics, the problem of determining ppEσq is FP 7P -complete. This calls for
developing more efficient approaches, including the approximate approaches
introduced in [4] and [8].

11

Subgraphs
Probability
of subgraph

Preferred
extensions

G1
1 aØ bÑ cØ d ý 0.08 tbu, ta, cu

G2
1 aØ bÑ c 0.08 tbu, ta, cu

G3
1 aØ b d ý 0.12 tau, tbu

G4
1 aØ b 0.12 tau, tbu

G5
1 a cØ d ý 0.02 ta, cu

G6
1 a c 0.02 ta, cu

G7
1 a d ý 0.03 tau

G8
1 a 0.03 tau

G9
1 bÑ cØ d ý 0.08 tbu

G10
1 bÑ c 0.08 tbu

G11
1 b d ý 0.12 tbu

G12
1 b 0.12 tbu

G13
1 cØ d ý 0.02 tcu

G14
1 c 0.02 tcu

G15
1 d ý 0.03 tu

G16
1 0.03 tu

Table 1: Subgraphs of G1

12

3. Characterized subgraphs with respect to an extension

Given a PrAG, since the probability of a set of arguments E being an
extension under a given semantics σ (i.e. ppEσq) is equal to the sum of the
probabilities of the subgraphs each of which has an extension E, the main
issue is to identify the subgraphs. As mentioned in Section 1, unlike the ex-
isting approaches, we define general properties to characterize the subgraphs,
such that ppEσq can be computed by using these properties, rather than by
blindly constructing and computing all subgraphs of the PrAG.

To begin with, let us introduce a notion of σ-subgraph with respect to an
extension: If a subgraph has a σ-extension E, then it is called a σ-subgraph
with respect to E. Formally, we have the following definition.

Definition 10. Let Gp “ pA,R, pq be a PrAG, G “ pA,Rq be the corre-
sponding classical argument graph, GÓA1 be a subgraph of G where A1 Ď A,
and E Ď A be a set of arguments. We say that GÓA1 is a σ-subgraph
of G with respect to E, if and only if GÓA1 has a σ-extension E, where
σ P tad, co, pr, gr, stu.

Example 3. Consider G
p
1 in Example 2. Given E1 “ tau, G3

1, G
4
1, G

7
1 and

G8
1 are preferred subgraphs of Gp

1 with respect to E1.

Then, given a PrAG Gp “ pA,R, pq, a set of arguments E Ď A and
a semantics σ P tad, co, pr, gr, stu, a function (called subgraph identification
function) is used to map E to a set of σ-subgraphs of G with respect to E.

Definition 11. Let Gp “ pA,R, pq be a PrAG, and G “ pA,Rq be the cor-
responding argument graph. Let G “ tGÓA1 | A1 P 2Au be the set of all
subgraphs of G. A subgraph identification function under a given semantics
σ P tad, co, pr, gr, stu (denoted as ρσ) is defined as a mapping:

ρσ : 2A Ñ 2G (7)

such that given E P 2A, for all G1 P ρσpEq, G1 is a σ-subgraph of G with
respect to E.

In Definition 11, ρσ (σ P tad, co, pr, gr, stu) can be understood as a class
of functions (i.e., ρad, ρco, ρpr, ρgr and ρst), each of which is a function under
a given semantics.

13

These subgraph identification functions can be instantiated in different
ways. A simple but inefficient way is to construct the set of all subgraphs of
G (i.e., G) and then for each subgraph to verify whether it has an extension
E. In terms of this approach, subgraphs are constructed blindly, although
many of them are irrelevant. And, for each subgraph, the algorithm to
verify E being an extension of the subgraph might be intractable (e.g., under
preferred semantics, the problem of verifying whether E is an extension is
coNP-complete [33]).

To cope with this problem, we introduce as follows another way to instan-
tiate the subgraph identification functions. In this new approach, properties
related to E are used to characterize the set of subgraphs each of which
has an extension E. Since ppEσq may be computed by using these proper-
ties (please refer to Section 4 for details), the characterized subgraphs can
be kept (completely or partially) implicit, rather than explicitly constructed
and computed (although the subgraphs may be also explicitly represented
according to the properties, as presented in formulas (8)-(12)).

Since when E is not conflict-free, the set of characterized subgraphs with
respect to E is an empty set, for simplicity, when talking about the set
of characterized subgraphs with respect to a set of arguments E, we only
consider the cases where E is conflict-free.

Under different semantics, properties used to characterize subgraphs may
vary. However, they are all based on the following components related to E

(as illustrated in Figure 1)4:

1. E;

2. E´
GzE

`
G : the set of arguments each of which attacks E but is not at-

tacked by E;

3. E`
G : the set of arguments each of which is attacked by E;

4. I “ AzpE Y E`
G Y E´

Gq: the set of arguments each of which is not in
E, E`

G or E´
G . We call I the set of remaining arguments (of G with

respect to E) that indirectly affects E being a σ-extension.

Firstly, under admissible semantics, each admissible subgraph can be
characterized by the following two properties (as illustrated in Figure 2):

4The slices of the pie are used to indicate different components related to E. Their
sizes are not important.

14

E`
G

E´
GzE

`
G

E

I

Figure 1: Four components of G w.r.t. E. It holds that E Y pE´
G

zE`
G

q Y E`
G

Y I “ A.

Prop1: All arguments in E appear in the subgraphs; and

Prop2: All arguments in E´
GzE

`
G do not appear in the subgraph (while the

appearance of arguments in any subset of I Y E`
G does not affect E

being an extension of the subgraph).

Prop2 means that every argument in E is acceptable with respect to E.
Given that E is conflict-free and every argument in E is acceptable with
respect to E, E is an admissible extension. So, by definition, the subgraph
is an admissible subgraph.

According to the above analysis, we have the following proposition.

Proposition 1. Let Gp “ pA,R, pq be a PrAG, G “ pA,Rq be a correspond-
ing argument graph, and E Ď A be a conflict-free set of arguments. Then,
for all B P 2IYE`

G , GÓEYB is an admissible subgraph of G with respect to E.

Proof. We need to verify that E is an admissible set of GÓEYB. Since E

is conflict-free, we only need to prove that @α P E, α is acceptable with
respect to E. Since E is conflict-free and there is no interaction between I

and E, it holds that α is not attacked by the arguments in E Y pI X Bq.
And, @β P E`

G XB, no matter whether β attacks α, by the definition of E`
G ,

β is attacked by E. In summary, @β P E Y pI X Bq Y pE`
G X Bq “ E Y B,

β either does not attack α or is attacked by E. So, @α P E, α is acceptable
with respect to E.

15

E`
G

E´
GzE

`
G

E

I

Figure 2: Given a PrAG G “ pA,R, pq, a subgraph G1 is an admissible subgraph w.r.t. E if
and only if arguments in E appear, arguments in E´

G
zE`

G
do not appear, while arguments

in any subset of I Y E`
G

may apear in the subgraph.

According to Proposition 1, the set of admissible subgraphs ρadpEq can
be specified as follows:

ρadpEq “ tGÓEYB | B P 2IYE`
Gu (8)

Example 4. Consider G
p
1 in Example 2 again. According to formula (8),

there are eight admissible subgraphs with respect to tau: G1
1, G

2
1, . . ., G

8
1 (as

shown in the third column of Table 2), i.e., ρadptauq “ tG1
1, G

2
1, . . . , G

8
1u.

Secondly, under stable semantics, each stable subgraph can be character-
ized by the following two properties (as illustrated in Figure 3):

Prop1: All arguments in E appear in the subgraph.

Prop3: All arguments in AzpEYE`
Gq “ IYpE´

GzE
`
Gq do not appear in the

subgraph.

Prop3 means that for each argument α in AzE, if it appears in the sub-
graph, then it is attacked by E (i.e., α P E`

G). Given that E is conflict-free
and for every argument that is not in E it is attacked by E, E is a stable
extension. So, by definition, the subgraph is a stable subgraph.

Formally, we have the following proposition.

16

subgraph

admissible
subgraph
w.r.t. tau

comple
subgraph
w.r.t. tau

stable
subgraph
w.r.t. tau

preferred
subgraph
w.r.t. tau

grounded
subgraph
w.r.t. tau

G1
1 aØ bÑ cØ d ý Yes Yes No No No

G2
1 aØ bÑ c Yes No No No No

G3
1 aØ b d ý Yes Yes No Yes No

G4
1 aØ b Yes Yes Yes Yes No

G5
1 a cØ d ý Yes Yes No No Yes

G6
1 a c Yes No No No No

G7
1 a d ý Yes Yes No Yes Yes

G8
1 a Yes Yes Yes Yes Yes

G9
1 bÑ cØ d ý No No No No No

G10
1 bÑ c No No No No No

G11
1 b d ý No No No No No

G12
1 b No No No No No

G13
1 cØ d ý No No No No No

G14
1 c No No No No No

G15
1 d ý No No No No No

G16
1 No No No No No

Table 2: σ-subgraphs of G1 with respect to tau

17

E`
G

E´
GzE

`
G

E

I

Figure 3: Given a PrAG G “ pA,R, pq, a subgraph G1 is a stable subgraph w.r.t. E if and
only if arguments in E appear, arguments in IYpE´

G
zE`

G
q do not appear, while arguments

in any subset of E´
G

may appear.

Proposition 2. Let Gp “ pA,R, pq be a PrAG, G “ pA,Rq be a correspond-
ing argument graph, and E Ď A be a conflict-free set of arguments. Then,
for all B P 2E

`
G , GÓEYB is a stable subgraph of G with respect to E.

Proof. Since E is conflict-free, to prove E being a stable extension of
GÓEYB, we only need to verify that @α P pE Y BqzE “ B, α is attacked
by E. Since α P B Ď E`

G , by the definition of E`
G , α is attacked by E.

According to Proposition 2, the set of stable subgraphs ρstpEq can be
specified as follows:

ρstpEq “ tGÓEYB | B P 2E
`
Gu (9)

Thirdly, under other semantics (complete, grounded and preferred), the
set of remaining arguments I “ AzpE Y E`

G Y E´
Gq plays a very important

role in characterizing σ-subgraphs.
Let GÓEYB (where B P 2IYE`

G) be an admissible subgraph of G with
respect to E, and B1 “ B X I. Whether GÓEYB is a complete subgraph
with respect to E is determined by a property of the arguments in B1 P
2I . Intuitively, if the following property holds, then GÓEYB is a complete
subgraph with respect to E (as illustrated in Figure 4):

18

E`
G

E´
GzE

`
G

E

I

B1

B2

Figure 4: Given a PrAG G “ pA,R, pq, a subgraph G1 is a complete subgraph w.r.t. E if
and only if it is an admissible subgraph w.r.t. E, and each argument in B1 is attacked by
some arguments in B1.

Prop4: For all α P B1, α is attacked by B1.

This property means that for every remaining argument α P B1, α is not
acceptable with respect to E. Based on this property, we have the following
proposition.

Proposition 3. Let Gp “ pA,R, pq be a PrAG, G “ pA,Rq be a corre-
sponding argument graph, E Ď A be a conflict-free set of arguments. For all
B P 2IYE`

G , GÓEYB is a complete subgraph of G with respect to E, if and only
if @α P B1, α´

G XB1 ‰ H.

Proof. Since B P 2IYE`
G , according to Proposition 1, GÓEYB is an admissible

subgraph.
(ñ:) When GÓEYB is a complete subgraph of G with respect to E, assume

that Dα P B1 such that α´
G X B1 “ H. It follows that α is acceptable with

respect to E, and therefore E is not a complete extension, contradicting
GÓEYB is a complete subgraph with respect to E.

19

(ð:) For all α P B1, for all β P α´
G X B1, β can not be attacked by

the arguments in E. Otherwise, β is in E`
G , contradicting β P B1 Ď I and

IXE`
G “ H. Since α´

GXB1 ‰ H, α is not acceptable with respect to E. Since
E is an admissible set, E is a complete extension. According to Definition
10, GÓEYB is a complete subgraph of G with respect to E.

According to Proposition 3, the set of complete subgraphs ρcopEq can be
specified as follows:

ρcopEq “ tGÓEYB | pB P 2IYE`
Gq ^ p@α P B1 : α´

G XB1 ‰ Hqu (10)

Example 5. Among the eight admissible subgraphs, except G2
1 and G6

1, oth-
ers are complete subgraphs with respect to tau (as shown in the fourth column
of Table 2), i.e., ρcoptauq “ tG1

1, G
3
1, G

4
1, G

5
1, G

7
1, G

8
1u.

With regard to G2
1, B1 “ tcu. Since c´

G1
“ H, G2

1 is not a complete
subgraph with respect to tau. Similarly, G6

1 is not a complete subgraph with
respect to tau.

Then, under preferred semantics, given a complete subgraphGÓEYB (where

B P 2IYE`
G), whether GÓEYB is a preferred subgraph is determined by a prop-

erty of the subgraph induced by B1 P 2I . More specifically, if the following
property holds, then GÓEYB is a preferred subgraph:

Prop5: GÓB1 has only an empty admissible extension.

Proposition 4. Let Gp “ pA,R, pq be a PrAG, and E Ď A be a conflict-free

set of arguments. Then, for all B P 2IYE`
G , GÓEYB is a preferred subgraph of

G with respect to E if and only if GÓEYB is a complete subgraph of G with
respect to E, and EadpGÓB1q “ tHu.

Proof. pñq: Assume the contrary, i.e., GÓB1 has a non-empty admissible
extension E 1 Ď B1. It follows that E Y E 1 is admissible, in that:

• E Y E 1 is conflict-free: both E and E 1 are conflict-free; E does not
attack E 1 (otherwise, E 1 X E`

G ‰ H, contradicting E 1 Ď B1); E 1 does
not attack E (otherwise, E attacks E 1, contradiction).

• @α P E 1, α is acceptable with respect to E Y E 1.

20

So, E Y E 1 is an admissible extension of GÓEYB. So, E is not a preferred
extension of GÓEYB, contradicting “GÓEYB is a preferred subgraph of G with
respect to E”.
pðq: Since GÓB1 has only one empty admissible extension, no argument

in B1 is acceptable with respect to E or any conflict-free superset of E. It
turns out that E is a preferred extension of GÓEYB, i.e., GÓEYB is a preferred
subgraph of G with respect to E.

According to Proposition 4, the set of preferred subgraphs ρprpEq can be
specified as follows:

ρprpEq “ tGÓEYB P ρcopEq | EadpGÓB1q “ tHuu (11)

Example 6. Continue Example 5. Among the six complete subgraphs, ex-
cept G1

1 and G5
1, others are preferred subgraphs with respect to tau (as shown

in the sixth column of Table 2).
With regard to G1

1, B1 “ tc, du. Then, EadpGÓB1q “ ttcuu ‰ tHu. So,
G1

1 is not a preferred subgraph with respect to tau. Similarly, G5
1 is not a

preferred subgraph with respect to tau.

Finally, given a complete subgraph GÓEYB, let B2 “ B X E`
G . In order

to verify whether it is a grounded subgraph, we may simply check whether
GÓEYB2 has a grounded extension E. To simplify the computation, we may
divide B2 in to two disjoint subsets B2

1 and B2
2 , where B2

1 “ B X pE`
GzE

´
Gq

and B2
2 “ BXpE`

G XE´
Gq, as illustrated in Figure 5. Note that arguments in

E`
GzE

´
G do not affect the the status of arguments in E. So, if the following

property holds, then GÓEYB is a grounded subgraph:

Prop6: GÓEYB2
2
has a grounded extension E.

Proposition 5. Let Gp “ pA,R, pq be a PrAG, E Ď A be a conflict-free set

of arguments. For all B P 2IYE`
G , GÓEYB is a grounded subgraph of G with

respect to E if and only if GÓEYB is a complete subgraph of G with respect to
E, and E is a grounded extension of GÓEYB2

2
.

Proof. pñq: Since GÓEYB is a grounded subgraph of G with respect to E,
it holds that E is the grounded extension of GÓEYB. First, since a grounded
extension is also a complete extension, E is a complete extension of GÓEYB,

21

E`
GzE

´
G

E`
G X E´

G

E´
GzE

`
G

E

I

B1

B2
1

B2
2

Figure 5: Given a PrAG G “ pA,R, pq, a subgraph G1 is a grounded subgraph w.r.t. E if
and only if it is a complete subgraph w.r.t. E, and GÓEYB2

2
has a grounded extension E.

i.e., GÓEYB is a complete subgraph of G with respect to E. Second, given that
E is the grounded extension of GÓEYB, since E does not receive any attacks
from B1 and B2

1 , according to the directionality of grounded semantics [14], it
holds that E is the grounded extension of GÓEYB2

2
, where B2

2 “ BzpB1YB2
1q.

pðq: Since GÓEYB is a complete subgraph of G with respect to E, it
holds that E is a complete extension of GÓEYB. Now, we need to verify that
E is a minimal complete extension of GÓEYB. Assume the contrary. There
exists E 1 Ă E such that E 1 is a grounded extension of GÓEYB. According to
the previous proof, it turns out that E 1 is a grounded extension of GÓEYB2

2
,

contradicting E is a grounded extension of GÓEYB2
2
.

According to Proposition 5, the set of grounded subgraphs ρgrpEq can be
specified as follows:

ρgrpEq “ tGÓEYB P ρcopEq | EgrpGÓEYB2
2
q “ tEuu (12)

Example 7. Continue Example 5. Among the six complete subgraphs, G5
1

and G7
1 and G8

1 are grounded subgraphs with respect to tau (as shown in the
last column of Table 2).

22

4. Semantics of probabilistic argumentation

According to the theory introduced in the previous section, given a PrAG
Gp “ pA,R, pq, a conflict-free set of arguments E Ď A and a semantics
σ P tad, co, pr, gr, stu, a set of σ-subgraphs with respect to E can be specified
in terms of different properties related to E. Given Prop1 - Prop6 and
formulas (8) - (12), we may define semantics of probabilistic argumentation
by the following two approaches.

In the first place, according to formulas (8) - (12) and (6), semantics of
probabilistic argumentation, i.e., the probability of E being a σ-extension
(denoted as ppEσq), can be directly represented as follows.

ppEσq “ ΣG1PρσpEq ppG
1q (13)

Note that QσpEq in formula (6) is replaced by ρσpEq in formula (13).
In this approach, although the characterized subgraphs are explicitly rep-

resented, they are not constructed blindly, but defined according to spe-
cific properties. Therefore, the construction of most irrelevant subgraphs is
avoided. Meanwhile, under admissible, complete and stable semantics, no
computation of extensions is needed, while under preferred and grounded
semantics, only the extension of the subgraphs induced by B1 (resp. EYB2)
is needed. Note that the number (resp. the average size) of the subgraphs
induced by B1 (resp. E Y B2) is usually much smaller than that of the
subgraphs induced by A1 P 2A.

In the second place, a more efficient approach to define semantics of prob-
abilistic argumentation is through directly using properties for characteriz-
ing subgraphs, such that the characterized subgraphs can be kept implicit
as much as possible. Now, let us introduce this approach under different
semantics.

First, under admissible semantics, according to Prop1 and Prop2, we
have the following proposition.

Proposition 6. Let Gp “ pA,R, pq be a PrAG, and E Ď A be a conflict-free
set of arguments. It holds that:

ppEadq “ ΠαPEppαq ˆ ΠβPE´
G

zE`
G
ppβ̄q

Proof. According to formulas (8) and (13), ppEadq “ ΣG1PρadpEq ppG1q “
Σ

BP2
IYE

`
G
ppGÓEYBq. Since in GÓEYB,

23

• every argument in E appears,

• every argument in E´
GzE

`
G does not appear,

• every argument in B appears, and

• and every argument in pI Y E`
GqzB does not appear,

it holds that ppGÓEYBq “ ΠαPEppαqˆΠβPE´
G

zE`
G
ppβ̄qˆΠγPBppγqˆΠηPpIYE`

G
qzBppη̄q.

Since Σ
BP2

IYE
`
G
pΠγPBppγq ˆ ΠηPpIYE`

G
qzBppη̄qq “ 1, we may conclude that:

ppEadq “ Σ
BP2

IYE
`
G
ppGÓEYBq

“ Σ
BP2IYE

`
G
pΠαPEppαq ˆ ΠβPE´

G
zE`

G
ppβ̄q ˆ ΠγPBppγq ˆ ΠηPpIYE`

G
qzBppη̄qq

“ pΠαPEppαq ˆ ΠβPE´
G

zE`
G
ppβ̄qq ˆ Σ

BP2
IYE

`
G
pΠγPBppγq ˆ ΠηPpIYE`

G
qzBppη̄qq

“ ΠαPEppαq ˆ ΠβPE´
G

zE`
G
ppβ̄q ˆ 1

“ ΠαPEppαq ˆ ΠβPE´
G

zE`
G
ppβ̄q

Second, under stable semantics, according to Prop1 and Prop3, we have
the following proposition.

Proposition 7. Let Gp “ pA,R, pq be a PrAG, and E Ď A be a conflict-free
set of arguments. It holds that:

ppEstq “ ΠαPEppαq ˆ ΠβPIYpE´
G

zE`
G

qppβ̄q

The proof of Proposition 7 is similar to that of Proposition 6, so it is
omitted.

Third, under complete semantics, according toProp1, Prop2 andProp4,
we have the following proposition.

Proposition 8. Let Gp “ pA,R, pq be a PrAG, and E Ď A be a conflict-free
set of arguments. It holds that:

ppEcoq “ PE ˆ PI CO,where

PE “ ΠαPEppαq ˆ ΠβPE´
G

zE`
G
ppβ̄q, and

PI CO “ ΣB1P2I^p@αPB1 :α´
G

XB1‰HqpΠγPB1ppγq ˆ ΠξPIzB1ppξ̄qq

24

Proof. According to formulas (10) and (13), ppEcoq “ ΣG1PρcopEq ppG1q “
Σ

pBP2
IYE

`
G q^p@αPB1 :α´

G
XB1‰Hq

ppGÓEYBq. Let B1 “ B X I and B2 “ B X E`
G . It

holds that B “ B1 YB2 and B1 XB2 “ H. Since in GÓEYB1YB2 ,

• every argument in E appears,

• every argument in E´
GzE

`
G does not appear,

• every argument in B1 (resp. B2) appears,

• and every argument in IzB1 (resp. E`
GzB

2) does not appear,

it holds that GÓEYB “ GÓEYB1YB2 “ pΠαPEppαqˆΠβPE´
G

zE`
G
ppβ̄qˆΠγPB1ppγqˆ

ΠξPIzB1ppξ̄qˆΠζPB2ppζqˆΠηPE`
G

zB2ppξ̄qq. Since Σ
B2P2E

`
G
pΠζPB2ppζqˆΠηPE`

G
zB2ppη̄qq “

1, we may conclude that:

ppEcoq “ Σ
pBP2IYE

`
G q^p@αPB1 :α´

G
XB1‰Hq

ppGÓEYBq

“ Σ
pB1P2I q^pB2P2

E
`
G q^p@αPB1 :α´

G
XB1‰Hq

ppGÓEYB1YB2q

“ Σ
pB1P2I q^pB2P2

E
`
G q^p@αPB1 :α´

G
XB1‰Hq

pΠαPEppαq ˆ ΠβPE´
G

zE`
G
ppβ̄q ˆ

ΠγPB1ppγq ˆ ΠξPIzB1ppξ̄q ˆ ΠζPB2ppζq ˆ ΠηPE`
G

zB2ppξ̄qq

“ pΠαPEppαq ˆ ΠβPE´
G

zE`
G
ppβ̄qq ˆ Σ

B2P2
E

`
G
pΠζPB2ppζq ˆ ΠηPE`

G
zB2ppη̄qq ˆ

ΣpB1P2I q^p@αPB1 :α´
G

XB1‰HqpΠγPB1ppγq ˆ ΠξPIzB1ppξ̄qq

“ PE ˆ 1ˆ PI CO

“ PE ˆ PI CO

Third, under preferred semantics, according to Prop1, Prop2, Prop4
and Prop5, we have the following proposition.

Proposition 9. Let Gp “ pA,R, pq be a PrAG, and E Ď A be a conflict-free
set of arguments. It holds that:

ppEprq “ PE ˆ PI PR,where

PE “ ΠαPEppαq ˆΠβPE´
G

zE`
G
ppβ̄q, and

PI PR “ ΣpB1P2I q^p@αPB1 :α´
G

XB1‰Hq^pEadpGÓB1 q“tHuqpΠγPB1ppγq ˆ ΠξPIzB1ppξ̄qq

25

The proof of Proposition 9 is similar to that of Proposition 8, omitted.
Third, under grounded semantics, according to Prop1, Prop2, Prop4

and Prop6, we have the following proposition.

Proposition 10. Let Gp “ pA,R, pq be a PrAG, and E Ď A be a conflict-
free set of arguments. It holds that:

ppEgrq “ ppEcoq ˆ PGR,where

PGR “ Σ
pB2

2
P2

E
`
G

XE
´
G q^pEgrpGÓEYB2 q“ttEuuq

pΠαPB2ppαq ˆ ΠβPpE`
G

XE´
G

qzB2ppβ̄qq

The proof of Proposition 10 is similar to that of Proposition 8. The differ-
ence is that B2 is divided into two parts: B2

1 and B2
2 , in which the arguments

in B2
1 appear without constraints while the arguments in B2

2 appear only
when EgrpGÓEYB2q “ ttEuu is satisfied. This is reflected by the factor PGR

and an equation Σ
B2

1
P2

E
`
G

zE´
G
pΠαPB2

1
ppαq ˆ ΠβPpE`

G
zE´

G
qzB2

1

ppβ̄qq “ 1.

5. Algorithms and empirical results

The theoretical results presented in the previous section show that our
characterized subgraphs based approach (called C-Sub approach) could be
more efficient than the possible worlds based approach (called PW approach).
In order to quantitatively evaluate the performance of our approach, in this
section, by taking the cases under preferred semantics as an example, we first
develop two algorithms for the PW approach and the C-Sub approach under
preferred semantics respectively, and then conduct experiments to obtain the
empirical results5.

5The reasons why we choose preferred semantics for our empirical study here are as
follows. First, efficiency of our approaches are mainly affected by the size of the set of
remaining arguments, which is mainly dependent on the structure of graphs and the size
of the extension, rather than on the semantics we choose. Second, preferred semantics
has been widely used in many experiments (e.g., [15], [16] and [17], among others). And,
we have also conducted several experiments under preferred semantics [18, 19]. Third,
for some other properties, we will study them in our future work. For instance, under
grounded semantics, an additonal property is how the efficiency of the new approach is
affected by the size of E`

G
X E´

G
.

26

5.1. Algorithm for the PW approach under preferred semantics

Alg. 1 is an algorithm for the PW approach under preferred seman-
tics. In this algorithm, up to 2n subgraphs are blindly constructed where n

is the number of nodes of the PrAG. For each subgraph GÓA1, if E Ď A1,
then whether E is one of its preferred extensions is verified by the proce-
dure verify preferred labellingpL, Eq. This procedure is based on the MC
algorithm introduced in Section 2.

L is initialized as pA1,H,Hq, i.e. all arguments in A1 are all labelled IN.
Then, the procedure first checks whether there is an argument α in E such
that α is super-illegally IN with respect to L. If so, E is not a preferred
extension. Otherwise, there are two possible cases. First, no argument is
illegally IN. It follows that inpLq is admissible. In this case, if E Ă inpLq,
then E is not a preferred extension. Second, there are some arguments that
are illegally IN. In this case, the procedure iteratively selects arguments that
are illegally IN (or super-illegally IN) and applies a transition step to obtain
a new labelling, until a labelling is reached in which no argument is illegally
IN.

5.2. Algorithm for the C-Sub approach under preferred semantics

Alg. 2 is an algorithm for the C-Sub approach under preferred semantics.
Unlike the PW approach, the algorithm first gets a set of remaining argument
I “ AzpE´ Y E` Y Eq. Then, for each subset B1 of I, verify whether
the subgraph induced by B1 has an nonempty admissible extension. The
procedure verify nonempty admppLq recursively selects arguments that are
illegally IN (or super-illegally IN) and applies a transition step to obtain a
new labelling, until a lablling is reached in which no argument is illegally IN.
If there is a labeling L such that L has no argument that is illegally IN and
inpLq ‰ H, then the procedure returns true. Otherwise, it returns false.

Then, ppEprq is computed according to Proposition 9. More specifically,
in Steps 11 and 12, PE is computed; from Step 13 to Step 17, PI PR and
ppEprq are computed.

5.3. Empirical results

The algorithms were implemented in Java, and tested on a machine with
an Intel CPU running at 2.26 GHz and 2.00 GB RAM. We conducted three
experiments to test the performance of out C-Sub approach.

27

Alg. 1 Algorithm for the PW approach under preferred semantics
input : Gp “ pA,R, pq and a conflict-free set E Ď A

output: ppEprq

1: ppEprq :“ 0;

2: for each A1 P 2A and A1 ‰ H do

3: if E Ď A1 then

4: L :“ pA1,H,Hq;

5: if verify preferred labellingpL, Eq “ true then

6: ppEprq :“ ppEprq ` ppGÓA1 q;

7: end if

8: end if

9: end do

10: procedure verify preferred labellingpL, E)

11: vpr :“ true;

12: if L has an argument α that is super-illegally IN and α P E then

13: vpr :“ false;

15: else

16: if L does not have an argument that is illegally IN then

17: if E Ă inpLq then vpr :“ false; end if

18: else

19: if L has an argument that is super-illegally IN then

20: α :“ some argument that is super-illegally IN in L;

21: verify preferred labellingptransition steppL, αq, E);

22: else

23: for each α that is illegally IN in L do

24: verify preferred labellingptransition steppL, αq, E)

25: end for

26: end if

27: end if

28: end if

29: return vpr

30: end procedure

28

Alg. 2 Algorithm for C-Sub approach under preferred semantics
input : Gp “ pA,R, pq, a conflict-free set E Ď A

output: ppEprq

1: ppEprq :“ 0; sub :“ H; I :“ AzpE´ Y E` Y Eq; x1 :“ 1; x2 :“ 1;

2: for each B1 P 2I do

3: if B1 “ H then sub :“ sub Y tHu;

4: else

5: if there exists no α P B1 such that α´
G X B1 “ H then

6: L :“ pB1,H,Hq;

7: if verify nonempty admpLq “ false then sub :“ sub Y tB1u; end if

8: end if

9: end if

10: end for

11: for each α P E´
GzE`

G do x1 :“ x1 ˆ ppᾱq; end for

12: for each α P E do x1 :“ x1 ˆ ppαq; end for

13: for each B1 P sub do

14: for each α P IzB1 do x2 :“ x2 ˆ ppᾱq; end for

15: for each α P B1 do x2 :“ x2 ˆ ppαq; end for

16: ppEprq :“ ppEprq ` x1 ˆ x2;

17: end for

18: procedure verify nonempty admpLq

19: vna :“ false;

20: if L has no argument that is illegally IN then

21: if inpLq ‰ H then vna :“ true;

22: else

23: if L has an argument that is super-illegally IN then

24: α :“ some argument that is super-illegally IN in L;

25: verify nonempty admptransition steppL, αq);

26: else

27: for each α that is illegally IN in L do

28: verify nonempty admptransition steppL, αq);

29: end for

30: end if

31: end if

32: return vna;

33: end procedure

29

The first experiment is about the average computation time of the C-Sub
approach and that of the PW approach, according to the following configu-
ration of PrAGs:

• The number of nodes of PrAGs is from 10 to 25 (since when the number
of nodes is smaller than 10, the computation time of the two approaches
is close to 0 millisecond, while the number of nodes is bigger than 25,
the computation time of the PW approach is almost always more than
3 minutes which we set as the point of timeout).

• The ratios of the number of edges to the number of nodes are 1:1, 2:1
and 3:1 respectively (since the density of PrAGs is an important factor
affecting the average computation time of the two approaches).

• The size of the extension is 3. This number is selected somewhat arbi-
trarily. How the size of the extension affects the average computation
time of the two approaches will be studied in another experiment.

This configuration consists of 16 ˆ 3 ˆ 1 “ 48 assignments for the two
approaches respectively. Each assignment is a tuple p#nodes, i : 1, jq, where
“#nodes” is the number of nodes, i : 1 is the ratio of the number of edges to
the number of nodes, and j is the size of the extension. For convenience, we
use PW jri : 1s (C-Sub jri : 1s) to denote the (average) computation time of
the PW approach (resp. the C-Sub approach) when the size of the extension
is j and the the ratio of the number of edges to the number of nodes is i : 1,
and the number of nodes is given.

For each assignment, the algorithms were executed 20 times respectively.
In each time, a PrAG (including its notes, edges, and the probabilities of
nodes) and a conflict-free set E of arguments were generated at random. For
simplicity, the probabilities assigned to nodes are nonzero. Then, the prob-
ability of E being a preferred extension was computed by the PW approach
and the C-Sub approach respectively. Table 3 shows the average execution
time of the two approaches.

Since in many cases, the execution time might last very long, to make
the test possible, when the time for computing ppEprq is over 3 minutes (180
seconds), the execution was stopped by setting a break in the program. When
the number of timeout is less than 20, the average time was recorded, and
for each timeout, the time used for calculation is 180 seconds. For instance,
when #nodes = 25, C-Sub 3 [3] = 15.828 seconds. The detailed records of 20

30

#nodes PW 3 [1:1] PW 3 [2:1] PW 3 [3:1] C-Sub 3 [1:1] C-Sub 3 [2:1] C-Sub 3 [3:1]

(secs/
timeout)

(secs/
timeout)

(secs/
timeout)

(secs/
timeout)

(secs/
timeout)

(secs/
timeout)

10 0.015/0 0.120/0 0.585/0 0.001/0 0.000/0 0.000/0

11 0.039/0 0.648/0 4.346/0 0.000/0 0.000/0 0.000/0

12 0.070/0 3.141/0 34.662/0 0.002/0 0.001/0 0.000/0

13 0.160/0 6.732/0 101.667/6 0.006/0 0.005/0 0.000/0

14 0.380/0 23.879/1 154.271/13 0.000/0 0.000/0 0.001/0

15 4.772/0 87.185/8 /20 0.003/0 0.002/0 0.002/0

16 2.236/0 112.569/11 /20 0.001/0 0.003/0 0.000/0

17 11.674/0 107.201/9 /20 0.003/0 0.003/0 0.001/0

18 18.445/1 149.583/16 /20 0.012/0 0.003/0 0.019/0

19 31.282/1 159.580/17 /20 0.015/0 0.011/0 0.023/0

20 50.973/2 /20 /20 0.028/0 0.477/0 0.211/0

21 89.654/5 /20 /20 0.088/0 0.067/0 11.665/1

22 143.039/10 /20 /20 0.106/0 14.925/1 10.043/1

23 /20 /20 /20 0.627/0 6.901/0 13.825/1

24 /20 /20 /20 3.067/0 12.434/1 0.741/0

25 /20 /20 /20 1.406/0 30.222/3 15.429/1

Table 3: The average execution time of the PW approach and the C-Sub approach

31

No. C-Sub 3 [3:1] (#nodes = 25) C-Sub 3 [2:1] (#nodes = 25)

time (secs) max |B1| avg. |B1| time (secs) max |B1| avg. |B1|

1 0.016 8 4 timeout 15 1

2 3.760 12 6 0.640 15 7

3 0.000 10 5 0.000 10 5

4 0.015 7 3 0.281 16 8

5 22.074 11 5 0.000 11 5

6 0.016 10 5 4.339 13 6

7 24.039 11 5 57.424 14 7

8 0.078 11 5 0.078 14 7

9 timeout 13 5 timeout 16 1

10 4.524 11 5 0.000 10 5

11 43.275 14 7 0.031 13 6

12 0.000 9 4 0.047 14 7

13 0.000 9 4 0.125 15 7

14 0.016 9 4 0.047 14 7

15 0.000 11 5 1.310 13 6

16 0.015 11 5 timeout 16 3

17 0.000 9 4 0.047 13 6

18 30.732 12 6 0.031 12 6

19 0.016 9 4 0.016 12 6

20 0.000 10 5 0.062 11 5

avg. 15.429 10.35 30.222 13.35

Table 4: The detailed records of the execution time of the C-Sub approach. In this table,
“max |B1|” and “avg. |B1|” denote respectiely the maximal and average size of B1.

times of execution are shown in Table 4. For instance, C-Sub 3 [3] = (0.016
+ 3.760 + 0.000 + 0.015 + 22.074 + 0.016 + 24.039 + 0.078 + 180 + 4.524
+ 43.275 + 0.000 + 0.000 + 0.016 + 0.000 + 0.015 + 0.000 + 30.732 + 0.016
+ 0.000) ˜20 “ 15.429.

From Table 3, we found that the C-Sub approach greatly outperforms
the PW approach. The computation time of the PW approach increases
dramatically with the increase of the number of nodes and the density of
edges. More specifically, when the number of nodes is given, PW 3 [i : 1]
increases sharply with the increase of i. For instance, when #nodes = 15,
PW 3 [1 : 1] = 4.772, PW 3 [2 : 1] = 87.185 (with 8 timeouts), and PW 3

32

[3 : 1] has no record of time (with 20 timeouts). Meanwhile, when the density
of edges is given, PW 3 [i : 1] (i “ 1, 2, 3) increases exponentially with the
increase of #nodes. On the contrary, with the increase of density (i.e., i : 1),
C-Sub 3 [i : 1] might not increase. And, with the increase of the number of
nodes, PW 3 [i : 1] (i “ 1, 2, 3) does not increase exponentially. The basic
reason behind these phenomena is that according to the theoretical results
obtained in Section 4, compared to the PW approach, the complexity of the
C-Sub approach decreases from |2A| to |2I |. In other words, the complexity
of the C-Sub approach is manly determined by the size of I (i.e., the maximal
size of B1). This is evidenced by the data shown in Table 4, in which the
average value of maximal sizes of B1 in 20 tests is 10.35 for C-Sub 3 [3 : 1] and
13.35 for C-Sub 3 [2 : 1], which matches very well to the average computation
time of C-Sub 3 [3 : 1] (15.429 seconds) and C-Sub 3 [2 : 1] (30.222 seconds).

8 10 12 14 16 18 20 22 24 26
-20

0

20

40

60

80

100

120

140

160

tim
e(

se
co

nd
s)

nodes

 PW_3 [1:1]
 C-Sub_3[1:1]

8 10 12 14 16 18 20 22 24 26
-20

0

20

40

60

80

100

120

140

160

tim

e(
se

co
nd

s)

nodes

 PW_3 [3:1]
 C-Sub_3 [3:1]

Figure 6: Plots showing the execution time of the PW approach and the C-Sub approach

The second experiment is to further study how the increase of density of
PrAGs affects the computation time of the two approaches.

As shown in Table 5 and Figure 7, the configuration for the PW approach
is: the size of extension is 3, the number of nodes is 10, and the density of
edges ranges from 1 : 1 to 6 : 1. The configuration of the C-Sub approach is
similar to that of the PW approach, the only difference is that the number
of nodes is 20 for the C-Sub approach (in that when the number of nodes is
less than 10, the average computation time of the PW approach is close to
0). The average execution time of the PW approach increases sharply with

33

i : 1 1:1 2:1 3:1 4:1 5:1 6:1

PW 3 [i : 1] (secs)
#nodes = 10

0.026 0.141 0.694 1.641 2.781 4.056

C-Sub 3[i : 1] (secs)
#nodes = 20

0.255 0.367 0.090 0.014 0.003 0.001

Table 5: Average execution time of the PW approach and the C-Sub approach w.r.t. the
changing of density of edges

1 2 3 4 5 6

0

2

4

tim
e(

se
co

nd
s)

i

 PW_3 [i :1] #nodes = 10
 C-Sub_3 [i :1] #nodes = 20

Figure 7: Plot showing the average execution time of the PW approach and the C-Sub
approach w.r.t. the changing of density of edges

the increase of the density of edges, while the execution time of the C-Sub
approach decreases with the increase of the density of edges.

The third experiment is study how the average execution time of the PW
approach and the C-Sub approach changes with respect to the changing of
the size of the extension. In this experiment, the configuration for the two
approaches is: the size of extension is 3 and 5, the number of nodes ranges
from 10 to 25, and the density of edges is 2 : 1.

According to the results shown Figure 8 (corresponding to the data in
Table 6), the shapes of the graphs PW 3 [2:1] and PW 5 [2:1] are almost the
same, which means that the average execution time of the PW approach does
not fundamentally decrease with the changing of the size of the extension.
On the contrary, the average execution time of the C-Sub approach decreases

34

#nodes PW 3 [2:1] PW 5 [2:1] C-Sub 3 [2:1] C-Sub 5 [2:1]

(secs/timeout) (secs/timeout) (secs/timeout) (secs/timeout)

10 0.120/0 0.018/0 0.000/0 0.000/0

11 0.648/0 0.042/0 0.000/0 0.000/0

12 3.141/0 0.125/0 0.001/0 0.000/0

13 6.732/0 0.368/0 0.005/0 0.000/0

14 23.879/1 4.178/0 0.000/0 0.000/0

15 87.185/8 3.723/0 0.002/0 0.000/0

16 112.569/11 43.981/2 0.003/0 0.002/0

17 107.201/9 70.016/5 0.003/0 0.000/0

18 149.583/16 93.756/8 0.003/0 0.000/0

19 159.580/17 108.857 /10 0.011/0 0.003/0

20 /20 151.422/15 0.477/0 0.000/0

21 /20 155.704/16 0.067/0 0.000/0

22 /20 171.270/16 14.925/1 0.003/0

23 /20 /20 6.091/0 0.001/0

24 /20 /20 12.434/1 0.222/0

25 /20 /20 30.222/3 0.008/0

Table 6: The average execution time of the PW approach and the C-Sub approach with
respect to different sizes of the extension

8 10 12 14 16 18 20 22 24 26
-20

0

20

40

60

80

100

120

140

160

180

tim
e(

se
co

nd
s)

nodes

 PW_3 [2:1]
 PW_5 [2:1]
 C-Sub_3 [2:1]
 C-Sub_5 [2:1]

Figure 8: Plots showing the average execution time of the PW approach and the C-Sub
approach with respect to different sizes of the extension

35

to a great extent. The basic reason behind this phenomenon is that: since
the complexity of the C-Sub approach is manly determined by the size of
I “ AzpEYE`

G YE´
Gq, with the increase of the size the extension E, the size

of I become smaller.

6. Computational properties

Based on the theory and the experimental results introduced in Sections
4 and 5, in this section, we briefly analyze some computational properties of
our C-Sub approach (or briefly “our approach”).

On the one hand, according to classical complexity theory, by using the
C-Sub approach, it holds that computing ppEadq and ppEstq is polynomial
time tractable, while under complete, preferred and grounded semantics,
problems of determining ppEcoq, ppEprq and ppEgrq are still intractable. This
is because: under complete and preferred semantics, we need to consider
|2I | cases, while under grounded semantics, |2I | ` |2E

`
G

XE´
G | cases. However,

theoretically, the C-Sub approach is more efficient, in that:

1. most subgraphs are not necessary to be constructed and computed,
i.e., the maximal number of subgraphs decreases from |2A| to |2I | (or
|2I | ` |2E

`
G

XE´
G |), where I “ AzpE Y E`

G Y E´
Gq is the set of remaining

arguments; and

2. the size of the maximal subgraph decreases from |A| to |I| (or |E`
G X

E´
G |).

The efficiency of the C-Sub approach is evidenced by the empirical results.
This approach not only dramatically decreases the time for computing ppEσq,
but also has an attractive property, which is contrary to that of existing
approaches: the denser the edges of a PrAG are or the bigger the size of a
given extension E is, the more efficient our approach computes ppEσq.

On the other hand, under complete and preferred semantics, since the
complexity of the C-Sub approach is mainly determined by the size of the
remaining arguments, which is usually much smaller than that of the whole
set of arguments in a PrAG, according to parameterized complexity theory,
the problems of determining ppEcoq and ppEprq in the C-Sub approach are
fixed-parameter tractable with respect to the size of remaining arguments.
Details are as follows.

36

In terms of parameterized complexity theory, the complexity of a problem
is not only measured in terms of the input size, but also in terms of a param-
eter. The theory’s focus is on situations where the parameter can be assumed
to be small [20]. Let Q be a classical problem, and k be a parameter of the
problem. A parameterized problem is denoted as pQ, kq. When binding k

to a fixed constant, in many cases, an intractable problem Q can be made
tractable. This property is called fixed-parameter tractability (FPT). More
specifically, let n be the input size of a problem, and f be a computable
function that depends on a parameter k of the problem. The complexity
class FTP consists of problems that can be computed in fpkq ¨ nOp1q.

In the setting of this paper, let k “ |I|. Typically, k is much smaller than
the size of the PrAG (i.e., |A|). Under complete and preferred semantics,
the complexity of determining the probability that a set of arguments is an
extension is dominated by the size of the set of remaining arguments (i.e.,
|I|). Formally, we have the following proposition.

Proposition 11. Let Gp “ pA,R, pq be a PrAG, and E Ď A be a conflict-
free set of arguments. Let k “ |I| where I is the set of remaining argu-
ments of G with respect to E. Let PrGpEcoq and PrGpEprq be the problems
of determining the probability ppEcoq and ppEprq respectively. It holds that
pPrGpEcoq, kq and pPrGpEprq, kq belong to FTP.

Proof. First, under preferred semantics, the algorithm (Alg. 2) consists of
the following two parts. The first part (Lines 2 - 10; Lines 18 - 33) is the
difficult core of the algorithm. In this part, there are 2k calls and in each
call, the procedure verify nonempty admpLq may be intractable. However,
since the size of the subgraphs induced by B1 is less than k, the time for
executing verify nonempty admpLq is dependent on k, denoted as gpkq. The
second part (Line 1, Lines 11 - 17) is tractable. The execution time of this
part can be bounded by nOp1q where n “ |A|. So, the overall execution time
can be bounded by 2k ¨ gpkq ` nOp1q “ fpkq ` nOp1q ď fpkq ¨ nOp1q where
fpkq “ 2k ¨ gpkq. Hence, pPrGpEprq, kq belongs to FTP.

Second, in terms of Propositions 8 and 9, the algorithm under com-
plete semantic (not presented in the present paper) is similar to the one
under preferred semantics. The difference is that under complete semantics,
verify nonempty admpLq is not executed. So, it holds that pPrGpEcoq, kq
belongs to FTP.

37

Note that under grounded semantics, since usually it may be not the case
that maxt|E`

G X E´
G |, |I|u is much smaller than |A|, Proposition 11 can not

be applied to grounded semantics.

7. Related work

In this paper, we have proposed a new approach (the C-Sub approach)
to formulate semantics of probabilistic argumentation, and analyzed its com-
putational properties on the basis of an empirical study. To the best of our
knowledge, our approach is the first attempt to systematically study how
to compute the semantics of probabilistic argumentation without (or with
less) construction and computation of subgraphs not only under admissible
and stable semantics, but also under other semantics including complete,
grounded and preferred. In this section, we give a discussion about some
related work.

Independence assumption of arguments. In this paper, we assume the inde-
pendence of arguments appearing in a graph. A theoretical foundation for
this assumption is originally formulated by Anthony Hunter in a series of
his work [7, 21, 6] from the justification perspective on the probability of an
argument:

For an argument α in a graph G, with a probability assignment
p, ppαq is treated as the probability that α is a justified point (i.e.
each is a self-contained, internally valid, contribution) and there-
fore should appear in the graph, and 1´ppαq is the probability that
α is not a justified point and so should not appear in the graph.
This means the probabilities of the arguments being justified are
independent (i.e., knowing that one argument is a justified point
does not affect the probability that another is a justified point).

The justification perspective can be further illustrated by the following
example that was originally presented in [7]. Given two arguments α1 “
ptpu, pq and α2 “ pt pu, pq constructing from a knowledge base containing
just two formulae tp, pu, α1 attacks α2 and vice versa. In terms of classical
logic, it is not possible that both arguments are true, but each of them is
a justified point. So even though logically α1 and α2 are not independent
(in the sense that if one is known to be true, then the other is known to be
false), they are independent as justified points.

38

In existing literature, some models and algorithms depend on an indepen-
dence assumption of arguments and/or attacks [4, 9, 7, 21, 8], while others
do not [22, 3, 6, 23]. For the former, probabilities are assigned to arguments
and/or attacks, and the probability distribution over subgraphs can be gen-
erated based on the independence assumption. For the latter, users directly
specify the unique probability distribution over the set of subgraphs. There
are pros and cons about whether the independence assumption is used or not.
On the one hand, by using the independence assumption, it can be more ef-
ficient to use the probability assignment to arguments and/or attacks and
then generate the probability distribution over subgraphs. But, as discussed
in [6], whilst the independence assumption is useful in some situations, it is
not always appropriate. On the other hand, when the independence assump-
tion is avoided, the dependence relation between arguments can be properly
represented. However, in this way, users have to specify probability distri-
bution over the set of subgraphs, whose number is exponential with respect
to the arguments and/or attacks. And, in many cases users may not be
aware of the probability value that should be assigned to a possible world
(subgraph) which may represent a complex scenario [24]. In this sense, in
many situations, the models without independence assumption might not be
applicable.

So, with regard to whether an independence assumption is used or not,
there are both advantages and disadvantages.

Complexity analysis and algorithms for probabilistics argumentation. Com-
putational issues of probabilistic argumentation have been deeply investi-
gated in recent years.

On the one hand, Fazzinga et al studied the complexity problem of deter-
mining the probability that a set of arguments is an extension under a given
semantics [9]. The results show that under admissible and stable semantics,
the problem belongs to PTIME , while under complete, grounded, preferred
and ideal semantics, the problem is FP 7P . However, the existing work only
studied the complexity problems from the perspective of classical complexity
theory. The corresponding problems from the perspective of parameterized
complexity theory have not been explored.

On the other hand, since using a brute-force algorithm to evaluate the
probability of a set of arguments being an extension is computationally pro-
hibitive, in existing work, an approximate approach (called the Monte-Carlo
simulation approach) has been proposed to cope with this problem [4], which

39

was significantly improved in [8] by reducing the sample space of computa-
tion. Corresponding to these approximate approaches, however, little atten-
tion has been paid to the development of exact approaches. Our approach
presented in this paper is a first step in this direction.

Efficient algorithms based on the structural properties of graphs. Since an
abstract argumentation framework (argument graph) can be viewed as a di-
graph, applying various properties of existing graph theory to argumentation
is not new. For instance, when an argument graph satisfies some properties
(acyclic, symmetric, bipartite, etc), there exist tractable algorithms to com-
pute its semantics [25, 26]; when an argument graph has bounded tree-width,
there exist fixed-parameter algorithms [15]; when decomposing an argument
graph based on the notion of strongly connected components, the efficiency of
computation can be significantly improved [19]; by mapping the notion of a
kernel, a semikernel and a maximal semikernel in a directed graph [27] respec-
tively to the notion of a stable set, an admissible set and a preferred extension
in an argumentation framework [34, 35], in terms of [28], we may infer that
the complexity results and algorithms related to kernels and semikernels can
be applied to formal argumentation. Beside the structural properties that
have been applied to argumentation, notions of kernels and semikernels have
also been connected to logic programs and default theories. According to [28],
every normal logic program can be transformed into a graph. The stable,
partial stable and well-founded semantics correspond to kernels, semikernels
and the initial acyclic part, respectively. Meanwhile, according to [29], it is
an equivalence relation between the problem of the existence of kernels in
digraphs and satisfiability of propositional theories (SAT). Thanks to this
relation, algorithms for computing kernels can be applied to computing the
semantics of logic programs.

It is worth to note that although structural properties of digraphs have
been exploited in Dung’s abstract argumentation [1], we have not found so-
lutions to apply these properties to the efficient computation of the seman-
tics of probabilistic argumentation. So, in this paper, based on some basic
structural properties of digraphs and formal argumentation [27, 1], we have
defined properties that can be used to characterize subgraphs of a PrAG.
These properties are established in the setting of probabilistic argumenta-
tion where the appearance of arguments is related to a given extension E,
and on the basis of the original definition of extensions under different ar-
gumentation semantics [1]. Despite of their simplicity, these properties lay a

40

concrete foundation to define a new methodology to formulate and compute
the semantics of probabilistic argumentation.

Kernelization and parameterized algorithms. The approach and results pre-
sented in this paper have a close relation to some existing work on kernel-
ization and parameterized algorithms, which have been extensively studied
in the past two decades. Kernelization is a systematic approach to study
polynomial-time preprocessing algorithms, such that the “easy parts” of a
problem instance can be solved efficiently, and the problem instance is re-
duced to its computationally difficult “core” structure (the problem kernel
of the instance) [30]. If the size of the kernel can be effectively bounded
in terms of a fixed-parameter alone, then the problem is fixed-parameter
tractable (FPT) [20]. In recent years, fixed-parameter algorithms were de-
veloped in the setting of Dung’s abstract argumentation, by exploiting some
important parameters for graph problems, such as the tree-width [25, 15] and
the clique-width [31, 32] of a graph.

The C-Sub approach presented in this paper can be understood as a
kind of kernelization. The novelty of this approach lies in the fact that new
properties are defined to characterize the subgraphs of a PrAG with respect
to a given extension.

8. Conclusions and future work

Probabilistic argumentation is an emerging direction in the area of formal
argumentation. In this paper, we have studied the formulation and compu-
tation of semantics of probabilistic argumentation. The main contributions
of this paper are two-fold.

On the one hand, conceptually, we define specific properties to charac-
terize the subgraphs of a PrAG with respect to a given extension, such that
the probability of a set of arguments E being an extension can be defined in
terms of these properties, without (or with less) construction of subgraphs.
The theoretical results in this paper show that under admissible and sta-
ble semantics, computing a set of arguments being an extension of a PrAG
is polynomial time tractable; under complete and preferred semantics, the
problems of determining ppEcoq and ppEprq in our C-Sub approach are fixed-
parameter tractable with respect to the size of remaining arguments.

On the other hand, computationally, we take preferred semantics as an
example, and develop algorithms to evaluate the efficiency of our approach.

41

The empirical results show that our approach not only dramatically decreases
the time for computing the semantics of probabilistic argumentation, but also
has an attractive property, which is contrary to that of existing approaches:
the denser the edges of a PrAG are or the bigger the size of a set of arguments
E is, the more efficient our approach computes the probability of E being an
extension of the PrAG.

Future work is as follows. First, in this paper we deal with the prob-
abilistic argument graphs (PrAGs) in which probabilities are assigned to
arguments. However, when probabilities are assigned to attacks or to both
arguments and attacks, the formalisms and algorithms corresponding to the
ones in this paper are expected to be different. In [6], only attacks are as-
signed with probabilities. So, it would be interesting to combine the theory
presented in [6] with the approach presented in this paper. Meanwhile, one
may consider to extend our approach to the cases where both arguments
and attacks are assigned with probabilities, similar to the work presented in
[8]. Second, an independence assumption of arguments is used in the paper.
Although it is useful in some situations, but not always appropriate. So, a
further step is to develop the corresponding approaches without this assump-
tion. Third, as mentioned above, under grounded semantics, we have not ob-
tained a conclusion that our approach is fixed-parameter tractable. Further
analysis about this issue is needed. Fourth, in the empirical study, we have
only considered preferred semantics. The algorithms and experiments under
other semantics (especially grounded semantics) are also important.

Acknowledgment

We are grateful to the reviewers of this paper for their constructive and
insightful comments. The research reported in this paper was partially sup-
ported by the National Research Fund Luxembourg (FNR) and Zhejiang
Provincial Natural Science Foundation of China (No. LY14F030014).

References

[1] Dung, P.M.: On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence 77(2) (1995) 321–357

42

[2] Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for
jury-based dispute resolution. In: Proceedings of the COMMA 2010,
IOS Press (2010) 171–182

[3] Rienstra, T.: Towards a probabilistic dung-style argumentation system.
In: Proceedings of the AT. (2012) 138–152

[4] Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frame-
works. In: Proceedings of the TAFA 2011, Springer (2012) 1–16

[5] Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.:
Weighted argument systems: Basic definitions, algorithms, and com-
plexity results. Artificial Intelligence 175(2) (2011) 457–486

[6] Hunter, A.: Probabilistic qualification of attack in abstract argumen-
tation. International Journal of Approximate Reasoning 55(2) (2014)
607–638

[7] Hunter, A.: Some foundations for probabilistic abstract argumentation.
In: Proceedings of the 4th International Conference on Computational
Models of Argument, IOS Press (2012) 117–128

[8] Fazzinga, B., Flesca, S., Parisi, F.: On efficiently estimating the proba-
bility of extensions in abstract argumentation frameworks. Internation-
alJournalofApproximateReasoning 69 (2016) 106–132

[9] Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic
abstract argumentation. In: Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence, AAAI Press (2013)
898–904

[10] Liao, B., Huang, H.: Formulating semantics of probabilistic argumen-
tation by characterizing subgraphs. In: Proceedings of the LORI 2015,
Springer (2015) 243–254

[11] Baroni, P., Caminada, M., Giacomin, M.: An introduction to argu-
mentation semantics. The Knowledge Engineering Review 26(4) (2011)
365–410

[12] Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frame-
works. Journal of logic and computation 9(2) (1999) 215–261

43

[13] Modgil, S., Caminada, M.: Proof theories and algorithms for abstract
argumentation frameworks. In: I. Rahwan, G. R. Simari (eds.), Argu-
mentation in Artificial Intelligence, Springer (2009) 105–129

[14] Baroni, P., Giacomin, M., Guida, G.: Scc-recursiveness: a general
schema for argumentation semantics. Artificial Intelligence 168 (2005)
162–210

[15] Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable
algorithms for abstract argumentation. Artificial Intelligence 186 (2012)
1–37

[16] Cerutti, F., Giacomin, M., Vallati, M., Zanella, M.: An scc recursive
meta-algorithm for computing preferred labellings in abstract argumen-
tation. In: C. Baral, G.D. Giacomo, T. Eiter (Eds.), Proceedings of the
14th International Conference on Principles of Knowledge Representa-
tion and Reasoning, KR 2014, AAAI Press (2014) 42–51

[17] Nofal, S., Atkinson, K., Dunne, P.: Algorithms for decision problems in
argument systems under preferred semantics. Artificial Intelligence 207
(2014) 723–51

[18] Liao, B., Huang, H.: Partial semantics of argumentation: Basic prop-
erties and empirical results. Journal of Logic and Computation 23(3)
(2013) 541–562

[19] Liao, B.: Toward incremental computation of argumentation semantics:
A decomposition-based approach. Annals of Mathematics and Artificial
Intelligence 67(3-4) (2013) 319–358

[20] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer
(2006)

[21] Hunter, A.: A probabilistic approach to modelling uncertain logical
arguments. International Journal of Approximate Reasoning 54 (2013)
47–81

[22] Thimm, M.: A probabilistic semantics for abstract argumentation.
In: European Conference on Artificial Intelligence (ECAI), AAAI Press
(2012) 750–755

44

[23] Grossi, D., van der Hoek, W.: Audience-based uncertainty in abstract
argument games. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence. (2013) 143–149

[24] Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic
abstract argumentation frameworks. Transactions on Computational
Logic 16(3) (July 2015)

[25] Dunne, P.E.: Computational properties of argument systems satisfy-
ing graph-theoretic constraints. Artificial Intelligence 171(10-15) (2007)
701–729

[26] Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation
frameworks. In: L. Godo (Ed.), Proceedings of the 8th European Con-
ference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU 2005), Springer (2005) 317–328

[27] Galeana-Sánchez, H., Neumann-Lara, V.: On kernels and semikernels
of digraph. Discrete Mathematics 48 (1984) 67–76

[28] Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic pro-
grams and default theories. Theoretical Computer Science 170 (1996)
209–214

[29] Walicki, M., Dyrkolbotn, S.: Finding kernels or solving sat. Journal of
Discrete Algorithms 10 (2012) 146–164

[30] Lokshtanov, D., Marx, D., Fomin, F.V., Kowalik, L., Pilipczuk, M.,
Cygan, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms.
Springer (2015)

[31] Dvořák, S., Szeider, S., Woltran, S.: Reasoning in argumentation frame-
works of bounded clique-width. In: P. Baroni, F. Cerutti, M. Giacomin,
G.R. Simari (Eds.), Proceedings of the 3rd Conference on Computa-
tional Models of Argument, COMMA 2010, IOS Press (2010) 219–230

[32] Dvořák, W., Ordyniak, S., Szeider, S.: Augmenting tractable fragments
of abstract argumentation. Artificial Intelligence 186 (2012) 157–173

[33] Dunne, P.E., Wooldridge, M.: Complexity of Abstract Argumentation,
In: Argumentation in Artificial Intelligence, Springer US (2009) 85–104

45

[34] Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric Argumentation
Frameworks, In: Proceedings of the ECSQARU 2005, Springer (2005)
317–328

[35] Dyrkolbotn, S.: On a Formal Connection between Truth, Argumenta-
tion and Belief, In: Proceedings of the ESSLLI 2012/2013, LNCS 8607,
Springer (2014) 69–90

46

	1 Introduction
	2 Preliminaries
	2.1 Classical abstract argumentation
	2.2 Probabilistic abstract argumentation

	3 Characterized subgraphs with respect to an extension
	4 Semantics of probabilistic argumentation
	5 Algorithms and empirical results
	5.1 Algorithm for the PW approach under preferred semantics
	5.2 Algorithm for the C-Sub approach under preferred semantics
	5.3 Empirical results

	6 Computational properties
	7 Related work
	8 Conclusions and future work

