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Abstract
To resolve conflicts amongst norms, various non-monotonic formalisms can be used to perform prioritized normative
reasoning. Meanwhile, formal argumentation provides a way to represent non-monotonic logics. In this paper we propose a
representation of prioritized normative reasoning by argumentation. Using hierarchical abstract normative systems (HANS),
we define three kinds of prioritized normative reasoning approaches called Greedy, Reduction and Optimization. Then, after
formulating an argumentation theory for a HANS, we show that for a totally ordered HANS, Greedy and Reduction can be
represented in argumentation by applying the weakest link and the last link principles, respectively, and Optimization can be
represented by introducing additional defeats capturing the idea that for each argument that contains a norm not belonging to
the maximal obeyable set then this argument should be rejected.
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1 Introduction

Since the work of Alchourrón and Makinson [1] on hierarchies of regulations and their logic, in
which a partial ordering on a code of laws or regulations is used to overcome logical imperfections
in the code itself, reasoning with prioritized norms has been a central challenge in deontic logic
[12, 4, 24].

The goal of this paper is to study the open issue of reasoning with priorities over norms through the
lens of argumentation theory [10]. More precisely, we focus on reasoning with the abstract normative
system proposed by Tosatto et al. [28], which in turn is based on Makinson and van der Torre’s [20]
approach to input/output logic. In this system, an abstract norm is represented by an ordered pair
(a, x), where the body of the norm a is thought of as an input, representing some kind of condition
or situation, and the head of the norm x is thought of as an output, representing what the norm tells
us to be obligatory in that situation a. As a consequence, an abstract normative system is a directed

© The Author(s) 20xx. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093/logcom/exy009

Downloaded from https://academic.oup.com/logcom/advance-article-abstract/doi/10.1093/logcom/exy009/4944719
by College of Science Zhejiang University,  baiseliao@zju.edu.cn
on 21 March 2018



2 Prioritized norms in formal argumentation

FIGURE 1. The Order puzzle example, represented using the graphical notation of Tosatto et al. [29]
with edges annotated by norm strength.

graph (L, N) together with a context C ⊆ L capturing base facts, where L is a set of nodes and
N ⊆ L × L is the set of abstract norms. When the edge of an abstract normative system is associated
with a number to indicate its priority over the other norms in the system, we obtain a hierarchical
abstract normative system (HANS), which will be formally defined and studied in the remainder of
this paper.

Let us clarify how a HANS is defined by considering the well-known Order Puzzle [17] example
from the deontic logic literature, which revolves around three norms.

‘Suppose that there is an agent, called Corporal O’Reilly, and that he is subject to the
commands of three superior officers: a Captain, a Major, and a Colonel. The Captain, who does
not like to be cold, issues a standing order that, during the winter, the heat should be turned
on. The Major, who is concerned about energy conservation, issues an order that during the
winter, the window should not be opened. And the Colonel, who does not like to be too warm
and does not care about energy conservation, issues an order that, whenever the heat is on the
window should be opened.’

Let w, h and o, respectively, denote the propositions that it is winter, the heat is turned on and the
window is open. There are three norms (w, h), (w, ¬o) and (h, o).

These three norms are visualized in Figure 1, extending the graphical notation described in the
study by Tosatto et al. [29] by associating edges with numbers denoting priorities of norms. These
priorities are obtained from the rank of the issuer, since Colonels outrank Majors and Majors outrank
Captains. Within the figure, each circle denotes a proposition; the light part of the circle is the
proposition itself, while the dark part denotes a negated proposition. Dashed lines represent the
conditional obligations. Within Figure 1, the line from the light part of w to the dark part of o denotes
(w, ¬o). The box on the left represents the context in the example containing � and w.

In formalizing examples, one problem in applied logic is that the representation may be
challenged. For example, it may be argued that the Colonel implies that if the window is closed, then
the heating should be turned off. However, in normative systems, such pragmatic considerations are
usually not part of the detachment procedure [16], with only explicitly given norms and commands
being considered. Therefore, any such additional interpretations or other pragmatic concerns are out
of the scope of this paper.

The central notion of inference in normative systems is called detachment. For example, in the
Order Puzzle, the fundamental question is whether we can detach o, ¬o or both. In the example, the
formulas which can be derived from a normative system are obligations. In general, permissions and
institutional facts can also be detached from normative systems. A detachment procedure therefore
defines the way deontic facts are derived from a normative system. Different detachment procedures
have been defined and studied in deontic logic, as well as in other rule-based systems. Moreover,
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Prioritized norms in formal argumentation 3

even in hierarchical normative systems, not all conflicts may be resolved. In such a case, the
detachment procedure may derive several so-called extensions, each representing a set of obligations,
permissions and institutional facts.

Abstract normative systems [28] were introduced as a common core representation for normative
systems, which are still expressive enough to define the main detachment procedures. In particular,
analogous to the main input/output logics, they have factual detachment built in, and have reasoning
by cases, deontic detachment and identity as optional inference patterns [3, 16]. Such systems are
called ‘abstract’ because negation is the only logical connective that is defined in the language.
Furthermore, Tosatto et al. [28] considered elements and anti-elements rather than literals and
propositions. It is straightforward to define more connectives within such systems, and it is
also possible to define structured normative systems where the abstract elements are instantiated
with logical formulas, e.g. with formulas of a propositional or modal logic. The latter more
interesting representation of logical structure is analogous to the use of abstract arguments in formal
argumentation. An advantage of abstract normative systems over structured ones is that the central
inference of detachment can be visualized by walking paths in the graph. In other words, inference
is represented by graph reachability. For example, in the Order puzzle, node o is reachable from the
context, and thus it can be detached. Moreover, a conflict is represented by a node where both its
light and the dark side are reachable from the context as in the case of node o in Figure 1.

There are several optional inference patterns for abstract normative systems because, as is well
known, most principles of deontic logic have been criticized for some examples and applications.
However, the absence of the same inference patterns is often criticized as well due to the lack of
explanations and predictions of the detachment procedures resulting from these patterns. Therefore,
current approaches to represent and reason with normative systems, such as input/output logic as
well as abstract normative systems, do not restrict themselves to a single logic, but define a family
of logics which can be embedded within them. Deciding which logic to use in a specific context
depends on the requirements of the application. Similarly, with regards to permissions, there is an
even larger diversity of deontic logics [15] which adopt different representations. For example, for
each input/output logic, various notions of permission have been defined in terms of their relation to
obligation. We refer to the work of Parent and van der Torre [24] for further explanation, discussion
and motivation of this topic.

Now let us consider how various detachment procedures might apply norms in hierarchical nor-
mative systems in different orders, and result in different outcomes or extensions. Since detachment
operates differently over permissions and obligations, and since the former introduces significant
extra complexity, we only consider regulative norms and obligation detachment procedures in this
paper. We examine three approaches describing well-known procedures defined in the literature
[32, 5, 14]. These procedures all share one important property, namely that the context itself is not
necessarily part of the procedure’s output. It is precisely this feature which distinguishes input/output
logics from traditional rule-based languages like logic programming or default logic [6, 26]. Such
traditional rule-based languages where the input is part of the output are called throughput operators
in input/output logic research. Therefore, the procedures we consider can naturally be captured using
input/output logics. We refer to the three approaches as Greedy, Reduction and Optimization.

Greedy: the context contains propositions that are known to hold. This procedure always applies
the norm with the highest priority that does not introduce inconsistency to an extension and the
context. Here we say that a norm is applicable when its body is in the context or has been produced
by other norms and added to the extension. In the Order puzzle example, we begin with the context
{w}, and (w, ¬o) is first applied. Then (w, h) is applied. Finally, (h, o) cannot be applied as this would
result in a conflict, and so, by using Greedy, we obtain the extension {h, ¬o}.
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4 Prioritized norms in formal argumentation

FIGURE 2. Top: the AF obtained from the order puzzle hierarchical normative system with the four
arguments and attacks between them visualized as directed arrows. Middle: the AF obtained when
last link is applied. Bottom: the AF obtained when weakest link is applied.

Reduction: in this approach, a candidate extension is guessed. All norms that are applicable
according to this candidate extension are selected and transformed into unconditional or body-
free norms. For example, a norm (a, b) selected in this way is transformed to a norm (�, b).
The modified HANS with the transformed norms is then evaluated using Greedy. The candidate
extension is selected as an extension by Reduction if it is identified as an extension according to
this application of Greedy. In our example we select a candidate extension {h, o}, obtaining a set of
body-free norms {(�, h), (�, ¬o), (�, o)}. The priorities assigned to these norms are carried through
from the original HANS, and are therefore 1, 2 and 3, respectively. After applying Greedy, we get
an extension of Reduction: {h, o}. However, if we had selected the candidate extension {h, ¬o}, then
this new extension would not appear in Greedy as (�, ¬o) has a lower priority than (�, o), and the
latter is therefore not an extension of Reduction.

Optimization: in terms of Hansen’s prioritized conditional imperatives, a set of maximally
obeyable (i.e. minimally violated) norms is selected by choosing norms in order of priority, which
are consistent with the context. Once these norms are selected, Greedy is applied to identify the
extension. In our example, the maximal set of obeyable norms is {(h, o), (w, ¬o)}. Optimization
therefore detaches the unique extension {¬o}.

We can also consider the example in terms of formal argumentation. Given a HANS, we may
construct an argumentation framework (AF). The top part of Figure 2 illustrates the AF obtained for
the Order puzzle, which does not consider the priority relation between arguments.

An AF is a directed graph in which nodes denote arguments, and edges denote attacks between
arguments. In the setting of a HANS, an argument is represented as a path within the directed graph
starting from a node in the context. In this example, there are four arguments A0, A1, A2 and A3
represented as [w], [(w, h)], [(w, h), (h, o)] and [(w, ¬o)], respectively. Since the conclusions of A2
and A3 are inconsistent, A2 attacks A3 and vice versa. To obtain correct conclusions, we must take
priorities between arguments into account, transforming attacks into defeats. This in turn requires
lifting the priorities given for the constituents of an argument to a priority for the argument itself,
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Prioritized norms in formal argumentation 5

and two different principles have been commonly used for such a lifting. The last link principle
ranks an argument based on the strength of its last inference, while the weakest link principle ranks
an argument based on the strength of its weakest inference. In the order example, if the last link
principle is applied, then [(w, h), (h, o)] defeats [(w, ¬o)]. The corresponding AF is illustrated in
the middle portion of Figure 2. If the weakest link principle is used instead, then [(w, ¬o)] defeats
[(w, h), (h, o)]. The corresponding AF is illustrated at the bottom of Figure 2. As a result, the former
principle allows us to conclude {h, o}, while the latter concludes {h, ¬o}. In turn, the first result
coincides with that obtained by Reduction, while the second is the same as that obtained by Greedy.

Inspired by the example above, we wish to investigate the links between the three detachment
procedures for prioritized normative reasoning and argumentation theory. More specifically, our
main research question is as follows:

How can the three detachment procedures (Reduction, Greedy and Optimization) proposed in
the context of abstract normative reasoning be represented in formal argumentation?

To answer this research question, we propose a formal framework to connect hierarchical
normative reasoning with argumentation theory. More precisely, our framework represents the
above-mentioned detachment procedures by lifting priorities from norms to arguments, with the
underlying goal of making as few commitments as possible to specific argumentation systems. For
this reason, we build on a structured AF which admits undercuts and rebuts between arguments, and
allows for priorities between norms making up arguments. We show that variants of approaches to
lifting priorities from rules to arguments allow us to capture both Greedy and Reduction, while the
introduction of additional defeats allows us to obtain Optimization.

Some preliminary results found in this paper were originally presented in DEON 2016 [19].
We keep, but extend, the representation results for Greedy and Reduction (previously called the
‘Brewka–Eiter construction’). To capture Optimization (previously called ‘Hansen’s construction’)
the DEON 2016 paper adds new arguments through the introduction of additional permissive norms.
In the current paper, this is replaced with an approach which introduces additional defeats. The
reasons for this replacement are twofold. First, the preliminary approaches for Optimization from the
earlier work [19] cannot fully capture the idea that each argument containing a norm not belonging
to the maximal obeyable set should be rejected. Second, permissive norms were used as a means to
support the representation, which makes the approach more complicated.

The layout of the remainder of the paper is as follows: Section 2 formalizes the above-mentioned
three detachment procedures of hierarchical normative reasoning (i.e. Greedy, Reduction and
Optimization). In Section 3, we introduce an argumentation theory for a HANS. Section 4, 5 and 6
show how Greedy, Reduction and Optimization can be represented in argumentation. Finally, in
Section 7 we discuss open problems and compare the proposed approach with related work, and in
Section 7 we point out possible directions for future work.

2 HANS
In this section we formally introduce the notion of HANS and the three detachment procedures to
compute their normative conclusions. A HANS captures the context of a system and the norms in
force in such a system. There is an element in the universe called �, contained in every context.
In this paper, we consider only a finite universe. A HANS also encodes a ranking function over the
norms to allow for the resolution of conflicts.

Downloaded from https://academic.oup.com/logcom/advance-article-abstract/doi/10.1093/logcom/exy009/4944719
by College of Science Zhejiang University,  baiseliao@zju.edu.cn
on 21 March 2018



6 Prioritized norms in formal argumentation

Based on the notion of abstract normative system defined by Tosatto et al. [28], a HANS can be
defined as follows:

DEFINITION 2.1 (HANS)
A HANS is a tuple H = 〈L, N , C, r〉, where

• L = E ∪ {¬e | e ∈ E} ∪ {�} is the universe, a set of literals based on some finite set E of atomic
elements;

• N ⊆ L × L is a finite set of regulative norms;
• C ⊆ L is a subset of the universe, called a context, such that �∈ C and for all e in E, {e, ¬e} � C;
• r : N → IN is a function from norms to natural numbers.

Regulative (ordinary) norms are of the kind ‘if you turn on the heat, then you should open the
window’. These norms are conditional norms, requiring some condition to hold (e.g. turning on the
heat) before their conclusions can be drawn.

We write (a, x) for a regulative norm, where a, x ∈ L are the antecedent and conclusion of the
norm, respectively. Given (a, x), we use r(a, x) to denote r((a, x)). Let u, v ∈ N be two norms; we say
that v is at least as preferred as u (denoted u ≤ v) if and only if r(u) is not larger than r(v) (denoted
r(u) ≤ r(v)), where r(u) is also called the rank of u. We write u < v or v > u if and only if u ≤ v
and v 
≤ u. Given a norm u = (a, x), we write ant(u) for a to represent the antecedent of the norm,
and cons(u) for x to represent the consequent of the norm. Given a set of norms S ⊆ N , we use
cons(S) to denote {cons(u)|u ∈ S}. We say that a HANS is totally ordered if and only if the ordering
≤ over N is anti-symmetric, transitive and total. Due to the finiteness of universe, the set of norms
is finite. Note that given this assumption, the notion of total ordering here is identical to that of the
full prioritization in Brewka and Eiter’s [7] and Hansen’s [13] work, and of the linearized ordering
of Young et al. [32]. For a ∈ L, we write a = ¬a if and only if a ∈ E, and a = e for e ∈ E if and only
if a = ¬e. For a set S ⊆ L, we say that S is consistent if and only if there exist no e1, e2 ∈ S such that
e1 = e2. To exemplify the notions of a HANS, consider the following example:

EXAMPLE 2.2 (Order puzzle)
In terms of Definition 2.1, the set of norms and priorities that are visualized in Figure 1 can be
formally represented as a HANS H = 〈L, N , C, r〉, where L = {w, h, o, ¬w, ¬h, ¬o, �}, N = {(w,
h), (h, o), (w, ¬o)}, C = {w, �}, r(w, h) = 1, r(h, o) = 3, r(w, ¬o) = 2.

In the HANS setting, the three detachment procedures for prioritized normative reasoning can be
defined as follows:

Firstly, Greedy detachment for a HANS always applies the norm with the highest priority amongst
those which can be applied, if this does not bring inconsistency to the extension and the context. To
formally define the notion of Greedy, we first introduce the following notions of paths and consistent
paths:

DEFINITION 2.3 (Path, consistent path)
Let H = 〈L, N , C, r〉 be a HANS.

• A path in H from x1 to xn is a sequence of norms (x1, x2), (x2, x3), . . . , (xn−1, xn) such that
{(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ N , n ≥ 2, and all norms of the sequence are distinct.
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Prioritized norms in formal argumentation 7

• A path in H from x1 to xn with respect to R ⊆ N is a sequence of norms (x1, x2), (x2, x3), . . . ,
(xn−1, xn) such that {(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ R, n ≥ 2, and all norms of the sequence
are distinct.

• A consistent path in H from x1 to xn (with respect to R) is a path (x1, x2), (x2, x3), . . . , (xn−1, xn)

such that {x1, x2, . . . , xn} is consistent.

Then, the unique extension of a totally ordered HANS by Greedy can be defined as follows: by
first selecting a set of applicable norms with the highest priority in each step, and then collecting the
final vertex of each path with respect to the set of selected norms.

DEFINITION 2.4 (Greedy)
Let H=〈L, N , C, r〉 be a totally ordered HANS. For all R ⊆ N , let R(C) = {x | there is a path in H
from an element in C to x with respect to R}, and Appl(N , C, R) := {(a, x) ∈ N \ R | a ∈ C ∪ cons(R),
{x, x} 
⊆ C ∪ cons(R)}. The extension of H by Greedy, written as Greedy (H), is the set R(C) such
that R = ∪∞

i=0Ri is built inductively as follows:

R0 = ∅
Ri+1 = Ri ∪ max(N , C, Ri, r),

where max(N , C, Ri, r) = {u ∈ Appl(N , C, Ri) | ∀v ∈ Appl(N , C, Ri) : r(u) ≥ r(v)}.
In terms of Definition 2.4, the unique extension of the Order puzzle can be constructed as follows:

EXAMPLE 2.5 (Extension by Greedy)
Given H in Example 2.2, by Greedy, it holds that R0 = ∅, R1 = {(w, ¬o)}, R2 = {(w, ¬o), (w, h)},
R = {(w, ¬o), (w, h)}. So, Greedy (H) = {h, ¬o}.

Reduction is defined by first using a candidate extension to get a modified HANS, and then
applying Greedy to it. If the candidate extension is an extension according to this application of
Greedy, then it is an extension of the original HANS by Reduction. Formally, we have the following
definition:

DEFINITION 2.6 (Reduction)
Given a totally ordered HANS H = 〈L, N , C, r〉, and a set X , let HX = 〈L, N ′, C, r′〉, where
N ′ = {(�, x2) | (x1, x2) ∈ N , x1 ∈ C ∪ X } is the set of ordinary norms, and r′(�, x2) =
max(r(x1, x2) | (x1, x2) ∈ N , x1 ∈ C ∪ X ) for all (x1, x2) ∈ N are priorities over norms. An
extension of H by Reduction is a set U such that U is Greedy

(
HU

)
. The set of extensions of H by

Reduction is denoted as Reduction (H).

According to Definition 2.6, it can be the case that different norms have the same consequent. To
avoid the duplication of multiple body-free norms, only a single norm with the highest priority is
used.

To exemplify the notion of Reduction, consider again the Order puzzle in Example 2.2.

EXAMPLE2.7 (Extensions by Reduction)
By using Reduction, given X = {h, o}, we have HX = 〈L, N ′, C, r′〉, where N ′ =
{(�, h), (�, o), (�, ¬o)}, r′(�, h) = 1, r′(�, o) = 3 and r′(�, ¬o) = 2. Since X ∈ Greedy

(
HX

)
,

and no other set can be an extension, we have that Reduction(H) = {{h, o}}.
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8 Prioritized norms in formal argumentation

FIGURE 3. The HANS of Example 2.7 containing the two Reduction extensions {b, c} and {¬b}.

Note that a totally ordered HANS might have more than one extension, as illustrated by the
following example:

EXAMPLE 2.8 (Multiple extensions by Reduction)
Given the HANS in Figure 3, assume that we have a context C = {a}. We then consider X1 = {b, c}
and X2 = {¬b}. In the first case, we have HX1 = 〈L, N ′, C, r′〉, where N′ = {(�, b), (�, ¬b), (�, c)}
and r′(�, b) = 4, r′(�, c) = 3, r′(�, ¬b) = 2. Here, Greedy

(
HX1

) = {b, c}, i.e. X1.
In the second case, we obtain HX2 = 〈L, N ′, C, r′〉, where N′ = {(�, b), (�, ¬b)} and r′(�, b) = 1,

r′(�, ¬b) = 2. Now, Greedy
(
HX2

) = {¬b}, i.e. X2. In this case, we therefore obtain two extensions
using Reduction.

Finally, Optimization can be defined by first choosing a set of maximally obeyable norms, and
then applying Greedy to it.

DEFINITION 2.9 (Optimization)
Given a totally ordered HANS H = 〈L, N , C, r〉, let T = (u1, u2, . . . , un) be the linear order on N
such that u1 > u2 > . . . > un. We define a sequence of sets of norms R0 . . . Rn as follows:

R0 = ∅

Ri+1 =
{

lRi ∪ {ui}, if C ∪ R(C) is consistent where R = Ri ∪ {ui}
Ri, else.

The unique extension of H by Optimization is Rn(C) and denoted as Optimization(H).

According to Definition 2.9, the unique extension of the Order puzzle can be constructed as
follows:

EXAMPLE 2.10 (Extension by Optimization)
Regarding H in Example 2.2, by Optimization, let u1 = (h, o), u2 = (w, ¬o) and u3 = (w, h), and
T = (u1, u2, u3). Then, it holds that R0 = ∅, R1 = {u1}, R2 = {u1, u2} and R = R3 = R2 = {u1, u2}.
So, we obtain that Optimization(H) = {¬o}.

3 Argumentation theory for a HANS

In this section, we introduce an argumentation theory on prioritized norms. Given a HANS, we
first define arguments and defeats between them, then compute extensions of arguments in terms of
Dung’s [10] theory, and from these, obtain conclusions.
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3.1 Arguments

In a HANS, an argument is an acyclic path in the graph starting in an element of the context. We
assume minimal arguments—no norm can be applied twice in an argument and no redundant norm is
included in an argument. We use concl(α) to denote the conclusion of an argument α, and concl(E) =
{concl(α) | α ∈ E} for the conclusions of a set of arguments E.

DEFINITION 3.1 (Arguments and sub-arguments)
Let H = 〈L, N , C, r〉 be a HANS.
A context argument in H is an element a ∈ C, and its conclusion is concl(a) = a.
An ordinary argument is a consistent path α in H from x ∈ C to some y ∈ L. Moreover, we have
that concl(α) = y.
The sub-arguments of argument [u1, . . . , un] are, for 1 ≤ i ≤ n, [u1, . . . , ui]. Note that context
arguments do not have sub-arguments.

The set of all arguments constructed from H is denoted as Arg(H). For readability, [(a1, a2),
. . . , (an−1, an)] may be written as (a1, a2, . . . , an−1, an). The set of sub-arguments of an argument α

is denoted as sub(α). When α is a sub-argument of β, we say that β is a super-argument of α. The
set of super-arguments of α is denoted as sup(α). Furthermore, the set of proper sub-arguments of α

is defined as psub(α) = sub(α) \ {α}. For an ordinary argument α = [u1, . . . , un], we call un the top
norm of α. Finally, in each ordinary argument, the norm with lowest priority is called the weakest
norm of the argument. Formally, we have the following definition for this latter concept:

DEFINITION 3.2 (The weakest norm of an argument)
Let H be a totally ordered HANS. For an ordinary argument α = [u1, . . . , un] in H, if r(ui) =
min(r(uj) | 1 ≤ j ≤ n), then ui is called the weakest norm of α.

3.2 Defeat relation between arguments

We follow the tradition in much of preference-based argumentation [2, 21], where attack captures a
relation amongst arguments which ignores preferences, and defeat is a preference-aware relation on
which the semantics is based. To define the defeat relation amongst prioritized arguments, we assume
that only the priorities of the norms are used to compare arguments. In other words, we assume a
lifting of the ordering on norms to a binary relation on sequences of norms (i.e. arguments), written
as α � β, where α and β are two arguments, indicating that α is at least as preferred as β.

There is no common agreement about the best way to lift ≥ to �. In argumentation, there are at
least two ways to introduce weights. As an AF consists of a set of arguments and an attack relation
between them, we can either assign weights to arguments, or we can assign weights to attacks.
Traditionally, weights are assigned to arguments. Two common approaches to give the strength of an
argument are the weakest link and the last link principles, combined with the elitist and democratic
ordering [21]. For example, in the weakest link principle the weight of the argument is the weight
of the weakest rule used in the argument. However, Young et al. [32] showed that elitist weakest
link cannot be used to calculate � for Greedy, and proposes a disjoint elitist order which ignores
shared rules. It is worth noticing that the strength of an argument may depend on the argument it
is attacking, as identified by Young et al. [32]. Based on this idea, we define the orderings between
arguments by assigning a strength to the attacks between the arguments to reflect the priority of the
norms used in the arguments, following the same insights of the weakest link and last link principles
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10 Prioritized norms in formal argumentation

(denoted as �w and �l, respectively). Defining the weakest link ordering in the same way as Young
et al. [32], we have the following definition:

DEFINITION 3.3 (Weakest link and last link)
Let H = 〈L, N , C, r〉 be a HANS, and α = [u1, . . . , un] and β = [v1, . . . , vm] be two arguments in
Arg(H). Let �1 = {u1, . . . , un} and �2 = {v1, . . . , vm}. By the weakest link principle, α �w β iff
∃ v ∈ �2 \ �1 such that ∀ u ∈ �1 \ �2, v ≤ u. By the last link principle, α �l β iff un ≥ vm.

When the context is clear, we write � for �w, or �l. We write α � β for α � β without β � α.
The following proposition shows the transitivity of the two relations �w and �l.

PROPOSITION 3.4 (Transitivity)
It holds that the relations �w and �l are transitive.

PROOF. Let α = [
u1, . . . , un

]
, β = [

v1, . . . , vm
]

and γ = [
w1, . . . , wk

]
be three arguments

in Arg
(
H

)
. For the case of the weakest link, let �1 = {

u1, . . . , un
}
, �2 = {

v1, . . . , vm
}

and
�3 = {

w1, . . . , wk
}
, n, m, k ≥ 1. Let x12 ∈ �1 ∩ �2, x13 ∈ �1 ∩ �3, and x23 ∈ �2 ∪ �3,

x1 ∈ �1 \ (
�2 ∪ �3

)
, x2 ∈ �2 \ (

�1 ∪ �3
)
, and x3 ∈ �3 \ (

�1 ∪ �2
)
. Assume that α �w β and

β �w γ . There are only the following four possible cases:
Case 1: There exists x23 ∈ �2, for all x13, x1 ∈ �1, x23 ≤ x13 and x23 ≤ x1; and since x13 ∈ �3,

assume that for all x12, x2 ∈ �2, x13 ≤ x12, x13 ≤ x2. It follows that x23 ≤ x12 and x23 ≤ x1. Since
x23 ∈ �3, it means that there exists x23 ∈ �3 such that x23 ≤ x12 and x23 ≤ x1, where x12, x1 ∈ �1.
Hence, α �w γ .

Case 2: There exist x23 ∈ �2 and x3 ∈ �3, for all x13, x1 ∈ �1, and x12, x2 ∈ �2: x23 ≤ x13,
x23 ≤ x1, x3 ≤ x12, x3 ≤ x2. In this case, there are in turn only the following two possible sub-cases:
either x23 ≤ x3 or x23 > x3. If x23 ≤ x3, since x3 ≤ x12, it holds that x23 ≤ x12. Since x23 ≤ x1 and
x23 ≤ x12, it holds that α �w γ . Second, if x23 > x3, since x23 ≤ x1, x3 ≤ x1. Since x3 ≤ x12 and
x3 ≤ x1, α �w γ .

Case 3: There exists x2 ∈ �2, for all x13, x1 ∈ �1, x2 ≤ x13 and x2 ≤ x1; and since x13 ∈ �3,
assume that for all x12, x2 ∈ �2, x13 ≤ x12, x13 ≤ x2. In this case, there are in turn only the following
two possible sub-cases: x23 ≤ x13 or x3 ≤ x13, or x23 > x13 and x3 > x13. If x23 ≤ x13 and x3 ≤ x13,
it holds that α �w γ . If x23 > x13 and x3 > x13, it holds that x13 < x23 and x13 ≤ x2, and therefore
β �w α. Contradiction.

Case 4: There exist x2 ∈ �2 and x3 ∈ �3, for all x13, x1 ∈ �1, and x12, x2 ∈ �2: x2 ≤ x13,
x2 ≤ x1, x3 ≤ x12, x3 ≤ x2. In this case, since x3 ≤ x12 and x3 ≤ x1, it holds that α �w γ .

For the last link, if α �l β and β �l γ , then un ≥ vm and vm ≥ wk . It follows that un ≥ wk , and
therefore α �l γ . So, it holds that �l is transitive. �

Given a way to lift the ordering on norms to an ordering on arguments, the notion of defeat can be
defined as follows:

DEFINITION 3.5 (Defeat amongst arguments)
Let H = 〈L, N , C, r〉 be a HANS. For all α, β ∈ Arg(H),

• α attacks β iff β has a sub-argument β ′ such that

(i) concl(α) = concl(β ′);
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Prioritized norms in formal argumentation 11

• α defeats β iff β has a sub-argument β ′ such that

(i) concl(α) = concl(β ′) and
(ii) α is a context argument, or α is an ordinary argument and α � β.

The set of defeats between the arguments in Arg(H) based on a preference ordering � is denoted
as Def (H, �).

In what follows, an argument α = [u1, . . . , un] with ranking on norms is denoted as u1 . . . un :
r(α), where r(α) = (r(u1), . . . , r(un)).

The notions of arguments and defeat relations between arguments by the weakest link and the last
link principles, respectively, can be illustrated by the following example:

EXAMPLE 3.6 (Order puzzle continued)
Consider the HANS in Example 2.2. We have the following arguments (visually presented in the top
of Figure 2):

A0 : w (context argument)
A1 : (w, h) : (1) (ordinary argument)
A2 : (w, h)(h, o) : (1, 3) (ordinary argument)
A3 : (w, ¬o) : (2) (ordinary argument)

We have that A2 attacks A3 and vice versa, and there are no other attacks amongst the arguments.
Moreover, A2 defeats A3 by the last link principle (Figure 2, middle), and A3 defeats A2 by the
weakest link principle (Figure 2, bottom).

3.3 Argument extensions and conclusion extensions

Given a set of arguments A = Arg(H) and a set of defeats R = Def (H, �), we get an AF F =
(A,R).

Following the notions of abstract argumentation by Dung [10], we say that a set B ⊆ A is
admissible, if and only if it is conflict-free and it can defend each argument within the set. A set
B ⊆ A is conflict-free if and only if there exist no arguments α and β in B such that (α, β) ∈ R.
Argument α ∈ A is defended by a set B ⊆ A (in such a situation α can also be said to be acceptable
with respect to B) if and only if for all β ∈ A, if (β, α) ∈ R, then there exists γ ∈ B such that
(γ , β) ∈ R. Based on the notion of admissible sets, some other extensions can be defined. Formally,
we have the following:

DEFINITION 3.7 (Conflict-freeness, defence and extensions)
Let F = (A,R) be an AF, and B ⊆ A a set of arguments.

• B is conflict-free if and only if � α, β ∈ B, such that (α, β) ∈ R.
• An argument α ∈ A is defended by B (equivalently α is acceptable with respect to B), if and

only if ∀ (β, α) ∈ R, ∃ γ ∈ B, such that (γ , β) ∈ R.
• B is admissible if and only if B is conflict-free, and each argument in B is defended by B.
• B is a complete extension if and only if B is admissible and each argument in A that is defended

by B is in B.
• B is a preferred extension if and only if B is a maximal (with respect to set-inclusion) complete

extension.
• B is a grounded extension if and only if B is the minimal (with respect to set-inclusion) complete

extension.
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12 Prioritized norms in formal argumentation

• B is a stable extension if and only if B is conflict-free, and ∀α ∈ A \ B, ∃ β ∈ B such that
(β, α) ∈ R.

A semantics describes the set of extensions one wishes to obtain. We use sem ∈ {cmp, prf , grd,
stb} to denote the complete, preferred, grounded and stable semantics, respectively. A set of argument
extensions of F = (A,R) is denoted as sem(F). We write Outfamily for the set of conclusions from
the extensions of the argumentation theory [30].

DEFINITION 3.8 (Conclusion extensions)
Given a HANS H = 〈L, N , C, r〉, let F = (Arg(H), Def (H, �)) be the AF constructed from H. The
conclusion extensions, written as Outfamily(F ,sem), are the conclusions of the ordinary arguments
within argument extensions.

Outfamily(F , sem) = {{concl(α) | α ∈ S, α is an ordinary argument} | S ∈ sem(F)}

The following example shows that for a HANS, when adopting different principles for lifting the
priorities over norms to those over arguments, the resulting AFs as well as their conclusion extensions
may be different.

EXAMPLE 3.9 (Order puzzle in argumentation)
According to Example 3.6, let A = {A0, . . . , A3}. We have F1 = (A, {(A2, A3)}), where A2 �l A3;
and F2 =(A, {(A3, A2)}), where A3 �w A2. For all sem ∈ {cmp, prf , grd, stb}, Outfamily(F1, sem) =
{{h, o}} and Outfamily(F2, sem) = {{h, ¬o}}.

We now turn our attention to the properties of the argumentation theory for a HANS.
First, according to Definition 3.5, we have the following proposition, capturing the relation

between the attack/defeat on an argument and on its super-arguments.

PROPOSITION 3.10 (Super-argument attack and defeat)
Let F = (A,R) be an AF constructed from a HANS. For all α, β ∈ A, if α attacks β, then α attacks
all super-arguments of β; if α defeats β, α defeats all super-arguments of β.

PROOF. When α attacks β, according to Definition 3.5, β has a sub-argument β ′ such that concl(α) =
concl(β ′). Let γ be an super-argument of β. It follows that β ′ is a sub-argument of γ . Hence, α

attacks γ .
When α defeats β, according to Definition 3.5, β has a sub-argument β ′ such that concl(α) =

concl(β ′) and α is a context argument, or α is an ordinary argument and α � β ′. Since β ′ is a
sub-argument of γ , α defeats γ . �

Second, corresponding to properties of sub-argument closure and direct consistency in ASPIC+
[21], we have the following two properties:

PROPOSITION 3.11 (Closure under sub-arguments)
Let F = (A,R) be an AF constructed from a HANS. For all sem ∈ {cmp, prf , grd, stb}, ∀ E ∈
sem(F), if an argument α ∈ E, then sub(α) ⊆ E.

PROOF. For every β ∈ sub(α), since α is acceptable with respect to E, it holds that β is acceptable
with respect to E. This is because for each γ ∈ R, if γ defeats β, then according to Proposition 3.10,
γ defeats α; since α ∈ E, there exists an η ∈ E such that η defeats γ . Given that β is acceptable with
respect to E and E is a complete extension, it holds that β ∈ E. �
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Since all norms in a HANS are defeasible, we only need to discuss direct consistency and
contextual consistency.

PROPOSITION 3.12 (Direct consistency)
Let F = (A,R) be an AF constructed from a HANS. For all sem ∈ {cmp, prf , grd, stb}, ∀ E ∈
sem(F), {concl(α) | α ∈ E, α is an ordinary argument} is consistent.

PROOF. Assume that there exist α, β ∈ E such that concl(α) = concl(β). Since both α and β are
ordinary arguments, α attacks β and β attacks α. If α � β then α defeats β. Otherwise, β defeats α.
In both cases, E is not conflict-free, contradicting the fact that E is a complete extension. �
PROPOSITION 3.13 (Contextual consistency)
Let F = (A,R) be an AF constructed from a HANS H = 〈L, N , C, r〉. For all sem ∈ {cmp, prf , grd,
stb}, ∀ E ∈ sem(F), C ∪ {concl(α) | α ∈ E, α is an ordinary argument} is consistent.

PROOF . Since C is consistent, we only need to verify that for all a ∈ C, for all α ∈ E, {a, concl(α)}
is consistent. We use proof by contradiction. Assume the contrary, i.e. concl(α) = a. It follows that
a defeats α, and therefore α /∈ E. Contradiction. So the assumption is false, i.e. C ∪ {concl(α) | α ∈
E, α is an ordinary argument} is consistent. This completes the proof. �

In the next sections we present representation results for the Greedy, Reduction and Optimization
approaches introduced in Section 2, identifying equivalences between these approaches and the
argument semantics based descriptions of a HANS.

4 Representation results for Greedy

Based on the idea introduced in Section 1, for a totally ordered HANS, we have the following lemma
and proposition:

LEMMA 4.1 (Unique extension of Greedy)
Given a totally ordered HANS H = 〈L, N , C, r〉 and the corresponding AF F = (Arg(H),
Def (H, �w)), it holds that F is acyclic, and therefore has a unique extension under stable semantics.

PROOF. Since H is totally ordered, under �w, the relation �w amongst arguments is acyclic. Assume
the contrary. Then, there exist three distinct α, β, γ ∈ Arg(H) such that α �w β, β �w γ and
γ �w α. According to Definition 3.3, when H is totally ordered, it holds that α �w β, β �w γ and
γ �w α. According to Proposition 3.4, α �w γ , contradicting γ �w α. Hence, F is acyclic, and
therefore has a unique extension under stable semantics. �
PROPOSITION 4.2 (Greedy is weakest link)
Given a totally ordered HANS H = 〈L, N , C, r〉 and the corresponding AF F = (Arg(H),
Def (H, �w)), it holds that {Greedy(H)} = Outfamily(F , stb).

PROOF. Our proof is constructive: given the Greedy extension, we show how to construct a stable
extension of the AF whose conclusions coincide with the Greedy extension. Since the AF has only
one extension (Lemma 4.2), this completes the proof.

By Definition 2.4, Greedy(H) is the set of elements x such that there is a path in H from an element
in C to x with respect to a set of norms R ⊆ N , inductively defined by R = ∪∞

i=0Ri, where R0 = ∅
and Ri+1 = Ri ∪ max(N , C, Ri, r), max(N , C, Ri, r) = {u ∈ Appl(N , C, Ri) | ∀ v ∈ Appl(N , C, Ri) :
r(u) ≥ r(v)} and Appl(N , C, R) := {(a, x) ∈ N \ R|a ∈ C ∪ cons(R), {x, x} 
⊆ C ∪ cons(R)}.
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14 Prioritized norms in formal argumentation

Let E = {a ∈ Arg(H) | a ∈ C is a context argument} ∪ {[u1, . . . , un] ∈ Arg(H) | n ≥ 1, ant(u1) ∈
C, {ant(u2) . . . , ant(un), cons(un)} ⊆ Greedy(H)}. From the consistency of the extensions (Propo-
sition 3.11) and the construction of Greedy we know that there is a consistent path to any element
of Greedy(H), and thus for any argument of Greedy(H) there is an ordinary argument with that
element as its conclusion, and thus Greedy(H) = {concl(α) | α ∈ E, α is an ordinary argument}.
Now we only need to prove that E is a stable extension under weakest link.

We use proof by contradiction. Assume that E is not a stable extension. Given that Greedy(H)

is consistent, and thus the extension E is conflict-free , and given that context arguments defeat all
conflicting ordinary arguments and are thus included in E, there must be α = [u1, . . . , un] ∈ Arg(H)\
E, such that α is not defeated by any argument in E. Since α /∈ E, there exist α′ = [u1, . . . , uj−1] ∈ E
and α′′ = [u1, . . . , uj] 
∈ E. Let S ⊆ E be the set of arguments conflicting with α′′, thus each of
them has a conclusion cons(uj). So, α′′ defeats each argument β = [v1, . . . , vm] in S using weakest
link, i.e. α′′ �w β. If �1 = {u1, . . . , un} and �2 = {v1, . . . , vm}, then according to Definition 3.2,
∃ v ∈ �2 \ �1 such that ∀ u ∈ �1 \ �2, v ≤ u. Let M ⊆ N be the set of all these norms v, i.e. all
norms that occur in the arguments of S which are smaller than all the norms in α′′, excluding norms
that occur in α′′ itself.

We now consider the point in the construction of the greedy extension where an element of M was
added to it, we consider Appl(N , C, R) and max(N , C, Ri, r), and we derive the contradiction. Let i
be the lowest index such that Ri does not contain a norm of M . At this moment, Appl(N , C, Ri) also
contains a norm in α′′, and max(N , C, Ri, r) contains an element of M . However, by definition, all
norms of M are ranked lower than the norms in α′′. Contradiction. So the assumption is false, i.e. E
is a stable extension. This completes the proof. �

Note that Proposition 4.2 corresponds to Theorem 5.3 of Young et al. [32]. This correspondence
arises as follows. First, in the argumentation theory for a HANS, we use disjoint elitist order to
compare sets of norms, while in the argumentation theory for prioritized default logic (PDL), Young
et al. [32] use a new order called a structure-preference order, which takes into account the structure
of how arguments are constructed. Since in the setting of HANS, arguments are acyclic paths, it
is not necessary to use the structure-preference order to compare arguments. Second, due to the
different ways of constructing AFs, the proof of Proposition 4.2 differs from that of Theorem 5.3 of
Young et al. [32]. The former considers the order of the applicability of norms in the proof, while
the latter uses the mechanism defined in the structure-preference order.

5 Representation result for Reduction

According to Brewka and Eiter [7], Reduction is based on the following two points:

1) The application of a rule with non-monotonic assumptions means jumping to a conclusion.
This conclusion is yet another assumption which has to be used globally in the programme
for the issue of deciding whether a rule is applicable or not.

2) The rules must be applied in an order compatible with the priority information.

This global view of deciding whether a rule is applicable coincides with the last link principle
of lifting a preference relation between rules to a priority relation between resulting arguments.
According to Definition 2.6 and the argumentation theory for a HANS, we have the following
representation result:
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PROPOSITION 5.1 (Reduction is last link)
Given a totally ordered HANS H = 〈L, N , C, r〉 and the corresponding AF F = (Arg(H),
Def (H, �l)), it holds that Reduction(H) = Outfamily(F , stb).

PROOF. We prove Reduction(H) = Outfamily(F , stb) by first proving that the left-hand side is a
subset of the right-hand side, and then by proving that the right-hand side is a subset of the left-hand
side.

We first prove Reduction(H) ⊆ Outfamily(F , stb).
Assume a set U ∈ Reduction(H). According to Definition 2.6 we have Greedy

(
HU

)
where

HX = 〈L, N ′, C, r′〉, N ′ = {(�, x2) | (x1, x2) ∈ N , x1 ∈ C ∪ X } is the set of ordinary norms, and
r′(�, x2) = max(r (x1, x2) | (x1, x2) ∈ N , x1 ∈ C ∪ X ) for all (x1, x2) ∈ N are priorities over
norms.

We now construct a stable extension of F such that its conclusions are exactly U . Let E be the
set of arguments that can be constructed from elements of U , just like in the proof of Greedy. So
E = {a ∈ Arg(H) | a ∈ C is a context argument} ∪ {[u1, . . . , un] ∈ Arg(H) | n ≥ 1, ant(u1) ∈
C, {ant(u2) . . . , ant(un), cons(un)} ⊆ U}. From the consistency of the extensions (Proposition 3.11)
and the construction of Reduction we know that there is a consistent path to any element of U , and
thus for any argument of U there is an ordinary argument with that element as its conclusion, and
thus U = {concl(α) | α ∈ E, α is an ordinary argument}. Now we only need to prove that E is a
stable extension.

We use proof by contradiction, just like in the proof of Greedy. Assume that E is not stable. Given
that context arguments defeat all conflicting ordinary arguments, there must be a β = [v1, . . . , vn] ∈
Arg(H) \ E, such that β is not defeated by any argument in E. Since β /∈ E, there exists β ′ =
[v1, . . . , vj] in E and β ′′ = [v1, . . . , vj+1] not in E. Let S ⊆ E be the set of arguments attacking β ′′,
thus each of them has a conclusion cons(vj+1). Since β ′′ is not defeated by any argument in E, β ′′
defeats each argument in S. Then, the last link of β ′′ is higher than the last links of all arguments of
S. Consequently, the rank of vj+1 is higher than the rank of all norms with consequent cons(vj+1).
But this means that in N′, the rank of (�, cons(vj+1)) is higher than the rank of (�, cons(vj+1)).
Then by the construction of Reduction, i.e. Greedy

(
HU

)
, we have that cons(vj+1) must be in U ,

a contradiction. Thus the assumption is false, i.e. E is stable, and this completes the proof that
Reduction(H) ⊆ Outfamily(F , stb).

To complete our proof, we now show that Reduction(H) ⊇ Outfamily(F , stb). Let E be a stable
extension of F = (Arg(H), Def (H, �l)). Thus E is conflict-free, closed under sub-arguments,
and for all arguments not in E, there is an argument in E defeating it. In particular, for any
β ′ = [v1, . . . , vj] in E and β ′′ = [v1, . . . , vj+1] not in E, there is an argument in E defeating β ′′.

Moreover, let U = {concl(α) | α ∈ E, α is an ordinary argument}. From the contextual
consistency of stable extensions (Proposition 3.12), we know that U ∪ C is consistent. Since
defeat is based on last link, it means that for every norm applicable in U whose conclusion
c is not in U , there is a higher-ranked norm applicable in U whose conclusion is c. Consider
HU = 〈L, N′, C, r′〉, N ′ = {(�, x2) | (x1, x2) ∈ N , x1 ∈ C ∪ U} is the set of ordinary norms,
and r′(�, x2) = max(r (x1, x2) | (x1, x2) ∈ N , x1 ∈ C ∪ U) for all (x1, x2) ∈ N are priorities over
norms. Assume there is an x ∈ U with (�, x), (�, x) ∈ N ′. Due to the above the rank of (�, x) is
higher than the rank of (�, x), and thus x ∈ Greedy

(
HU

)
.
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16 Prioritized norms in formal argumentation

FIGURE 4. The AF obtained for the HANS of Figure 3.

Thus U = Greedy
(
HU

)
, i.e. U ∈ Reduction(H), and that completes our proof. �

Now, let us consider the following three examples which show that by Reduction, a HANS and
the corresponding AF may have a unique extension, multiple extensions or an empty extension.

EXAMPLE 5.2 (Order puzzle, Reduction)
Consider Example 3.9 when the last link principle is applied, A2 defeats A3. Then, we have
Outfamily(F1, stb) = {{h, o}}, which is equal to Reduction(H).

EXAMPLE 5.3 (Reduction, multiple extensions)
Consider the HANS of Figure 3 when the last link principle is applied. We obtain the AF shown in
Figure 4, written as F3, yielding Outfamily(F3, stb) = {{b, c}, {¬b}}. Note that here, we have two
distinct stable extensions.

Since stable extensions do not necessarily exist for all AFs, the Reduction of a HANS might not
exist.

EXAMPLE 5.4 (Reduction, empty extension)
Consider the HANS H = 〈L, N , C, r〉, where N = {(c, d), (p, ¬d), (z, ¬c), (¬d, ¬z), (r, z), (b, c)},
C = {b, r, p} and r(c, d) = 5, r(p, ¬d) = 4, r(z, ¬c) = 6, r(¬d, ¬z) = 2, r(r, z) = 1 and r(b, c) =
0. When the last link principle is applied, this HANS yields the AF shown in Figure 5, which has no
stable extension.

6 Representation result for Optimization

In principle, Optimization is realized by adding norms in order of priority which are consistent with
the context, until no more norms can be added, obtaining a maximal set of obeyable norms, following
which conclusions can be computed. For each norm that does not belong to the maximal set of
obeyable norms, if it is in a consistent path of a HANS H, it is the weakest norm of this path. In terms
of the terminology of argumentation, a consistent path of H is an argument of the corresponding AF.
Hence, for an ordinary argument, if its top norm is the weakest norm that does not belong to the
maximal obeyable set, then this argument should not be accepted. In other words, this argument
should be defeated by some accepted argument. Furthermore, when an argument is rejected, all its
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FIGURE 5. An AF with no stable extension.

super-arguments should be rejected. For instance, as illustrated in Figure 1, the maximal obeyable
set of norms is {(h, o), (w, ¬o)}. The norm (w, h) does no belong to this set. So, the arguments
containing (w, h), i.e. [(w, h)] and [(w, h), (h, o)], should be rejected.

In this paper, given an argument α, a sub-argument of α is called the weakest sub-argument of α,
if it is an ordinary argument and its top norm is the weakest norm of α.

DEFINITION 6.1 (Weakest sub-argument)
Given a totally ordered HANS H = 〈L, N , C, r〉, and the corresponding AF F = (Arg(H),
Def (H, �w)), for all α = [u1, . . . , un] ∈ Arg(H), if ui is the weakest norm of α, then the ordinary
sub-argument of α whose top norm is ui is called the weakest sub-argument of α.

Then, the set of super-arguments of α′—the weakest sub-argument of α— is called the weakest
arguments with respect to α, formally defined as follows:

DEFINITION 6.2 (Weakest argument)
Given a totally ordered HANS H = 〈L, N , C, r〉, and the corresponding AF F = (Arg(H),
Def (H, �w)), for all α = [u1, . . . , un] ∈ Arg(H), let α′ be the weakest sub-argument of α. Then, the
set of weakest arguments with respect to α is defined as warg(α) = sup(α′).

The notion of weakest arguments can be illustrated by the following example:

EXAMPLE 6.3 (Order puzzle, weakest arguments)
Consider the AF in Figure 2. When applying the weakest link principle, A3 defeats A2. According to
Definition 6.2, warg(A1) = {A1}, warg(A2) = {A1, A2} and warg(A3) = {A3}.

Based on the concept of weakest arguments, when an argument α defeats another argument β

according to the weakest link principle, there are two different cases, namely that α is in the set of
weakest arguments with respect to β, or that it is not.

First, consider the case where α is in warg(β). In this case, it means that the weakest norm of β is
also the weakest norm of α.

PROPOSITION 6.4 (Shared weakest norm)
Given F = (Arg(H), Def (H, �w)), for all (α, β) ∈ Def (H, �w), if u is the weakest norm of β and
α ∈ warg(β), then u is the weakest norm of α.
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18 Prioritized norms in formal argumentation

PROOF. We use proof by contradiction. Assume that u is not the weakest norm of α. Then, there
exists u′ such that u > u′. Since u′ does not belong to β, it holds that β �w α. This contradicts
(α, β) ∈ Def (H, �w). Thus the assumption is false, i.e. u is the weakest norm of α. �

Given that α and β share a weakest norm, according to the definition of Optimization, this weakest
norm does not belong to the maximal obeyable set. Hence, both α and β cannot be accepted. In
this paper we use an auxiliary argument aux to defeat all arguments in warg(β) that should not be
accepted.

The second case occurs when α is not in warg(β). Here, the weakest norm of α is superior to the
weakest norm of β. So, if α is accepted, then all arguments in warg(β) should be rejected. For this
purpose, we may use α to defeat each argument in warg(β). In addition, since the defeat from α to
each super-argument of β is already in Arg(H), only the arguments in warg(β) ∩ psub(β) should be
added to Arg(H).

According to the above observations, an expanded AF of F with auxiliary defeats on weakest
arguments is defined as follows:

DEFINITION 6.5 (Expanded AF with additional defeats on weakest arguments)
Let F = (Arg(H), Def (H, �w)) be an AF that is constructed from a totally ordered HANS
H = 〈L, N , C, r〉, and aux be an auxiliary argument such that aux /∈ Arg(H). The expanded
AF of F with auxiliary defeats on weakest arguments is F ′ = (Arg(H) ∪ {aux}, Def
(H, �w) ∪ �1 ∪ �2), where �1 = ∪(α,β)∈Def (H,�w)∧α/∈warg(β){(α, γ ) | γ ∈ warg(β) ∩ psub(β)} and
�2 = ∪(α,β)∈Def (H,�w)∧α∈warg(β){(aux, γ ) | γ ∈ warg(β)}.

In Definition 6.5, �1 is the set of defeats from α that is not a weakest argument with respect to
β, and �2 is the set of defeats from the auxiliary argument aux when α is a weakest argument with
respect to β.

The following lemma and proposition show that Optimization can be represented in formal
argumentation by using weakest link together with auxiliary defeats.

LEMMA 6.6 (Unique extension of Optimization)
Let H = 〈L, N , C, r〉 be a totally ordered HANS, and F ′ be an AF of H with additional defeats on
weakest arguments presented in Definition 6.2. It holds that F ′ is acyclic, and therefore has a unique
extension under stable semantics.

PROOF. According to Lemma 4.1, F is acyclic. The addition of �2 does not produce cycles.
Meanwhile, for all (α, γ ) ∈ �1, since α defeats β and γ is a weakest argument with respect to
β, α �w γ . So, the addition of �2 does not produce cycles either. As a result, F ′ is acyclic, and
therefore has a unique extension under stable semantics. �

PROPOSITION 6.7 (Optimization is weakest link plus auxiliary defeats)
Let H = 〈L, N , C, r〉 be a totally ordered HANS, and F ′ be an AF of H with additional defeats on
weakest arguments presented in Definition 6.2. It holds that Optimization(H) = {concl(α) | α ∈
E \ {aux}, α is an ordinary argument}, where E is the unique stable extension of F ′.
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FIGURE 6. AF expanded by an auxiliary argument and two auxiliary defeats (denoted using dashed
lines).

PROOF. This proof is similar to that of Greedy: given the Optimization extension, we show how to
construct a stable extension of the expanded AF whose conclusions coincide with the Optimization
extension. Since the AF has only one extension (Lemma 6.6), this completes the proof.

By Definition 2.9, Optimization(H) is the set of elements x such that there is a path in H from
an element in C to x with respect to a set of norms R ⊆ N . Given T = (

u1, u2, . . . , un
)

the linear
order on N such that u1 > u2 > . . . > un, R is inductively defined by R = Rn, where R0 = ∅;
Ri+1 = Ri ∪ {ui} if C ∪ R(C) is consistent where R = Ri ∪ {ui}, and Ri+1 = Ri otherwise.

Let E = {aux} ∪ {α ∈ Arg(H) | α ∈ C is a context argument} ∪ {[u1, . . . , un] ∈ Arg(H) | n ≥
1, ant(u1) ∈ C, {ant(u2) . . . , ant(un), cons(un)} ⊆ Optimization(H)}. From the consistency of the
extensions (Proposition 3.11) and the construction of Optimization we know that there is a consistent
path to any element of Optimization(H), and thus for any argument of Optimization(H) there is an
ordinary argument with that element as its conclusion, and thus Optimization(H) = {concl(α) | α ∈
E \ {aux}, α is an ordinary argument}.

Now we only need to prove that E is a stable extension of F ′.
We use proof by contradiction. So assume that E is not a stable extension. On the one hand,

given that Optimization(H) is consistent, and thus the extension E is conflict-free, and given that
context arguments defeat all conflicting ordinary arguments and are thus included in E, there must
be α = [u1, . . . , un] ∈ Arg(H) \ E, such that α is not defeated by any argument in E. On the
other hand, since α /∈ E, there exists a weakest norm uj of α such that uj /∈ R. Let i be the index
where uj can not be added to Ri since C ∪ R(C) is consistent where R = Rj+1 = Ri ∪ {uj}. Let
α′ = [u1, . . . , uk] where k ≥ j, and β = [v1, . . . , vm] such that {v1, . . . , vm} ⊆ Ri+1 and vm = uk .
Since uj < v for all v ∈ Ri, it holds that β defeats α′. Then, we have the following two possible cases.
If uj ∈ {v1, . . . , vm}, then α is defeated by aux ∈ E. Contradiction. Otherwise, uj /∈ {v1, . . . , vm}. In
this case, {v1, . . . , vm} ⊆ Ri and C ∪ R(C) is consistent where R = Ri. So, β is in E. Contradiction.
So the assumption is false, i.e. E is a stable extension. This completes the proof. �

Now, let us consider a revised version of the Order puzzle as follows:

EXAMPLE 6.8 (Order puzzle, Optimization)
Let H′ = 〈L, N , C, r〉 be a HANS, where L = {w, h, o, ¬w, ¬h, ¬o, �}, N = {(w, h), (w, ¬h),
(h, o), (¬h, o), (w, ¬o)}, C = {w, �}, r(w, h) = 1, r(w, ¬h) = 0, r(h, o) = 3, r(¬h, o) =
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FIGURE 7. AF expanded by an auxiliary argument and three auxiliary defeats (denoted using dashed
lines).

4, r(w, ¬o) = 2. The maximal set of obeyable norms is R = {(¬h, o), (h, o), (w, ¬o)} and so
Optimization(H′) = {¬o}. Figure 6 illustrates the AF obtained from this HANS, by adding an
auxiliary argument and two auxiliary defeats. In this example, since A5 is neither in warg(A3) =
{A1, A3} nor in warg(A4) = {A2, A4}, the two auxiliary defeats are from A5 to A1 and A2, respectively.
Then, under stable semantics, the expanded AF has a unique extension E = {aux, A0, A5}. As a result,
the set of conclusions {concl(α) | α ∈ E \ {aux}, α is an ordinary argument} = {concl(A5)} = {¬o}.

Finally, let us consider an expanded AF where auxiliary defeats are from the auxiliary argument
aux.

EXAMPLE 6.9 (Empty Optimization)
Let H = 〈L, N , C, r〉 be a HANS, where L = {a, b, c, ¬a, ¬b, ¬c, �}, N = {(a, b), (b, c), (b,
¬c)}, C = {a, �}, r(a, b) = 1, r(b, c) = 2, r(b, ¬c) = 3. The maximal set of obeyable norms is
R = {(b, c), (b, ¬c)} and so Optimization(H) = ∅. Figure 7 illustrates the AF obtained from this
HANS, by adding an auxiliary argument and three auxiliary defeats. In this example, since A3 is in
warg(A2) = {A1, A2, A3}, the three auxiliary defeats are from aux. Then, under stable semantics, the
expanded AF has a unique extension E = {aux, A0}. As a result, the set of conclusions {concl(α) |
α ∈ E \ {aux}, α is an ordinary argument} = ∅.

7 Discussions and related work

In the previous sections, after defining three detachment procedures for totally ordered HANS
motivated by the Order puzzle example, we formulated an argumentation theory to represent them.
The role of examples in the study of logic has a long and rich history. Traditionally, a logic was
proposed to model some example problem, following which examples were introduced to highlight
paradoxes or inconsistencies in the logic, whereupon a new logic was proposed to address these
problems, and the cycle repeated. While this approach has significantly enriched the field, it is
not without problems. For example, there is still a debate regarding deontic detachment within the
community, as in some cases, deontic detachment intuitively holds, and in other cases it does not
[23]. Given this, we do not seek to claim that the detachment procedures we present in this paper are
in any sense the ‘right’ logics. Instead, our goal is to answer the following questions:

(i) What are the general properties of systems considered relevant to some problem?
(ii) Given an application, what choices should be made in order to obtain a solution?
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FIGURE 8. AF constructed from a pre-ordered HANS.

In this paper, the systems we considered are the three different detachment procedures, encoded
in the general framework of HANS. The property we considered is then the conclusions that one can
draw from each of the detachment procedures in the context of prioritized norms, which we describe
in the context of an argumentation system.

Our results then characterize the outputs of Greedy, Reduction and Optimization in terms of
argumentation for a totally ordered HANS, allowing one to decide which approach is relevant to
their needs by understanding the effects of each approach through the argumentation literature.
The semantics associated with each approach also sheds light on the complexity of computing
conclusions in the normative context.

Furthermore, it is important to note that our representation results only hold when the HANS
is totally ordered. This is illustrated by the following example, which shows that Greedy does not
match the results of weakest link when one does not have a total order over preferences.

Let H = 〈L, N , C, r〉 be a HANS, where N = {(a, b), (a, c), (b, ¬c), (c, ¬b)} C = {a} and r(a, b) =
1, r(a, c) = 1, r(b, ¬c) = 2 and r(c, ¬b) = 2}. On the one hand, by Greedy, there are two extensions
{b, ¬c} and {c, ¬b}. On the other hand, by the weakest link principle, the AF constructed from H is
illustrated in Figure 8. Under stable semantics, there are three extensions {A0, A1, A2}, {A0, A1, A3}
and {A0, A3, A4}. So, there are three conclusion extensions {b, ¬c}, {b, c}, {c, ¬b}. As a result, the
set of conclusions obtained by Greedy is not equal to the one obtained by argumentation using
the weakest link principle. We leave identifying valid representation results for HANS containing
preference pre-orders as an avenue for future research.

Regarding related work, Young et al. [32] endowed Brewka’s PDL with argumentation semantics
using the ASPIC+ framework for structured argumentation [22]. More precisely, their goal is to
define a preference ordering over arguments �, based on the strict total order over defeasible rules
defined to instantiate ASPIC+ to PDL, so as to ensure that an extension within PDL corresponds
to the justified conclusions of its ASPIC+ instantiation. Several options are investigated, and they
demonstrate that the standard ASPIC+elitist ordering cannot be used to calculate � as there is
no correspondence between the argumentation-defined inferences and PDL, and the same holds
for a disjoint elitist preference ordering. The authors come up with a new argument preference
ordering definition which captures both preferences over arguments and also when defeasible rules
become applicable in the arguments’ construction, leading to the definition of a strict total order on
defeasible rules and corresponding non-strict arguments. Their representation theorem shows that a
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correspondence always exists between the inferences made in PDL and the conclusions of justified
arguments in the ASPIC+ instantiation under stable semantics.

Brewka and Eiter [7] consider programmes supplied with priority information, which is given
by a supplementary strict partial ordering of the rules. This additional information is used to solve
potential conflicts. Moreover, their idea is that conclusions should be only those literals that are
contained in at least one answer set. They propose to use preferences on rules for selecting a subset
of the answer sets called the preferred answer sets. In their approach, a rule is applied unless it
is defeated via its assumptions by rules of higher priorities. Our definition (Definition 2.6) and the
original formalism of Brewka and Eiter [7] are different, in the sense that in our definition we do
not make use of default negation to represent the exceptions, i.e. the defeasibility of a (strict) rule.
Rather, we use defeasible rules and the notion of the applicability of such rules. This means that the
correct translation of the Order Puzzle of Example 2.2 ends up with the following logic programme1:

r0 : w.
r1 : h : - not ¬h,w.
r2 : ¬o : - not o, w.
r3 : o : - not ¬o, h.
r0 < r3 < r2 < r1.

If preferences are disregarded, then this logic programme has two answer sets: {w, h, ¬o} and {w, h,
o}. Thus, considering preferences, the latter is the unique preferred answer set. After dropping the
context w from the answer set, we get an extension {h, o}, which is identical to the result obtained in
Example 2.7.

Dung [11] presents an approach to deal with contradictory conclusions in defeasible reasoning
with priorities. More precisely, he starts from the observation that often, the proposed approaches
to defeasible reasoning with priorities (e.g. [5, 21, 27]) sanction contradictory conclusions, as
exemplified by ASPIC+ using the weakest link principle together with the elitist ordering which
returns contradictory conclusions with respect to its other three attack relations, and the conclusions
reached with the well-known approach of Brewka and Eiter [7]. Dung shows then that the semantics
for any complex interpretation of default preferences can be characterized by a subset of the set
of stable extensions with respect to the normal attack relation assignments, i.e. a normal form
for ordinary attack relation assignments. In the setting of this paper, the notion of ‘normal attack
relation’ could be defined as follows. Let α = (a1, . . . , an) and β = (b1, . . . , bm) be arguments
constructed from a HANS. Since we have no Pollock style undercutting argument (as in ASPIC+)
and each norm is assumed to be defeasible, α is said to normally attack argument β if and only
if β has a sub-argument β ′ such that concl(α) = concl(β ′), and r((an−1, an)) ≥ r ((bm−1, bm)).
According to Definitions 3.3 and 3.5, the normal defeat relation is equivalent to the defeat relation
using the last link principle in this paper.

Kakas et al. [18] present a logic of arguments called argumentation logic, where the foundations of
classical logical reasoning are represented from an argumentation perspective. More precisely, their
goal is to integrate into the single argumentative representation framework both classical reasoning,
as in propositional logic, and defeasible reasoning.

You et al. [31] define a prioritized argumentative characterization of non-monotonic reasoning,
by casting default reasoning as a form of prioritized argumentation. They illustrate how the
parameterized formulation of priority may be used to allow various extensions and modifications
to default reasoning.

1Note that in Nrewka and Eiter’s [7] original formulation r0 < r3 means that r0 has higher priority than r3.
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We, and all these approaches, share the idea that an argumentative characterization of Non
Monotonic Reasoning formalisms, like PDL in Young et al.’s [32] case and HANS in our approach,
contributes to make the inference process more transparent to humans. However, the targeted Non
Monotonic Reasoning formalism is different, leading to different challenges in the representation
results. To the best of our knowledge, no other approach addressed the challenge of an argumentative
characterization of prioritized normative reasoning.

The reason we study prioritized normative reasoning in the setting of formal argumentation is
twofold. First, formal argumentation has been recognized as a popular research area in Artificial
Intelligence, thanks to its ability to make the inference process more intuitive and provide natural
explanations for the reasoning process [8]; its flexibility in dealing with the dynamics of the system;
and its appeal in sometimes being more computationally efficient than competing approaches.
Second, while some progress has been made on the use of priorities within argumentation (e.g.
[2, 21]), how to represent different approaches for prioritized normative reasoning in argumentation
is still a challenging issue.

8 Conclusions

In this paper we embedded three approaches to prioritized normative reasoning—namely the Greedy
[32], Reduction [5] and Optimization [13] approaches—within the framework of a HANS. Within
such a system, conditional norms are represented by a binary relation over literals, and priorities are
represented by natural numbers. HANS provide an elegant visualization of a normative system, with
conflicts shown as two paths to a proposition and its negation. Since both conflicts and exceptions
can be encoded, such systems are inherently non-monotonic. In Dung [10], the author pointed
out that ‘many of the major approaches to non-monotonic reasoning in Artificial Intelligence and
logic programming are different forms of argumentation’, and inspired by this, we described how
arguments can be instantiated as paths through a HANS; demonstrated that this instantiation satisfies
certain desirable properties; and described how attacks and defeats between these arguments can be
identified. Defeats in particular are dependent on the priorities associated with the arguments, and
several different techniques have been proposed to lift priorities from argument components—made
up of norms in the context of our work—to the arguments themselves [21]. We demonstrated that
for a total ordering of priorities, lifting priorities to arguments based on the weakest link principle,
evaluated using the stable semantics, is equivalent to Greedy; that lifting priorities to arguments
based on last link and using the stable semantics is equivalent to Reduction; and that the Optimization
approach can be encoded by an argumentation system which uses weakest link together with
the stable semantics, and which introduces additional defeats capturing implicit conflicts between
arguments.

This last result—which requires a relatively complex argumentative representation—opens up
an interesting avenue for future work, namely in determining which non-monotonic logics can be
easily captured through standard formal argumentation techniques, and which require additional
rules or axioms in order to be represented. We note that on the argumentation side, work on bipolar
argumentation (e.g. [9]) has considered introducing additional defeats between arguments based on
some notion of support, and we intend to investigate how the additional defeats we introduced can
be categorized in such frameworks.

Apart from our representation results, the use of argumentation allows us to make some useful
observations, such as that Reduction will sometimes not reach any conclusions. Furthermore,
argumentation can be used to provide explanation [8]. When implemented, a system building on
our approach can help users understand what norms they should comply with, and why. For large
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normative systems, the use of stable semantics to compute Reduction and Optimization results in
a high computational overhead, while Greedy is computationally efficient. Ultimately, selecting the
correct reasoning procedure thus requires giving consideration to both reasoning complexity, and the
domain in which the system will be used.

In closing, our main observations can be summarized as follows. First, from a normative systems
perspective, we know there are many logics of prioritized rules/norms, and we consider only three
here. The choice we make (Greedy, Reduction and Optimization) may seem arbitrary. However, many
other examples, in particular detachment procedures not satisfying defeasible deontic detachment,
are much easer to characterize, while the three throughput variants of Greedy, Reduction and
Optimization can be derived from the existing results. Furthermore, these three alternatives display
quite diverse behaviour, and are illustrative of the various kind of approaches around.

Second, the results we present are interesting and promising, but the work on representing
prioritized rules/norms using argumentation has only begun, and there are many open issues. In
particular, the restriction to totally ordered systems must be relaxed in future work.

Third, given the large number of possibilities and the vast existing literature on normative
rules/norms, a different methodology is needed for dealing with prioritized rules/norms in formal
argumentation.

Finally, one may wonder why our results have not been shown before, given the long-standing
discussion on weakest versus last link at least since the work of Pollock [25], and the central role of
prioritized rules in many structured argumentation theories like ASPIC+. The reason, we believe, is
that it is easier to study these issues on a small fragment, like HANS, than on a very general theory
like ASPIC+.
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