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Abstract

The article studies navigability of an autonomous agent in a maze
where some rooms may be indistinguishable. In a previous work the au-
thors have shown that the properties of navigability in such a setting
depend on whether an agent has perfect recall. Navigability by strategies
with perfect recall is a transitive relation and navigability by memory-
less strategies is not. Independently, Li and Wang proposed a notion of
navigability with intermediate constraints for linear navigation strategies.
Linear strategies are different from both perfect recall and memoryless
strategies.

This article shows that a certain form of transitivity, expressible in
the language with intermediate constraints, holds for memoryless strate-
gies. The main technical result is a sound and complete logical system
describing the properties of memoryless strategies in the language with
intermediate constraints.

1 Introduction

Autonomous agents such as self-navigating missiles, self-driving cars, and robotic
vacuum cleaners are often facing the challenge of navigating under conditions
of uncertainty about their exact location. A solution to such a problem can be
formally described in terms of instructions that transition a system from one
state to another, assuming that the agent cannot distinguish some of the states.
We refer to such systems as epistemic transition systems.

Figure 1 depicts a graph of an epistemic transition system T1. This system
has twelve states shown as the nodes of the graph. Dashed lines between states
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Figure 1: Epistemic transition system T1.

represent the indistinguishability relation. This relation forms four classes of in-
distinguishable states: rx1s “ tx1, x2, x3u, ra1s “ ta1, a2, a3u, ry1s “ ty1, y2, y3u,
and rb1s “ tb1, b2, b3u. The directed arrows in the figure represent the possi-
ble transitions that the system can take. The label on an arrow specifies the
instruction that should be invoked to accomplish this transition. For example,
instruction 1 can be used to transition the system from state x2 to state a2.

In this article we study navigability between classes of indistinguishable
states. For instance, consider a navigation strategy s that invokes instruction 1
in classes rx1s and rb1s and instruction 0 in classes ra1s and ry1s. Note that if
the system T1 starts in any state of class rx1s, then this strategy will eventually
bring the system to state y3 of class ry1s. Similarly, if the system starts in any
state of class ry1s, then the same instruction will eventually bring the system to
state x3 of class rx1s. Generally speaking, we say that a strategy can be used
to navigate from class u to class v if from each state of class u the strategy will
eventually transition the system to some (not necessarily always the same) state
of class v.

Note that the same strategy s can also be used to navigate from each state
of classes rx1s, ra1s, and ry1s to state b3 of class rb1s. Generally speaking, we say
that a strategy can be used to navigate from set of classes A to set of class B if
from each state of each class in set A the strategy will eventually transition the
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system to some (not necessarily always the same) state of some (not necessarily
always the same) class in set B.

The main focus of our work is on navigability between classes with interme-
diate constraints. If A, B, and C are three sets of indistinguishability classes
of states in an epistemic transition system, then by ABB C we denote the ex-
istence of a strategy to navigate from set A to set C under which the system
is constrained to intermediate states in set B. For the sake of mathematical
elegance that will become clear later, we include the initial but not the final
state into the intermediate constraint. That is, the intermediate constraint lists
all classes in which one would actually need to use the strategy to determine
which instruction to invoke. For example, trx1s, ra1suBtrx1s,ra1su try1su, because
the discussed earlier strategy s can be used to navigate from any state in classes
rx1s and ra1s to state y3 of class ry1s while being constrained to use only states
in classes rx1s and ra1s as intermediate states.

The properties of navigability depend on the type of strategies we consider.
In this article we will mention three such types: perfect recall strategies, mem-
oryless strategies, and linear strategies. A perfect recall strategy can make a
decision about the instruction to be invoked based on the complete history of
all classes visited and the instructions used so far. As the name suggests, a
memoryless strategy can only take into account the indistinguishability class
the system is currently in. Finally, a linear strategy is a list of instructions that
should be executed in the given order without taking into account the past and
present indistinguishability classes.

The discussed earlier strategy s (that uses instruction 1 in classes rx1s and
rb1s and instruction 0 in classes ra1s and ry1s) is memoryless because it chooses
an instruction based only on the current class. As we have seen earlier, this
strategy can be used to navigate from class rx1s to class ry1s while being con-
strained to classes rx1s and ra1s. Navigation from class ry1s to class rx1s while
constrained to classes ry1s and ra1s is less trivial. It can be accomplished using
a perfect recall strategy that uses instruction 1 each time in class ry1s and on
the first and the third visit to a state in class ra1s and uses instruction 0 on the
second visit to a state in class ra1s. However, a memoryless strategy to navigate
from class ry1s to class rx1s while constrained to classes ry1s and ra1s does not
exist. Indeed, any such strategy will have to transition the system from state
y3 to state a3. It also will have to use the same instruction on each visit to each
state of class ra1s. If this instruction is 0, then the system will “bounce” back
from state a3 to state y3. If the instruction is 1, then the system will “loop”
between states a1 and a3. In either of these cases it will never reach a state in
class rx1s. There is no single linear strategy to navigate from all states of class
rx1s to a state in class ry1s of the epistemic transition system T1, even without
intermediate constraints. However, there are separate such strategies for each
state in class rx1s. For example, linear strategy 1100 navigates the system from
state x1 to state y3 while constrained to classes rx1s and ra1s.

We gave a complete axiomatization of the properties of navigability without
intermediate constraints for perfect recall and memoryless strategies in [11]. A
similar result for linear strategies was given by Wang in [34]. The major property
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that distinguishes navigability by these three types of strategies is transitivity.
While navigability by perfect recall and linear strategies is a transitive relation,
navigability by memoryless strategies is not. Indeed, consider transition system

x y za1 a2
0 10 1

1 0 0
1

0
1

Figure 2: Epistemic transition system T2.

T2 depicted in Figure 2. Note that the memoryless strategy that invokes instruc-
tion 0 in each state can be used to navigate from class rxs to class rys in this
transition system. Similarly, the memoryless strategy that invokes instruction 1
in each state can be used to navigate from class rys to class rzs. However, there
is no memoryless strategy to navigate from class rxs to class rzs because such a
strategy would have to use the same instruction in states a1 and a2.

Complete axiomatization of navigability by linear strategies with intermedi-
ate constraints was given by Li and Wang [21]. In this article we propose such
axiomatization for memoryless strategies. An important observation about the
axiomatization that we propose is that it includes a restricted form of transitiv-
ity. Namely, it contains axiom ABBC Ñ pCBDE Ñ ABBYDEq, where classes
B and D are disjoint. In other words, although a simple language of navigability
without constraints does not allow to capture any meaningful form of transitiv-
ity for memoryless strategies, the more expressive language with intermediate
constraints can do this.

2 Other Related Literature

Most of the existing literature on logical systems for reasoning about strategies
is focused on modal logics for coalition strategies. Logics of coalition power
were proposed by Marc Pauly [28, 29], who also proved the completeness of
the basic logic of coalition power. Pauly’s approach has been widely studied in
literature [14, 33, 9, 30, 3, 4, 7]. An alternative, binary-modality-based, logical
system was proposed by More and Naumov [22].

Alur, Henzinger, and Kupferman introduced Alternating-Time Temporal
Logic (ATL) that combines temporal and coalition modalities [5]. Complete-
ness of ATL was shown by Goranko and Drimmelen [15]. Van der Hoek and
Wooldridge proposed to combine ATL with epistemic modality to form Alter-
nating-Time Temporal Epistemic Logic [32]. However, they did not prove the
completeness theorem for the proposed logical system. A completeness theorem
for a logical system that combines coalition power and epistemic modalities was
proven by Ågotnes and Alechina [1]. An alternative approach to expressing the
power to achieve a goal in a temporal setting is the STIT logic [8, 17, 18, 16, 27].
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[10] has shown that coalition logic can be embedded into a variation of STIT
logic.

The notion of a strategy that we consider in this article is much more restric-
tive than the the notion of strategy in the works mentioned above. Namely, we
assume that the strategy must be based only on the information available to the
agent. This is captured in our setting by requiring the strategy to be the same in
all indistinguishable states or all indistinguishable histories. This restriction on
strategies has been studied before under different names. Jamroga and Ågotnes
talk about “knowledge to identify and execute a strategy” [19], Jamroga and van
der Hoek discuss “difference between an agent knowing that he has a suitable
strategy and knowing the strategy itself” [20]. Van Benthem calls such strate-
gies “uniform” [31]. Naumov and Tao [23] used the term “executable strategy”.
Ågotnes and Alechina gave a complete axiomatization of an interplay between
single-agent knowledge and know-how modalities [2]. Naumov and Tao [23]
axiomatized interplay between distributed knowledge modality and know-how
coalition strategies for enforcing a condition indefinitely. A similar complete log-
ical system in a single-agent setting for know-how strategies to achieve a goal in
multiple steps rather than to maintain a goal is developed by Fervari, Herzig,
Li, Wang [12]. Naumov and Tao proposed a complete trimodal logical system
that describes an interplay between distributed knowledge, coalition power, and
know-how coalition power modalities for goals achievable in one step [24] as well
as a modal logic for second-order know-how [25]. All of the above works do not
consider a perfect recall setting. Modal logic that combines distributed knowl-
edge with coalition power in a perfect recall setting has been recently proposed
by Naumov and Tao [26]. Unlike this article, they only consider goals achievable
in one step.

Most of the mentioned above works deal with multiagent game-like settings
where coalitions of players cooperate to achieve a certain goal. Although nav-
igability explicitly assumes existence of only one agent, it can be thought of
as a two-person game between the agent and the environment because of our
assumption in this article that transitions in the system might be nondetermin-
istic. Thus, the modal logic approach and the relational approach provide two
different languages for describing the same phenomenon.

3 Article Outline

The rest of this article is structured as following. In Section 4 we introduce
the syntax of our logical system. In Section 5 we define the formal semantics
of this system. Section 6 lists the axioms of our system. In Section 7 we give
several examples of formal derivations. These results will be used later in the
proof of completeness. Section 8 and Section 9 prove the soundness and the
completeness of our logical system respectively. Section 10 concludes.
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4 Syntax

In the introduction we discussed the ternary relation A BB C as a relation
between three sets of indistinguishability classes of a given epistemic transition
system. Note that A, B, and C here are not syntactical objects, but sets of
states in a specific system. In the rest of this article we present a formal logical
system capturing the universally true properties of this relation in an arbitrary
epistemic transition system. Note that sets of classes A, B and C are specific to
a particular epistemic transition system and thus can not be used to formally
state properties common to all epistemic transition systems. In this article we
overcome this issue by assuming that there is a fixed finite set V of views. A
transition model specifies an observation function from states to views instead
of specifying an indistinguishability relation between states. Informally, two
states are indistinguishable if and only if the values of the observation function
on these two states are equal. Using views instead of classes the language of
our logical system can be defined independently from a particular epistemic
transition system as follows.

Definition 1. Let Φ be the minimal set of formulae such that

1. ABB C P Φ for all sets A,B,C Ď V ,

2.  ϕ,ϕÑ ψ P Φ, for all ϕ,ψ P Φ.

The above assumption that set of views V is finite is used later in the proof
of completeness.

5 Semantics

In this section we define formal semantics of our logical system.

Definition 2. Epistemic transition system is a tuple pS, o, I, tÑiuiPIq, where

1. S is a set of states,

2. o : S Ñ V is an observation function,

3. I is a set of instructions,

4. Ñi is a binary relation between states for each i P I.

For example, for the epistemic transition system T2 depicted in Figure 2,
set S is tx, a1, y, a2, zu. Observation function o is such that opxq “ v1, opa1q “
opa2q “ v2, opyq “ v3, and opzq “ v4, where v1, v2, v3, and v4 are arbi-
trary distinctive elements of set V . Instruction set I is t0, 1u. Relation Ñ0 is
tpx, a1q, pa1, yq, py, a1q, pa2, yq, pz, a2qu and relation Ñ1 is tpx, xq, pa1, xq, py, a2q,
pa2, zq, pz, zqu.

Note that epistemic transition system T2 is deterministic in the sense that
there is a unique state v into which the system transitions from a given state w
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under a given instruction i. Definition 2 specifies a transition system in terms
of a transitive relation Ñi. We allow several states v such that w Ñi v to model
nondeterministic transitions. We allow the set of such states v to be empty to
model terminating transitions. Informally, if in a state w an instruction i is
invoked such that there is no v for which w Ñi v, then the system terminates
and no further instructions are executed.

In the introduction we made a distinction between memoryless and recall
strategies. Since the rest of the article deals only with memoryless strategies,
we refer to such strategies simply as strategies.

Definition 3. A strategy is an arbitrary function from V to I.

A side effect of our choice to use views instead of equivalence classes is that
there might be one or more views that are not values of the observation function
on any state in the epistemic transition system. Such views define what we call
“empty equivalence classes” in the introduction. Per Definition 3, a strategy
must still be defined on such views.

The next definition specifies the paths in an epistemic transition system that
start in a given set of views and are compatible with a given strategy.

Definition 4. For any set A Ď V and any strategy s, let PathspAq be the set
of all (finite or infinite) sequences w0, w1, w2, ¨ ¨ ¨ P S such that

1. opw0q P A, and

2. wk Ñspopwkqq wk`1 for each k ě 0 for which wk`1 exists.

For epistemic transition system T2, sequence x, a1, y belongs to set Pathsptopxquq,
where opxq is the view assigned in system in T2 to state x and s is a strategy
such that spvq “ 0 for each v P V .

A path π1 is an extension of a path π if π is a prefix of π1 or π1 “ π.

Definition 5. MaxPathspAq is the set of all sequences in PathspAq that are
either infinite or cannot be extended to a longer sequence in PathspAq.

Note that we do not require paths to be simple. For epistemic transition sys-
tem T2, the infinite sequence y, a2, z, z, . . . belongs to the setMaxPathsptopyquq,
where opyq is the view assigned in that epistemic transition system to state y
and s is a strategy such that spvq “ 1 for each v P V .

Lemma 1. Any sequence in PathspAq can be extended to a sequence in MaxPathspAq.

Proof. Any sequence in PathspAq which is not in MaxPathspAq can be ex-
tended to a longer sequence in PathspAq. Repeating this step multiple times
one can get a finite or an infinite sequence in MaxPathspAq.

The next definition introduces a technical notation that we use to define the
semantics of the restricted navigability relation ABB C.

Definition 6. Let UntilpA,Bq be the set of all such sequences w0, w1, w2, . . .
that there is k0 ě 0 where
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1. opwkq P A for each k ă k0 and

2. opwk0
q P B.

Definition 7. For any epistemic transition system T and any formula ϕ, sat-
isfiability relation T ( ϕ is defined as follows:

1. T ( ABB C if MaxPathspAq Ď UntilpB,Cq for some strategy s,

2. T (  ϕ if T * ϕ,

3. T ( ϕÑ ψ if T * ϕ or T ( ψ.

Note that although we allow non-deterministic transitions, item 1 in the
above definition requires all paths from set MaxPathspAq to belong to set
UntilpB,Cq. This is different from how non-deterministic computation is treated
in the automata theory.

6 Axioms

In addition to the propositional tautologies in language Φ, our logical system
contains the following axioms:

1. Reflexivity: ABB C, where A Ď C,

2. Augmentation: ABB C Ñ pAYDqBB pC YDq,

3. Transitivity: ABB C Ñ pC BD E Ñ ABBYD Eq, where B XD “ ∅,

4. Early Bird: ABB C Ñ ABBzC C,

5. Trivial Path: AB∅ B Ñ pAzBqB∅ ∅,

6. Path to Nowhere: ABB ∅Ñ AB∅ ∅.

If the subscript is omitted from the first three axioms, then the resulting prop-
erties are known in the database literature as Armstrong axioms [13, p. 81].
They give a sound and complete axiomatization of the functional dependency
relation in database theory [6].

The fourth axiom says that if there is a strategy to navigate from set A to
set C passing only through set B, then there is a strategy to navigate from set
A to set C passing only through set BzC. Indeed, once a state of a class of the
set C is reached for the first time, there is no need to continue the execution
of the strategy. Thus, the navigation path will never have to pass through set
B X C. In essence, the axiom states that the execution of any strategy can be
terminated once the desired goal is reached for the first time. For this reason
we call this axiom the Early Bird axiom.

The Trivial Path axiom states that if there is a strategy to navigate from
set A to set B through an empty set of states, then set AzB must be empty.
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Finally, the Path to Nowhere axiom states that if there is a strategy to navigate
from set A to a state in an empty set, then set A must be empty.

We write $ ϕ if formula ϕ is provable in our logical system using the Modus
Ponens inference rule. We write X $ ϕ if formula ϕ is provable from the axioms
of our system and the set of additional axioms X.

7 Examples of Derivations

The soundness and the completeness of our logical system is proven in Section 8
and Section 9. In this section we give several examples of formal derivations in
this system. The results obtained here are used in the proof of the completeness.

Lemma 2. $ ABB C Ñ A1 BB C, where A1 Ď A.

Proof. Assumption A1 Ď A implies that $ A1 B∅ A by the Reflexivity axiom.
Hence, $ A BB C Ñ A1 B∅YB C by the Transitivity axiom. Therefore, $
ABB C Ñ A1 BB C.

Lemma 3. $ ABB C Ñ ABB1 C, where B Ď B1.

Proof. By the Reflexivity axiom, $ A BB1zB A. Hence, by the Transitivity
axiom, $ ABB C Ñ ABpB1zBqYB C. Therefore, $ ABB C Ñ ABB1 C, due to
the assumption B Ď B1.

Lemma 4. $ ABB C Ñ ABB C 1, where C Ď C 1.

Proof. By the Transitivity axiom, $ ABB C Ñ pC B∅ C
1 Ñ ABB C

1q. Hence,
by the laws of logical reasoning,

$ C B∅ C
1 Ñ pABB C Ñ ABB C 1q. (1)

At the same time, the assumption C Ď C 1 implies $ CB∅C
1 by the Reflexivity

axiom. Hence, ABB C Ñ ABB C 1 due to statement (1).

Lemma 5. $ B1 B∅ ∅Ñ pABB C Ñ ABBzB1 Cq.

Proof. First, $ A BB C Ñ A BB pC Y B1q by Lemma 4. Second, the formula
ABB pC YB

1q Ñ ABBzpCYB1q pC YB
1q is an instance of the Early Bird axiom.

Third, $ A BBzpCYB1q pC Y B1q Ñ A BBzB1 pC Y B1q by Lemma 3 because
BzpC Y B1q Ď BzB1. The three statements above by the laws of propositional
reasoning imply that

$ ABB C Ñ ABBzB1 pC YB
1q. (2)

At the same time,
B1 B∅ ∅Ñ pB1 Y CqB∅ C (3)

is an instance of the Augmentation axiom. Finally, the formula

ABBzB1 pC YB
1q Ñ ppB1 Y CqB∅ C Ñ ABBzB1 Cq (4)
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is an instance of the Transitivity axiom. Taken together, statement (2), state-
ment (3), and statement (4) imply by the laws of propositional reasoning that
$ B1 B∅ ∅Ñ pABB C Ñ ABBzB1 Cq.

Lemma 6. $ ABB C Ñ pC BD E Ñ ABBYD Eq if B XD Ď C.

Proof. Assumption B XD Ď C implies that BzC Ď BzD. Thus, by Lemma 3,
$ A BBzC C Ñ A BBzD C. At the same time $ A BB C Ñ A BBzC C by the
Early Bird axiom. Hence, by the laws of propositional reasoning,

$ ABB C Ñ ABBzD C.

Note that ABBzDC Ñ pCBDE Ñ ABBYDEq is an instance of the Transitivity
axiom. Therefore, $ A BB C Ñ pC BD E Ñ A BBYD Eq by the laws of
propositional reasoning.

8 Soundness

In this section we prove the soundness of our logical system. The soundness of
each of the axioms is stated as a separate lemma. The soundness theorem for
the logical system is given in the end of the section. We start with a technical
lemma that lists properties of sets Until and MaxPath. These properties are
used in the proofs of the soundness of the axioms.

Lemma 7. For any set A,B,C Ď V and any strategy s:

1. MaxPathspAq Ď Untilp∅, Aq,

2. MaxPathspAq ĎMaxPathspA
1q, where A Ď A1,

3. MaxPathspAYBq “MaxPathspAq YMaxPathspBq,

4. UntilpA,∅q “ ∅,

5. UntilpA,Bq Ď UntilpA,B1q, where B Ď B1,

6. UntilpA,Bq Ď UntilpA1, Bq, where A Ď A1,

7. UntilpA,Bq Ď UntilpAzB,Bq,

8. Untilp∅, Aq X Untilp∅, Bq Ď Untilp∅, AXBq.

Proof. Statements 1 through 8 follow from Definition 5 and Definition 6.

Next, we show the soundness of the Reflexivity axiom and the Augmentation
axiom.

Lemma 8. If A Ď C, then T ( ABB C.
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Proof. By Lemma 7 and the assumption A Ď C,

MaxPathspAq Ď Untilp∅, Aq Ď Untilp∅, Cq Ď UntilpB,Cq.

Therefore, T ( ABB C by Definition 7.

Lemma 9. If T ( ABB C, then T ( pAYDqBB pC YDq.

Proof. Let T ( A BB C. Thus, MaxPathspAq Ď UntilpB,Cq by Definition 7.
Hence, by Lemma 7,

MaxPathspAYDq “ MaxPathspAq YMaxPathspDq

Ď UntilpB,Cq Y Untilp∅, Dq
Ď UntilpB,Cq Y UntilpB,Dq

Ď UntilpB,C YDq Y UntilpB,C YDq

“ UntilpB,C YDq.

Therefore, T ( A,D BB C,D by Definition 7.

The proof of the soundness of the Transitivity axiom is based on the following
auxiliary lemma.

Lemma 10. If MaxPaths1pAq Ď UntilpB,Cq and s1pvq “ s2pvq for each
v P B, then MaxPaths2pAq Ď UntilpB,Cq.

Proof. Consider any sequence π “ w0, w1, ¨ ¨ ¨ PMaxPaths2pAq. We prove that
π P UntilpB,Cq by separating the following two cases:
Case I: opwkq P BzC for each k ě 0. Thus, s1popwkqq “ s2popwkqq due to
the assumption of the lemma that s1pvq “ s2pvq for each view v P B. Hence,
the assumption π P MaxPaths2pAq implies that π P MaxPaths1pAq by Defi-
nition 4. Therefore, π P UntilpB,Cq due to the assumption MaxPaths1pAq Ď
UntilpB,Cq of the lemma.
Case II: opwkq R BzC for some k ě 0. Let m ě 0 be the smallest such k that
opwkq R BzC. Thus,

1. opwkq P pBzCq for each k ă m and

2. opwmq R pBzCq.

Hence, opwkq P B for each k ă m. We now further split Case II into two
different parts:
Part A: opwmq P C. Therefore, π P UntilpB,Cq by Definition 6.
Part B: opwmq R C. Note that condition opwkq P B for each k ă m implies
that s1popwkqq “ s2popwkqq for each k ă m due to the assumption of the lemma
that s1pvq “ s2pvq for each v P B. Thus, w0, w1, . . . , wm P Paths1pAq. By
Lemma 1, this sequence can be extended to a sequence π1 “ w0, w1, . . . , wm, ¨ ¨ ¨ P
MaxPaths1pAq.

At the same time opwkq P B for each k ď m by the choice of k and
opwmq R C by the assumption of the case. Thus, π1 R UntilpB,Cq. Therefore,
π1 P MaxPaths1pAq but π1 R UntilpB,Cq, which contradicts the assumption
MaxPaths1pAq Ď UntilpB,Cq of the lemma.
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We are now ready to finish the proof of the soundness of the remaining
axioms of our logical system.

Lemma 11. If T ( A BB C and T ( C BD E, then T ( A BBYD E, where
B XD “ ∅.

Proof. By Definition 7, the assumption T ( A BB C implies that there is a
strategy s1 such that MaxPaths1pAq Ď UntilpB,Cq. Similarly, the assumption
T ( C BD E implies that there is a strategy s2 such that MaxPaths2pCq Ď
UntilpD,Eq.

Define strategy s as follows

spvq “

#

s1pvq if v P B,

s2pvq otherwise.
(5)

By Definition 7, it suffices to show that MaxPathspAq Ď UntilpB Y D,Eq.
Indeed, consider any sequence π “ w0, w1, w2, ¨ ¨ ¨ P MaxPathspAq. We will
show that π P UntilpB YD,Eq.

Note that s1pvq “ spvq for each v P B by equation (5). Note also that
MaxPaths1pAq Ď UntilpB,Cq by the choice of strategy s1. Thus, MaxPathspAq Ď
UntilpB,Cq By Lemma 10. Hence, π P UntilpB,Cq because π PMaxPathspAq.
Thus, by Definition 6, there is an integer k0 ě 0 such that

1. opwkq P B for each integer k such that k ă k0,

2. opwk0
q P C.

Note that s2pvq “ spvq for each view v P D by equation (5) and the assumption
B XD “ ∅. Also, MaxPaths2pCq Ď UntilpD,Eq by the choice of strategy s2.
Thus, MaxPathspCq Ď UntilpD,Eq by Lemma 10. Consider now the sequence
π1 “ wk0

, wk0`1, wk0`2, ¨ ¨ ¨ P MaxPathspCq. Then, π1 P UntilpD,Eq. Hence,
by Definition 6, there is an integer k10 ě k0 such that

1. opwkq P D for each integer k such that k0 ď k ă k10,

2. opwk10
q P E.

Therefore, π P UntilpB YD,Eq by Definition 6.

Lemma 12. If T ( ABB C, then T ( ABBzC C.

Proof. Let T ( A BB C. Thus, MaxPathspAq Ď UntilpB,Cq by Definition 7.
Hence, MaxPathspAq Ď UntilpB,Cq Ď UntilpBzC,Cq, by Lemma 7. There-
fore, T ( ABBzC C by Definition 7.

Lemma 13. If T ( AB∅ B, then T ( pAzBqB∅ ∅.

Proof. By Definition 7, the assumption T ( A B∅ B implies that there is a
strategy s such that MaxPathspAq Ď Untilp∅, Bq. Thus, by Lemma 7,

MaxPathspAzBq ĎMaxPathspAq Ď Untilp∅, Bq.
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At the same time, by Lemma 7,

MaxPathspAzBq ĎMaxPathspV zBq Ď Untilp∅, V zBq.

Thus, by Lemma 7,

MaxPathspAzBq Ď Untilp∅, Bq X Untilp∅, V zBq
“ Untilp∅, B X pV zBqq
“ Untilp∅,∅q.

Therefore, T ( pAzBqB∅ ∅ by Definition 7.

Lemma 14. If T ( ABB ∅, then T ( AB∅ ∅.

Proof. By Definition 7, the assumption T ( A BB ∅ implies that there is a
strategy s such that MaxPathspAq Ď UntilpB,∅q. Thus, by Lemma 7,

MaxPathspAq Ď UntilpB,∅q “ ∅ Ď Untilp∅,∅q.

Therefore, T ( AB∅ ∅ by Definition 7.

We end the section by stating the soundness theorem for our logical system.
The theorem follows from the soundness of the individual axioms shown in the
lemmas above.

Theorem 1. If $ ϕ, then T ( ϕ for each epistemic transition system T .

9 Completeness

Suppose that set X is a fixed maximal consistent set of formulae in the language
Φ. In this section we define a canonical epistemic transition system T pXq “
pS, o, I, tÑiuiPIq based on set X. Sets S and I of this system will be specified
in terms of “valid” views.

9.1 Valid Views

Note that statement v B∅ ∅ means that there is a path from each state with
view v to an empty set. Since no such path exists, statement v B∅ ∅ could be
interpreted as saying that there are no states with view v. Informally, we think
about such views as “invalid” views. All views which are not invalid are referred
to as “valid” views. The canonical epistemic system will have at least one state
for each valid view.

Definition 8. V alid “ tv P V | X & v B∅ ∅u.

Below we prove several properties of valid views that are used later in the
proof of the completeness.
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Lemma 15. X $ tb1, . . . , bnu B∅ ∅, for each integer n ě 0 and all views
b1, . . . , bn P V zV alid.

Proof. We prove this lemma by induction on n. In the case n “ 0, we need to
show that X $ ∅B∅ ∅, which is true by the Reflexivity axiom.

Suppose that X $ tb1, . . . , bn´1uB∅ ∅. Thus, by the Augmentation axiom,
X $ tb1, . . . , bn´1, bnuB∅ bn. On the other hand, the assumption bn P V zV alid
by Definition 8 implies X $ bn B∅ ∅. Therefore, by the Transitivity axiom,
X $ tb1, . . . , bn´1, bnuB∅ ∅.

Lemma 16. X $ ABB C Ñ ABBXV alid C.

Proof. Lemma 15 implies that X $ pBzV alidqB∅ ∅. Hence, by Lemma 5,

X $ ABB C Ñ ABBzpBzV alidq C.

In other words, X $ ABB C Ñ ABBXV alid C.

Lemma 17. X $ ABB C Ñ ABB pC X V alidq.

Proof. Lemma 15 implies that X $ pCzV alidqB∅ ∅. Thus, by the Augmenta-
tion axiom, X $ C B∅ pC X V alidq. At the same time,

ABB C Ñ pC B∅ pC X V alidq Ñ ABB pC X V alidqq

is an instance of the Transitivity axiom. Therefore, by the laws of propositional
reasoning, X $ ABB C Ñ ABB pC X V alidq.

Lemma 18. If X $ ABB C, then pAzCq X V alid Ď B.

Proof. Suppose that there is v P pAzCq X V alid such that v R B. Thus, v P A,
v R C, v P V oid, and v R B.

Recall that X $ A BB C by the assumption of the lemma. It follows that
X $ v BB C by Lemma 2 and due to v P A. Thus, X $ v BB B Y C by
Lemma 4. Hence, X $ v BBzpBYCq B Y C by the Early Bird axiom. In other
words, X $ vB∅BYC. Thus, X $ vB∅ ∅ by the Trivial Path axiom. Hence,
v R V alid by Definition 8, which contradicts the choice of view v.

9.2 Instructions

For each formula ABB C P X our canonical epistemic transition system T pXq
will have a strategy to navigate from set A to set C through set B. Generally
speaking, this strategy will use a dedicated instruction associated with formula
ABBC. Formally, the set of all instructions of transition system T pXq is defined
as a set of triples pA,B,Cq satisfying the three properties listed below:

Definition 9. Let I be the set of all triples pA,B,Cq such that

1. A,B,C Ď V alid,

14



2. X $ ABAYB C,

3. sets A, B, and C are pairwise disjoint.

Note that technically instruction pA,B,Cq is associated not with formula
A BB C, but rather with formula A BAYB C. This is done in order to be able
to assume that sets A, B, and C are pairwise disjoint. The next lemma is a
general property of sets, which is used later.

Lemma 19. pAYBqzC “ pAzCq Y pBzpAY Cqq.

Proof.

pAYBqzC “ pAY pBzAqqzC “ pAzCq Y ppBzAqzCq

“ pAzCq Y pBzpAY Cqq

We stated earlier that for each ABB C P X there is a dedicated instruction
used by the strategy that navigates from set A to set C through set B. In some
situations this dedicated instruction could be pA,B,Cq. However in most cases
we would need to slightly modify tuple pA,B,Cq into tuple pA1, B1, C 1q in order
for it to satisfy the three conditions from Definition 9. The next lemma specifies
pA1, B1, C 1q in terms of pA,B,Cq and proves that pA1, B1, C 1q is an instruction.

Lemma 20. If X $ ABB C, then pA1, B1, C 1q P I, where A1 “ pAzCq X V alid,
B1 “ pBzpAY Cqq X V alid, and C 1 “ C X V alid.

Proof. By Definition 9, it suffices to show that sets A1, B1, and C 1 are pairwise
disjoint and that X $ A1BA1YB1 C

1. First, we show that these sets are pairwise
disjoint:

A1 XB1 “ rpAzCq X V alids XB1 Ď AXB1

“ AX rpBzpAY Cqq X V alids Ď AX rBzAs “ ∅,

A1 X C 1 “ rpAzCq X V alids X C 1 Ď rAzCs X C 1

“ rAzCs X rC X V alids Ď rAzCs X C “ ∅,

B1 X C 1 “ rpBzpAY Cqq X V alids X C 1 Ď rBzCs X C 1

“ rBzCs X rC X V alids Ď rBzCs X C “ ∅.

Next, we show that X $ A1 BA1YB1 C
1. Indeed, by Lemma 2, the assumption

X $ ABB C implies X $ AzC BB C. Hence, X $ AzC BAYB C by Lemma 3.
Thus, X $ AzC BpAYBqzC C by the Early Bird axiom. Then, by Lemma 19,

X $ AzC BpAzCqYpBzpAYCqq C.

Thus, by Lemma 2,

X $ pAzCq X V alidBpAzCqYpBzpAYCqq C.

15



Hence, by Lemma 16,

X $ pAzCq X V alidBppAzCqYpBzpAYCqqqXV alid C.

Thus, by Lemma 17,

X $ pAzCq X V alidBppAzCqYpBzpAYCqqqXV alid C X V alid.

Therefore, X $ A1 BA1YB1 C
1 by the choice of sets A1, B1, and C 1.

Informally, the next lemma states that if there is an instruction to navigate
from a set A to an empty set, then set A must be empty.

Lemma 21. For any pA,B,Cq P I if C “ ∅, then A “ ∅.

Proof. The assumption pA,B,Cq P I implies that X $ A BAYB C, by Defini-
tion 9. Thus, X $ ABAYB∅ due to the assumption C “ ∅. Hence, X $ AB∅∅
by the Path to Nowhere axiom. Suppose that there is a view a P A. Hence,
X $ aB∅ ∅ by Lemma 2. Thus, a R V alid by Definition 8. At the same time,
A Ď V alid by Definition 9. Hence, a R A, which is a contradiction with the
choice of view a.

9.3 States and Observation Function

There are two types of states in the canonical epistemic transition system T pXq.
The first type of states comes from our intention for each v P V alid to have at
least one state w such that opwq “ v. Thus, we consider each v P V alid to be
a state of the first type and define the observation function on the states of the
first type as opvq “ v.

In addition to the states of the first type, the canonical epistemic transition
system also has states of the second type. Informally, these are intermediate
states representing the result of a partial execution of an instruction. If an
instruction imight transition the system from a state w of the first type to a state
v of the first type, then the same instruction also might transition the system
into a partial completion state pu, iq of the second type. If the same instruction
i is invoked in state pu, iq, then the system will finish the transition into state v.
If an instruction j ‰ i is invoked in state pu, iq, then the system abandons the
partially completed instruction i and goes into a state prescribed by instruction
j. The next two definitions formally capture this intuition. Symbol \ represents
disjoint union.

Definition 10. S “ V alid\ pV alidˆ Iq.

Definition 11.

opwq “

#

w, if w P V alid,

v, if w “ pv, iq,

opv,Bq “ v.
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Lemma 22. opwq P V alid for each w P S.

Proof. The statement of the lemma follows from Definition 10 and Definition 11.

9.4 Transitions

Recall that the set of states of a canonical transition model is equal to the
disjoint union V alid\ pV alidˆ Iq. We refer to a state as having type one if it
belongs to set V oid and type two if it belongs to set V alidˆ I.

A ⊔ (A × (I \ {i}))

C

(A ∪ B) × {i}

A ⊔ (A × I)

full

partial

partial

Figure 3: Transitions on instruction pA,B,Cq

An instruction pA,B,Cq could be used to make one of the following transi-
tions, see Figure 3:

1. a “full” transition from any state w such that opwq P A to any state u P C
of the first type,

2. a “partial” transition from any state w such that opwq P A and state w is
not a partial completion for transition pA,B,Cq, to a state pv, pA,B,Cqq
of the second type such that v P AYB,

3. a “partial” transition from any state w such that opwq P AYB and state
w is a partial completion for transition pA,B,Cq, to any state u P C.

The next definition captures the above informal description.

Definition 12. If i “ pA,B,Cq P I, then

Ñi “ tpa, cq | a P A\ pAˆ Iq, c P Cu

Y tpa, bq | a P A\ pAˆ pIztiuqq, b P pAYBq ˆ tiuu

Y tpb, cq | b P pAYBq ˆ tiu, c P Cu.
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This concludes the definition of the canonical epistemic transition system
T pXq “ pS, o, I, tÑiuiPIq. The next two lemmas prove basic properties of the
transition relation Ñi. These properties are used later in the proof of the
completeness.

Lemma 23. For any strategy s, any set E Ď V alid, any sequence π PMaxPathspEq,
and any element w of π, if spopwqq “ pA,B,Cq and opwq P A, then w cannot
be the last element of sequence π.

Proof. By Definition 11, the assumption opwq P A implies that w P A\pAˆ Iq.
By Lemma 21, the same assumption opwq P A implies that there is a view
c P C. Thus, w ÑpA,B,Cq c by Definition 12. Hence, w Ñspopwqq c due to
the assumption spopwqq “ pA,B,Cq. Therefore, element w cannot be the last
element of sequence π by Definition 5.

Lemma 24. For any strategy s, any set E Ď V alid, any sequence π PMaxPathspEq,
and any two consecutive elements w and w1 of π such that

1. w P A\ pAˆ Iq,

2. w1 P pAYBq ˆ tpA,B,Cqu,

3. spopw1qq “ pA,B,Cq,

the sequence π contains an element w2 immediately after the element w1 such
that opw2q P C.

Proof. By Definition 11, assumption w P A \ pA ˆ Iq implies that opwq P
A. Hence, by Lemma 21, set C contains at least one element c. Note that
w1 ÑpA,B,Cq c by Definition 12 due to the assumption w1 P pAYBqˆtpA,B,Cqu
of the lemma. Thus, by Definition 5, element w1 is not the last element of
sequence π.

Let w2 be the element of sequence π that immediately follows element w1.
Hence, w1 Ñspopw1qq w

2. Thus, w1 ÑpA,B,Cq w
2 by the assumption spopw1qq “

pA,B,Cq of the lemma. Then, w2 P C by Definition 12 and due to the as-
sumption w1 P pA Y Bq ˆ tpA,B,Cqu of the lemma. Therefore, opw2q P C by
Definition 11.

9.5 Provability Implies Satisfiability for Atomic Formulae

In this section we show if an atomic proposition is provable from set X, then
it is satisfied in the canonical epistemic transition system. The converse of this
statement is shown later in Lemma 34.

Lemma 25. If X $ ABB C, then T pXq ( ABB C.

Proof. Let i0 “ pA
1, B1, C 1q, where A1 “ pAzCq X V alid, B1 “ pBzpA Y Cqq X

V alid, and C 1 “ CXV alid. Thus, i0 P I by Lemma 20. Define strategy s to be
a constant function such that spvq “ i0 for each view v P V . By Definition 7, it
suffices to show that MaxPathspAq Ď UntilpB,Cq.
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Consider any path π “ w0, ¨ ¨ ¨ PMaxPathspAq. By Definition 4, opw0q P A.
Note that if opw0q P C, then π P UntilpB,Cq by Definition 6. In the rest
of the proof, we assume that opw0q R C. Thus, opw0q P pAzCq X V alid by
Lemma 22. Hence, opw0q P A

1 by the choice of set A1. Then, by Lemma 23,
sequence π must contain at least one more element w1 after element w0. Then,
w0 Ñspopw0qq w1 by Definition 4. Hence, w0 Ñi0 w1 by the choice of strategy
s. Then, w0 ÑpA1,B1,C1q w1 by the choice of instruction i0. By Definition 12,
statement w0 ÑpA1,B1,C1q w1 implies that one of the following three cases takes
place:
Case I: w0 P A

1 \ pA1 ˆ Iq and w1 P C
1. Thus, opw0q P A

1 and opw1q P C
1 by

Definition 11. Hence, opw0q P pAzCq X V alid and opw1q P C X V alid due to the
choice of sets A1 and C 1. Thus, opw0q P B by Lemma 18 and also opw1q P C.
Therefore, π P UntilpB,Cq by Definition 6.
Case II: w0 P A

1 \ pA1 ˆ pIzti0uqq and w1 P pA
1 YB1q ˆ ti0u. Thus, opw0q P A

1

and opw1q P A1 Y B1 by Definition 11. Hence, opw0q P pAzCq X V alid and
opw1q P ppAzCq X V alidq Y B1 by the choice of set A1. Hence, opw0q P B and
opw1q P B YB

1 by Lemma Lemma 18. Thus, opw0q, opw1q P B by the choice of
set B1.

Recall that w0 P A1 \ pA1 ˆ pIzti0uqq, w1 P pA
1 Y B1q ˆ ti0u, and i0 “

pA1, B1, C 1q. Thus, by Lemma 24, sequence π must contain an element w2

immediately after the element w1 such that opw2q P C
1. Hence opw2q P C by

the choice of set C 1. Thus, we have opw0q, opw1q P B and opw2q P C. Therefore,
π P UntilpB,Cq by Definition 6.
Case III: w0 P pA

1 Y B1q ˆ ti0u and w1 P C 1. Thus, opw0q P A1 Y B1 and
opw1q P C 1 by Definition 11. Hence, opw0q P pppAzCq X V alidqq Y B1 and
opw1q P C by choice of sets A1 and C 1. Thus, opw0q P B Y B1 by Lemma 18
and also opw1q P C. Hence, opw0q P B by the choice of set B1. Therefore,
π P UntilpB,Cq by Definition 6.

9.6 Satisfiability Implies Provability for Atomic Formulae

The goal of this section is to show the converse of Lemma 25. This result is
stated later in the section as Lemma 34. To prove the result, due to Definition 7,
it suffices to show that X & E BF G implies that MaxPathspEq Ę UntilpF,Gq
for each strategy s. In other words, we need to show that for any strategy s
there is a path π P MaxPathspEq that either never comes to G or leaves F
before coming to G. To construct this path, we first define G˚ as a set of all
starting states from which paths under strategy s unavoidably lead to set G
never leaving set F . According to Definition 14, set G˚ is a union of an infinite
chain of sets G “ G0 Ď G1 Ď G2 . . . . Sets tGiuiě0 are defined recursively below.
The same definition also specifies the auxiliary families of sets tHiuiě0, tAiuiě1,
tBiuiě1, tCiuiě1, tA`i uiě1, and tB`i uiě1 that will be used to state and prove
various properties of family tGiuiě0.

Definition 13. For any sets F,G Ď V and any strategy s, let

1. G0 “ G and H0 “ ∅,
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2. choose any instruction pAn, Bn, Cnq P I such that

(a) An YBn Ď F YG,

(b) ta P An | spaq “ pAn, Bn, CnquzGn´1 is not empty,

(c) ta P An | spaq ‰ pAn, Bn, Cnqu Ď Gn´1,

(d) tb P Bn | spbq ‰ pAn, Bn, Cnqu Ď Gn´1,

(e) Cn Ď Gn´1

and define

(i) A`n “ ta P An | spaq “ pAn, Bn, Cnqu,

(ii) B`n “ tb P Bn | spbq “ pAn, Bn, Cnqu,

(iii) Gn “ A`n YGn´1,

(iv) Hn “ B`n YHn´1,

3. if no instruction pAn, Bn, Cnq P I satisfying condition 2a,2b,2c,2d, and 2e
exists, then stop.

Next we state and prove properties of the families of the sets specified in
Definition 13.

Lemma 26. An ‰ Am for each n ą m.

Proof. By item (2b) of Definition 13, there must exist a view a0 P ta P An | spaq “
pAn, Bn, Cnqu such that a0 R Gn´1. Thus, a0 P A

`
n zGn´1 by item (2i) of Defi-

nition 13.
Suppose that An “ Am. Hence, A`n “ A`m by item (2i) of Definition 13.

Notice also that Gn´1 Ě Gm by item (2iii) of Definition 13 and the assumption
n ą m. Then, a0 P A

`
n zGn´1 “ A`mzGn´1 Ď A`mzGm. Hence, A`m Ę Gm, which

contradicts item (2iii) of Definition 13.

Lemma 27. Sets A`n and Hn´1 are disjoint.

Proof. Suppose that there is a view v such that v P A`n and v P Hn´1. Hence, by
items (1) and (2iv) of Definition 13, there must exist m ă n such that v P B`m.
Thus, spvq “ pAn, Bn, Cnq and spvq “ pAm, Bm, Cmq by items (2i) and (2ii) of
Definition 13, which contradicts Lemma 26.

Lemma 28. Sets B`n and Hn´1 are disjoint.

Proof. Suppose that there is a view v such that v P B`n and v P Hn´1. Hence,
by items (1) and (2iv) of Definition 13, there must exist m ă n such that
v P B`m. Thus, spvq “ pAn, Bn, Cnq and spvq “ pAm, Bm, Cmq by item (2ii) of
Definition 13, which contradicts Lemma 26.

Lemma 29. pA`n YB
`
n q X pGn´1 YHn´1q Ď Gn´1, for each n ě 1.
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By Lemma 27 and Lemma 28,

pA`n YB
`
n q X pGn´1 YHn´1q

“ ppA`n YB
`
n q XGn´1q Y ppA

`
n YB

`
n q XHn´1q

“ ppA`n YB
`
n q XGn´1q Y pA

`
n XHn´1q Y pB

`
n XHn´1q

Ď Gn´1 Y∅Y∅ “ Gn´1.

Lemma 30. X $ Gn BGnYB`n
Gn´1, for each n ě 1.

Proof. Note that Cn Ď Gn´1 by item (2e) of Definition 13. Thus, $ CnB∅Gn´1

by the Reflexivity axiom. Also, X $ An BAnYBn
Cn by Definition 9. Thus,

X $ An BAnYBn Gn´1 by the Transitivity axiom. Hence,

X $ An B
pAnzA

`
n qYA`nYpBnzB

`
n qYB`n

Gn´1

because A`n Ď An and B`n Ď Bn by item (2i) and item (2ii) of Definition 13.
Note that AnzA

`
n Ď Gn´1 and BnzB

`
n Ď Gn´1 by items (2c), (2d), (2i) and

(2ii) of Definition 13. Thus, by Lemma 3,

X $ An BA`nYGn´1YB`n
Gn´1.

Hence, by Lemma 2 and due to item (2i) of Definition 13,

X $ A`n BA`nYGn´1YB`n
Gn´1.

Thus, X $ A`n YGn´1BA`nYGn´1YB`n
Gn´1 by the Augmentation axiom. Then,

X $ Gn BGnYB`n
Gn´1 by by item (2iii) of Definition 13.

Lemma 31. X $ Gn BGnYHn
G

Proof. We prove this statement by induction on n. If n “ 0, then Gn “ G by
item (1) of Definition 13. Therefore, $ GnBGnYHn G by the Reflexivity axiom.

Suppose that n ą 0. Thus, X $ Gn BGnYB`n
Gn´1 by Lemma 30. Thus,

X $ Gn B
pGnzGn´1qYpB

`
n zGn´1q

Gn´1 by the Early Bird axiom. Thus, X $

Gn BA`nYpB
`
n zGn´1q

Gn´1, by by item (2iii) of Definition 13. Hence, X $

GnBA`nYB`n
Gn´1 by Lemma 3. At the same time, X $ Gn´1BGn´1YHn´1 G by

the induction hypothesis. Thus, X $ Gn BA`nYB`nYGn´1YHn´1
G by Lemma 6

taking into account Lemma 29. Therefore, X $ Gn BGnYHn
G by items (2iii)

and (2iv) of Definition 13.

Definition 14. G˚ “
Ť

nGn.

Lemma 32. There is n ě 0 such that G˚ “ Gn.

Proof. By Definition 13 and Definition 14, we have G0 Ď G1 Ď G2 ¨ ¨ ¨ Ď G˚ Ď
V . Thus, the statement of the lemma follows from the assumption in Section 4
that set V is finite.

Lemma 33. Gn YHn Ď F YG.
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Proof. Consider any n ě 0. Note that An Y Bn Ď F Y G by line (2a) of
Definition 13. Thus, A`n YB

`
n Ď FYG by line (2i) and line (2ii) of Definition 13.

Hence, A`n YB
`
n Ď F YG for all n ě 0. Then, Gn YHn Ď F YG for all n ě 0

by by line (2a), line (2iii), and line (2iv) of Definition 13.

We are now ready to state and prove the main lemma of this section. The
statement of this lemma is the contrapositive of Lemma 25.

Lemma 34. If T pXq ( E BF G, then X $ E BF G.

Proof. Suppose that T pXq ( EBF G. Thus, by Definition 7, there is a strategy
s such that MaxPathspEq Ď UntilpF,Gq.

Consider chain of sets G0 Ď G1 Ď G2 Ď . . . and set G˚, as specified in
Definition 13 and Definition 14, constructed based on sets F and G as well as
strategy s. We consider the following two cases separately:
Case I: E X V alid Ď G˚. Thus, by the Reflexivity axiom

$ pE X V alidqB∅ G˚. (6)

At the same time, X $ pEzV alidqB∅∅ by Lemma 15. Hence, X $ pEzV alidqY
pE X V alidq B∅ pE X V alidq by the Augmentation axiom. In other words,
X $ E B∅ pE X V alidq. This, together with statement (6) by the Transitivity
axiom implies that X $ EB∅G˚. Thus, by Lemma 32, there is n ě 0 such that
X $ E B∅ Gn. Hence, X $ E BGnYHn

G by Lemma 31 and the Transitivity
axiom. Hence, X $ E BFYG G by Lemma 33 and Lemma 3. Thus, X $

E BpFYGqzG G by the Early Bird axiom. Note that pF YGqzG Ď F . Therefore,
X $ E BF G by Lemma 3.
Case II: there is e P pE X V alidqzG˚. Let

W “ pV zG˚q Y tpw, iq P pV zG˚q ˆ I | spopwqq ‰ iu.

Let π be a maximal (either finite or infinite) sequence w0, w1, . . . of elements
from set W such that

1. w0 “ e,

2. wi Ñspopwiqq wi`1 for all i ě 0.

Claim 1. Sequence π is finite.

Proof of Claim. If sequence π is infinite then π PMaxPathspEq by Definition 5,
opw0q “ opeq P pE X V alidqzG˚ Ď E, and item (2) above. At the same time
π R UntilpF,Gq by Definition 6 because opwiq P opW q Ď V zG˚ Ď V zG0 “ V zG
for each i ě 0. Thus, MaxPathspEq Ę UntilpF,Gq, which is a contradiction
with the choice of strategy s.

Let wk be the last element of sequence π and pA,B,Cq “ spopwkqq. By pr1
and pr2 we mean the first and the second projection of a pair.

Claim 2. If wk P V ˆ I, then pr2pwkq ‰ pA,B,Cq.
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Proof of Claim. Suppose that pr2pwq “ pA,B,Cq. Then, by the choice of
instruction pA,B,Cq, we have pr2pwkq “ spopwkqq. Thus, wk RW by the choice
of set W , which is a contradiction with the choice of sequence π.

Claim 3. opwkq P A.

Proof of Claim. Suppose opwkq R A. First we show π PMaxPathspEq. Assume
π R MaxPathspEq. Thus, by Definition 5 and because opw0q P E, there must
exist state wk`1 P S such that wk Ñspopwkqq wk`1. Hence, wk ÑpA,B,Cq wk`1 by
the choice of the instruction pA,B,Cq. Thus, by Definition 12, the assumption
opwkq R A implies that wk P pA Y Bq ˆ tpA,B,Cqu, which is a contradiction
with Claim 2. Therefore, π PMaxPathspEq.

Recall that MaxPathspEq Ď UntilpF,Gq by the choice of strategy s. Hence,
π P UntilpF,Gq. Thus, by Definition 6, there is m ě 0 such that opwmq P G.
Hence, opwmq P G0 by Definition 13. Thus, opwmq P G˚ by Definition 14. There-
fore, wm R W by the choice of W and Definition 11, which is a contradiction
with the choice of sequence π.

Claim 4. C Ď G˚.

Proof of Claim. Suppose that there is c P C such that c R G˚. Note that
opwkq P A by Claim 3. Thus, wk ÑpA,B,Cq c by Definition 12 and the assumption
c P C. At the same time, the assumption c R G˚ implies c P V zG˚. Which
implies that c PW by the choice of set W . Hence, sequence π can be extended
by at least one more element, namely by state c, which is a contradiction with
the choice of sequence π.

Claim 5. AYB Ď F YG.

Proof of Claim. Suppose that there is x P pA Y BqzpF Y Gq. Recall that
opwkq P A. Thus, wk P A\ pAˆ pIztpA,B,Cquqq by Definition 11 and Claim 2.
Thus, wk ÑpA,B,Cq px, pA,B,Cqq by Definition 12 and because x P AYB. Let
π1 “ π, px, pA,B,Cqq. In other words, π1 is the extension of sequence π by an
additional element px, pA,B,Cqq. Note that π1 P PathspEq by the choice of
sequence π and because wk ÑpA,B,Cq px, pA,B,Cqq. By Lemma 1, sequence π1

can be extended to a sequence π2 PMaxPathspEq. Thus, π2 P UntilpF,Gq by
the choice of strategy s.

At the same time, w1, . . . , wk P W by the choice of sequence π. Thus,
we have opw1q, . . . , opwkq R G˚ by the choice of set W . Then, by Defini-
tion 14, opw1q, . . . , opwkq R G0. Hence, opw1q, . . . , opwkq R G by Definition 13.
Recall that x P pA Y BqzpF Y Gq. Thus, opx, pA,B,Cqq R F Y G. Then,
opw1q, . . . , opwkq, opx, pA,B,Cqq R G and opx, pA,B,Cqq R F . Therefore, π2 R
UntilpF,Gq by Definition 6, which is a contradiction with the above observation
π2 P UntilpF,Gq.

Claim 6. tx P AYB | spxq ‰ pA,B,Cqu Ď G˚.

Proof of Claim. Suppose that there is x P A Y B such that spxq ‰ pA,B,Cq
and x R G˚. Recall that opwkq P A. Thus, wk P A \ pA ˆ pIztpA,B,Cquqq by
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Definition 11 and Claim 2. Thus, wk ÑpA,B,Cq px, pA,B,Cqq by Definition 12
and because x P AYB.

At the same time, opx, pA,B,Cqq “ x R G˚ by Definition 11 and the assump-
tion x R G˚. Hence, px, pA,B,Cqq PW by the choice of W and the assumption
spxq ‰ pA,B,Cq.

Therefore, sequence π can be extended by at least one more element, namely
by state px, pA,B,Cqq, which is a contradiction with the choice of sequence
π.

We are now ready to finish the proof of the lemma. Note that set GnzGn´1

is not empty for each n ě 0 by item (2b) of Definition 13. Thus, the recursive
construction of chain G0 Ď G1 Ď G2 . . . , as given in Definition 13, must ter-
minate due to set V being finite. Suppose that the last element of the chain
G0 Ď G1 Ď G2 . . . is set Gk´1. To come to a contradiction, it suffices to show
that at least one more set can be added to the chain G0 Ď G1 Ď G2 . . . by
choosing instruction pAn, Bn, Cnq to be pA,B,Cq. To prove the latter, we need
to show that instruction pA,B,Cq satisfies conditions (2a) through (2e) of Def-
inition 13. Indeed, condition (2a) is satisfied by Claim 5. Condition (2b) is
satisfied because spopwkqq P A by Claim 3 and opwkq R Gk´1 “ G˚ because
wk P W by Claim 2. Conditions (2c) and (2d) are satisfied by Claim 6. Fi-
nally, condition (2e) is satisfied by Claim 4. This concludes the proof of the
lemma.

9.7 Completeness: The Final Steps

In this section we use Lemma 25 and Lemma 34 to finish the proof of the
completeness theorem. The completeness theorem itself is stated below as The-
orem 2.

Lemma 35. T pXq ( ϕ if and only if ϕ P X.

Proof. Induction on the structural complexity of formula ϕ. In the base case the
statement of the lemma follows from Lemma 25 and Lemma 34. The induction
step follows from the maximality and the consistency of set X in the standard
way.

Theorem 2. If T ( ϕ for every epistemic transition system T , then $ ϕ.

Proof. Suppose & ϕ. Let X be a maximal consistent set containing formula
 ϕ. Thus, T pXq (  ϕ by Lemma 35. Therefore, T pXq * ϕ.

10 Conclusion

In our previous work [11], we have shown that navigability by perfect recall
strategies is transitive and navigability by memoryless strategies is not. In this
article we observe that the situation is different if one considers a more gen-
eral notion of navigability with intermediate constraints. Namely, in this new
setting certain form of transitivity holds even for memoryless strategies. The
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main technical contribution of the article is a sound and complete axiomatiza-
tion of all properties of navigability by memoryless strategies with intermediate
constraints.

In this article and in [11], we compare the properties of the navigability by
perfect recall and memoryless strategies. An interesting possible direction for
future work could be to consider navigability by agents with restricted memory.
Such as, for example, navigability by finite state machines of a given size.
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