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Abstract

In this paper we discuss the property of uniform interpolation in
Propositional and Modal Team Logics

1 Introduction

Interpolation is a desirable property for a logic. In very general terms
it states that if a formula G is a consequence of a formula F , then only
the common language between the two formulas is important, because
G is also a consequence of a formula in the common language. Uniform
interpolation is stronger than Craig interpolation, in the sense that the
interpolant between F and G only depends on F and on the common
language between F and G, but not on G itself: in a logic enjoying
uniform interpolation, given a sublanguage L of the language of F ,
if G1, G2 are two consequences of F having L as common language
with F , then both G1, G2 will be logical conseuqnce of the uniform
interpolant of F w.r.t. L.

Although uniform interpolation is a stronger property than Craig
interpolation, it is, in some way, more stable. Suppose we have two
logics, L1, L2 where L1 is more expressive than L2, and enjoys Craig
interpolation. Hence, if φ, ψ are L2 formulas with φ |= ψ, then φ, ψ

have an interpolant in L1, which, however, could be a formula which
is not equivalent to a formula in L2. On the other hand, we will prove
that FPT L enjoys uniform interpolation and we that the uniform in-
terpolant of a PDEP formula is equivalent to a PDEP formula. More
generally, if L1, L2 are as above, the logic L1 enjoys uniform interpo-
lation, and L2 has some nice semantical characterization inside L1, we
can try to prove that the L1 uniform interpolant of a formula in L2 is
(equivalent to) an L2-formulas.
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As we shall see, this strategy proved to be quite fruitful for team
logics.

2 Propositional and Modal Team Logics

In the sequel Prop denotes a nonempty set of propositional letters.
A team X over Prop is a set of valuations, where a valuation s is a
function s : Prop → {0, 1}.

Team formulas are built from literals p,¬p (for p ∈ Prop) and the
constant ⊥ using conjunction ∧ and the team disjunction ⊗, and are
interpreted on teams as follows:

X |= ⊥ ⇔ X = ∅

X |= pi ⇔ s(pi) = 1 for all s ∈ X

X |= ¬pi ⇔ s(pi) = 0 for all s ∈ X

X |= φ1 ∧ φ2 ⇔ X |= φ1 and X |= φ2

X |= φ1 ⊗ φ1 ⇔ ∃X1, X2 X = X1 ∪X2, X1 |= φ1, X2 |= φ2.

We use the constant ⊤ to denote the formula p⊗ ¬p, for a propo-
sitional variable p in the language; notice that ⊤ is true in any team.
Moreover, we consider also the non empty disjunction ⊛, classical dis-
junction ∨, and a constant for non-emptiness NE:

X |= φ1 ⊛ φ2 ⇔ X = ∅ or ∃X1 6= ∅, X2 6= ∅, X = X1 ∪X2,

X1 |= φ1, X2 |= φ2

X |= φ ∨ ψ ⇔ X |= φ or X |= ψ

X |= NE ⇔ X 6= ∅.

Next, we add the modal operators:

Definition 2.1 The formulas of Modal Logic ML are defined by

α := p | ¬p | ⊥ | α1 ∧ α2 | α1 ⊗ α2 | ✸α1 | ✸α2

where p ∈ Prop.

To interpret the modality operators✷φ,✸φ we enrich the semantics
by considering teamsX as subsets of the set of words of a Kripke model,
defined, as usual, as a tuple M = (W,R, V ), where W is a non empty
set, R ⊆W×W is the accessibility relation, and V :W → Pow(Prop).

We use the following notation for X,Y ⊆W :

R(X) := {s ∈W : ∃t ∈ X sRt};

XRY ⇔ ∀x ∈ X∃y ∈ Y xRy ∧ ∀y ∈ Y ∃x ∈ X xRy.
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Definition 2.2 (Modal Team Semantics) If M = (W,R, V ) is a
Kripke model and X ⊆ W is a team in M then the semantics of ML
is defined as follows

(M,X) |= p ⇔ s ∈ V (p), for all s ∈ X

(M,X) |= ¬p ⇔ s 6∈ V (p), for all s ∈ X

(M,X) |= ⊥ ⇔ X = ∅

(M,X) |= α1 ∧ α2 ⇔ (M,X) |= α1 and (M,X) |= α2

(M,X) |= α1 ⊗ α1 ⇔ ∃X1, X2 (M,X1) |= α1, (M,X2) |= α2

and X = X1 ∪X2

(M,X) |= ✸α ⇔ ∃Y XRY and (M,Y ) |= α

(M,X) |= ✷α ⇔ (M,R(X)) |= α

If the team X is a singleton, then the semantics of ML formulas
coincides with the classical modal semantics on Kripke model, with
⊗ behaving as a standard disjunction. If φ ∈ ML we call singleton
semantics the usual semantics of modal logic, where formulas are inter-
preted over pointed Kripke models (M,w) and not over teams (M,X).

2.1 Dependence, Inclusion, Independence

Team semantics allow us to consider various notions of dependence
between data. To this end, new ‘atoms’ are added to the basic frame-
work discussed above (both in the propositional and in the modal case).
In this paper we consider dependence atoms =(α, γ), inclusions atoms
α ⊆ α′, independence atoms α⊥β, where α, α′, β are sequences of for-
mulas in ML (with α, α′ of the same lenght), and γ ∈ ML.

Definition 2.3 [4, 5, 3, 2]
The formulas of Modal Dependence Logic MDL are defined by

φ := p | ¬p | ⊥ | φ1 ∧ φ2 | φ1 ⊗ φ2 | =(α, γ) | ✸φ | ✷φ

where p ∈ Prop, α = α1, . . . , αh, and αi, γ are formulas in ML.

The formulas of Modal Inclusion Logic MINC are defined by

φ := p | ¬p | ⊥ | φ1 ∧ φ2 | φ1 ⊗ φ2 | α ⊆ α′ | ✸φ | ✷φ

where p ∈ Prop, α = α1, . . . , αh, α
′ = α′

1, . . . , αh and αi, α
′
j ∈ ML.

The formulas of Modal Independence Logic MIND are defined by

φ := p | ¬p | ⊥ | φ1 ∧ φ2 | φ1 ⊗ φ2 | α⊥β | ✸φ | ✷φ
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where p ∈ Prop, α = α1, . . . , αh, β = β1, . . . , βk and αi, βj ∈ ML.

Notice that the new atoms =(α, γ), α ⊆ α′, α⊥β are defined only
on ML formula and cannot be nested. By convention, we use letters
α, β, . . . to denoteML formulas, and letters φ, ψ, . . . to denote formulas
in MDL,MINC,MIND.

To give a semantics to the new atoms, given a Kripke model M =
(W,R, V ) and s ∈W , we consider the valuation functions Ms on ML-
formulas defined as follows:

Ms(α) =

{

1, if M, s |= α;

0, if M, s 6|= α,

where M, s |= α denote the usual (singeton) semantics for modal for-
mulas. Moreover, if α = α1, . . . , αh is a sequence of formulas in ML
we define Ms(α) = (Ms(α1), . . . ,Ms(αh)).

Definition 2.4 The semantics of the new atoms is defined over a
Kripke team model (M,X) as follows:

(M,X) |= =(α, β) ⇔

∀s, s′ ∈ X (Ms(α) =Ms′(α) ⇒ Ms(β) =Ms′(β));

(M,X) |= α ⊆ α′ ⇔

∀s ∈ X ∃s′ ∈ X Ms(α) =Ms′(α
′);

(M,X) |= α⊥β ⇔

∀s∀s′ ∈ X ∃s′′(Ms′′(α) =Ms(α) ∧Ms′′(β) =Ms′(β)).

In correspondence to any Modal Team Logic we also consider its
propositional variant, which has the same syntax except for the absence
of the modal operators. Hence, we consider Propositional Dependence
Logic, Propositional Inclusion Logic, and Propositional Independence
Logic. In the propositional case, the new atoms are evaluated over a
set X of valuations s : Prop→ {0, 1}, as expected: e.g.

X |= =(α, β) ⇔ ∀s, s′ ∈ X (s(α) = s′(α) ⇒ s(β) = s′(β)).

In the following table we list all team logics we will consider in this
paper:
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LOGIC ATOMS CONN. MOD. OPER.

Classical Prop.Team Logic CPL pi,¬pi,⊥ ∧,⊗ −
Prop. Dependence Logic PDEP pi,¬pi,⊥,= (α, β) ∧,⊗ −

Prop. Inclusion Logic PINC pi,¬pi,⊥, α ⊆ β ∧,⊗ −

Prop. Independence Logic PIND pi,¬pi,⊥, α⊥β ∧,⊗ −

Full Prop.Team Logic FPT L pi,¬pi,⊥, NE ∧,⊗,∨ −
Modal Team Logic ML pi,¬pi,⊥ ∧,⊗ ✷, ✸

Modal Dependence Logic MDEP pi,¬pi,⊥,= (α, β) ∧,⊗ ✷, ✸

Modal Inclusion Logic MINC pi,¬pi,⊥, α ⊆ β ∧,⊗ ✷, ✸

Modal Independence Logic MIND pi,¬pi,⊥, α⊥β ∧,⊗ ✷, ✸

Full Modal Team Logic FMT L pi,¬pi,⊥, NE ∧,⊗,∨ ✷, ✸

Table 1: A list of (Modal) Team Logics

When L is one of the logic above, we denote by (L, |=) the pair
consisting of the logic and its consequence relation, defined as usual.

3 Uniform Interpolation in the Proposi-

tional Team Context

If φ is a formula of a team logic we denote by L(φ) ⊆ Prop the finite
set of proposition from which φ is constructed.

Let φ and ψ be two formulas in a team logic (L, |=) such that φ |= ψ.
Then θ is an interpolant of φ, ψ iff:

1. φ |= θ and θ |= ψ;

2. L(θ) ⊆ L(φ) ∩ L(ψ). ✷

In words: if φ |= ψ, an interpolant of φ, ψ is a formula in the common
language of φ and ψ which sits in between φ and ψ.

Definition 3.1 Given a formula φ and a language L′ ⊆ L(φ), the
uniform interpolant of φ with respect to L′ is a formula θ such that:

1. φ |= θ;

2. Whenever φ |= ψ and L(φ) ∩ L(ψ) ⊆ L′ then θ |= ψ.

3. L(θ) ⊆ L′. ✷

When we say that a logic has (uniform) interpolation we mean
that we can always find a (uniform) interpolant when the appropriate
conditions are satisfied. Clearly, if a logic has uniform interpolation,
it also enjoys Craig interpolation. For if φ |= ψ, simply choose L′ =
L(φ) ∩ L(ψ). The interpolant between φ and ψ is then the uniform
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interpolant of φ relative to L′. This explains why we call this formula
a uniform interpolant: no information is needed about the formula ψ
except which non-logical symbols it has in common with φ.

Before proving uniform interpolation in the modal team context,
we recall the easy proof of uniform interpolation for Classical Proposi-
tional Logic, and show that it cannot be applied to the propositional
team context, except for the case of CPL (which is the simpler logic
with team semantics we shall consider).

In Classical Propositional (singleton) Logic1 it is well know (and
easy to prove) that the formula φ[p|⊤]∨φ[p|⊥] is a uniform interpolant
for φ with respect to L(φ) \ {p}. Moreover, we can iterate this con-
struction to obtain a uniform interpolant with respect to any subset
of L(φ). This immediately implies that Classical Propositional Team
Logic CPL enjoys uniform interpolation, the uniform interpolant of
a propositional formula φ(p) with respect to L(φ) \ {p} being again
φ[p|⊤]⊗ φ[p|⊥].

Note that all formulas in Classical Propositional Team Logic are
downward closed, union closed, and local, where a formula φ is:

Definition 3.2 (see [1])

1. local, if X |= φ and Y =L(φ) X implies Y |= φ,

(where Y =L(φ) X ⇔ ∀s ∈ Y ∃s′ ∈ Xs(p) = s′(p), ∀p ∈ L(φ)

∀s ∈ X∃s′ ∈ Y s(p) = s′(p), ∀p ∈ L(φ));

2. downward closed, if X |= φ and Y ⊆ X implies Y |= φ;

3. union closed, if X1 |= φ and X2 |= φ implies X1 ∪X2 |= φ.

We next show how these properties play a separate role in order to
ensure that the formula φ[p|⊤]⊗ φ[p|⊥] is a a uniform interpolant for
a formul φ in CPL, with respect to L(φ) \ {p}. To this end, we have
first to recall some lemma on substitutions in a team context.

Given a team X , we define

X [p|⊤] := {s[p|⊤] : s ∈ X}, X [p|⊥] := {s[p|⊥] : s ∈ X},

where

s[p|⊤](q) =

{

s(q) if q 6= p

1 if q = p
s[p|⊥](q) =

{

s(q) if q 6= p

0 if q = p

1that is: propositional logic with the usual semantics, which coincides with the team

semantics ristrected to singleton teams
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In general, team logics do not have a good notion of substitution,
unless we restrict to classical substitutions. In particular, if we define
φ[p|⊤], φ[p|⊥] by induction, as usual:

φ[p|⊤] :=































⊤, if φ = p;

⊥, if φ = ¬p or φ = ⊥;

φ1[p|⊤] ◦ φ1[p|⊤], if φ = φ1 ◦ φ2, ◦ ∈ {⊗,∨,∧};

α[p|⊤] ⊆ β[p|⊤] if φ = α ⊆ β;
...

φ[p|⊥] :=































⊥, if φ = p;

⊤, if φ = ¬p;

φ1[p|⊥] ◦ φ1[p|⊥], if φ = φ1 ◦ φ2, ◦ ∈ {⊗,∨,∧};

α[p|⊥] ⊆ β[p|bot] if φ = α ⊆ β;
...

then the syntactic substitution reflects on the semantics side as follows
(see [1]):

Lemma 3.1 If φ is a propositional team formula and X is a team
then

X [p|⊤] |= φ⇔ X |= φ[p|⊤]; X [p|⊥] |= φ⇔ X |= φ[p|⊥].

In particular, if X |= p, then X |= φ⇔ X |= φ[p|⊤].
Similarly, if X |= ¬p, then X |= φ⇔ X |= φ[p|⊥].

Lemma 3.2 If φ is downward closed then φ |= φ[p|⊤]⊗ φ[p|⊥].

Proof Suppose X |= φ. Consider X0 = {s ∈ X : s(p) = 0} and
X1 = {s ∈ X : s(p) = 1}. By downward closure, X0 |= φ and hence
X0 |= φ[p|⊥] by the observation above. Similarly, X1 |= φ[p|⊤], and
X |= φ[p|⊤]⊗ φ[p|⊥] follows. ✷

However, if φ is not downward closed, the previous lemma does not
hold, as the following example shows.

Example 3.1 If φ := (p∧ q)⊛ (¬p∧ q), then φ[p|⊤]⊗φ[p|⊥] is not a
logical consequence of φ. In particular, φ[p|⊤]⊗φ[p|⊥] is not a uniform
interpolant of φ.

Proof φ[p|⊤] = (⊤ ∧ q) ⊛ (⊥ ∧ q), and φ[p|⊥] = (⊥ ∧ q) ⊛ (⊤ ∧ q);
both formulas are easily seen to be true only for the empty team, hence
X |= φ[p|⊤]⊗ φ[p|⊥] implies X = ∅. On the other hand, φ is satisfied
by the non empty team X = {s1, s2} with s1(p) = s1(q) = s2(q) = 1,
and s2(p) = 0. Hence, φ[p|⊤] ⊗ φ[p|⊥] is not a logical consequence of
φ. ✷
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Lemma 3.3 Suppose φ is union closed and ψ is a local formula such
that φ |= ψ and p 6∈ L(ψ). Then

φ[p|⊤]⊗ φ[p|⊥] |= ψ

Proof Suppose X |= φ[p|⊤] ⊗ φ[p|⊥]. Then there are X1, X2 such
that X = X1 ∪X2 and X1 |= φ[p|⊤], X2 |= φ[p|⊥]. By Lemma 3.1 we
obtainX1[p|⊤] |= φ, andX2[p|⊥] |= φ, and, by union closure,X1[p|⊤]∪
X2[p|⊥] |= φ. From φ |= ψ we obtain that X1[p|⊤]∪X2[p|⊥] |= ψ, and
hence X |= ψ, since ψ is local and

X =L(ψ)\{p} (X1[p|⊤] ∪X2[p|⊥]).

✷

If φ is not union closed, the previous lemma does not hold, as the
following example shows.

Example 3.2 Consider the formula

φ(p, q) := =(p, q) ∧ =(p)

We have:

φ[p|⊤] ≡ =(⊤, q) ∧ =(⊤) ≡ =(q) ≡ φ[p|⊥]

Hence, φ[p|⊤] ⊗ φ[p|⊥] ≡ =(q) ⊗ =(q) ≡ ⊤. On the other hand, it is
clear that φ |= =(q), although ⊤ 6|= =(q). It follows that the formula
φ[p|⊤]⊗φ[p|⊥] is not a uniform interpolant for φ with respect to L(φ)\
{p}.

Hence, if we consider a propositional team logic which is not downward
closed or not union closed, we cannot prove uniform interpolation us-
ing the formula φ[p|⊤] ⊗ φ[p|⊥]. On the other hand, one can easily
check that in Example (3.2) the formula =(q) is the correct uniform
interpolant in any local logic containing φ: one can easily verify that
φ |= =(q); moreover, suppose φ |= ψ with p 6∈ L(ψ), and X |= =(q);
then if Y := X [p|⊤] we have Y |= φ and hence Y |= ψ; but then X |= ψ

because Y =L(φ) X and ψ is local.
As we shall see, at least for Propositional Dependence Logic and

for Propositional Inclusion Logic we can prove uniform interpolation.
Similarly, uniform interpolation for Modal Team Logic can be easily
proved from uniform interpolation of standard modal logic, but this
easy proof cannot be used for other team modal logics, where we have
to use other means.
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4 Expressiveness of Team Logics

Given a formula φ in a propositional logic with team semantics we
denote by ||φ|| the class of team models of φ:

||φ|| = {X : X |= φ}.

If L is a fragment of Full Propositional Team Logic FPT L, we denote
by TeamL the class of team models of formulas in L:

TeamL = {||φ|| : φ ∈ L}

We say that a team propositional logic L is expressively complete
for a class of team properties X if,

X = TeamL,

that is: for every formula φ ∈ L, the set of team satisfying φ belongs to
X and, moreover, every team property belonging to X coincides with
the set of team satisfying a formula in L. We have:

Lemma 4.1 [1]

1. CPL is expressively complete for the class of non empty, down-
ward and union closed team properties;

2. PDEP is expressively complete for the class of non empty, down-
ward closed team properties;

3. PINC is expressively complete for the class of non empty, union
closed team properties;

4. FPT is expressively complete for the class of all team properties.

In order to state an analogous lemma for modal team logics, we
consider modal team properties as sets of modal team models (M,X),
and define:

Definition 4.1 A team property C is:

1. downward closed: (M,X) ∈ C and Y ⊆ X implies (M,Y ) ∈ C;

2. union closed: (M,Xi) ∈ C implies (M,
⋃

iXi) ∈ C.

Moreover, to state the expressiveness results, we need the notion of
team (bounded) bisimulation, a generalization of the usual notion of
(bounded) bisimulation:

Definition 4.2 IfM = (W,R, V ),M ′ = (W ′, R′, V ′) are Kripke mod-
els, (w,w′) ∈ M ×M ′, and k ∈ N, we say that (M,w), (M ′, w′) are
k-bisimilar (notation: (M,w) ⇋

k (M ′, w′)), iff for all i ≤ k there is
Bi ⊆ M ×M ′ such that (w,w′) ∈ Bk, and for all (v, v′) ∈ Bi+1 it
holds:

9



1. V (v) = V (v′);

2. if vRu there exists u′ such that v′R′u′ and (u, u′) ∈ Bi;

3. if v′Ru′ there exists u such that vRu and (u, u′) ∈ Bi.

We say that (M,w), (M ′, w′) are bisimilar (notation: (M,w) ⇋ (M ′, w′)),
iff there exists B ⊆ M × M ′ such that (w,w′) ∈ B, and for all
(v, v′) ∈ B it holds:

1. V (v) = V (v′);

2. if vRu there exists u′ such that v′R′u′ and (u, u′) ∈ B;

3. if v′Ru′ there exists u such that vRu and (u, u′) ∈ B.

We shall also consider bisimulations and bounded bisimulation where
condition 1. above is resticted to a subset P of propositions, that is, we
require that V (v) ∩ P = V (v′) ∩ P . Two models (M,w), (N, v) which
are bisimilar (k-bisimilar) w.r.t. the propositions in P are denoted by
(M,w) ⇋P (M ′, w′), ((M,w) ⇋k

P (M ′, w′), respectively).

The notion of bisimulation is extended to team models as follows.

Definition 4.3 Let P be a set of propositional variables. The team
models (M,X), (N, Y ) are P-bisimilar if

∀x ∈ X ∃y ∈ Y (M,x) ⇋P (N, y) and ∀y ∈ Y ∃x ∈ X(M,x) ⇋P (N, y).

Team bisimilar models are denoted by (M,X) ⇋P (N, Y ).

Remark 4.1 By considering the maximal bisimulation between mod-
els, if (M,X) ⇋P (N, Y ) we may suppose w.l.o.g. that there exists a
P-bisimulation B between M and N such that

∀x ∈ X ∃y ∈ Y (x, y) ∈ B and ∀y ∈ Y ∃x ∈ X(x, y) ∈ B.

One can easily prove that all formulas φ in the logics listed on table
1. are invariant under bisimulation, that is,

(M,X) |= φ and (M,X) ⇋L(φ) (N, Y ) implies (N, Y ) |= φ.

Similarly, if md(φ), the modal depth of φ, is defined as the maximal
number of nested modal operators in φ, we have:

(M,X) |= φ and (M,X) ⇋k
L(φ) (N, Y ) implies (N, Y ) |= φ.

The expressiveness results for modal team logics are based on the
following definition:

10



Definition 4.4

• A class K of team models is bisimulation invariant if

(M,X) ∈ K and (M,X) ⇋ (N, Y ) implies (N, Y ) ∈ K.

• A class K of team models is first order definable if there exists a
first order formula φ(V ) with a monadic variable V in the lan-
guage {R,=, P1, . . . , Pn, . . .}, where R is a binary relational sym-
bol representing the accessibilty relation and P1, . . . , Pn, . . . are
unary relational symbol representing the propositions, such that,
for all team model (M,X) it holds:

(M,X) ∈ K ⇔M,V := X |= φ(V ),

where M,V := X on the right M is considered as a first order
model for the language {R,=, P1, . . . , Pn, . . .}, and we interpret
the monadic variable V by the set X.

Given a formula φ in a modal logic with team semantics we denote
by ||φ|| the class of team models of φ:

||φ|| = {(M,X) : (M,X) |= φ}.

As in the propositional case, we say that a team modal logic L is
expressively complete for a class of team properties X if

X = TeamL,

where TeamL = {||φ|| : φ ∈ L}. We have:

Theorem 4.1 [2, 3, 4]

1. ML is expressively complete for the class of all first order de-
finable, non empty, downward and union closed, bisimulation in-
variant team properties;

2. MDEP is expressively complete for the class of all first order
definable, non empty, downward closed, bisimulation invariant
team properties;

3. MINC is expressively complete for the class of all first order
definable, non empty, union closed, bisimulation invariant team
properties;

4. Full Modal Team Logic FMT L is expressively complete for the
class of all first order definable, bisimulation invariant team prop-
erties.
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5 Amalgamation

To prove uniform interpolation we need the notion of amalgamation,
defined below.

Lemma 5.1 Let P ,Q are sets of propositions and let B be a P ∩Q-
bisimulation between M,N with B 6= ∅. The B-amalgamation K of
M,N , is a Kripke model over the propositions P∪Q defined as follows:
-The domain of K is the relation B.
- The accessibility relation RK is given by

(m,n)RK(m′, n′) ⇔ mRMm′ and nRNn′.

For all propositional variables r ∈ P ∪Q and (m,n) ∈ B we have

(m,n) |= r ⇔

{

(M,m) |= r, if r ∈ P

(N,n) |= r, if r ∈ Q.

Then the projection over the first component is a P-bisimulation be-
tween K and M , while the projection over the second component is a
Q-bisimulation between K and N .

We next show that the amalgamation property of Kripke models
extends easily to team models:

Lemma 5.2 If P ,Q are sets of propositions and (M,X), (N, Y ) are
team models such that

(M,X) ⇋P∩Q (N, Y ) (1)

then there is a team model (K,Z) such that

(M,X) ⇋P (K,Z) ⇋Q (N, Y )

Proof Let B be the bisimulation witnessing (M,X) ⇋P∩Q (N, Y ) as
in Remark 4.1; consider the B-amalgamation K of M,N as defined in
5.1.

We define Z = (X × Y ) ∩ B; if x ∈ X then, since B is a P ∩ Q-
bisimulation between the team models (M,X) and (N, Y ), there exists
y ∈ Y such that (x, y) ∈ B. Hence, the pair (x, y) belongs to Z,
and the projection over the first component is a witness fort a P-team
bisimulation between (K,Z) and (M,X). Similarly the projection over
the first component is a witness fort a Q-team bisimulation between
(K,Z) and (N, Y ). ✷
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6 Bisimulation Quantifiers and Uniform In-

terpolation in Modal Team Logic

Given a logic L with modal team semantics such that all formulas are
bisimulation invariant, we extend its syntax by means of the existential
bisimulation quantifier, ∃̃p φ, obtaining the logic ∃̃L. E.g. a formula φ
in ∃̃ML is defined by:

φ := p | ¬p | ⊥ | φ1 ∧ φ2 | φ1 ⊗ φ2 | ✸φ | ✷φ | ∃̃p φ.

The semantics of ∃̃p φ is defined as follows: for any team model
(M,X) over a set of proposition P and for any p ∈ P it holds:

(M,X) |= ∃̃p φ⇔ (2)

∃(M ′, X ′) ⇋Free(φ)\{p} (M,X) and (M ′, X ′) |= φ,

where the set of free variables Free(φ) of a formula ψ ∈ ∃̃L are defined
inductively as expected, stipulating that Free(∃̃p φ) = Free(φ) \ {p}.
One can easily prove that all formulas in ∃̃L are bisimulation invariant:

Lemma 6.1 Suppose all formula of L are bisimulation invariant, φ ∈
∃̃L, (M,X) |= φ, and (M,X) ⇋Free(φ) (N, Y ) then (N, Y ) |= φ.

Moreover, existential bisimulation quantifiers in ∃̃L are related to uni-
form interpolants as follows:

Lemma 6.2 Consider a modal team logic L, invariant under bisim-
ulation, and let ∃̃L be its existential bisimulation extension. If φ is a
formula of ∃̃L then ∃̃p φ is a uniform interpolant for the formula φ in
∃̃L, with respect to Free(φ) \ {p}.

Proof It is clear that φ |= ∃̃p φ and, by definition, Free(∃̃p φ) =
Free(φ) \ {p}.
Suppose φ |= ψ with ψ ∈ ∃̃L and Free(φ) ∩ Free(ψ) ⊆ Free(φ) \ {p},
that is, p 6∈ Free(ψ). We prove that ∃̃p φ |= ψ. If (M,X) |= ∃̃p φ then
there exists (M ′, X ′) such that

(M ′, X ′) ⇋Free(φ)\{p} (M,X)

and (M ′, X ′) |= φ. Since Free(φ) ∩ Free(ψ) ⊆ Free(φ) \ {p}, by
the amalgamation property proved in Lemma 5.2, there exists a team
model (N, Y ) such that

(M ′, X ′) ⇋Free(φ) (N, Y ) ⇋Free(ψ) (M,X).

Since (M ′, X ′) |= φ, the first bisimulation implies (N, Y ) |= φ. Then,
from φ |= ψ we obtain (N, Y ) |= ψ, and from (N, Y ) ⇋Free(ψ) (M,X)
we finally have (M,X) |= ψ. ✷
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Lemma 6.2 allows to use, in the Modal Team context, the well
known strategy that consists on proving uniform interpolation in a
logic L by showing that, for any formula φ ∈ L there is a formula
θ ∈ L which is equivalent to ∃̃p θ. Our first task is to use this strategy
to prove uniform interpolation for Full Modal Team Logic FMT L.
Notice that we cannot apply Theorem 4.1 directly, proving that for all
φ ∈ FMT L the formula ∃̃p φ ∈ FMT L, because, although we proved
that the property expressed by ∃̃p φ is bisimulation invariant, we do
not know whether it is an FO-property.

In the following we prove that the existential bisimulation quantifier
commutes with both disjunctions ⊗, ∨, and with the non-emptyness
atom NE. First we prove that the singleton semantics of the bisimu-
lation quantifier over classical modal formulas is equivalent to its team
semantics.

Lemma 6.3 Suppose θ, φ ∈ ML, and θ behaves as ∃̃p φ w.r.t. sin-
gleton semantics, that is, for all Kripke models (M,w) it holds

(M,w) |= θ ⇔ ∃(N, v) ⇋L(φ)\{p} (M,w) and (N, v) |= φ;

then θ is equivalent to ∃̃p φ in the modal team semantics, that is, for
all team models (M,X) it holds

(M,X) |= θ ⇔ ∃(N, Y ) ⇋L(φ)\{p} (M,X) and (N, Y ) |= φ;

Proof If (M,X) |= θ then, since θ ∈ ML, for all w ∈ X we have
(M,w) |= θ; hence, for all w ∈ X there exists (Nw, vw) such that

(Nw, vw) ⇋L(φ)\{p} (M,w) and (Nw, vw) |= φ.

Consider the disjoint union N of all the Nw, for w ∈ X , and the team
Y = {vw : w ∈ X}. Since φ is a classical modal formula, we have
(N, Y ) |= φ and (N, Y ) ⇋L(φ)\{p} (M,X), so that (M,X) |= ∃̃p φ.

Hence ∃̃pφ is a logical consequence of θ in the modal team semantics.
Vice versa, if (M,X) |= ∃̃p φ we prove that (M,w) |= θ, for all

w ∈ X . Let (N, Y ) be such that (N, Y ) |= φ and (N, Y ) ⇋L(φ)\{p}

(M,X). Since φ is a classical modal formula, (N, y) |= φ, for all y ∈ Y .
If w ∈ X then there exists v ∈ Y such that (N, v) ⇋L(φ)\{p} (M,w)
and hence, by hypothesis (M,w) |= θ.

Finally, from (M,w) |= θ, for all w ∈ X , it follows (M,X) |= θ,
since θ is a classical modal formula. ✷

Corollary 6.1 If φ ∈ ML then ∃̃p φ ∈ ML.

Proof The corollary follows from the previous Lemma and the closure
of Classical Modal Logic under the existential bisimulation quantifier
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w.r.t. singleton semantics: for any formula φ of classical modal logic,
there exists a formula θ such that for all Kripke models (M,w) it holds

(M,w) |= θ ⇔ ∃(N, v) ⇋L(φ)\{p} (M,w) and (N, v) |= φ

(for a proof see [7]). ✷

Finally, we prove a lemma stating that in the team semantics of
∃̃p φ we can substitute Free(φ) by any set of propositions containing
the free variable of φ.

Lemma 6.4 If φ is a formula of MT L, (M,X) is a Kripke model
over a set Prop of propositional variables containing the free variables
of φ, and (M,X) |= ∃̃p φ, then there exists a model (K,Z) such that:

(K,Z) ⇋Prop\{p} (M,X) and (K,Z) |= φ.

Proof If (M,X) |= ∃̃p φ then by definition there exists a model (N, Y )
such that:

(N, Y ) ⇋Free(φ)\{p} (M,X) and (N, Y ) |= φ

Since Free(φ) \ {p} = Free(φ) ∩ (Prop \ {p}), by Lemma 5.2 there
exists a team model (K,Z) with

(N, Y ) ⇋Free(φ) (K,Z) and (M,X) ⇋Prop\{p} (K,Z)

Then, since (N, Y ) |= φ, using the first bisimulation we obtain (K,Z) |=
φ, and the lemma follows. ✷

Lemma 6.5 If φ1, φ2 ∈ MT L then

∃̃p (φ1 ∧NE) ≡ (∃̃p φ1) ∧NE

∃̃p (φ1 ∨ φ2) ≡ ∃̃p φ1 ∨ ∃̃p φ2

∃̃p (φ1 ⊗ φ2) ≡ ∃̃p φ1 ⊗ ∃̃p φ2

Proof The first equivalence holds because if the team of a team model
in not empty, so is any team of a bisimilar team model.

We prove the third equivalence, leaving the second one to the
reader. Let (M,X) be a tem model. If (M,X) |= ∃̃p (φ1 ⊗ φ2) there
exists a team model (N, Y ) such that (N, Y ) |= φ1 ⊗ φ2 and

(N, Y ) ⇋Free(φ1⊗φ2)\{p} (M,X).

Then, there are Y1, Y2 with Y = Y1 ∪ Y2 and (N, Yi) |= φi, for i = 1, 2.
Let Xi = {x ∈ X : ∃y ∈ Yi (N, y) ⇋Free(φ1⊗φ2)\{p} (M,x)}. Then
X = X1 ∪X2 and

(N, Yi) ⇋Free(φ1⊗φ2)\{p} (M,Xi).
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Since Free(φ1 ⊗ φ2) ⊇ Free(φi) we also have

(N, Yi) ⇋Free(φi)\{p} (M,Xi),

and from (N, Yi) |= φi it follows (M,Xi) |= ∃p φi, for i = 1, 2. This
implies (M,X) |= ∃̃p φ1 ⊗ ∃̃p φ2.

Conversely, suppose (M,X) |= ∃̃p φ1 ⊗ ∃̃p φ2. Then X = X1 ∪X2

with (M,Xi) |= ∃̃p φi, for i = 1, 2. Using Lemma 6.4 we obtain models
(Ki, Zi) such that (Ki, Zi) |= φi and

(Ki, Zi) ⇋Free(φ1⊗φ2)\{p} (M,Xi).

Define (N,Z) := (K1∪̇K2, Z1∪̇Z2), where ∪̇ denotes disjoint union.
For all y ∈ Zi we have

(N, y) ⇋Free(φ1⊗φ2) (Ki, y),

hence
(N,Zi) ⇋Free(φ1⊗φ2) (Ki, Zi).

It follows that (N,Zi) |= φi, hence (N,Z) |= φ1 ⊗ φ2 and

(N,Z) ⇋Free(φ1⊗φ2)\{p} (M,X).

This implies (M,X) |= ∃̃p (φ1 ⊗ φ2). ✷

Using the previous lemmas we can now prove that ∃̃MT L is ex-
pressively equivalent to MT L, but first we need to fix some notation
and recall some well known result of characteristic formulas for modal
logic. If (M,w) is a Kripke model and P is a finite set of propositions

we denote by φk,PM,w the modal formula characterizing (M,w) modulo
k-bisimulation w.r.t. the variables in P , so that, for all Kripke models
(M ′, w′) it holds:

(M ′, w′) |= φ
k,P
M,w ⇔ (M ′, w′) ⇋k

P (M,w).

We omit the reference to P if this set is clear from the context (for a
definition of φkM,w see e.g. [6]).

Theorem 6.1 Elimination of bisimulation quantifiers in MT L: for
any φ ∈ MT L and p ∈ P there exists a formula θ ∈ MT L which is
equivalent to ∃̃p φ.

Proof Given a team model (M,X), for all w ∈ X consider the char-
acteristic formulas χk(M,w) with respect to L(φ) and define

χk(M,X) :=
⊗

w∈X

(χk(M,w) ∧NE).
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Then, as proved in [4], for all models (N, Y ) it holds:

(N, Y ) |= χk(M,X) ⇔ (N, Y ) ⇋k
L(φ) (M,X).

This implies that any formula φ ∈ MT L of modal depth k is equivalent
to a disjunction of formulas χk(M,X):

φ ≡
∨

(M,X)|=φ

χk(M,X).

By Lemma 6.5 we have

∃̃p φ ≡
∨

(M,X)|=φ

∃̃p χk(M,X) ≡
⊗

w∈X

(∃̃p χk(M,w) ∧NE).

By Corollary 6.1, the formulas ∃̃p χk(M,w) are equivalent to modal
formulas and the theorem follows.

Corollary 6.2 The team logic MT L enjoys uniform interpolation.

Proof This follows from the previous theorem and Lemma 6.2. ✷

6.1 Uniform Interpolation for Modal Team Frag-

ments.

In this section we prove uniform interpolation for all fragments of
MT L described in Section 2.1, with one notable exception: Modal
Independence Logic and its propositional fragment.

If C is a team model property and Q ⊆ Prop, we denote by C∼Q
the team model property of all team models which are in C modulo
bisimulations forgetting the variables in Q:

C∼Q = {(N, Y ) : ∃(M,X) ∈ C (N, Y ) ⇋Prop\Q (M,X)}.

A collection of team model properties is said to be forgetting if it
is closed under the previous construction with respect to finite sets of
propositions:

Definition 6.1 A collection T of team model properties is said to be
forgetting if for every finite Q ⊆ Prop and C ∈ T it holds:

C∼Q ∈ T .

A fragment L of MT L is said to be forgetting if TeamL is so.
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If L is a team modal logic, φ ∈ L, and Q = {p1, . . . , pn} is a finite
set of propositional variables, then using Lemma 6.4 we get:

||∃̃p1 . . . ∃̃pn φ|| = ||φ||∼Q

because
||∃̃p1 . . . ∃̃pn φ|| =

= {(N, Y ) : ∃(M,X) ∈ ||φ|| with (N, Y ) ⇋L(φ)\Q (M,X)} =

{(N, Y ) : ∃(M,X) ∈ ||φ|| with (N, Y ) ⇋Prop\Q (M,X)} = ||φ||∼Q.

This easily implies:

Lemma 6.6 If L is a fragment of MT L then

L is forgetting ⇔ L enjoys uniform interpolation.

Proof (⇒) If φ ∈ L and p1, . . . , pn are propositional variables
consider the set Q = {p1, . . . , pn}. By the forgetting hypothesis, since
||φ|| ∈ TeamL then ||φ||∼Q = ||∃̃p1 . . . ∃̃pn φ|| ∈ TeamL. Hence,

∃̃p1 . . . ∃̃pn φ is equivalent to a formula θ in L. By Lemma 6.2 we
know that θ is a uniform interpolant for φ in ∃̃L and, even more so, in
L.

(⇐) If φ ∈ L and Q = {p1, . . . , pn}, then the class of team models
||φ||∼Q is expressible by the formula ∃̃p1 . . . ∃̃pn φ which, by Lemma

6.2, is a ∃̃L uniform interpolant in of the L-formula φ w.r.t. L(φ) \Q.
Since L enjoys uniform interpolation, and uniform interpolants are
unique modulo equivalence, we obtain that ∃̃p1 . . . ∃̃pn φ is equivalent
to an L-formula and hence ||φ||∼Q ∈ TeamL.

✷

Lemma 6.7 The following collections of team model properties are
forgetting:

1. the class of bisimulation invariant, non empty, downward closed
and union closed (also called: flat) properties;

2. the class of bisimulation invariant, non empty, downward closed
properties;

3. the class of bisimulation invariant, non empty, union closed prop-
erties.

Proof We prove the second and the third property, from which the
first property follows.
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1. Suppose C is a non empty, bisimulation invariant, downward
closed set of teams, and Q is a finite set of propositions. We
want to prove that

C∼Q = {(N, Y ) : ∃(M,X) ∈ C (N, Y ) ⇋Prop\Q (M,X)}

is non empty, bisimulation invariant and downward closed. The
first two properties are easily verified and we leave them to the
reader. As for the third property, suppose (N, Y ) ∈ C∼Q, and
Y ′ ⊆ Y . Then there exists (M,X) with

(N, Y ) ⇋Prop\Q (M,X) and (M,X) ∈ C.

For s ∈ Y ′, let s′ ∈ X be such that (N, s′) ⇋Prop\Q (M, s); let
X ′ ⊆ X be X ′ = {s′ : s ∈ Y ′}. By downward closure of C, we
have (M,X ′) ∈ C; since

(N, Y ′) ⇋Prop\Q (M,X ′)

we obtain (N, Y ′) ∈ CQ.

2. If C is a non empty, bisimulation invariant, union closed set of
teams over Prop and Q is a finite set Q ⊆ Prop, we want to
prove that

C∼Q = {(N, Y ) : ∃(M,X) ∈ C (N, Y ) ⇋Prop\Q (M,X)}

is non empty, bisimulation invariant, and union closed. The first
two properties are easily verified and we leave them to the reader.
As for the third property, suppose (N, Y1), (N, Y2) ∈ C∼Q. Then
there are teams (M1, X1), (M2, X2) ∈ C such that, for i = 1, 2 it
holds:

(N, Yi) ⇋Prop\Q (Mi, Xi) and (Mi, Xi) ∈ C.

LetM be the disjoint union of M1,M2, and let X be the disjoint
union of X1, X2. Then one can easily prove that, for i = 1, 2 it
holds:

(M,Xi) ⇋Prop (Mi, Xi), and (M,Xi∪X2) ⇋Prop\Q (N, Y1∪Y2).

From the first two bisimulations we obtain (M,Xi) ∈ C, which
implies (M,Xi ∪ X2) since C is closed under union. It follows
that (N, Y1 ∪ Y2) ∈ C∼Q.

✷

Using Lemma 6.7 and Lemma 6.6 we easily obtain:
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Corollary 6.3 The following fragment of MT L enjoys uniform in-
terpolation:

ML, MDEP , MINC

Finally, we consider propositional fragments. Being complete for
the class of all team properties, it is clear that FPT enjoys uniform
interpolation. Then we can use the semantical characterization of the
fragments CPL, PD, PINC to prove, as we did for modal fragments,
that all these logics enjoy uniform interpolation.

Corollary 6.4 The following fragments of FPT enjoys uniform in-
terpolation:

CPL, PD, PINC

6.2 Conclusion and Open Questions

The method above allow us to prove uniform interpolation for propo-
sitional and modal team logics whose class of team models is forgetting
(see Def. 6.1). However, to prove that the class of team models for
a logic is forgetting, we used a good description of the class, given in
Theorem 4.1. To our knowledge, this description is missing for indipen-
dence logic, for which uniform interpolation remains an open question.
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