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Abstract
Propositional and modal inclusion logic are formalisms that belong to the family of logics based
on team semantics. This article investigates the model checking and validity problems of these
logics. We identify complexity bounds for both problems, covering both lax and strict team
semantics. By doing so, we come close to finalising the programme that ultimately aims to
classify the complexities of the basic reasoning problems for modal and propositional dependence,
independence, and inclusion logics.
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1 Introduction

Team semantics is the mathematical framework of modern logics of dependence and inde-
pendence, which, unlike Tarski semantics, is not based on singletons as satisfying elements
(e.g., first-order assignments or points of a Kripke structure) but on sets of such elements.
More precisely, a first-order team is a set of first-order assignments that have the same
domain of variables. As a result, a team can be interpreted as a database table, where
variables correspond to attributes and assignments to records. Team semantics originates
from the work of Hodges [17], where it was shown that Hintikka’s IF-logic can be based on a
compositional (as opposed to game-theoretic) semantics. In 2007, Väänänen [24] proposed a
fresh approach to logics of dependence and independence. Väänänen adopted team semantics
as a core notion for his dependence logic. Dependence logic extends first-order logic by atomic
statements such as the value of variable x is determined by the value of y. Such a statement
is not meaningful under a single assignment, however, when evaluated over a team, such a
statement corresponds precisely to functional dependence of database theory when the team
is interpreted as a database table.
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Besides functional dependence, there are many other important dependency notions used
in fields like statistics and database theory, which give rise to interesting logics based on team
semantics. The two most widely studied of these new logics are independence logic of Grädel
and Väänänen [10], and inclusion logic of Galliani [5]. Inclusion logic extends first-order logic
by atomic statements of the form x ⊆ y, which is satisfied in a team X if any value that
appears as a value for x in X also appears as a value of y in X. Dependence and independence
logics are equi-expressive with existential second-order logic and thus capture the complexity
class NP [24, 10]. Surprisingly, inclusion logic has the same expressive power as positive
greatest fixed point logic GFP+ [7]. Since on finite structures, GFP+ coincides with least fixed
point logic LFP, it follows from the Immermann-Vardi-Theorem that inclusion logic captures
the complexity class P on finite ordered structures. Interestingly under a semantical variant of
inclusion logic called strict semantics the expressive power of inclusion logic rises to existential
second-order logic [6]. Moreover, the fragment of inclusion logic (under strict semantics)
in which only k universally quantified variables may occur captures the complexity class
NTIMERAM(nk) (i.e., structures that can be recognised by a nondeterministic random access
machine in time O(nk)) [11]. The above characterisations exemplify that, indeed, inclusion
logic and its fragments have very compelling descriptive complexity-theoretic properties.

In this paper, we study propositional and modal inclusion logic under both the standard
semantics (i.e., lax semantics) and strict semantics. The research around propositional
and modal logics with team semantics has concentrated on classifying the complexity and
definability of the related logics. Due to very active research efforts, the complexity and
definability landscape of these logics is understood rather well; see the survey of Durand
et al. [4] and the references therein for an overview of the current state of the research.
In the context of propositional logic (modal logic, resp.) a team is a set of propositional
assignments with a common domain of variables (a subset of the domain a Kripke structure,
resp.). Extended propositional inclusion logic (extended modal inclusion logic, resp.) extends
propositional logic (modal logic, resp.) with propositional inclusion atoms ϕ ⊆ ψ, where ϕ
and ψ are formulae of propositional logic (modal logic, resp.). Inclusion logics have fascinating
properties also in the propositional setting. The following definability results hold for the
standard lax semantics. A class of team pointed Kripke models is definable in extended
modal inclusion logic iff (M, ∅) is in the class for every model M, the class is closed under
taking unions, and the class is closed under the so-called team k-bisimulation, for some finite
k [16]. From this, a corresponding characterisation for extended propositional inclusion logic
directly follows: a class of propositional teams is definable in extended propositional inclusion
logic iff the empty team is in the class, and the class is closed under taking unions. In [21, 22]
(global) model definability and frame definability of team based modal logics are studied. It
is shown that surprisingly, in both cases, (extended) modal inclusion logic collapses to modal
logic.

This paper investigates the complexity of the model checking and the validity problem
for propositional and modal inclusion logic. The complexity of the satisfiability problem of
modal inclusion logic was studied by Hella et al. [15]. The study on the validity problem
of propositional inclusion logic was initiated by Hannula et al. [12], where the focus was on
more expressive logics in the propositional setting. Consequently, the current paper directly
extends the research effort initiated in these papers. It is important to note that since the
logics studied in this paper are not closed under taking negations, the connection between
the satisfiability problem and the validity problem fails. In [12] it was shown that, under lax
semantics, the validity problem for propositional inclusion logic is coNP-complete. Here we
obtain an identical result for the strict semantics. However, surprisingly, for model checking
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the picture looks quite different. We establish that whereas the model checking problem
for propositional inclusion logic is P-complete under lax semantics, the problem becomes
NP-complete for the strict variant. Also surprisingly, for model checking in the modal setting,
we obtain the identical results (as in the propositional setting): modal inclusion logic is
P-complete under lax semantics and NP-complete under strict semantics. Nevertheless, for
the validity problem, the modal variants are much more complex than the propositional ones;
we establish coNEXP-hardness for both strict and lax semantics.

2 Propositional logics with team semantics

Let D be a finite, possibly empty set of proposition symbols. A function s : D → {0, 1} is
called an assignment. A set X of assignments s : D → {0, 1} is called a team. The set D is the
domain of X. We denote by 2D the set of all assignments s : D → {0, 1}. If ~p = (p1, . . . , pn)
is a tuple of propositions and s is an assignment, we write s(~p) for (s(p1), . . . , s(pn)).

Let Φ be a set of proposition symbols. The syntax of propositional logic PL(Φ) is given
by the following grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ), where p ∈ Φ.

We denote by |=PL the ordinary satisfaction relation of propositional logic defined via
assignments in the standard way. Next we give team semantics for propositional logic.

I Definition 1 (Lax team semantics). Let Φ be a set of atomic propositions and let X be a
team. The satisfaction relation X |= ϕ is defined as follows.

X |= p ⇔ ∀s ∈ X : s(p) = 1,
X |= ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |= (ϕ ∧ ψ) ⇔ X |= ϕ and X |= ψ.

X |= (ϕ ∨ ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∪ Z = X.

The lax team semantics is considered to be the standard semantics for team-based logics.
In this paper, we also consider a variant of team semantics called the strict team semantics.
In strict team semantics, the above clause for disjunction is redefined as follows:

X |=str (ϕ∨ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∩ Z = ∅ and Y ∪ Z = X.

When L denotes a team-based propositional logic, we let Lstr denote the variant of the logic
with strict semantics. Moreover, in order to improve readability, for strict semantics we use
|=str instead of |=. As a result lax semantics is used unless otherwise specified. The next
proposition shows that the team semantics and the ordinary semantics for propositional logic
defined via assignments (denoted by |=PL) coincide.

I Proposition 2 ([24]). Let ϕ be a formula of propositional logic and let X be a propositional
team. Then X |= ϕ iff ∀s ∈ X : s |=PL ϕ.

The syntax of propositional inclusion logic PInc(Φ) is obtained by extending the syntax
of PL(Φ) by the grammar rule ϕ ::= ~p ⊆ ~q, where ~p and ~q are finite tuples of proposition
variables with the same length. The semantics for propositional inclusion atoms is defined as
follows:

X |= ~p ⊆ ~q iff ∀s ∈ X ∃t ∈ X : s(~p) = t(~q).

I Remark. Extended propositional inclusion logic is the variant of PInc in which inclusion
atoms of the form ~ϕ ⊆ ~ψ, where ~ϕ and ~ψ are tuples of PL-formulae, are allowed. Observe
that this extension does not increase the complexity of the logic and on that account, in this
paper, we only consider the non-extended variant.
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p q r

s1 1 0 0
s2 1 1 1
s3 0 1 0

M :
w1 w2 w3

s1 s2 s3

Figure 1 Assignments for teams in Example 4 and the Kripke model for Example 19.

Table 1 Complexity of the satisfiability, validity and model checking problems for propositional
logics under both systems of semantics. The shown complexity classes refer to completeness results.
† In [15] NEXP-completeness is claimed. However there is a mistake in the proof and the authors of
[15] now have a proof for EXP-completeness.

Satisfiability Validity Model checking

strict lax strict lax strict lax

PL NP [3, 19] coNP [3, 19] NC1 [1]
PInc EXP† EXP [15] coNP [Th. 6] coNP [12] NP [Th. 14] P [Th. 10]

Note that PInc is not a downward closed logic1. However, analogously to FO-inclusion-
logic [5], satisfaction of PInc-formulas is closed under taking unions.

I Proposition 3 (Closure under unions). Let ϕ ∈ PInc and let Xi, for i ∈ I, be teams. Suppose
that Xi |= ϕ for each i ∈ I. Then

⋃
i∈I Xi |= ϕ.

Similarly as in first-order team semantics [5], also for propositional logic the strict and
the lax semantics coincide; meaning that X |= ϕ iff X |=str ϕ for all X and ϕ. However this
does not hold for propositional inclusion logic, for the following example shows that PIncstr
is not union closed. Moreover, we will show that the two different semantics lead to different
complexities for the related model checking problems.

I Example 4. Let s1, s2, and s3 be as in Figure 1 and define ϕ :=
(
p∧(p ⊆ r)

)
∨
(
q∧(q ⊆ r)

)
.

Note that {s1, s2} |=str ϕ and {s2, s3} |=str ϕ, but {s1, s2, s3} 6|=str ϕ.

However, PIncstr satisfies a useful weaker form of union closure: it is straightforward to
prove by an induction on the formula structure that it is closed under unions of singleton
teams.

I Lemma 5. Let X be a team and ϕ ∈ PIncstr. If {s} |=str ϕ for every s ∈ X, then X |=str ϕ.

3 Complexity of propositional inclusion logic

We now define the model checking, satisfiability, and validity problems in the context of
team semantics. Let L be a propositional logic with team semantics. A formula ϕ ∈ L is
satisfiable, if there exists a non-empty team X such that X |= ϕ. A formula ϕ ∈ L is valid if
X |= ϕ holds for all teams X such that the propositions in ϕ are in the domain of X. The

1 A logic L is downward closed if “X |= ϕ and Y ⊆ X implies Y |= ϕ” holds for every formula ϕ ∈ L and
teams X and Y .
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satisfiability problem SAT(L) and the validity problem VAL(L) are defined in an obvious
way: Given a formula ϕ ∈ L, decide whether the formula is satisfiable (valid, respectively).
For the model checking problem MC(L) we consider combined complexity: Given a formula
ϕ ∈ L and a team X, decide whether X |= ϕ. See Table 1 for known complexity results for
PL and PInc, together with partial results of this paper.

It was shown by Hannula et al. [12] that the validity problem of PInc is coNP-complete.
Here we establish that the corresponding problem for PIncstr is also coNP-complete. Our
proof is similar to theirs [12], except that instead of union closure we use Lemma 5.

I Theorem 6. The validity problem for PIncstr is coNP-complete w.r.t. ≤log
m .

Proof Sketch. The coNP-hardness follows from the fact that PL is a sublogic of PIncstr and
since the validity problem of PL is coNP-hard. On the other hand, by Lemma 5, a formula
ϕ ∈ PIncstr is valid iff it is satisfied by all singleton teams {s}. It is easy to see that, over a
singleton team {s}, any inclusion atom is equivalent to a short PL-formula. Consequently,
there is a short PL-formula ϕ∗ which is valid iff ϕ is valid. Since VAL(PL) is in coNP, the
same holds for VAL(PIncstr). J

3.1 Model checking in lax semantics is P-complete
In this section we construct a reduction from the monotone circuit value problem to the
model checking problem of PInc. For a deep introduction to circuits see Vollmer [25].

I Definition 7. A monotone Boolean circuit with n input gates and one output gate
is a 3-tuple C = (V,E, α), where (V,E) is a finite, simple, directed, acyclic graph, and
α : V → {∨,∧, x1, . . . , xn} is a function such that the following conditions hold:
1. Every v ∈ V has in-degree 0 or 2.
2. There exists exactly one w ∈ V with out-degree 0. We call this node w the output gate of

C and denote it by gout.
3. If v ∈ V is a node with in-degree 0, then α(v) ∈ {x1, . . . , xn}.
4. If v ∈ V has in-degree 2, then α(v) ∈ {∨,∧}.
5. For each 1 ≤ i ≤ n, there exists exactly one v ∈ V with α(v) = xi.

Let C = (V,E, α) be a monotone Boolean circuit with n input gates and one output gate.
Any sequence b1, . . . , bn ∈ {0, 1} of bits of length n is called an input to the circuit C. A
function β : V → {0, 1} defined such that

β(v) :=


bi if α(v) = xi

min
(
β(v1), β(v2)

)
if α(v) = ∧, where v1 6= v2 and (v1, v), (v2, v) ∈ E,

max
(
β(v1), β(v2)

)
if α(v) = ∨, where v1 6= v2 and (v1, v), (v2, v) ∈ E.

is called the valuation of the circuit C under the input b1, . . . , bn. The output of the circuit
C is then defined to be β(gout).

The monotone circuit value problem (MCVP) is the following decision problem: Given a
monotone circuit C and an input b1, . . . , bn ∈ {0, 1}, is the output of the circuit 1?

I Proposition 8 ([9]). MCVP is P-complete w.r.t. ≤log
m reductions.

I Lemma 9. MC(PInc) under lax semantics is P-hard w.r.t. ≤log
m .

MFCS 2017
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Proof. We will establish a ≤log
m -reduction from MCVP to the model checking problem

of PInc under lax semantics. Since MCVP is P-complete, the claim follows. More pre-
cisely, we will show how to construct, for each monotone Boolean circuit C with n in-
put gates and for each input ~b for C, a team XC,~b and a PInc-formula ϕC such that
XC,~b |= ϕC iff the output of the circuit C with the input ~b is 1.

We use teams to encode valuations of the circuit. For each gate vi of a given circuit, we
identify an assignment si. The crude idea is that if si is in the team under consideration, the
value of the gate vi with respect to the given input is 1. The formula ϕC is used to quantify
a truth value for each Boolean gate of the circuit, and then for checking that the truth values
of the gates propagate correctly. We next define the construction formally.

Let C = (V,E, α) be a monotone Boolean circuit with n input gates and one output gate
and let ~b = (b1 . . . bn) ∈ {0, 1}n be an input to the circuit C. We define that V = {v0, . . . , vm}
and that v0 is the output gate of C. Define

τC := {p0, . . . , pm, p>, p⊥} ∪ {pk=i∨j | i < j, α(vk) = ∨, and (vi, vk), (vj , vk) ∈ E}.

For each i ≤ m, we define the assignment si : τC → {0, 1} as follows:

si(p) :=


1 if p = pi or p = p>,

1 if p = pk=i∨j or p = pk=j∨i for some j, k ≤ m,
0 otherwise.

Furthermore, we define s⊥(p) = 1 iff p = p⊥ or p = p>. We note that the assignment s⊥
will be the only assignment that maps p⊥ to 1. We make use of the fact that for each gate
vi of C, it holds that s⊥(pi) = 0. We define

XC,~b
:=
{
si | α(vi) ∈ {∧,∨}

}
∪
{
si | α(vi) ∈ {xi | bi = 1}

}
∪ {s⊥},

that is, XC,~b consists of assignments for each of the Boolean gates, assignments for those
input gates that are given 1 as an input, and of the auxiliary assignment s⊥.

Let X be any nonempty subteam of XC,~b such that s⊥ ∈ X. We have

X |= p> ⊆ p0 iff s0 ∈ X
X |= pi ⊆ pj iff (si ∈ X implies sj ∈ X) (1)
X |= pk ⊆ pk=i∨j iff (i < j, (vi, vk), (vj , vk) ∈ E,α(vk) = ∨

and sk ∈ X implies that si ∈ X or sj ∈ X)

Recall the intuition that si ∈ X should hold iff the value of the gate vi is 1. Define

ψout=1 := p> ⊆ p0,

ψ∧ :=
∧
{pi ⊆ pj | (vj , vi) ∈ E and α(pi) = ∧},

ψ∨ :=
∧
{pk ⊆ pk=i∨j | i < j, (vi, vk) ∈ E, (vj , vk) ∈ E, and α(vk) = ∨},

ϕC := ¬p⊥ ∨ (ψout=1 ∧ ψ∧ ∧ ψ∨).

Now observe that XC,~b |= ϕC iff the output of C with the input ~b is 1.
The idea of the reduction is the following: The disjunction in φC is used to guess a team

Y for the right disjunct that encodes the valuation β of the circuit C. The right disjunct
is then evaluated with respect to the team Y with the intended meaning that β(vi) = 1
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whenever si ∈ Y . Note that Y is always as required in (1). The formula ψout=1 is used
to state that β(v0) = 1, whereas the formulae ψ∧ and ψ∨ are used to propagate the truth
value 1 down the circuit. The assignment s⊥ and the proposition p⊥ are used as an auxiliary
to make sure that Y is nonempty and to deal with the propagation of the value 0 by the
subformulae of the form pi ⊆ pj . Finally, it is easy to check that the reduction can be
computed in logspace. J

For the proof of the above lemma it is not important that lax semantics is considered; the
same proof works also for the strict semantics. However, as we will show in the next section,
we can show a stronger result for the model checking problem of PIncstr; namely that it is
NP-hard. In Section 5.1 we will show that the model checking problem for modal inclusion
logic with lax semantics is in P (Lemma 21). Since PInc is essentially a fragment of this logic,
by combining Lemmas 9 and 21, we obtain the following theorem.

I Theorem 10. MC(PInc) under lax semantics is P-complete w.r.t. ≤log
m .

3.2 Model checking in strict semantics is NP-complete
In this section we reduce the set splitting problem, a well-known NP-complete problem, to
the model checking problem of PIncstr.

I Definition 11. The set splitting problem is the following decision problem:
Input: A family F of subsets of a finite set S.
Problem: Do there exist subsets S1 and S2 of S such that

1. S1 and S2 are a partition of S (i.e., S1 ∩ S2 = ∅ and S1 ∪ S2 = S),
2. for each A ∈ F , there exist a1, a2 ∈ A such that a1 ∈ S1 and a2 ∈ S2?

I Proposition 12 ([8]). The set splitting problem is NP-complete w.r.t. ≤log
m .

The following proof relies on the fact that strict semantics is considered. It cannot hold
for lax semantics unless P = NP.

I Lemma 13. MC(PIncstr) is NP-hard with respect to ≤log
m .

Proof. We give a reduction from the set splitting problem to the model checking problem of
PInc under strict semantics.

Let F be an instance of the set splitting problem. We stipulate that F = {B1, . . . , Bn}
and that

⋃
F = {a1, . . . , ak}, where n, k ∈ N. We will introduce fresh propositions pi and

qj for each point ai ∈
⋃
F and set Bj ∈ F . We will then encode the family of sets F by

assignments over these propositions; each assignment si will correspond to a unique point ai.
Formally, let τF denote the set {p1, . . . , pk, q1, . . . , qn, p>, pc, pd} of propositions. For each
i ∈ {1, . . . , k, c, d}, we define the assignment si : τF → {0, 1} as follows:

si(p) :=


1 if p = pi or p = p>,

1 if, for some j, p = qj and ai ∈ Bj ,
0 otherwise.

Define XF := {s1, . . . , sk, sc, sd}, that is, XF consists of assignments si corresponding to
each of the points ai ∈

⋃
F and of two auxiliary assignments sc and sd. Note that the only

assignment in XF that maps pc (pd, resp.) to 1 is sc (sd, resp.) and that every assignment

MFCS 2017
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maps p> to 1. Moreover, note that for 1 ≤ i ≤ k and 1 ≤ j ≤ n, si(qj) = 1 iff ai ∈ Bj . Now
define

ϕF :=
(
¬pc ∧

∧
i≤n

p> ⊆ qi
)
∨
(
¬pd ∧

∧
i≤n

p> ⊆ qi
)
.

We claim that XF |=str ϕF iff the output of the set splitting problem with input F is
“yes”. J

In Section 5.1 we establish that the model checking problem of modal inclusion logic with
strict semantics is in NP (Theorem 24). Since PIncstr is essentially a fragment of this logic,
together with Lemma 13, we obtain the following theorem.

I Theorem 14. MC(PIncstr) is NP-complete with respect to ≤log
m .

4 Modal logics with team semantics

Let Φ be a set of proposition symbols. The syntax of modal logic ML(Φ) is generated by
the following grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ,where p ∈ Φ. By ϕ⊥ we
denote the formula that is obtained from ¬ϕ by pushing all negation symbols to the atomic
level using the standard duality between ∧ (�) and ∨ (♦). A (Kripke) Φ-model is a tuple
M = (W,R, V ), where W , called the domain of M, is a non-empty set, R ⊆ W ×W is a
binary relation, and V : Φ→ P(W ) is a valuation of the proposition symbols. By |=ML we
denote the satisfaction relation of modal logic that is defined via pointed Φ-models in the
standard way. Any subset T of the domain of a Kripke model M is called a team of M.
Before we define team semantics for ML, we introduce some auxiliary notation.

I Definition 15. Let M = (W,R, V ) be a model and T and S teams of M. Define that

R[T ] := {w ∈W | ∃v ∈ T s.t. vRw} and R−1[T ] := {w ∈W | ∃v ∈ T s.t. wRv}.

For teams T and S of M, we write T [R]S if S ⊆ R[T ] and T ⊆ R−1[S].

Accordingly, T [R]S holds if and only if for every w ∈ T , there exists some v ∈ S such
that wRv, and for every v ∈ S, there exists some w ∈ T such that wRv. We are now ready
to define team semantics for ML.

I Definition 16 (Lax team semantics). Let M be a Kripke model and T a team of M. The
satisfaction relation M, T |= ϕ for ML(Φ) is defined as follows.

M, T |= p ⇔ w ∈ V (p) for every w ∈ T .
M, T |= ¬p ⇔ w 6∈ V (p) for every w ∈ T .

M, T |= (ϕ ∧ ψ) ⇔ M, T |= ϕ and M, T |= ψ.

M, T |= (ϕ ∨ ψ) ⇔ M, T1 |= ϕ and M, T2 |= ψ for some T1 and T2 s.t. T1 ∪ T2 = T .

M, T |= ♦ϕ ⇔ M, T ′ |= ϕ for some T ′ s.t. T [R]T ′.
M, T |= �ϕ ⇔ M, T ′ |= ϕ, where T ′ = R[T ].

Analogously to the propositional case, we also consider the strict variant of team semantics
for modal logic. In the strict team semantics, we have the following alternative semantic
definitions for the disjunction and diamond (where W denotes the domain of M).

M, T |=str (ϕ ∨ ψ) ⇔ M, T1 |= ϕ and M, T2 |= ψ

for some T1 and T2 such that T1 ∪ T2 = T and T1 ∩ T2 = ∅.
M, T |=str ♦ϕ ⇔ M, f(T ) |= ϕ for some f : T →W s.t. ∀w ∈ T : wRf(w).
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Table 2 Complexity of satisfiability, validity and model checking for modal logics under both
strict and lax semantics. The given complexity classes refer to completeness results and “-h.” denotes
hardness. The complexities for Minc and EMinc coincide, see Theorems 23, 24, and 26.
† In [15] NEXP-completeness is claimed. However there is a mistake in the proof and the authors of
[15] now have a proof for EXP-completeness.

Satisfiability Validity Model checking

strict lax strict lax strict lax

ML PSPACE [18] PSPACE [18] P [2, 23]
Minc EXP† EXP [15] coNEXP-h. [Th. 25] coNEXP-h. [Th. 25] NP [Th. 24] P [Th. 23]

When L is a team-based modal logic, we let Lstr to denote its variant with strict semantics.
As in the propositional case, for strict semantics we use |=str instead of |=. The formulae of
ML have the following flatness property.

I Proposition 17 (Flatness, see, e.g., [4]). Let M be a Kripke model and T be a team of M.
Then, for every formula ϕ of ML(Φ): M, T |= ϕ ⇔ ∀w ∈ T : M, w |=ML ϕ.

The syntax of modal inclusion logic Minc(Φ) and extended modal inclusion logic EMinc(Φ)
is obtained by extending the syntax of ML(Φ) by the following grammar rule for each n ∈ N:

ϕ ::= ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn,

where ϕ1, ψ1, . . . , ϕn, ψn ∈ ML(Φ). Additionally, for Minc(Φ), we require that ϕ1, ψ1, . . . ,
ϕn, ψn are proposition symbols. The semantics for these inclusion atoms is defined as follows:

M, T |= ϕ1, . . . , ϕn ⊆ ψ1, . . . , ψn ⇔ ∀w ∈ T∃v ∈ T :
∧

1≤i≤n
(M, {w} |= ϕi ⇔M, {v} |= ψi).

The following proposition is proven in the same way as the analogous results for first-order
inclusion logic [5]. A modal logic L is union closed if M, T |= ϕ and M, S |= ϕ implies that
M, T ∪ S |= ϕ, for every ϕ ∈ L.

I Proposition 18 (Union Closure). The logics ML, Minc, EMinc are union closed.

Analogously to the propositional case, it is easy to establish that for ML the strict and
the lax semantics coincide (for a proof in the first-order setting see [5]). Again, as in the
propositional case, this does not hold for Minc or EMinc. Note that since PIncstr is not union
closed, neither is Mincstr, nor EMincstr.

In contrary to the propositional case, Lemma 5 fails in the modal case as the following
example illustrates.

I Example 19. Let M be as depicted in the table of Figure 1 and let ϕ denote the PIncstr-
formula of Example 4. Now M, {wi} |=str �ϕ, for i ∈ {1, 2, 3}, but M, {w1, w2, w3} 6|=str �ϕ.

5 Model checking and validity in modal team semantics

The model checking, satisfiability, and validity problems in the context of team semantics of
modal logic are defined analogously to the propositional case. Let L(Φ) be a modal logic
with team semantics. A formula ϕ ∈ L(Φ) is satisfiable, if there exists a Kripke Φ-model
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M and a non-empty team T of M such that M, T |= ϕ. A formula ϕ ∈ L(Φ) is valid, if
M, T |= ϕ holds for every Φ-model M and every team T of M. The satisfiability problem
SAT(L) and the validity problem VAL(L) are defined in the obvious way: Given a formula
ϕ ∈ L, decide whether the formula is satisfiable (valid, respectively). For model checking
MC(L) we consider combined complexity: Given a formula ϕ ∈ L, a Kripke model M, and a
team T of M, decide whether M, T |= ϕ. See Table 2 for known complexity results on ML
and Minc, together with partial results of this paper.

5.1 Complexity of model checking
Let M be a Kripke model, T be a team of M, and ϕ be a formula of Minc. By maxsub(T, ϕ),
we denote the maximum subteam T ′ of T such that M, T ′ |= ϕ. Since Minc is union closed
(cf. Proposition 18), such a maximum subteam always exists.

For a proof of the following lemma, see the full version [14] of this article.

I Lemma 20. If ϕ is a proposition symbol, its negation, or an inclusion atom, then
maxsub(T, ϕ) can be computed in polynomial time with respect to |T |+ |ϕ|.

For the following lemma it is crucial that lax semantics is considered. The lemma cannot
hold for strict semantics unless P = NP.

I Lemma 21. MC(Minc) under lax semantics is in P.

Proof. We will present a labelling algorithm for model checking M, T |= ϕ. Let subOcc(ϕ)
denote the set of all occurrences of subformulae of ϕ. Below we denote occurrences as if they
were formulae, but we actually refer to some particular occurrence of the formula.

A function f : subOcc(ϕ)→ P(W ) is called a labelling function of ϕ in M. We will next
give an algorithm for computing a sequence f0, f1, f2, . . ., of such labelling functions.

Define f0(ψ) = W for each ψ ∈ subOcc(ϕ).
For odd i ∈ N, define fi(ψ) bottom up as follows:
1. For literal ψ, define fi(ψ) := maxsub(fi−1(ψ), ψ).
2. fi(ψ ∧ θ) := fi(ψ) ∩ fi(θ).
3. fi(ψ ∨ θ) := fi(ψ) ∪ fi(θ).
4. fi(♦ψ) := {w ∈ fi−1(♦ψ) | R[w] ∩ fi(ψ) 6= ∅}.
5. fi(�ψ) := {w ∈ fi−1(�ψ) | R[w] ⊆ fi(ψ)}.
For even i ∈ N larger than 0, define fi(ψ) top to bottom as follows:
1. Define fi(ϕ) := fi−1(ϕ) ∩ T .
2. If ψ = θ ∧ γ, define fi(θ) := fi(γ) := fi(θ ∧ γ).
3. If ψ = θ ∨ γ, define fi(θ) := fi−1(θ) ∩ fi(θ ∨ γ) and fi(γ) := fi−1(γ) ∩ fi(θ ∨ γ).
4. If ψ = ♦θ, define fi(θ) := fi−1(θ) ∩R[fi(♦θ)].
5. If ψ = �θ, define fi(θ) := fi−1(θ) ∩R[fi(�θ)].

By a straightforward induction on i, we can prove that fi+1(ψ) ⊆ fi(ψ) holds for every
ψ ∈ subOcc(ϕ). The only nontrivial induction step is that for fi+1(θ) and fi+1(γ), when
i+ 1 is even and ψ = θ ∧ γ. To deal with this step, observe that, by the definition of fi+1
and fi, we have fi+1(θ) = fi+1(γ) = fi+1(ψ) and fi(ψ) ⊆ fi(θ), fi(γ), and by the induction
hypothesis on ψ, we have fi+1(ψ) ⊆ fi(ψ).

It follows that there is an integer j ≤ 2 · |W | · |ϕ| such that fj+2 = fj+1 = fj . We
denote this fixed point fj of the sequence f0, f1, f2, . . . by f∞. By Lemma 20 the outcome of
maxsub(·, ·) is computable in polynomial time with respect to its input. That being, clearly
fi+1 can be computed from fi in polynomial time with respect to |W |+ |ϕ|. On that account
f∞ is also computable in polynomial time with respect to |W |+ |ϕ|.
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We will next prove by induction on ψ ∈ subOcc(ϕ) that M, f∞(ψ) |= ψ. Note first that
there is an odd integer i and an even integer j such that f∞ = fi = fj .

1. If ψ is a literal, the claim is true since f∞ = fi and fi(ψ) = maxsub(fi−1(ψ), ψ).
2. Assume next that ψ = θ ∧ γ, and the claim holds for θ and γ. Since f∞ = fj , we have

f∞(ψ) = f∞(θ) = f∞(γ), as a result, by induction hypothesis, M, f∞(ψ) |= θ ∧ γ.
3. In the case ψ = θ ∨ γ, we obtain the claim M, f∞(ψ) |= ψ by using the induction

hypothesis, and the observation that f∞(ψ) = fi(ψ) = fi(θ) ∪ fi(γ) = f∞(θ) ∪ f∞(γ).
4. Assume then that ψ = ♦θ. Since f∞ = fi, we have f∞(ψ) = {w ∈ fi−1(ψ) | R[w] ∩

f∞(θ) 6= ∅}, as a consequence f∞(ψ) ⊆ R−1[f∞(θ)]. On the other hand, since f∞ =
fj , we have f∞(θ) = fj−1(θ) ∩ R[f∞(ψ)], for this reason f∞(θ) ⊆ R[f∞(ψ)]. Thus
f∞(ψ)[R]f∞(θ), and using the induction hypothesis, we see that M, f∞(ψ) |= ψ.

5. Assume finally that ψ = �θ. Since f∞ = fi, we have R[f∞(ψ)] ⊆ f∞(θ). On the other
hand, since f∞ = fj , we have f∞(θ) ⊆ R[f∞(ψ)]. This shows that f∞(θ) = R[f∞(ψ)],
that being the case by the induction hypothesis, M, f∞(ψ) |= ψ.

In particular, if f∞(ϕ) = T , then M, T |= ϕ. Consequently, to complete the proof of
the lemma, it suffices to prove that the converse implication is true, as well. To prove this,
assume that M, T |= ϕ. Then for each ψ ∈ subOcc(ϕ), there is a team Tψ such that
1. Tϕ = T .
2. If ψ = θ ∧ γ, then Tψ = Tθ = Tγ .
3. If ψ = θ ∨ γ, then Tψ = Tθ ∪ Tγ .
4. If ψ = ♦θ, then Tψ[R]Tθ.
5. If ψ = �θ, then Tθ = R[Tψ].
6. If ψ is a literal, then M, Tψ |= ψ.

We prove by induction on i that Tψ ⊆ fi(ψ) for all ψ ∈ subOcc(ϕ). For i = 0, this is
obvious, since f0(ψ) = W for all ψ. Assume next that i+ 1 is odd and the claim is true for i.
We prove the claim Tψ ⊆ fi(ψ) by induction on ψ.
1. If ψ is a literal, then fi+1(ψ) = maxsub(fi(ψ), ψ). Since M, Tψ |= ψ, and by induction

hypothesis, Tψ ⊆ fi(ψ), the claim Tψ ⊆ fi+1(ψ) is true.
2. Assume that ψ = θ ∧ γ. By induction hypothesis on θ and γ, we have Tψ = Tθ ⊆ fi+1(θ)

and Tψ = Tγ ⊆ fi+1(γ). For this reason, we get Tψ ⊆ fi+1(θ) ∩ fi+1(γ) = fi+1(ψ).
3. The case ψ = θ ∨ γ is similar to the previous one; we omit the details.
4. If ψ = ♦θ, then fi+1(ψ) = {w ∈ fi(ψ) | R[w] ∩ fi+1(θ) 6= ∅}. By the two induction

hypotheses on i and θ, we have {w ∈ Tψ | R[w] ∩ Tθ 6= ∅} ⊆ fi+1(ψ). The claim follows
from this, since the condition R[w] ∩ Tθ 6= ∅ holds for all w ∈ Tψ.

5. The case ψ = �θ is again similar to the previous one, so we omit the details.

Assume then that i+ 1 is even and the claim is true for i. This time we prove the claim
Tψ ⊆ fi(ψ) by top to bottom induction on ψ.
1. By assumption, Tϕ = T , whence by induction hypothesis, Tϕ ⊆ fi(ϕ) ∩ T = fi+1(ϕ).
2. Assume that ψ = θ ∧ γ. By induction hypothesis on ψ, we have Tψ ⊆ fi+1(ψ). Since

Tψ = Tθ = Tγ and fi+1(ψ) = fi+1(θ) = fi+1(γ), this implies that Tθ ⊆ fi+1(θ) and
Tγ ⊆ fi+1(γ).

3. Assume that ψ = θ ∨ γ. Using the fact that Tθ ⊆ Tψ, and the two induction hypotheses
on i and ψ, we see that Tθ ⊆ fi(θ) ∩ Tψ ⊆ fi(θ) ∩ fi+1(ψ) = fi+1(θ). Similarly, we see
that Tγ ⊆ fi+1(γ).
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4. Assume that ψ = ♦θ. By the induction hypothesis on i, we have Tθ ⊆ fi(θ), and by the
induction hypothesis on ψ, we have Tθ ⊆ R[Tψ] ⊆ R[fi+1(ψ)]. Accordingly, we see that
Tθ ⊆ fi(θ) ∩R[fi+1(ψ)] = fi+1(θ).

5. The case ψ = �θ is similar to the previous one; we omit the details.

It follows now that T = Tϕ ⊆ f∞(ϕ). Since f∞(ϕ) ⊆ f2(ϕ) ⊆ T , we conclude that
f∞(ϕ) = T . This completes the proof of the implication M, T |= ϕ ⇒ f∞(ϕ) = T . J

The following lemma then follows, since in the context of model checking, we may replace
modal formulae that appear as parameters in inclusion atoms by fresh proposition symbols
with the same extension.

I Lemma 22. MC(EMinc) under lax semantics is in P.

By combining Lemmas 9, 21, and 22, we obtain the following theorem.

I Theorem 23. MC(Minc) and MC(EMinc) are P-complete w.r.t. ≤log
m .

I Theorem 24. MC(Mincstr) and MC(EMincstr) are NP-complete w.r.t. ≤log
m .

Proof. The NP-hardness follows from the propositional case, i.e., from Lemma 13.
In order to establish inclusion, we note that the obvious brute force algorithm for model

checking for EMinc works in NP: For disjunctions and diamonds, we use nondeterminism
to guess the correct partitions or successor teams, respectively. Conjunctions are dealt
with sequentially and for boxes the unique successor team can be computed by brute force
in quadratic time. Checking whether a team satisfies an inclusion atom or a (negated)
proposition symbol can be computed by brute force in polynomial time (this also follows
directly from Lemma 20). J

5.2 Complexity of validity
The following result involves a reduction from a complement problem of the validity problem
of dependency quantified Boolean formulas [20]. The details can be found in the full version
[14] of this article.

I Theorem 25. VAL(Minc) and VAL(Mincstr) are coNEXP-hard w.r.t. ≤log
m .

While the exact complexities of the problems VAL(Minc) and VAL(EMinc) remain open,
it is straightforward to establish that the complexities coincide. In the proof of the theorem
below, we introduce fresh proposition symbols for each modal formula that appears as a
parameter for an inclusion atom. We then replace these formulas by the fresh proposition
symbols and separately force, by using ML, that the extensions of the proposition symbols
and modal formulae are the same, respectively. See [14] for a detailed proof.

I Theorem 26. Let C be a complexity class that is closed under polynomial time reductions.
Then VAL(Minc) under lax (strict) semantics in complete for C if and only if VAL(EMinc)
under lax (strict) semantics in complete for C.

6 Conclusion

In this paper, we investigated the computational complexity of model checking and validity
for propositional and modal inclusion logic to complete the complexity landscape of these
problems in the mentioned logics. In particular, we gave emphasis to the subtle influence of
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which semantics is considered: strict or lax. The model checking problem for these logics
under strict semantics was shown to be NP-complete and under lax semantics P-complete.
The validity problem was shown to be coNP-complete for the propositional strict semantics
case, for the lax semantics coNP-completeness was established earlier by Hannula et al. [12].
For the modal case, we obtained a coNEXP lower bound under lax as well as strict semantics.
The upper bound is left open for further research. We however established that, if closed
under polynomial time reductions, the complexities of VAL(Minc) and VAL(EMinc), and
VAL(Mincstr) and VAL(EMincstr) coincide, respectively.

We conclude with an open problem. Let ML(∼) denote the extension of modal logic by
the contradictory negation ∼ with the following semantics: M, T |=∼ϕ iff M, T 6|= ϕ. What
is the complexity of VAL(ML(∼))? It is known that VAL(PL(∼)) is complete for alternating
exponential time with polynomially many alternations [13]; this is the best known lower
bound for VAL(ML(∼)). Decidability with non-elementary upper bound can be obtained,
e.g., by using team-bisimulation and Hintikka-types; no better upper bound is known.
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