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EFFECTIVE ASPECTS OF BERNOULLI RANDOMNESS

CHRISTOPHER P. PORTER

Abstract. In this paper, we study Bernoulli random sequences, i.e., sequences that are
Martin-Löf random with respect to a Bernoulli measure µp for some p ∈ [0, 1], where we
allow for the possibility that p is noncomputable. We focus in particular on the case in
which the underlying Bernoulli parameter p is proper (that is, Martin-Löf random with
respect to some computable measure). We show for every Bernoulli parameter p, if there is
a sequence that is both proper and Martin-Löf random with respect to µp, then p itself must
be proper, and explore further consequences of this result. We also study the Turing degrees
of Bernoulli random sequences, showing, for instance, that the Turing degrees containing a
Bernoulli random sequence do not coincide with the Turing degrees containing a Martin-Löf
random sequence. Lastly, we consider several possible approaches to characterizing blind
Bernoulli randomness, where the corresponding Martin-Löf tests do not have access to the
Bernoulli parameter p, and show that these fail to characterize blind Bernoulli randomness.

1. Introduction

Algorithmic randomness with respect to biased probability measures on the Cantor space
2ω has been studied in two separate strands: with respect to computable measures, such as
in [BM09], [BP12], and [HP17], and with respect to non-computable measures, such as in
[DM13] and [RS18] (see the recent survey [Por19] for an overview of both approaches). In this
article, we study the interaction of these two strands in the context of Bernoulli measures
on 2ω. Recall that, for p ∈ [0, 1], the Bernoulli p-measure µp is defined by µp(JσK) =
p#0(σ)(1 − p)#1(σ) for each basic open subset JσK of 2ω, where, for i ∈ {0, 1}, #i(σ) is the
number of occurrences of the symbol i in σ. We refer to such a p as a Bernoulli parameter.
We will refer to Martin-Löf randomness with respect to some Bernoulli measure as Bernoulli
randomness.

The most significant work on the topic of Bernoulli randomness is due to Kjos-Hanssen
[KH10], who focuses in particular on randomness with respect to non-computable Bernoulli
measures. On the standard approach to defining Martin-Löf randomness with respect to a
non-computable measure, one includes the measure as an oracle to be used in enumerating
the corresponding Martin-Löf tests (or, more precisely, a sequence that encodes the values
of the measure on basic open sets in some effective way). In the case of defining Bernoulli
randomness with respect to a non-computable Bernoulli parameter p, it suffices to use p as
an oracle in the definition of the corresponding Martin-Löf tests.

By contrast with the standard approach, Kjos-Hanssen considers blind Bernoulli random-
ness, i.e. Bernoulli randomness defined in terms of Martin-Löf tests that do not have access
to the Bernoulli parameter p. His two main findings are the following: First, he shows that
for p ∈ [0, 1], every Bernoulli p-random sequence computes the Bernoulli parameter p. Sec-
ond, using this first result, he shows that the standard notion of Bernoulli p-randomness
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(given in terms of tests that have access to the oracle p) coincides with the notion of blind
Bernoulli p-randomness.

In this study, we extend Kjos-Hanssen’s investigations in several respects. First, in Section
3 we study the behavior of sequences that are Bernoulli random with respect to an algorith-
mically random Bernoulli parameter p. It follows from work of V’yugin [V’y12] (building
upon work in [VV93]) and, independently, Hoyrup [Hoy13], that if a sequence x is Bernoulli
random with respect to a Martin-Löf random Bernoulli random parameter p, that x is proper,
that is, random with respect to a computable measure on 2ω. Here, by a careful analysis of
Kjos-Hanssen’s first result discussed above, we prove a partial converse of this result: If a
proper sequence x is Bernoulli random with respect to some parameter p, then p itself must
be proper as well. We then explore a number of consequences of this theorem.

Second, by our first main result, every Bernoulli random sequence that is proper has
Martin-Löf random Turing degree (i.e., is Turing equivalent to a Martin-Löf random se-
quence). This raises a number of questions about the Turing degrees of Bernoulli random
sequences, which we consider in Section 4. For instance, we show that for every parameter
p, there is a Bernoulli p-random sequence that has Martin-Löf random Turing degree, and
by contrast, there is some parameter p and some Bernoulli p-random sequence that does not
have Martin-Löf random Turing degree.

Lastly, in Section 5 we study several candidate definitions of blind Bernoulli randomness
given in terms of initial segment complexity and supermartingales. It is well-known that
a sequence is Bernoulli p-random if and only if KAp(x↾n) ≥ − log µp(X↾n) − O(1), where
KA(σ) is the a priori complexity of σ ∈ 2<ω (defined below in Section 5). Here we show that
the weaker condition KA(x↾n) ≥ − logµp(x↾n) − O(1) does not imply that x is Bernoulli
p-random, which shows that this condition does not provide a notion of blind randomness
in terms of a priori complexity that is equivalent to Kjos-Hanssen’s original definition of
blind randomness. From this result, we can easily derive the conclusion that (1) a similar
condition in terms of prefix-free Kolmogorov complexity and (2) a notion of randomness
defined in terms of blind supermartingales both fail to characterize Bernoulli randomness.

Before establishing the above-described results, in the following section we provide the
requisite background.

2. Background

2.1. Notation and Measures. The set of finite binary strings is denoted 2<ω. The space
of all infinite binary sequences is denoted 2ω and comes equipped with the product topology
generated by the clopen sets JσK = {x ∈ 2ω : σ ≺ x}, where σ ∈ 2<ω and σ ≺ x means σ is
an initial segment of x.

A (probability) measure µ on 2ω is a function that assigns to each Borel subset of 2ω a
number in the unit interval [0, 1] and satisfies µ(

⋃

i∈ω Bi) =
∑

i∈ω µ(Bi) whenever the Bi’s
are pairwise disjoint Borel subsets of 2ω. Carathéodory’s extension theorem guarantees that
the conditions

• µ(2ω) = 1 and
• µ(JσK) = µ(Jσ0K) + µ(Jσ1K) for all σ ∈ 2<ω

uniquely determine a measure on 2ω. We thus identify a measure with a function µ : 2<ω → [0, 1]
satisfying the above conditions and µ(σ) is often written instead of µ(JσK). The Lebesgue
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measure λ on 2ω is defined by λ(σ) = 2−|σ| for each string σ ∈ 2<ω, where |σ| denotes the
length of σ. The space of all measures on 2ω is denoted P(2ω).

2.2. Some computability theory. We assume the reader is familiar with the basic con-
cepts of computability theory as found, for instance, in the early chapters of [Nie09] or
[DH10]. We review a few useful concepts.

A Σ0
1 class S ⊆ 2ω is an effectively open set, i.e., an effective union of basic clopen subsets

of 2ω and a Π0
1 class is the compliment of a Σ0

1 class.
A map Φ: ⊆ 2ω → 2ω is a Turing functional if there is an oracle Turing machine that when

given x ∈ dom(Φ) (as an oracle) and k ∈ ω outputs Φ(x)(k) (unless Φ(x)(k) is undefined).
Relativization of this notion to some z ∈ 2ω leads to the notion of a z-computable function.

A measure µ on 2ω is computable if µ(σ) is a computable real number, uniformly in σ ∈ 2<ω.
Note that the Bernoulli p-measure µp (as defined in the introduction) is computable if and
only if the Bernoulli parameter p ∈ [0, 1] is computable. If µ is a computable measure on
2ω and Φ: ⊆ 2ω → 2ω is a Turing functional defined on a set of µ-measure one, then the
pushforward measure µΦ defined by

µΦ(σ) = µ(Φ−1(σ))

for each σ ∈ 2<ω is a computable measure.

2.3. Martin-Löf randomness with respect to various measures. Recall that for a
fixed computable measure µ on 2ω and z ∈ 2ω, a µ-Martin-Löf test relative to z (or simply
a µ-test relative to z) is a uniformly Σ0,z

1 sequence (Ui)i∈ω of subsets of 2ω with µ(Un) ≤ 2−i

for every i ∈ ω. x ∈ 2ω passes such a test (Ui)i∈ω if x /∈
⋂

i∈ω Ui and x is µ-Martin-Löf
random relative to z if x passes every µ-Martin-Löf test relative to z. The set of all such x’s
is denoted by MLR

z
µ. As in the introduction, we say that x ∈ 2ω is proper if x is Martin-Löf

random with respect to some computable measure. Lastly, for each choice of µ and z as
above, there is a single, universal, µ-test relative to z, (Ui)i∈ω such that x ∈ MLR

z
µ if and

only if x passes (Ui)i∈ω.
For p ∈ [0, 1], a sequence x ∈ 2ω is Bernoulli p-random if it passes every µp-Martin-Löf

test relative to p. The collection of Bernoulli p-random sequences will be written as MLRµp

(we suppress the oracle p). We say that x ∈ 2ω is a Bernoulli random if it is Bernoulli
p-random for some p ∈ [0, 1].

In the next section, we will briefly consider Martin-Löf random members of P(2ω), which
can be defined by defining the notion of a Martin-Löf test in the setting of P(2ω) (or more
generally, any computable metric space, as in, for instance, [Hoy13]), or by representing
each measure by a sequence and defining a random measure to be one that has a random
representing sequence (as in [Cul15]). The former is a straightforward extension of the
definition of Martin-Löf randomness for computable measures on 2ω; as we will not formally
define such tests in the sequel, we omit the details.

We conclude this section with a pair of useful results concerning the interaction between
Turing functionals and Martin-Löf randomness:

Theorem 2.1. Let Φ: ⊆ 2ω → 2ω be a Turing functional and µ ∈ P(2ω) be computable with
µ(dom(Φ)) = 1.

(i) (Preservation of Randomness [ZL70]) If x ∈ MLRµ then Φ(x) ∈ MLRµΦ
.
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(ii) (No Randomness Ex Nihilo [She86]) If y ∈ MLRµΦ
, then there is some x ∈ MLRµ

such that Φ(x) = y.

3. Random Bernoulli measures

3.1. Mixtures of Bernoulli measures. The mixture of Bernoulli measures was first stud-
ied by De Finetti [DF31]. Given a measure P on P(2ω), the barycenter of P is the measure
ξP on 2ω defined by

ξP (U) =

∫

µ(U) dP (µ)

for all Borel U ⊆ 2ω. In the case that P is concentrated on a set of Bernoulli measures in
P(2ω), we say that the barycenter ξP is a mixture of Bernoulli measures.

A measure ξ is exchangeable if the ξ-probability of a string σ being an initial segment of
x ∈ 2ω is the same as the ξ-probability of σ occurring as a subword at any fixed block of bits
of length |σ| in x. A classical result in probability theory is De Finetti’s theorem, which says
that ξ is exchangeable if and only if it is the mixture of Bernoulli measures. Freer and Roy
[FR12] proved that in this setting ξ is computable if and only if P is computable. Hoyrup
then generalized this result via the following theorem.

Theorem 3.1 ([Hoy13]). If P is a computable measure on P(2ω), then its barycenter measure
ξP is computable and

MLRξP =
⋃

µ∈MLRP

MLRµ.

This result provides a useful tool for studying random Bernoulli measures. Given a com-
putable measure ν on [0, 1], ν induces a measure Pν on P(2ω) that satisfies

∫

µ(U)dPν(µ) =

∫

µp(U)dν(p)

for all Borel U ⊆ 2ω. If ξ is the resulting barycenter of Pν , it follows from Theorem 3.1 that
ξ is the mixture of ν-random Bernoulli measures:

Corollary 3.2. Let ν be a computable measure on [0, 1]. Then there is a computable measure
ξ on 2ω such that

MLRξ =
⋃

p∈MLRν

MLRµp
.

This result in implicit in [Hoy13] and was shown independently by V’yugin in [V’y12].

3.2. Characterizing proper Bernoulli parameters. An immediate consequence of Corol-
lary 3.2 is the following:

Corollary 3.3. Let p ∈ [0, 1] be proper. Then there is some computable ξ ∈ P(2ω) such that
MLRµp

⊆ MLRξ.

We thus have the consequence that every sequence that is Bernoulli p-random for some
proper p is itself proper. This raises a natural question: If x is proper and Bernoulli p-random
for some p ∈ [0, 1], must p be proper? We answer this question in the affirmative. To do so,
we will draw upon facts from the proof of the following result, discussed in the introduction,
which is due to Kjos-Hanssen:
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Theorem 3.4 ([KH10]). For p ∈ [0, 1], if x ∈ MLRµp
, then x ≥T p.

Theorem 3.5. If x is proper and x ∈ MLRµp
for some p ∈ [0, 1], then p is proper.

Proof. Fix p such that x ∈ MLRµp
and suppose that x ∈ MLRν for some computable measure

ν. By the proof of Theorem 3.4 there is a blind Martin-Löf test (Vd)d∈ω such that (i) (Vd)d∈ω
is a µq-Martin-Löf test for all q ∈ [0, 1], and (ii) for each d ∈ ω, there is a Turing functional
Θd such that y /∈ Vd implies that

Θd(y) = lim
n→∞

#{i < n : y(i) = 1}

n
.

Since x ∈ MLRµp
, there is some d ∈ ω such that x /∈ Vd. We define a total Turing

functional Γ in terms of the Π0
1 class Pd := 2ω \ Vd as follows: For y ∈ 2ω, to compute

Γ(y), we attempt to calculate Θd(y). If y ∈ 2ω \ Vd, then Θd(y) will compute the relative
frequency of 1s in y. However, if y /∈ Pd, there will be some stage s such that y /∈ Pd,s

where (Pd,s)s∈ω is an effective sequence of clopen subsets of 2ω such that
⋂

s∈ω Pd,s = Pd. In
this case, we will terminate the calculation of Θd(y) and Γ(y) will switch to outputting 0s
thereafter (following any initial bits that might have been calculated before the first stage s
at which we see y /∈ Pd,s). Clearly, Γ is total.

Next, we set ζ = ν ◦Γ−1, which is a computable measure because ν is computable and Γ is
a total Turing functional. To see that p is proper, note that since x ∈ Pd ∩MLRν , Γ(x) = p,
and Φ is defined on a set of ν-measure one (as Φ is total), it follows by the preservation of
randomness (Theorem 2.1(i)) that Γ(x) = p ∈ MLRζ. �

Combining Corollary 3.3 and Theorem 3.5, we have shown:

Corollary 3.6. For x ∈ MLRµp
for some p ∈ [0, 1], x is proper if and only if p is proper.

The above result shows that any value p for which there is a proper p-random sequence
must itself be proper. Can this be shown to hold uniformly? That is, given a computable
measure ν on 2ω, can we find a single computable measure ζ such that

(∀p ∈ [0, 1])
[

MLRν ∩MLRµp
6= ∅ ⇒ p ∈ MLRζ

]

?

We answer this question in the affirmative.

Theorem 3.7. If ν is a computable measure on 2ω, then there is a computable measure ζ
on [0, 1] such that for every p ∈ [0, 1] such that MLRν ∩MLRµp

6= ∅, we have p ∈ MLRζ .

Proof. As in the proof of Theorem 3.6, for every p ∈ [0, 1] and every x ∈ MLRν ∩ MLRµp
,

there is some d ∈ ω such that x ∈ Pd and thus a corresponding measure ζd (defined in terms
of the functional Θd) such that p ∈ MLRζd. Moreover, the collection of measures (ζj)j∈ω is
uniformly computable. Thus we can define the convex combination ζ :=

∑

2−(i+1)ζi, which
is itself a computable measure. We claim that MLRζd ⊆ MLRζ. Given q /∈ MLRζ , there is
some ζ-Martin-Löf test (Ui)i∈ω such that q ∈

⋂

i∈ω Ui. Then since for each i ∈ ω we have

2−(d+1)ζd(Ui) ≤
∑

i∈ω

2−(j+1)ζj(Ui) = ζ(Ui) ≤ 2−i,

it follows that (Ui)i≥d+1 is a ζd-Martin-Löf test containing q. ζ is thus the desired measure.
�
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Let us say that a sequence is continuously proper if it is random with respect to a contin-
uous, computable measure, where a measure µ is continuous if µ({x}) = 0 for every x ∈ 2ω.
We have seen that a Bernoulli p-random sequence is proper if and only if p is sequence.
Does a similar result hold for continuously proper p-random sequences? One direction is
straightforward:

Proposition 3.8. Let p ∈ [0, 1]. If x ∈ MLRµp
is proper, then x is continuously proper.

Proof. Since x is p-random and proper, by Theorem 3.5, p is random with respect to some
computable measure η on [0, 1]. If ξ is the mixture of all Bernoulli measures with parameters
that are random with respect to η, then we have, for every z ∈ 2ω,

ξ({z}) = lim
n→∞

ξ(z↾n) = lim
n→∞

∫

µp(z↾n)dη(p) =

∫

lim
n→∞

µp(z↾n)dη(p) = 0

(where the second equality follows from the dominated convergence theorem). Thus, ξ is
continuous and x is continuously proper. �

We now show that the converse of Proposition 3.8 does not hold.

Theorem 3.9. There is some proper r ∈ [0, 1] and x ∈ MLRµr
such that x is continuously

proper but r is not continuously proper.

Proof. By [Por15, Theorem 3.2], there is a computable measure ν on [0, 1] with the following
properties:

(i) ν has countable support, i.e., there is a countable collection C of sequences such that
ν(C) = 1;

(ii) every y ∈ C is an atom of ν, i.e. ν({y}) > 0, and hence is computable (as shown by
Kautz [Kau91] every atom of a computable measure is computable); and

(iii) there is one non-computable sequence r such that MLRν = C ∪ {r}.

Given x ∈ MLRµr
, by Proposition 3.8, x is continuously proper. However, r is not continu-

ously proper: Suppose otherwise. Then there would be a computable, continuous measure ζ
on [0, 1] such that r ∈ MLRζ . Then if (Ui)i∈ω is a universal ζ-Martin-Löf test, then r ∈ 2ω \Ui

for some i ∈ ω. Since 2ω \ Ui is a Π0
1 class consisting of sequences that are random with

respect to ζ , and since ζ is continuous, there is no computable sequence in 2ω \ Ui. Thus,
ν(2ω \ Ui) = 0, that r /∈ MLRν (since no ν-random sequence can be contained in a ν-null Π0

1

class), a contradiction. �

We conclude this section with the observation that Theorem 3.7 gives us a method for
showing that certain mixtures of Bernoulli measures cannot be obtained effectively. For
example:

Theorem 3.10. There is no computable mixture of Bernoulli measures that includes all
computable Bernoulli measures.

Proof. Suppose there is some computable measure ξ such that for all computable c ∈ [0, 1],
there is some x ∈ MLRξ ∩ MLRµc

. By Theorem 3.7, there is a computable measure ζ on
[0, 1] such that for every p ∈ [0, 1] such that MLRν ∩MLRµp

6= ∅, we have p ∈ MLRζ . But
then there is a computable measure ζ such that every computable sequence is random with
respect to ζ , which is impossible (one can always construct a computable sequence z such
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that ζ({z}) = 0 by following the least non-ascending path of the ζ-measure of members of
2<ω).

�

4. The Turing Degrees of Bernoulli Random Sequences

We now consider the Turing degrees of Bernoulli random sequences. Levin [ZL70] and
Kautz [Kau91] independently proved that for every pair of computable measures µ and ν,
there is a µ-almost total functional Φµ→ν such that Φµ→ν(MLRµ) = MLRν . If, in addition, µ
and ν are continuous and positive (i.e. ν(σ) > 0 for all σ ∈ 2<ω), then (Φµ→ν)

−1 = Φν→µ.
In fact, these result also holds for non-computable measures, at least as long as the two
functionals have access to some encoding of µ and ν as binary sequences. In our context, to
convert between randomness with respect to two Bernoulli measures µp and µq only requires
oracle access to the parameters p and q. Thus we have:

Theorem 4.1 (Levin [ZL70] / Kautz [Kau91] ). Let p, q ∈ [0, 1].

(1) There is a (p⊕ q)-computable functional Φp→q such that Φp→q(MLR
p⊕q
µp

) = MLR
p⊕q
µq

.

(2) (Φp→q)
−1 = Φq→p.

Here we will focus primarily on the conversion between Lebesgue randomness and p-
randomness for some p ∈ [0, 1]. In particular, the following is an immediate consequence of
Theorem 4.1:

Theorem 4.2. Let p ∈ [0, 1].

(i) For every x ∈ MLRµp
there is some y ∈ MLR

p such that x ≡T y ⊕ p.
(ii) For every y ∈ MLR

p there is some x ∈ MLRµp
such that x ≡T y ⊕ p.

Proof. (i) Let x ∈ MLRµp
. By Theorem 4.1(1) applied to q = 1

2
, Φp→q is a p-computable

functional such that Φp→q(x) ∈ MLR
p since x ∈ MLR

p⊕q
µp

; set y = Φp→q(x). By Theorem

4.1(2), Φq→p(y) = x, where Φq→p is p-computable. Thus, we have x ⊕ p ≡T y ⊕ p. By
Theorem 3.4, since x ∈ MLRµp

, we have x ≥T p, and thus the conclusion follows.
(ii) The argument is nearly identical as the above, except that we first apply the functional

Φq→p to y ∈ MLR
p with q = 1

2
and argue as above. �

4.1. Comparing degrees of Bernoulli parameters. We first consider how the Turing
comparability of two Bernoulli parameters relates to the Turing comparability of the associ-
ated Bernoulli random sequences.

Theorem 4.3. Every x ∈ MLRµp
computes some y ∈ MLRµq

if and only if q ≤T p.

Proof. (⇒) For this direction, we will use Stillwell’s generalization of Sack’s Theorem [Sti72]:
If λ({x : a ≤T b ⊕ x}) > 0, then a ≤T b (see [DH10, Theorem 8.12.6]). Now suppose that
each p-random sequence computes a q-random sequence. Given any z ∈ MLR

p, by Theorem
4.2(ii), there is some x ∈ MLRµp

such that z ⊕ p ≡T x. By assumption, x computes some
y ∈ MLRµq

, which in turn computes q by Theorem 3.4. Thus we have z ⊕ p ≥T q for every
z ∈ MLR

p. It follows that λ({z : q ≤T z ⊕ p}) > 0, and hence by Stillwell’s theorem, q ≤T p.
(⇐) Suppose that q ≤T p. Given x ∈ MLRµp

, by Theorem 4.2(i) there is some z ∈ MLR
p

such that z ⊕ p ≡T x. Since q ≤T p, MLR
p ⊆ MLR

q and hence z ∈ MLR
q. Then by Theorem

4.2(ii), there is some y ∈ MLRµq
such that y ≡T z ⊕ q, and hence we have

y ≡T z ⊕ q ≤T z ⊕ p ≡ x. �
7



Clearly, if every p-random sequence is Turing-incomparable with every q-random sequence,
then p and q are Turing-incomparable. Interestingly, the converse does not hold:

Proposition 4.4. For every pair of relatively random p, q ∈ [0, 1], there are sequences x ∈
MLRµp

and y ∈ MLRµq
such that x ≡T y.

Proof. Let p, q ∈ [0, 1] satisfy p ∈ MLR
q and q ∈ MLR

p. Since p ∈ MLR
q, Φλ→µq

(p) ∈ MLRµq

by Theorem 4.1. Setting y = Φλ→µq
(p), we have y ≡T p ⊕ q by Theorem 4.2(ii). Similarly,

since q ∈ MLR
p, Φλ→µp

(q) ∈ MLRµp
by Theorem 4.1. Setting x = Φλ→µp

(q), again we have
x ≡T p⊕ q by Theorem 4.2(ii). Thus x ≡T p⊕ q ≡T y. �

4.2. On Turing degrees containing Bernoulli random sequences. We now turn to
the task of determining which Turing degrees contain a Bernoulli random sequence. First,
note that every Bernoulli random sequence computes a Martin-Löf random sequence via von
Neumann’s trick, which is given by the following procedure: Given a sequence x as input,
our procedure reads a pair of bits. If it reads the pair 01, it outputs a 0, while if it read the
pair 10, it outputs a 1; if the procedure reads either 00 or 11, it moves on to the next pair of
input bits with no output. One can verify that this procedure induces the Lebesgue measure,
and hence, given any Bernoulli random as input, we get a Martin-Löf random sequence as
the output by the preservation of randomness.

Recall that a sequence x has diagonally noncomputable (DNC) degree if there is some
f ≤T a such that f(n) 6= ϕn(n) for every n (where (ϕi)i∈ω is the standard enumeration of
all partial computable functions). As every sequence that computes a subset of a Martin-
Löf random sequence has DNC degree (which can be deduced from results in [KH09] and
[GM11]) we can conclude:

Proposition 4.5. Every Bernoulli random sequence has DNC degree.

Having DNC degree, however, does not characterize the degrees of Bernoulli random
sequences.

Proposition 4.6. There is a DNC degree that does not contain a Bernoulli random sequence.

Proof. As shown by Kumabe and Lewis [KL09], there is a sequence x of DNC degree and
minimal degree (if y ≤T x, then either y is computable or y ≡T x). However, no Bernoulli
random sequence has minimal degree, since, as noted above, every Bernoulli random sequence
computes a Martin-Löf random sequence. �

Another candidate for characterizing the degrees of Bernoulli random degrees is the col-
lection of Martin-Löf random degrees, i.e., those Turing degrees that contain a Martin-Löf
random sequence. As we now show, this characterization does not hold, as there are Bernoulli
random degrees that contain no Martin-Löf random sequence. Before we prove this result,
we first show that for every p ∈ [0, 1], there is some Bernoulli p-random that has Martin-Löf
random degree.

Theorem 4.7. For every p ∈ [0, 1], there is some p-random sequence x and a Martin-Löf
random sequence y such that x ≡T y.

8



Proof. For p ∈ [0, 1], consider Ωp =
∑

Up(σ)↓ 2
−|σ|, Chaitin’s Ω relative to the oracle p, where

U is a universal, prefix-free oracle machine. As shown by Downey, Hirschfeldt, Miller, and
Nies [DHMN05], Ωp ∈ MLR

p and Ωp ⊕ p ≡T p′. By Theorem 4.2(ii), since Ωp ∈ MLR
p,

there is some p-random sequence x ≡T Ωp ⊕ p. In addition, by the Kučera-Gács theorem
([Kuč85],[Gác86]), for every a ≥T ∅′, there is some y ∈ MLR such that y ≡T a. Thus there
is some y ∈ MLR satisfying y ≡T p′, which yields

x ≡T (Ωp ⊕ p) ≡T p′ ≡T y. �

Thus, there is no p ∈ [0, 1] with the property that no p-random sequence has Martin-Löf
random degree. However, we have the following:

Theorem 4.8. There is some p ∈ [0, 1] and some y ∈ MLRµp
such that there is no x ∈ MLR

satisfying x ≡T y.

In the proof of Theorem 4.8, we will make use of several results. First we have two
relativizations of standard results in the theory of algorithmic randomness (the proofs of
which are direct relativizations of the proofs of the original theorems). First, we have the
relative version of what is sometimes referred to as the XYZ Theorem, originally due to
Miller and Yu [MY08].

Theorem 4.9. For x, y, z, p ∈ 2ω, if x ∈ MLR
p and x ≤T y ⊕ p for y ∈ MLR

z⊕p, then
x ∈ MLR

z⊕p.

Next, we have the relative version of van Lambalgen’s theorem [VL90]:

Theorem 4.10. For x, y, p ∈ 2ω, x⊕ y ∈ MLR
p if and only if x ∈ MLR

y⊕p and y ∈ MLR
p.

Lastly, we will draw upon a recent result involving K-trivial sequences. Recall that a
sequence a ∈ 2ω is K-trivial if there is some c ∈ ω such that

K(a↾n) ≤ K(n) + c

for all n ∈ ω (here K(σ) = min{|τ | : U(τ) = σ} is the prefix-free Kolmogorov complexity of
σ ∈ 2<ω, where U is a universal prefix-free machine; see [Nie09, Chapter 5] or [DH10, Chapter
11] for more details). As shown by Nies [Nie05], a is K-trivial if and only if MLR

a = MLR

(a property referred to as being low for Martin-Löf randomness.
To establish our result, we make use of the following result about K-trivial sequences due

to Bienvenu, Greenberg, Kučera, Nies, and Turetsky [BGK+16]:

Theorem 4.11. There is a K-trivial sequence p such that for every Martin-Löf random
x = x0 ⊕ x1, p 6≤T xi for some i ∈ {0, 1}.

Proof of Theorem 4.8. Fix a K-trivial p as in the proof of Theorem 4.11. We claim that p
is the desired Bernoulli parameter. Let a ⊕ b ∈ MLR. By Theorem 4.11, without loss of
generality we can assume that p 6≤T a. Splitting a into a0⊕a1, we have p 6≤T ai for i ∈ {0, 1}.
Moreover, for each i ∈ {0, 1}, by the relative version of van Lambalgen’s theorem and the
fact that a0 ⊕ a1 ∈ MLR

p, we have ai ∈ MLR
a1−i⊕p.

Next, we apply the Levin-Kautz theorem: For each i ∈ {0, 1}, since ai ∈ MLR
p, by

Theorem 4.2(ii) there is some yi ∈ MLRµp
such that yi ≡T ai ⊕ p. Suppose now for the sake

of contradiction that for each i ∈ {0, 1}, there is some xi ∈ MLR such that xi ≡T yi. By the
relativized version of the XYZ Theorem, since xi ∈ MLR

p, xi ≤T ai⊕ p, and ai ∈ MLR
a1−i⊕p,
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it follows that xi ∈ MLR
a1−i⊕p = MLR

x1−i. We can thus conclude that x = x0 ⊕ x1 ∈ MLR

by van Lambalgen’s theorem. However, since p ≤T yi ≡T xi for i ∈ {0, 1}, this contradicts
our assumption that P cannot be computed by two halves of a random sequence. Thus,
either degT (y0) or degT (y1) is a Bernoulli random Turing degree that contains no Martin-Löf
random sequence. �

The proof of Theorem 4.8 yields many Bernoulli degrees that are not Martin-Löf random
degrees:

Corollary 4.12. There are uncountably many Turing degrees that contain a Bernoulli ran-
dom sequence and no Martin-Löf random sequence.

Proof. For every Martin-Löf random sequence x, if we split x into (x0 ⊕ x1) ⊕ (x2 ⊕ x3),
then at least one of xi ⊕ p (where p is as in the proof of Theorem 4.8) for i ∈ {0, 1, 2, 3} is
Turing equivalent to a p-random sequence but not Turing equivalent to a Martin-Löf random
sequence. �

Note that any parameter p for which there is a p-random sequence not Turing equivalent to
a Martin-Löf random sequence must of necessity be non-proper. For given a proper sequence
p, any p-random sequence is proper by Corollary 3.3 and hence is Turing equivalent to a
Martin-Löf random sequence (by the Levin-Kautz theorem and randomness preservation).
Characterizing precisely which parameters p yield Theorem 4.8 remains open.

Question 4.13. For which p ∈ [0, 1] is there a Bernoulli p-random sequence that is not
Turing equivalent to any Martin-Löf random sequence?

5. Blind randomness with respect to a Bernoulli measure

In addition to showing Theorem 3.4, another contribution of [KH10] is the introduction of
blind randomness and its application to the study of randomness with respect to a Bernoulli
measure. For a non-computable measure µ on 2ω, a sequence of uniformly Σ0

1 classes (Ui)i∈ω
is called a blind µ-Martin-Löf test if µ(Ui) ≤ 2−i for every i ∈ ω; that is, the test does
not make use of the measure as an oracle, unlike the standard definition of Martin-Löf
randomness with respect to non-computable measures. Moreover, we say that x ∈ 2ω is
blind µ-Martin-Löf random if x passes every blind µ-Martin-Löf test.

In the context of Bernoulli measures, for p ∈ [0, 1], a blind µp-Martin-Löf random test
is one that does not use the parameter p as an oracle. Kjos-Hanssen proved that, for the
purposes of defining Bernoulli randomness, having oracle access to the Bernoulli parameter
is optional:

Theorem 5.1 (Kjos-Hanssen [KH10]). For p ∈ [0, 1], x ∈ 2ω is µp-Martin-Löf random if
and only if x is blind µp-Martin-Löf random.

To date, no initial segment complexity characterization of blind randomness has been
provided. In this section, we show that several reasonable approaches to characterizing
blind randomness in terms of initial segment complexity fail to do so. Let us review several
relevant definitions.

Recall that a semimeasure ρ : 2<ω → [0, 1] is a function satisfying ρ(∅) ≤ 1 and ρ(σ) ≥
ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω. Moreover, a semimeasure ρ is left-c.e. if, uniformly in
σ, each value ρ(σ) is left-c.e., i.e., the limit of a computable, non-decreasing sequence of
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rational numbers. Levin [ZL70] proved the existence of a universal, left-c.e. semimeasure M :
for every left-c.e. semimeasure ρ, there is some c ∈ ω such that M ≥ c ·ρ. We then define the
a priori complexity of σ to be KA(σ) := − logM(σ). These notions are straightforwardly
relativizable to any z ∈ 2ω.

For p ∈ [0, 1], it is a standard result that a sequence x ∈ 2ω is Bernoulli p-random if and
only if KAp(x↾n) ≥ − log µp(x↾n) − O(1) (see [MR18, Proposition 2.2] for a proof of the
more general statement that holds for all noncomputable measures). Here we consider those
sequences that satisfy

KA(x↾n) ≥ − log µp(x↾n)− O(1),

where we remove the oracle p and consider unrelativized a priori complexity. As we now
show, this notion is not, in general, sufficient for Bernoulli p-randomness.

Theorem 5.2. Let p ∈ [0, 1] satisfy p ≥T ∅′. Then there is some y /∈ MLRµp
such that

KA(y↾n) ≥ − log µp(y↾n)− O(1).

Proof. Fix c ∈ ω and consider the Π0,p
1 class

P = {x ∈ 2ω : (∀n)[KA(x↾n) ≥ − log µp(x↾n)− c]}.

Observe that for T = {σ ∈ 2<ω : : KA(σ) ≥ − logµp(σ) − c}, we have T ≤T p; indeed,
the predicate KA(σ) ≥ − log µp(σ) − c is computable in p ⊕ ∅′ ≡T p. We claim that
T = {σ ∈ 2<ω : (∃x ∈ P)[σ ≺ x]}, the set of extendible nodes of P. In particular, we show
that if σ ∈ T , then either σ0 or σ1 is in T .

Suppose that for some σ ∈ T , σ0 /∈ T and σ1 /∈ T . Since σ ∈ T , we have KA(σ) ≥
− log µp(σ)− c, which implies that

(1) M(σ) ≤ 2cµp(σ).

For i ∈ {0, 1}, σi /∈ T implies that KA(σi) < − logµp(σi)− c, and hence we have

(2) M(σi) > 2cµp(σi)

for i ∈ {0, 1}. Combining Equations (1) and (2) and using the properties of measures and
semimeasures, we have

2cµp(σ) ≥ M(σ) ≥ M(σ0) +M(σ1) > 2c(µp(σ0) + µp(σ1)) = 2cµp(σ),

which is impossible. Thus, either σ0 ∈ T or σ1 ∈ T . Since every σ ∈ T has an extension in
T , every σ extends to an infinite path through T . Thus the claim follows.

As p ≥T T = {σ ∈ 2<ω : (∃x ∈ P)[σ ≺ x]}, it follows that p can compute the leftmost
path through P. That is, there is some y ∈ P such that (i) KA(y↾n) ≥ − logµp(y↾n)− c for
all n and (ii) y ≤T p, from which it follows that y /∈ MLRµp

. �

Note that since KA(σ) ≤ K(σ) + O(1) for every σ ∈ 2<ω, we can also conclude that the
condition that K(x↾n) ≥ − logµp(x↾n)−O(1) does not imply Bernoulli p-randomess.

Corollary 5.3. Let p ∈ [0, 1] satisfy p ≥T ∅′. Then there is some y /∈ MLRµp
such that

K(y↾n) ≥ − logµp(y↾n)−O(1).
11



A third attempt at characterizing blind p-randomness can be given in terms of super-
martingales. Recall that, for a computable measure µ on 2ω, a µ-martingale is a computable
function M : 2<ω → R

≥0 that satisfies

M(σ) =
µ(σ0)

µ(σ)
M(σ0) +

µ(σ1)

µ(σ)
M(σ1)

for every σ ∈ 2<ω. It is not hard to show that for every computable µ-martingale M , there
is some computable measure ν such that M = ν

µ
.

Similarly, a c.e. µ-supermartingale is a left-c.e. function M : 2<ω → R
≥0 that satisfies

M(σ) ≥
µ(σ0)

µ(σ)
M(σ0) +

µ(σ1)

µ(σ)
M(σ1)

for every σ ∈ 2<ω. As with the case of computable µ-martingales, one can show that for
every c.e. µ-supermartingale M , there is some left-c.e. semimeasure δ such that M = δ

µ
.

Lastly, a µ-martingale M succeeds on a sequence x if lim supn∈ω M(x↾n) = ∞; one can
define success for a supermartingale in the same way.

In [KHTT14], Kjos-Hanssen, Taveneaux, and Thapen studied blind µp-martingales for
p ∈ [0, 1] with the aim of study a blind analogue of computable randomness with respect
to the measure µp. Although they did not phrase their definition in this way, one can
straightforwardly show that, for each p ∈ [0, 1], a blind p-martingale as defined in [KHTT14]
has the form M = ν

µp
, where ν is a computable measure (and not a p-computable measure).

Similarly, we can define a blind p-supermartingale to be any function of the form M = δ
µp
,

where δ is a left-c.e. semimeasure.
Kjos-Hanssen, Taveneaux, and Thapen showed that there is some for every Martin-Löf

random p ∈ [0, 1], there is a p-computable sequence x such that no blind p-martingale
succeeds on x . We show a similar but less general result:

Theorem 5.4. Let p ∈ [0, 1] satisfy p ≥T ∅′. Then there is some y /∈ MLRµp
such that no

blind p-supermartingale succeeds on y.

Proof. Let y be as in the proof of Theorem 5.2. Suppose there is a blind p-supermartingale
M that succeeds on y. That is, for every d ∈ ω, there is some n ∈ ω such that M(y↾n) > 2d.
Since M = δ

µp
for some left-c.e. semimeasure δ, we have that for every c ∈ ω, there is some

n ∈ ω such that
δ(y↾n)

µp(y↾n)
> 2d.

Applying the negative logarithm to both sides yields

(3) − log δ(y↾n) < − log µp(y↾n)− d.

By the optimality of the universal left-c.e. semimeasure, there is some e ∈ ω such that
2e ·M ≥ δ, or equivalently, − logM(σ) ≤ − log δ(σ) + e. Combining this with Equation (3)
yields

− logM(y↾n) < − logµp(y↾n)− (d− e).

Thus, for every sufficiently large c ∈ ω, there is some n ∈ ω such that

KA(y↾n) < − log µp(y↾n)− c,

which contradicts Theorem 5.2 �
12



Note that the choice of p in Theorem 5.2 requires that p ≥T ∅′. We do not know whether
we can drop this assumption.

Question 5.5. For each noncomputable p ∈ [0, 1], is there some y /∈ MLRµp
such that

KA(y↾n) ≥ − logµp(y↾n)−O(1)?
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