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CONGRUENCE BASED PROOFS OF THE RECOGNIZABILITY

THEOREMS FOR FREE MANY-SORTED ALGEBRAS

J. CLIMENT VIDAL AND E. COSME LLÓPEZ

Abstract. We generalize several recognizability theorems for free single-sorted
algebras to the field of many-sorted algebras and provide, in a uniform way
and without using neither regular tree grammars nor tree automata, purely
algebraic proofs of them based on the concept of congruence.

1. Introduction

The definition of recognizable language set down by Rabin and Scott in [34],
Definition 2, on p. 116, originated in the characterizations of regular languages given
by Myhill [32], in terms of congruence relations of finite index, and Nerode [33], in
terms of right invariant equivalence relations of finite index, and was formulated
for sets of elements of an arbitrary single-sorted abstract algebra by Mezei and
Wright [31]. In this setting, a subset of an algebra is recognizable if there exists
an homomorphism from it into a finite one for which the language coincides with
the inverse image by the homomorphism of a subset of the finite algebra. Such a
recognizability notion, as is well known, is equivalent to providing a congruence of
finite index on the algebra for which the language in question is saturated.

This paper is devoted to the study of several recognizability results for free many-
sorted algebras. Concretely, we generalize to the field of many-sorted algebras
the results presented by Gécseg and Steinby in Section 2.4 of [14], in the field
of single-sorted algebras, on the preservation and, when appropriate, reflection
of the recognizability under the action of the operators of substitution, iteration,
quotient, inverse image by a tree homomorphism, and direct image by linear tree
homomorphism on terms (≡ trees) of free single-sorted algebras.

The device used by Gécseg and Steinby in [14] for proving the aforementioned
results concerning recognizability was that of regular tree grammars. As in the
case of formal languages, there exists another natural device intended for the same
purpose: Tree automata. We recall that tree automata were defined, among others,
by Doner [11, 12] and Thatcher and Wright [41, 42] and that the primary goal of
the theory of tree automata was to apply it to decision problems of second order
logic. On the other hand, regular tree grammars were defined by Brainerd [4] and
the main result of [4], Theorem 4.9, on p. 230, is: “The sets of trees generated by
regular systems [≡ regular tree grammars, we add ] are exactly those accepted by
tree automata.”

As an alternative to the above devices, regular tree grammars and tree automata,
in this paper we supply congruence based proofs of the different recognizability the-
orems for the strictly more general setting of free many-sorted algebras. All results
stated in this paper follow the same methodology: Starting from a congruence of
finite index saturating input languages, which is ultimately based on the different
syntactic congruences determined by the input languages, we provide a finite index
refinement for it recognizing the transformed language which is obtained by means
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2 CLIMENT AND COSME

of the aforementioned operators. This proof strategy, which, ultimately, leads to a
proof schema, has proven very effective in providing a uniform approach for each
of the cases in question, and, in addition, it has served to confirm, once again, the
fundamental role played by the notion of congruence cogenerated by an equivalence
relation on the underlying many-sorted set of a many-sorted algebra in the area of
theoretical computer science.

In this regard it is worthwhile quoting (1) a part of Atiyah’s answer in [35], p. 24,
to the question, formulated by the interviewers about the underlying motivation
for providing different proofs with different strategies for the Atiyah-Singer Index
Theorem: “Any good theorem should have several proofs, the more the better. For
two reasons: usually, different proofs have different strengths and weaknesses, and
they generalise in different directions—they are not just repetitions of each other.
[. . .] the more perspectives, the better!”, and (2) what Lang, referring to his own
review of the historical development of class field theory, wrote in the preface of
[26]: “As I stated in the preface to my Algebraic Number Theory, there are several
approaches to class field theory. None of them makes any other obsolete, and each
gives a different insight from the others.”

We next proceed to summarize the contents of the subsequent sections of this
paper.

In Section 2, for the convenience of the reader, we recall those notions and facts,
these latter mostly without proofs, on many-sorted sets, many-sorted algebras, and
recognizability for many-sorted algebras, that we will need.

In Section 3 we provide congruence based proofs of the recognizability theorems
for free many-sorted algebras. As a matter of fact, in order to deal with the dif-
ferent cases of recognizability, classified according to the type of operator under
consideration, we have divided this section into several subsections. In Subsection
1, entitled Basic terms, we prove that the final sets containing a variable, a constant
or an operation symbol applied to a suitable family of variables are recognizable.
In Subsection 2, entitled Substitutions, after defining several substitution opera-
tors associated to a free many-sorted algebra and investigating the relationships
between them, we state the main result of this subsection: If all input languages
for a given substitution are recognizable, then the output language is recognizable
as well. In Subsection 3, entitled Iterations, we introduce the notion of iteration
of a language with respect to a variable and we prove that, if the input language
is recognizable then its iteration with respect to a variable is also recognizable. In
Subsection 4, entitled Quotients, we introduce the notion of quotient of a language
by another, not necessarily recognizable, language with respect to a variable and
we prove that if the input language is recognizable then its quotient by another
language with respect to a variable is also recognizable. In Subsection 5, entitled
Tree Homomorphisms, we define the notion of hyperderivor from a many-sorted sig-
nature labeled with a suitable many-sorted set (the domain of the hyperderivor) to
another (the codomain of the hyperderivor) as consisting of two components: One
transforming many-sorted operation symbols from the underlying many-sorted sig-
nature of the domain into terms (with variables in the coproduct of the underlying
many-sorted set of the codomain and an “initial segment”, of a fixed standard
many-sorted set of variables, which depends on the many-sorted operation symbol)
relative to the many-sorted signature of the codomain, and the other associating
terms (with variables in the underlying many-sorted set of the codomain) relative
to the many-sorted signature of the codomain, to variables from the underlying
many-sorted set of the domain. In the particular case that, for each many-sorted
operation symbol, it is fulfilled that, for every variable, the number of its occur-
rences in the term associated to the many-sorted operation symbol is at most one,
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the hyperderivor is called linear. Then we show that each hyperderivor determines,
in a canonical way, a tree homomorphism, which is, in fact, a homomorphism from
a free many-sorted algebra obtained from the domain of the hyperderivor to an-
other many-sorted algebra of the same many-sorted signature, itself derived from
a many-sorted algebra obtained from the codomain of the hyperderivor. After this
we prove that the inverse image of a recognizable language under a tree homomor-
phism is recognizable and that the direct image of a recognizable language under a
linear tree homomorphism, which is a tree homomorphism determined by a linear
hyperderivor, is also recognizable. Finally, in Subsection 6, entitled Derivors and
recognizability, after defining the many-sorted finitary variety of Hall algebras, we
define, by means of the homomorphisms between Hall algebras, the category of
many-sorted signatures and derivors. Then we construct a category whose objects
are ordered pairs consisting of a many-sorted signature and a many-sorted algebra
of such a signature, and morphisms between them ordered pairs consisting of a
derivor between the underlying many-sorted signatures and a homomorphism from
the underlying many-sorted algebra of the source to a derived many-sorted algebra
of the sink. Following this, after showing that every derivor, together with some
additional data, gives rise to a hyperderivor, we state that the inverse image under
a convenient morphism, of the just mentioned category, labeled by a derivor, and
the direct image under a morphism, labeled by a linear derivor, of a recognizable
language is also recognizable.

Our underlying set theory is ZFSk, Zermelo-Fraenkel-Skolem set theory (also
known as ZFC, i.e., Zermelo-Fraenkel set theory with the axiom of choice) plus the
existence of a Grothendieck universe U , fixed once and for all (see [27], pp. 21–24).
We recall that the elements of U are called U -small sets and the subsets of U are
called U -large sets or classes. Moreover, from now on Set stands for the category
of sets, i.e., the category whose set of objects is U and whose set of morphisms is
the set of all mappings between U -small sets.

In all that follows we use standard concepts and constructions from category
theory, see e.g., [19], [21] and [27], universal algebra, see e.g., [2], [6], [18], and [43],
and set theory, see e.g., [3]. Nevertheless, regarding set theory, we have adopted
the following conventions. An ordinal α is a transitive set that is well-ordered by
∈, thus α = { β | β ∈ α }. The first transfinite ordinal ω0 will be denoted by N,
which is the set of all natural numbers, and, from what we have just said about the
ordinals, for every n ∈ N, n = {0, . . . , n− 1}. If Φ and Ψ are (binary) relations in
a set A, then we will say that Ψ is a refinement of Φ if Ψ ⊆ Φ. We will denote by
Fnc(A,B) the set of all functions from A to B. We recall that a function from A to
B is a subset F of A×B satisfying the functional condition, i.e., such that, for every
x ∈ A, there exists a unique y ∈ B such that (x, y) ∈ F . A function F from A to
B is usually denoted by (Fx)x∈A. We will denote by Hom(A,B) (and, sometimes,
also by BA) the set of all mappings from A to B. We recall that a mapping from
A to B is an ordered triple f = (A,F,B), denoted by f : A //B, in which F is a
function from A to B. Therefore Hom(A,B) = {A} × Fnc(A,B) × {B}. We will
denote by Sub(A) the set of all sets X such that X ⊆ A and if X ∈ Sub(A), then
we will denote by ∁AX or A −X the complement of X in A. Moreover, if f is a
mapping from A to B, then the mapping f [·] from Sub(A) to Sub(B), of f -direct
image formation, sends X in Sub(A) to f [X ] = {y ∈ B | ∃x ∈ X (y = f(x))}
in Sub(B), and the mapping f−1[·] from Sub(B) to Sub(A), of f -inverse image
formation, sends Y in Sub(B) to f−1[Y ] = {x ∈ A | f(x) ∈ Y } in Sub(A). In the
sequel, for a mapping f from A to B and a subset X of A, we will write Ker(f) for
the kernel of f , Im(f) to mean f [A], and the restriction of f to X will be denoted
by f↾X .
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2. Preliminaries

In this section we collect the basic facts, mostly without proofs, about many-
sorted sets, many-sorted algebras, and recognizability for arbitrary many-sorted
algebras, that we will need.

Assumption. From now on S stands for a set of sorts in U , fixed once and for all.

Definition 2.1. An S-sorted set is a mapping A = (As)s∈S from S to U . If A
and B are S-sorted sets, an S-sorted mapping from A to B is an S-indexed family
f = (fs)s∈S , where, for every s in S, fs is a mapping from As to Bs. Thus, an
S-sorted mapping from A to B is an element of

∏
s∈S Hom(As, Bs). We will denote

by Hom(A,B) the set of all S-sorted mappings from A to B. S-sorted sets and

S-sorted mappings form a category which we will denote henceforth by SetS .

Definition 2.2. Let I be a set in U and (Ai)i∈I an I-indexed family of S-sorted
sets. Then the product of (Ai)i∈I , denoted by

∏
i∈I A

i, is the S-sorted set defined,

for every s ∈ S, as
(∏

i∈I A
i
)
s

=
∏
i∈I A

i
s, where

∏
i∈I A

i
s =

{
(ai)i∈I ∈ Fnc(I,

⋃
i∈I A

i
s) | ∀ i ∈ I (ai ∈ Ais)

}
.

For every i ∈ I, the i-th canonical projection, pri = (pris)s∈S , is the S-sorted
mapping from

∏
i∈I A

i to Ai that, for every s ∈ S, sends (ai)i∈I in
∏
i∈I A

i
s to ai

in Ais. The ordered pair (
∏
i∈I A

i, (pri)i∈I) has the following universal property:

For every S-sorted set B and every I-indexed family of S-sorted mappings (f i)i∈I ,
where, for every i ∈ I, f i is an S-sorted mapping from B to Ai, there exists a
unique S-sorted mapping

〈
f i
〉
i∈I

from B to
∏
i∈I A

i such that, for every i ∈ I,

pri ◦
〈
f i
〉
i∈I

= f i.

The coproduct of (Ai)i∈I , denoted by
∐
i∈I A

i, is the S-sorted set defined, for

every s ∈ S, as
(∐

i∈I A
i
)
s

=
∐
i∈I A

i
s, where

∐
i∈I A

i
s =

⋃
i∈I(A

i
s × {i}).

For every i ∈ I, the i-th canonical injection, ini, is the S-sorted mapping from Ai

to
∐
i∈I A

i that, for every s ∈ S, sends a in Ais to (a, i) in
∐
i∈I A

i
s. The ordered

pair (
∐
i∈I A

i, (ini)i∈I) has the following universal property: For every S-sorted set

B and every I-indexed family of S-sorted mappings (f i)i∈I , where, for every i ∈ I,
f i is an S-sorted mapping from Ai to B, there exists a unique S-sorted mapping
[f i]i∈I from

∐
i∈I A

i to B such that, for every i ∈ I, [f i]i∈I ◦ ini = f i.
The remaining set-theoretic operations on S-sorted sets: × (binary product),

∐ (binary coproduct),
⋃

(union), ∪ (binary union),
⋂

(intersection), ∩ (binary
intersection), − (difference), and ∁A (complement of an S-sorted set in a fixed
S-sorted A), are defined in a similar way, i.e., componentwise.

Definition 2.3. We will denote by 1S the (standard) final S-sorted set of SetS ,
which is 1S = (1)s∈S , and by ∅

S the initial S-sorted set, which is ∅
S = (∅)s∈S .

We shall abbreviate 1S to 1 and ∅
S to ∅ when this is unlikely to cause confusion.

Definition 2.4. If A and X are S-sorted sets, then we will say that X is a subset
of A, denoted by X ⊆ A, if, for every s ∈ S, Xs ⊆ As. We will denote by Sub(A)
the set of all S-sorted sets X such that X ⊆ A.

Remark. For every S-sorted set A, the ordered pairs (B, f), where B is an S-sorted
set and f a monomorphisms from B to A, are classified by letting (B, f) ≡ (C, g)
if and only if there exists an isomorphism h from B to C such that f = g ◦ h, and
the corresponding equivalence classes are called subobjects of A. Then Sub(A) is
isomorphic to the set of all subobjects A.



CONGRUENCE BASED PROOFS OF THE RECOGNIZABILITY THEOREMS 5

Definition 2.5. Let δ be the mapping from S×U to U
S that sends (t,X) in S×U

to the S-sorted set δt,X = (δt,Xs )s∈S defined, for every s ∈ S, as follows: δt,Xs = X ,
if s = t; δt,Xs = ∅, otherwise. We will call the value of δ at (t,X) the delta of
Kronecker associated to (t,X). If X = {x}, then, for simplicity of notation, we will
write δt,x instead of δt,{x}. Moreover, for a sort t in S, δt,1, the delta of Kronecker
associated to (t, 1), will be denoted by δt and called delta of Kronecker.

Remark. For a sort t ∈ S and a set X , the S-sorted set δt,X is isomorphic to the
S-sorted set

∐
x∈X δ

t, i.e., to the coproduct of the family (δt)x∈X .

For every sort t ∈ S we have a functor δt,· from Set to SetS . In fact, for every
set X , δt,·(X) = δt,X , and, for every mapping f : X // Y , δt,·(f) = δt,f , where,

for s ∈ S, δt,fs = id∅, if s 6= t, and δt,ft = f . Moreover, for every t ∈ S, the object
mapping of the functor δt,· is injective and δt,· is full and faithful. Hence, for every
t ∈ S, δt,· is a full embedding from Set to SetS .

The final object 1S does not generate (≡ separate) the category SetS . However,
the set { δs | s ∈ S }, of the deltas of Kronecker, is a generating (≡ separating)

set for the category SetS . Therefore, every S-sorted set A can be represented as
a coproduct of copowers of deltas of Kronecker, i.e., A is naturally isomorphic to∐
s∈S card(As) ·δ

s, where, for every s ∈ S, card(As) ·δ
s is the copower of the family

(δs)α∈card(As), i.e., the coproduct of (δs)α∈card(As). To this we add the following

facts: (1) { δs | s ∈ S } is the set of atoms of the Boolean algebra Sub(1S), of
subobjects of 1S ; (2) the Boolean algebras Sub(1S) and Sub(S) are isomorphic;
(3) for every s ∈ S, δs is a projective object; and (4) for every s ∈ S, every S-sorted
mapping from δs to another S-sorted set is a monomorphism.

In view of the above, it must be concluded that the deltas of Kronecker are of
crucial importance for many-sorted sets and associated fields.

Before proceeding any further, let us point out that it is no longer unusual to
find in the works devoted to investigate both many-sorted algebras and many-sorted
algebraic systems the following. (1) That an S-sorted set A is defined in such a
way that Hom(1S , A) 6= ∅, or, what is equivalent, requiring that, for every s ∈ S,
As 6= ∅. This has as an immediate consequence that the corresponding category is
not even finite cocomplete. Since cocompleteness (and completeness) are desirable
properties for a category, we exclude such a convention in our work (the admission
of ∅

S is crucial in many applications). And (2) that an S-sorted set A must be
such that, for every s, t ∈ S, if s 6= t, then As ∩ At = ∅. We also exclude such
a requirement (the possibility of a common underlying set for the different sorts is
very important in many applications). The above conventions are possibly based
on the untrue widespread belief that many-sorted equational logic and many-sorted
first-order logic are inessential variations of equational logic and first-order logic,
respectively. One can find a definitive refutation to the just mentioned belief in [17]
and [30], regarding many-sorted equational logic, and in [22], with respect to many-
sorted first-order logic.

We next define for an S-sorted mapping the associated mappings of direct and
inverse image formation, its kernel, its image, as well as its restriction to a subset
of its domain.

Definition 2.6. Let f : A //B be an S-sorted mapping. Then the mapping
f [·] : Sub(A) // Sub(B), of f -direct image formation, sendsX ∈ Sub(A) to f [X ] =
(fs[Xs])s∈S ∈ Sub(B), and the mapping f−1[·] : Sub(B) // Sub(A), of f -inverse
image formation, sends Y ∈ Sub(B) to f−1[Y ] = (f−1

s [Ys])s∈S ∈ Sub(A). The
kernel of f , denoted by Ker(f), is (Ker(fs))s∈S and the image of f , denoted by
Im(f), is f [A]. Moreover, if X ⊆ A, then the restriction of f to X , denoted by
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f↾X , is f ◦ inX,A, where inX,A = (inXs,As
)s∈S is the canonical embedding of X into

A.

Before stating the following proposition, we recall that, for an S-sorted set A,
the S-sorted set (Sub(As))s∈S , usually denoted by A℘, is the power object of A

in the topos SetS . Therefore, one should take great care not to confuse Sub(A),
which is a set, i.e., an object of Set—naturally isomorphic to the set

∏
s∈S 2As—,

and A℘, which is an S-sorted set, i.e., an object of SetS—naturally isomorphic to
the S-sorted set (2As)s∈S . On the other hand, it is clear that there exists a natural
isomorphism between Sub(A) and

∏
A℘.

Proposition 2.7. Let X and Y be S-sorted sets and f an S-sorted mapping from
X to Y ℘. Then there exists a unique S-sorted mapping fp from (Sub(Xs))s∈S to
Y ℘ such that fp is completely additive, i.e., for every s ∈ S and every L ⊆ Sub(Xs),
fp
s (
⋃
L) =

⋃
L∈L f

p
s (L), and fp ◦ {·}X = f , where {·}X is the S-sorted mapping

from X to X℘ that, for every s ∈ S, sends x ∈ Xs to {x} ∈ Sub(Xs).

Proof. The S-sorted mapping fp from X℘ to Y ℘ that, for every s ∈ S, assigns
to L ⊆ Xs the set

⋃
x∈L fs(x) ⊆ Ys is completely additive and fp ◦ {·}X = f .

Moreover, fp is clearly the unique S-sorted mapping from X℘ to Y ℘ satisfying the
aforementioned conditions. �

Corollary 2.8. Let SetS℘,ca be the category whose objects are the S-sorted sets X℘,

where X ∈ U
S, and in which the set of morphisms from X℘ to Y ℘ is the set of the

completely additive S-sorted mappings from X℘ to Y ℘. Then from SetS℘,ca to SetS

we have a canonical inclusion, denoted by InSetS℘,ca,Set
S , and, for every S-sorted set

X, the ordered pair (X℘, {·}X) is a universal morphism from X to InSetS℘,ca,Set
S .

Definition 2.9. We will denote by (·)℘ the functor from SetS to SetS℘,ca that sends
an S-sorted set X to X℘ and an S-sorted mapping f from X to Y to the S-sorted
mapping f℘ = ({·}Y ◦ f)p from X℘ to Y ℘ (the S-sorted mappings {·}X , for X

in U
S , are the components of the unit of the adjunction: HomSetS℘,ca

(X℘, Y ℘) ∼=

HomSetS (X,Y ℘)). Thus, (·)℘ is a left adjoint of InSetS℘,ca,Set
S .

Remark. For an S-sorted mapping f from X to Y the S-sorted mapping f℘ from
X℘ to Y ℘ sends, for every s ∈ S, L ⊆ Xs to fs[L] ⊆ Ys, i.e., f℘ = (fs[·])s∈S .
One should be careful not to confuse f [·], which is a mapping from the set Sub(X)
to the set Sub(Y ), and f℘, which is an S-sorted mapping from the S-sorted set
X℘ = (Sub(Xs))s∈S to the S-sorted set Y ℘ = (Sub(Ys))s∈S . On the other hand, it
is evident that f [·] and

∏
f℘ are essentially the same mapping.

Definition 2.10. Let A be an S-sorted set. Then the cardinal of A, denoted by
card(A), is card(

∐
A), i.e., the cardinal of the set

∐
A =

⋃
s∈S(As × {s}). An

S-sorted set A is finite if card(A) < ℵ0. We will say that an S-sorted set X is a
finite subset of A if X is finite and X ⊆ A. We will denote by Subf(A) the set of
all S-sorted sets X in Sub(A) which are finite.

Remark. For an object A in the topos SetS the following assertions are equivalent:
(1) A is finite, (2) A is a finitary object of SetS , and (3) A is a strongly finitary

object of SetS (for the notions of finitary and strongly finitary object of a category
see [21], Exercise 22E, on p. 155).

In SetS there is another notion of finiteness: An S-sorted set A is called S-finite
or locally finite, abbreviated as lf, if and only if, for every s ∈ S, As is finite. We
will denote by Sublf(A) the set of all S-sorted sets X in Sub(A) which are locally
finite. Although, unless S is finite, this notion of finiteness is not categorial in
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nature, however, it plays a relevant role in the field of many-sorted algebra and in
computer science (see below, after the definition of many-sorted algebra and when
we deal with the congruences of locally finite index, respectively).

Definition 2.11. Let A be an S-sorted set. Then the support of A, denoted by
suppS(A), is the set { s ∈ S | As 6= ∅ }.

Remark. An S-sorted set A is finite if and only if suppS(A) is finite and, for every
s ∈ suppS(A), As is finite.

We next recall, after fixing some notation with regard to an equivalence relation
Φ on an S-sorted set A, the universal property of (A/Φ, prΦ), where A/Φ is the
quotient S-sorted set of A by Φ and prΦ the canonical projection from A to A/Φ;
the notion of transversal of A/Φ in A; the notion of Φ-saturation of a subset X of
A; and those properties of this last notion which will be used afterwards.

Definition 2.12. An S-sorted equivalence relation on (or, to abbreviate, an S-
sorted equivalence on) an S-sorted set A is an S-sorted relation Φ on A, i.e., a
subset Φ = (Φs)s∈S of the cartesian product A × A = (As × As)s∈S such that,
for every s ∈ S, Φs is an equivalence relation on As. We will denote by Eqv(A)
the set of all S-sorted equivalences on A (which is an algebraic closure system on
A×A), by Eqv(A) the algebraic lattice (Eqv(A),⊆), by ∇A the greatest element
of Eqv(A), and by ∆A the least element of Eqv(A).

For an S-sorted equivalence relation Φ on A, the S-sorted quotient set of A by
Φ, denoted by A/Φ, is (As/Φs)s∈S = ({[x]Φs

| x ∈ As})s∈S(⊆ A℘), where, for every
s ∈ S and every x ∈ As, [x]Φs

, the equivalence class of x with respect to Φs (or,
the Φ-equivalence class of x) is {y ∈ As | (x, y) ∈ Φs}, and prΦ : A //A/Φ, the
canonical projection from A to A/Φ, is the S-sorted mapping (prΦs

)s∈S , where, for
every s ∈ S, prΦs

is the canonical projection from As to As/Φs (which sends x in
As to prΦs

(x) = [x]Φs
, the Φs-equivalence class of x, in As/Φs).

The ordered pair (A/Φ, prΦ) has the following universal property: Ker(prΦ) is
Φ and, for every S-sorted set B and every S-sorted mapping f from A to B, if
Ker(f) ⊇ Φ, then there exists a unique S-sorted mapping h from A/Φ to B such
that h ◦ prΦ = f . In particular, if Ψ is an S-sorted equivalence relation on A such
that Φ ⊆ Ψ, then we will denote by pΦ,Ψ the unique S-sorted mapping from A/Φ
to A/Ψ such that pΦ,Ψ ◦ prΦ = prΨ.

Remark. Let ClfdSetS be the category whose objects are the classified S-sorted
sets, i.e, the ordered pairs (A,Φ) where A is an S-sorted set and Φ an S-sorted
equivalence relation on A, and in which the set of morphisms from (A,Φ) to (B,Ψ)
is the set of all S-sorted mappings f from A to B such that, for every s ∈ S and
every (x, y) ∈ A2

s, if (x, y) ∈ Φs, then (fs(x), fs(y)) ∈ Ψs. Let G be the functor from

SetS to ClfdSetS whose object mapping sends A to (A,∆A) and whose morphism
mapping sends f : A //B to f : (A,∆A) // (B,∆B). Then, for every classified
S-sorted set (A,Φ), there exists a universal mapping from (A,Φ) to G, which is
precisely the ordered pair (A/Φ, prΦ) with prΦ : (A,Φ) // (A/Φ,∆A/Φ).

Definition 2.13. Let A be an S-sorted set and Φ ∈ Eqv(A). Then a transversal
of A/Φ in A is a subset X of A such that, for every s ∈ S and every a ∈ As,
card(Xs ∩ [a]Φs

) = 1.

Remark. For an S-sorted equivalence relation Φ on A, the set of all transversals
of A/Φ in A is isomorphic to the set of all cross-sections of prΦ, where an S-sorted
mappings f from A/Φ to A is a cross-section of prΦ if prΦ ◦ f = idA/Φ. Moreover,
if Ψ is another equivalence relation on A, Ψ is a refinement of Φ, i.e., Ψ ⊆ Φ, and
XΦ is a transversal of A/Φ in A, then, for every s ∈ S and every a ∈ As, there
exists a unique x ∈ XΦ

s such that [a]Ψs
⊆ [x]Φs

.
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Definition 2.14. Let A be an S-sorted set, X a subset of A, and Φ ∈ Eqv(A).
Then the Φ-saturation of X (or, the saturation of X with respect to Φ), denoted
by [X ]Φ, is the S-sorted set defined, for every s ∈ S, as follows:

[X ]Φs = {a ∈ As | Xs ∩ [a]Φs
6= ∅} =

⋃
x∈Xs

[x]Φs
= [Xs]

Φs .

Let X be a subset of A and Φ ∈ Eqv(A). Then we will say that X is Φ-saturated
if and only if X = [X ]Φ. We will denote by Φ-Sat(A) the subset of Sub(A) defined
as Φ-Sat(A) = {X ∈ Sub(A) | X = [X ]Φ}.

Remark. Let A be an S-sorted set and Φ ∈ Eqv(A). Then, for a subset X of A, we
have that the Φ-saturation of X is (prΦ)−1[prΦ[X ]]. Therefore, X is Φ-saturated
if and only if X ⊇ [X ]Φ. Besides, X is Φ-saturated if and only if there exists a
Y ⊆ A/Φ such that X = (prΦ)−1[Y].

Proposition 2.15. Let A be an S-sorted set and Φ, Ψ ∈ Eqv(A). Then

Φ ⊆ Ψ if and only if ∀X ⊆ A ([[X ]Ψ]Φ = [X ]Ψ).

Moreover, for a sort s ∈ S, we have that

Φs ⊆ Ψs if and only if ∀X ⊆ As ([[X ]Ψs ]Φs = [X ]Ψs).

Proof. We restrict ourselves to proving the first assertion. Let us assume that
Φ ⊆ Ψ and let X be a subset of A. In order to prove that [[X ]Ψ]Φ = [X ]Ψ it suffices
to verify that [[X ]Ψ]Φ ⊆ [X ]Ψ. Let s be an element of S. Then, by definition,
a ∈ [[X ]Ψ]Φs if and only if there exists some b ∈ [X ]Ψs such that a ∈ [b]Φs

. Since
Φ ⊆ Ψ, we have that a ∈ [b]Ψs

, therefore a ∈ [X ]Ψs .
To prove the converse, let us assume that Φ 6⊆ Ψ. Then there exists some sort

s ∈ S and elements a, b in As such that (a, b) ∈ Φs and (a, b) 6∈ Ψs. Hence b does
not belong to [δs,[a]Ψs ]Ψs , whereas it does belong to [[δs,[a]Ψs ]Ψ]Φs . It follows that
[δs,[a]Ψs ]Ψ 6= [[δs,[a]Ψs ]Ψ]Φ. �

Corollary 2.16. Let A be an S-sorted set and Φ, Ψ ∈ Eqv(A). If Φ ⊆ Ψ, then
Ψ-Sat(A) ⊆ Φ-Sat(A). Moreover, for s ∈ S and L ⊆ As, if Φs ⊆ Ψs and L = [L]Ψs,
then L = [L]Φs .

Remark. If, for an S-sorted set A, we denote by (·)-Sat(A) the mapping from
Eqv(A) to Sub(Sub(A)) which sends Φ to Φ-Sat(A), then the above corollary means
that (·)-Sat(A) is an antitone (≡ order-reversing) mapping from the ordered set
(Eqv(A),⊆) to the ordered set (Sub(Sub(A)),⊆).

Proposition 2.17. Let A be an S-sorted set and X ⊆ A. Then X ∈ ∇A-Sat(A)
if and only if, for every s ∈ S, if s ∈ suppS(X), then Xs = As.

Proof. Let us suppose that there exists a t ∈ S such that Xt 6= ∅ and Xt 6= At.
Then, since [X ]∇A

t =
⋃
x∈Xt

[x]∇At
and Xt 6= ∅, we have that, for some y ∈ Xt,

[y]∇At
= At. But Xt ⊂ At. Hence [X ]∇A

t 6= Xt. Therefore X 6∈ ∇A-Sat(A).
The converse implication is straightforward. �

Remark. Let A be an S-sorted set. Then, from the above proposition, it fol-
lows that ∅

S, A ∈ ∇A-Sat(A). Moreover, for every subset T of S, we have that⋃
t∈T δ

t,At ∈ ∇A-Sat(A).

Proposition 2.18. Let A be an S-sorted set, X ⊆ A, and Φ, Ψ ∈ Eqv(A). Then
[X ]Φ∩Ψ ⊆ [X ]Φ ∩ [X ]Ψ.

Proof. Let s be a sort in S and b ∈ [X ]Φ∩Ψ
s . Then, by definition, there exists an

a ∈ Xs such that (a, b) ∈ (Φ ∩ Ψ)s = Φs ∩ Ψs. Hence, (a, b) ∈ Φs and (a, b) ∈ Ψs.
Therefore b ∈ [X ]Φs and b ∈ [X ]Ψs . Consequently, b ∈ ([X ]Φ ∩ [X ]Ψ)s. Thus
[X ]Φ∩Ψ ⊆ [X ]Φ ∩ [X ]Ψ. �
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Corollary 2.19. Let A be an S-sorted set and Φ, Ψ ∈ Eqv(A). Then we have that
Φ-Sat(A) ∩ Ψ-Sat(A) ⊆ (Φ ∩ Ψ)-Sat(A).

We next state that the set Φ-Sat(A) is the set of all fixed points of a suitable
operator on A, i.e., of an endomapping of Sub(A).

Proposition 2.20. Let A be an S-sorted set and Φ ∈ Eqv(A). Then the mapping
[·]Φ from Sub(A) to Sub(A) that sends X in Sub(A) to [·]Φ(X) = [X ]Φ in Sub(A)
is a completely additive closure operator on A. Moreover, for every nonempty set I
in U and every I-indexed family (X i)i∈I in Sub(A), [

⋂
i∈I X

i]Φ ⊆
⋂
i∈I [X

i]Φ (and,

obviously, [A]Φ = A), and, for every X ⊆ A, if X = [X ]Φ, then ∁AX = [∁AX ]Φ.
Besides, [·]Φ is uniform, i.e., is such that, for every X, Y ⊆ A, if suppS(X) =
suppS(Y ), then suppS([X ]Φ) = suppS([Y ]Φ)—hence, in particular, [·]Φ is a uniform
algebraic closure operator on A. And Φ-Sat(A) = Fix([·]Φ), where Fix([·]Φ) is the
set of all fixed point of the operator [·]Φ.

Proposition 2.21. Let A be an S-sorted set and Φ ∈ Eqv(A). Then the ordered
pair Φ-Sat(A) = (Φ-Sat(A),⊆) is a complete atomic Boolean algebra.

Proof. The proof is straightforward and we leave it to the reader. We only point
out that the atoms of Φ-Sat(A) are precisely the deltas of Kronecker δt,[x]Φt , for
some t ∈ S and some x ∈ At, and that, obviously, every Φ-saturated subset X of
A is the join (≡ union) of all atoms smaller than X . �

We next define the concept of free monoid on a set and several notions associated
to it that will be used afterwards to construct the free algebra on an S-sorted set
and to define, in Section 3, diverse substitution operators.

Definition 2.22. Let A be a set. The free monoid on A, denoted by A⋆, is
(A⋆,f, λ), where A⋆, the set of all words on A, is

⋃
n∈N

Hom(n,A), the set of all
mappings w : n //A from some n ∈ N to A, f, the concatenation of words on
A, is the binary operation on A⋆ which sends a pair of words (w, v) on A to the
mapping w f v from |w| + |v| to A, where |w| and |v| are the lengths (≡ domains)
of the mappings w and v, respectively, defined as follows:

wf v





|w| + |v| // S

i 7−→

{
wi, if 0 ≤ i < |w|;

vi−|w|, if |w| ≤ i < |w| + |v|.

and λ, the empty word on A, is the unique mapping from ∅ to A. A word w ∈ A⋆

is usually denoted as a sequence (ai)i∈|w|, where, for i ∈ |w|, ai is the letter in
A satisfying w(i) = ai. We will denote by ηA the mapping from A to A⋆ that
sends a ∈ A to (a) ∈ A⋆, i.e., to the mapping (a) : 1 //A that sends 0 to a. The
ordered pair (A⋆, ηA) is a universal morphism from A to the forgetful functor from
the category Mon, of monoids, to Set.

Remark. For a word w ∈ A⋆, |w| is the value at w of the unique homomorphism
|·| from A⋆ to (N,+, 0), the additive monoid of the natural numbers, such that
|·|◦ηA = κ1, where κ1 is the mapping from A to N constantly 1. Note that, for every
n ∈ N, |·| sends w ∈ Hom(n,A) to n. Thus, for the family of mappings (κn)n∈N,
where, for every n ∈ N, κn is the mapping from Hom(n,A) to N constantly n, and
by applying the universal property of the coproduct, we have that |·| = [κn]n∈N.

Definition 2.23. Let w and w′ be words in A⋆. We will say that w′ is a subword
of w if there are words u and v such that w = ufw′ f v. A word w may have
several subwords equal to w′. In that case, the equation w = ufw′ f v has several
solutions (u, v). If the pairs (ui, vi) (i ∈ n) are all solutions of w = ufw′ f v and
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if |u0| < |u1| < · · · < |un−1|, then (ui, vi) determines the i-th occurrence of w′

in w. The solution (u, v) in which either u or v is λ is not excluded. Let w be
a word in A⋆ and a ∈ A. We will say that a occurs in w if there are words u,
v in A⋆ such that w = uf(a)f v. Note that a occurs in w if and only if there
exists an i ∈ |w| such that w(i) = a. We will denote by |w|a the natural number
card({i ∈ |w| | w(i) = a}) = card(w−1[{a}]), i.e., the number of occurrences of a
in w. Moreover, we let (iα)α∈|w|a stand for the enumeration in ascending order of
the occurrences of a in w. Thus (iα)α∈|w|a is the order embedding of (|w|a, <) into
(|w|, <) defined recursively as follows:

i0 = min{i ∈ |w| | w(i) = a} and,

for α ∈ |w|a − {|w|a − 1}, iα+1 = min{i ∈ |w| − {i0, . . . , iα} | w(i) = a}.

If the pairs (uiα , viα) (α ∈ |w|a) are all solutions of w = uf(a)f v and if |ui0 | <
|ui1 | < · · · < |ui|w|a−1

|, then (uiα , viα) determines the iα-th occurrence of (a) in w
and we will say that a occurs at the iα-th place of w.

Remark. Let a be an element of A. Then, for w ∈ A⋆, |w|a, the number of
occurrences of a in w, is the value at w of the unique homomorphism |·|a from A⋆

to (N,+, 0) such that |·|a ◦ ηA = δa, where δa is the mapping from A to N that
sends a ∈ A to 1 ∈ N and b ∈ A − {a} to 0 ∈ N. Therefore, since, for every
w ∈ A⋆, the A-indexed family (|w|a)a∈A in N is such that |w|a = 0 for all but a
finite number of elements a in A, i.e., is such that card({a ∈ A | |w|a 6= 0}) < ℵ0,
we have that

∑
a∈A|w|a ∈ N and, obviously, for every w ∈ A⋆, |w| =

∑
a∈A|w|a,

i.e., |·| =
∑
a∈A|·|a.

Definition 2.24. Let w be a word in A⋆. Then we will denote by (a·)a∈A (w) the

mapping from
∏
a∈A(A⋆)|w|a to A⋆ that assigns to ((qaα)α∈|w|a)a∈A in

∏
a∈A(A⋆)|w|a

the word
( a
(qaα)α∈|w|a

)
a∈A

(w) in A⋆ obtained by substituting in w, for every a ∈ A

and every α ∈ |w|a, qaα for the iα-th occurrence of a in w. We call
( a
(qaα)α∈|w|a

)
a∈A

(w)

the substitution of (qα)α∈|w|a for a in w for every a in A, and (a·)a∈A (w) the
substitution operator for w. Let c be an element of A. Then we will denote by
(c·) (w) the mapping from (A⋆)|w|c to A⋆ that assigns to (qcα)α∈|w|c ∈ (A⋆)|w|c the

term
( c
(qcα)α∈|w|c

)
(w) in A⋆ obtained by substituting in w, for every α ∈ |w|c, q

c
α for

the iα-th occurrence of c in w. We call
( c
(qcα)α∈|w|c

)
(w) the substitution of (qcα)α∈|w|c

for c in w.

Remark. Therefore, for every set A, we have obtained the family of substitution
operators:

((a·)a∈A (w))w∈A⋆ ∈
∏
w∈A⋆ Hom(

∏
a∈A(A⋆)|w|a, A⋆).

Our next aim is to provide those notions from the field of many-sorted universal
algebra that will be used afterwards.

Definition 2.25. An S-sorted signature is a function Σ from S⋆ × S to U which
sends a pair (w, s) ∈ S⋆ × S to the set Σw,s of the formal operations of arity w,
sort (or coarity) s, and rank (or biarity) (w, s). If Σ and Λ are S-sorted signatures,
then a morphism from Σ to Λ is an S⋆ × S-indexed family d = (dw,s)(w,s)∈S⋆×S ,
where, for every (w, s) ∈ S⋆ × S, dw,s is a mapping from Σw,s to Λw,s. S-sorted
signatures and morphisms between S-sorted signatures form a category which we
will denote henceforth by Sig(S).

Remark. For every set of sorts S, the category Sig(S) is SetS
⋆×S .

Assumption. From now on Σ stands for an S-sorted signature, fixed once and for
all.
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We shall now give precise definitions of the concepts of many-sorted algebra and
of homomorphism between many-sorted algebras.

Definition 2.26. The S⋆ × S-sorted set of the finitary operations on an S-sorted
set A is (Hom(Aw , As))(w,s)∈S⋆×S , where, for every w ∈ S⋆, Aw =

∏
i∈|w|Awi

,

with |w| denoting the length of the word w (if w = λ, then Aλ is a final set). A
structure of Σ-algebra on an S-sorted set A is a family (Fw,s)(w,s)∈S⋆×S , denoted
by F , where, for (w, s) ∈ S⋆ × S, Fw,s is a mapping from Σw,s to Hom(Aw , As) (if
(w, s) = (λ, s) and σ ∈ Σλ,s, then Fw,s(σ) picks out an element of As). For a pair
(w, s) ∈ S⋆ ×S and a formal operation σ ∈ Σw,s, in order to simplify the notation,
the operation Fw,s(σ) from Aw to As will be written as Fσ. A Σ-algebra is a pair
(A,F ), abbreviated to A, where A is an S-sorted set and F a structure of Σ-algebra
on A. A Σ-homomorphism from A to B, where B = (B,G), is a triple (A, f,B),
abbreviated to f : A //B, where f is an S-sorted mapping from A to B such
that, for every (w, s) ∈ S⋆ × S, every σ ∈ Σw,s, and every (ai)i∈|w| ∈ Aw, we have
that fs(Fσ((ai)i∈|w|)) = Gσ(fw((ai)i∈|w|)), where fw is the mapping

∏
i∈|w| fwi

from Aw to Bw that sends (ai)i∈|w| in Aw to (fwi
(ai))i∈|w| in Bw. We will denote

by Alg(Σ) the category of Σ-algebras and Σ-homomorphisms (or, to abbreviate,
homomorphisms) and by Alg(Σ) the set of objects of Alg(Σ).

In some cases, to avoid mistakes, we will denote by FA the structure of Σ-algebra
on A, and, for (w, s) ∈ S⋆ × S and σ ∈ Σw,s, by FA

σ the corresponding operation.
Moreover, for s ∈ S and σ ∈ Σλ,s, we will, usually, denote by σA the value of the
mapping FA

σ : 1 //As at the unique element in 1.
We will denote by 1S or, to abbreviate, by 1, the (standard) final Σ-algebra.

Definition 2.27. Let A be a Σ-algebra. Then the support of A, denoted by
suppS(A), is suppS(A), i.e., the support of the underlying S-sorted set A of A.

Remark. The set {suppS(A) | A ∈ Alg(Σ)} is a closure system on S.

Definition 2.28. Let A be a Σ-algebra. We will say that A is finite if A, the
underlying S-sorted set of A, is finite.

Remark. In Alg(Σ), as was the case with SetS , there is another notion of finite-
ness: A Σ-algebra A is called S-finite or locally finite, abbreviated as lf, if and only
if the underlying S-sorted set of A is S-finite. As was noted above this notion of
finiteness plays a relevant role in the field of many-sorted algebra, e.g., to define
S-finite, also called locally finite, terms and to distinguish, on the one hand, be-
tween many-sorted varieties and finitary many-sorted varieties, and, on the other
hand, between many-sorted quasivarieties and finitary many-sorted quasivarieties
(see, e.g., [17] and [30]).

We next define the subset many-sorted algebra associated to a many-sorted al-
gebra and prove, in particular, that this is the object mapping of an endofunctor of
Alg(Σ). We note that, in Section 3, the subset many-sorted algebra associated to
a free many-sorted algebra will appear as the codomain of a substitution operator
which will be used to prove recognizability results.

Proposition 2.29. Let (·)℘ be the mapping that sends (1) a Σ-algebra A to the
Σ-algebra A℘ = (A℘, F℘) where A℘ is (Sub(As))s∈S and where, for every (w, s) ∈
S⋆ × S and every σ ∈ Σw,s, F

℘
σ is the mapping from A℘w =

∏
i∈|w| Sub(Awi

) to

Sub(As) that sends (Li)i∈|w| in A℘w to {Fσ((xi)i∈|w|) | (xi)i∈|w| ∈
∏
i∈|w| Li} in

Sub(As), and (2) a homomorphism f from A to B to the S-sorted mapping f℘ =
(fs[·])s∈S from A℘ to B℘. Then (·)℘ is an endofunctor of Alg(Σ). The Σ-algebra
A℘ is called the subset algebra associated to A (this notion, but for single-sorted
algebras, is due to Mezei and Wright, cf. [31], Definition 2.2). Moreover, there
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exists a pointwise monomorphic natural transformation {·}Σ from IdAlg(Σ) to (·)℘,
displayed as:

Alg(Σ)

IdAlg(Σ)

''

(·)℘

77
Alg(Σ)

✤✤

✤✤

�� {·}
Σ

Proof. To show that (·)℘ is an endofunctor of Alg(Σ) it suffices to verify that, for
every homomorphism f : A //B, f℘ is, actually, a homomorphism from A℘ to
B℘. Let f be a homomorphism from A to B, (w, s) ∈ S⋆×S, and σ ∈ Σw,s. Then
the following diagram commutes

A℘w

F℘σ
��

fw[·]
// B℘w

G℘σ
��

Sub(As)
fs[·]

// Sub(Bs)

that is, for every sequence (Li)i∈|w| in A℘w, we have that

fs[F
℘
σ ((Li)i∈|w|)] = G℘σ((fwi

[Li])i∈|w|).

Now let {·}Σ be the mapping from Alg(Σ) to Mor(Alg(Σ)) that assigns to a
Σ-algebra A the S-sorted mapping {·}ΣA from A to A℘ that, for every s ∈ S, sends
a in As to {a} in A℘s . It is easily seen that, for every Σ-algebra A, {·}ΣA is an
injective homomorphism from A to A℘ and that {·}Σ = ({·}ΣA)A∈Alg(Σ) is, in fact,
a natural transformation from IdAlg(Σ) to (·)℘ �

We shall now go on to define the notion of subalgebra of a Σ-algebra A and the
subalgebra generating operator for A.

Definition 2.30. Let A be a Σ-algebra and X ⊆ A. Given (w, s) ∈ S⋆ × S and
σ ∈ Σw,s, we will say that X is closed under the operation Fσ : Aw //As if, for
every (ai)i∈|w| ∈ Xw, Fσ((ai)i∈|w|) ∈ Xs. We will say that X is a subalgebra of A
if X is closed under the operations of A. We will denote by Sub(A) the set of all
subalgebras of A (which is an algebraic closure system on A) and by Sub(A) the
algebraic lattice (Sub(A),⊆). We also say, equivalently, that a Σ-algebra B is a
subalgebra of A if B ⊆ A and the canonical embedding of B into A determines an
embedding of B into A.

Definition 2.31. Let A be a Σ-algebra. Then we will denote by SgA the algebraic
closure operator canonically associated to the algebraic closure system Sub(A) on
A and we call it the subalgebra generating operator for A. Moreover, if X ⊆ A,
then we call SgA(X) the subalgebra of A generated by X , and if X is such that
SgA(X) = A, then we will say that X is a generating subset of A. Besides, SgA(X)
denotes the algebra determined by SgA(X).

Remark. Let A be a Σ-algebra. Then the algebraic closure operator SgA is uni-
form, i.e., for every X , Y ⊆ A, if suppS(X) = suppS(Y ), then we have that
suppS(SgA(X)) = suppS(SgA(Y )).

We next recall the Principle of Proof by Algebraic Induction. This principle will
be used in Section 3.
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Proposition 2.32 (Principle of Proof by Algebraic Induction). Let A be a Σ-
algebra generated by X. Then to prove that a subset Y of A is equal to A it suffices
to show: (1) X ⊆ Y (algebraic induction basis) and (2) Y is a subalgebra of A

(algebraic induction step).

We next state that the forgetful functor GΣ from Alg(Σ) to SetS has a left
adjoint TΣ which assigns to an S-sorted set X the free Σ-algebra TΣ(X) on X .
Let us note that in what follows, to construct the algebra of Σ-rows in X , and the
free Σ-algebra on X , since neither the S-sorted signature Σ nor the S-sorted set X
are subject to any constraint, coproducts must necessarily be used.

Definition 2.33. Let X be an S-sorted set. The algebra of Σ-rows in X , denoted
by WΣ(X), is defined as follows:

(1) The underlying S-sorted set of WΣ(X), written as WΣ(X), is precisely the
S-sorted set ((

∐
Σ∐

∐
X)⋆)s∈S , i.e., the mapping from S to U constantly

(
∐

Σ ∐
∐
X)⋆, where (

∐
Σ ∐

∐
X)⋆ is the set of all words on the set∐

Σ ∐
∐
X , i.e., on the set

[(
⋃

(w,s)∈S⋆×S(Σw,s × {(w, s)})) × {0}] ∪ [(
⋃
s∈S(Xs × {s})) × {1}].

(2) For every (w, s) ∈ S⋆ × S, and every σ ∈ Σw,s, the structural operation
Fσ associated to σ is the mapping from WΣ(X)w to WΣ(X)s which sends
(Pi)i∈|w| ∈ WΣ(X)w to (σ)ffi∈|w|Pi ∈ WΣ(X)s, where, for every (w, s) ∈
S⋆ × S, and every σ ∈ Σw,s, (σ) stands for (((σ, (w, s)), 0)), which is the
value at σ of the canonical mapping from Σw,s to (

∐
Σ ∐

∐
X)⋆.

Definition 2.34. The free Σ-algebra on an S-sorted set X , denoted by TΣ(X),
is the Σ-algebra determined by SgWΣ(X)(({(x) | x ∈ Xs})s∈S), the subalgebra of

WΣ(X) generated by ({(x) | x ∈ Xs})s∈S , where, for every s ∈ S and every x ∈ Xs,
(x) stands for (((x, s), 1)), which is the value at x of the canonical mapping from
Xs to (

∐
Σ∐

∐
X)⋆. We will denote by TΣ(X) the underlying S-sorted of TΣ(X)

and, for s ∈ S, we will call the elements of TΣ(X)s terms of type s with variables
in X or (X, s)-terms.

Remark. Since ({(x) | x ∈ Xs})s∈S is a generating subset of TΣ(X), to prove that
a subset T of TΣ(X) is equal to TΣ(X) it suffices, by Proposition 2.32, to show:
(1) ({(x) | x ∈ Xs})s∈S ⊆ T (algebraic induction basis) and (2) T is a subalgebra
of TΣ(X) (algebraic induction step).

In the many-sorted case we have, as in the single-sorted case, the following
characterization of the elements of TΣ(X)s, for s ∈ S.

Proposition 2.35. Let X be an S-sorted set. Then, for every s ∈ S and every
P ∈ WΣ(X)s, we have that P is a term of type s with variables in X if and
only if P = (x), for a unique x ∈ Xs, or P = (σ), for a unique σ ∈ Σλ,s, or
P = (σ)ff(Pi)i∈|w|, for a unique w ∈ S⋆−{λ}, a unique σ ∈ Σw,s, and a unique
family (Pi)i∈|w| ∈ TΣ(X)w. Moreover, the three possibilities are mutually exclusive.

From now on, for simplicity of notation, we will write x, σ, and σ(P0, . . . , P|w|−1)
or σ((Pi)i∈|w|) instead of (x), (σ), and (σ) ff(Pi)i∈|w|, respectively.

From the above proposition it follows, immediately, the universal property of the
free Σ-algebra on an S-sorted set X , as stated in the subsequent proposition.

Proposition 2.36. For every S-sorted set X, the pair (ηX ,TΣ(X)), where ηX , the
insertion of (the S-sorted set of generators) X into TΣ(X), is the co-restriction to
TΣ(X) of the canonical embedding of X into WΣ(X), has the following universal
property: for every Σ-algebra A and every S-sorted mapping f : X //A, there
exists a unique homomorphism f ♯ : TΣ(X) //A such that f ♯ ◦ ηX = f .
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Proof. For every s ∈ S and every (X, s)-term P , the s-th coordinate f ♯s of f ♯

is defined recursively as follows: f ♯s(x) = fs(x), if P = x; f ♯s(σ) = σ, if P =
σ; and, finally, f ♯s(σ(P0, . . . , P|w|−1)) = Fσ(f ♯w0

(P0), . . . , f ♯w|w|−1
(P|w|−1)), if P =

σ(P0, . . . , P|w|−1). �

The just stated proposition allows us to carry out definitions by algebraic re-
cursion on a free many-sorted algebra as indeed we will be doing throughout this
paper.

Corollary 2.37. The functor TΣ, which sends an S-sorted set X to TΣ(X) and
an S-sorted mapping f from X to Y to f@(= (ηY ◦f)♯), the unique homomorphism
from TΣ(X) to TΣ(Y ) such that f@ ◦ ηX = ηY ◦ f , is left adjoint for the forgetful

functor GΣ from Alg(Σ) to SetS.

For every Σ-algebra it is possible to define a preorder on the coproduct of its
underlying S-sorted set. Moreover, for the case of free algebras, such a preorder is,
in fact, an order and this allows us to define the notion of subterm of a given term.

Definition 2.38. Let A = (A,F ) be a Σ-algebra. Then <A denotes the binary
relation on

∐
A consisting of the ordered pairs ((a, s), (b, t)) ∈ (

∐
A)2 for which

there exists a w ∈ S⋆ − {λ}, a σ ∈ Σw,t, and an x ∈ Aw such that Fσ(x) = b
and, for some i ∈ |w|, wi = s and xi = a. We will denote by ≤A the reflexive and
transitive closure of <A, i.e., the preorder on

∐
A generated by <A.

Remark. The preorder ≤A on
∐
A is defined by letting ((a, s), (b, t)) ∈≤A mean

that s = t and a = b or there exists an n ∈ N − {0}, a u ∈ S⋆, and a family
(ci)i∈|u| ∈ Au such that |u| = n+ 1, u0 = s, un = t, c0 = a, cn = b, and, for every
i ∈ n, ((ci, ui), (ci+1, ui+1)) ∈<A.

Proposition 2.39. Let X be an S-sorted set. Then ≤TΣ(X) is antisymmetric and
does not have strictly descending ω0-chains, i.e., is an Artinian order.

Definition 2.40. Let X be an S-sorted set, t ∈ S, and P ∈ TΣ(X)t. Then the
S-sorted set of all subterms of P , denoted by Subt(P ), is defined as follows:

Subt(P ) = ({Q ∈ TΣ(X)s | (Q, s) ≤TΣ(X) (P, t)})s∈S .

Remark. Subt(P ) ∈ Subf(TΣ(X)). Moreover, Subt(P ) can also be characterized
as the smallest subset L of TΣ(X) which satisfies the following conditions: (1)
P ∈ Lt and (2) for every (w, s) ∈ S⋆ × S, every ξ ∈ Σw,s, and every (Qi)i∈|w| ∈
TΣ(X)w, if ξ((Qi)i∈|w|) ∈ Ls, then, for every i ∈ |w|, Qi ∈ Lwi

. Note that the
second condition is exactly the converse of the defining condition of the concept of
subalgebra of a Σ-algebra.

Following this we associate to every term for Σ of type (X, s) its S-sorted set of
variables. This will be used, in Section 3, in the proof of diverse propositions.

Definition 2.41. Let X be an S-sorted set. Then Fin(X) is the Σ-algebra
which has as underlying S-sorted set (Subf(X))s∈S , i.e., the S-sorted set con-
stantly Subf(X), and, for every (w, s) ∈ S⋆ × S and every σ ∈ Σw,s, as operation

Fσ : Subf(X)|w| // Subf(X) that one defined as Fσ((Ki)i∈|w|) =
⋃
i∈|w|K

i. Let

δX = (δXs )s∈S be the S-sorted mapping defined, for every s ∈ S, as

δXs

{
Xs

// Subf(X)
x 7−→ δs,x
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Then we will denote by VarX the unique homomorphism (δX)♯ from TΣ(X) to
Fin(X) such that the following diagram commutes

X
ηX //

δX
''PP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

TΣ(X)

(δX)♯ = VarX = (VarXs )s∈S
��

Fin(X) = (Subf(X))s∈S

For a sort s ∈ S and a term P ∈ TΣ(X)s we will call VarXs (P )(∈ Subf(X)) the
S-sorted set of variables of P . Moreover, when this is unlikely to cause confusion,
we will write VarX(P ) or, simply, Var(P ) for VarXs (P ).

Our next goal is to define the concepts of congruence on a Σ-algebra and of
quotient of a Σ-algebra by a congruence on it. Moreover, we recall the notion of
kernel of a homomorphism between Σ-algebras and the universal property of the
quotient of a Σ-algebra by a congruence on it.

Definition 2.42. Let A be a Σ-algebra and Φ an S-sorted equivalence on A. We
will say that Φ is an S-sorted congruence on (or, to abbreviate, a congruence on) A
if, for every (w, s) ∈ (S⋆−{λ})×S, every σ ∈ Σw,s, and every (ai)i∈|w|, (bi)i∈|w| ∈
Aw, if, for every i ∈ |w|, (ai, bi) ∈ Φwi

, then (Fσ((ai)i∈|w|), Fσ((bi)i∈|w|)) ∈ Φs.
We will denote by Cgr(A) the set of all S-sorted congruences on A (which is an
algebraic closure system on A × A), by Cgr(A) the algebraic lattice (Cgr(A),⊆),
by ∇A the greatest element of Cgr(A), and by ∆A the least element of Cgr(A).

For a congruence Φ on A, the quotient Σ-algebra of A by Φ, denoted by A/Φ,
is the Σ-algebra (A/Φ, FA/Φ), where, for every (w, s) ∈ S⋆×S and every σ ∈ Σw,s,

the operation F
A/Φ
σ from (A/Φ)w to As/Φs, also denoted, to simplify, by Fσ,

sends ([ai]Φwi
)i∈|w| in (A/Φ)w to [Fσ((ai)i∈|w|)]Φs

in As/Φs, and the canonical

projection from A to A/Φ, denoted by prΦ : A //A/Φ, is the homomorphism
determined by the projection from A to A/Φ. The ordered pair (A/Φ, prΦ) has
the following universal property: Ker(prΦ) is Φ and, for every Σ-algebra B and
every homomorphism f from A to B, if Ker(f) ⊇ Φ, then there exists a unique
homomorphism h from A/Φ to B such that h ◦ prΦ = f . In particular, if Ψ is
a congruence on A such that Φ ⊆ Ψ, then we will denote by pΦ,Ψ the unique
homomorphism from A/Φ to A/Ψ such that pΦ,Ψ ◦ prΦ = prΨ.

Remark. Let ClfdAlg(Σ) be the category whose objects are the classified Σ-
algebras, i.e, the ordered pairs (A,Φ) where A is a Σ-algebra and Φ a congruence
on A, and in which the set of morphisms from (A,Φ) to (B,Ψ) is the set of all
homomorphisms f from A to B such that, for every s ∈ S and every (x, y) ∈
A2
s, if (x, y) ∈ Φs, then (fs(x), fs(y)) ∈ Ψs. Let G be the functor from Alg(Σ)

to ClfdAlg(Σ) whose object mapping sends A to (A,∆A) and whose morphism
mapping sends f : A //B to f : (A,∆A) // (B,∆B). Then, for every classified
Σ-algebra (A,Φ), there exists a universal mapping from (A,Φ) to G, which is
precisely the ordered pair (A/Φ, prΦ) with prΦ : (A,Φ) // (A/Φ,∆A/Φ).

We next define for a Σ-algebra the concepts of elementary translation and of
translation with respect to it, and provide, by using the just mentioned concepts,
two characterizations of the congruences on a Σ-algebra. To this we add that the
concept of translation will allow us to define the concept of congruence cogenerated
by an S-sorted subset of the underlying S-sorted set of a Σ-algebra, which will be
all-important in our congruence based proofs of the recognizability theorems for
free many-sorted algebras, in Section 3.
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Definition 2.43. Let A be a Σ-algebra and t ∈ S. Then we will denote by
Etlt(A) the subset (Etlt(A)s)s∈S of (Hom(At, As))s∈S defined, for every s ∈ S, as
follows: For every mapping T ∈ Hom(At, As), T ∈ Etlt(A)s if and only if there is
a word w ∈ S⋆ − {λ}, an i ∈ |w|, a σ ∈ Σw,s, a family (aj)j∈i ∈

∏
j∈iAwj

, and

a family (ak)k∈|w|−(i+1) ∈
∏
k∈|w|−(i+1)Awk

(recall that i + 1 = {0, 1, . . . , i} and

that |w| − (i + 1) = {i + 1, . . . , |w| − 1}) such that wi = t and, for every x ∈ At,
T (x) = Fσ(a0, . . . , ai−1, x, ai+1, . . . , a|w|−1). We call the elements of Etlt(A)s the
t-elementary translations of sort s for A.

Definition 2.44. Let A be a Σ-algebra and t ∈ S. Then we will denote by
Tlt(A) the subset (Tlt(A)s)s∈S of (Hom(At, As))s∈S defined, for every s ∈ S, as
follows: For every mapping T ∈ Hom(At, As), T ∈ Tlt(A)s if and only if there is an
n ∈ N− 1, a word (sj)j∈n+1 ∈ Sn+1, and a family (Tj)j∈n such that s0 = t, sn = s,
T0 ∈ Etlt(A)s1 , T1 ∈ Etls1(A)s2 , . . . , Tn−1 ∈ Etlsn−1(A)s and T = Tn−1 ◦ · · · ◦ T0.
We call the elements of Tlt(A)s the t-translations of sort s for A. Besides, for
every t ∈ S, the mapping idAt

will be viewed as an element of Tlt(A)t.

Remark. The S × S-sorted set (Tlt(A)s)(t,s)∈S×S determines a category Tl(A)
whose object set is S and in which, for every (t, s) ∈ S × S, HomTl(A)(t, s), the
hom-set from t to s, is Tlt(A)s. Therefore, for every t ∈ S, EndTl(A)(t) is equipped
with a structure of monoid.

Given a Σ-algebra A and a translation T ∈ Tlt(A)s we next define, associat-
ed to the mappings T [·] : Sub(At) // Sub(As) and T−1[·] : Sub(As) // Sub(At),
operators: T [·] and T−1[·] from Sub(A) to Sub(A), T [·] from Sub(At) to Sub(A),
and T−1[·] from Sub(As) to Sub(A). This will be used below in the characterization
of the recognizable languages.

Definition 2.45. Let A be a Σ-algebra, L ⊆ A, s, t ∈ S, M ⊆ At, N ⊆ As, and
T ∈ Tlt(A)s. Then

(1) T [L] is the subset of A defined as follows: T [L]s = T [Lt] and T [L]u = ∅, if
u 6= s. Therefore, T [L] = δs,T [Lt];

(2) T−1[L] is the subset of A defined as follows: T−1[L]t = T−1[Ls] and

T−1[L]u = ∅, if u 6= t. Therefore, T−1[L] = δt,T
−1[Ls];

(3) T [M ] is δs,T [M ](= T [δt,M ]); and

(4) T−1[N ] is δt,T
−1[N ](= T−1[δs,N ]).

Remark. Let A be a Σ-algebra, K, L ⊆ A, s, t ∈ S, M ⊆ At, N ⊆ As, and T ∈
Tlt(A)s. Then T [M ] ⊆ δs,N if and only if δt,M ⊆ T−1[N ]. Moreover, T [K] ⊆ δs,Ls

if and only if δt,Kt ⊆ T−1[L]. Had the operators T [·] and T−1[·] been defined (for
u ∈ S−{s, t}) differently, then the suitably modified counterparts of the just stated
connections would not be met.

As announced above, we next provide, by using the notions of elementary trans-
lation and of translation, two characterizations of the congruences on a Σ-algebra.
This shows, in particular, the significance of the notions of elementary translation
and of translation. We note that in [30], on p. 199, it was announced without proof
a proposition similar to that set out below.

Proposition 2.46. Let A be a Σ-algebra and Φ an S-sorted equivalence on A.
Then the following conditions are equivalent:

(1) Φ is a congruence on A.
(2) Φ is closed under the elementary translations on A, i.e., for every every

t, s ∈ S, every x, y ∈ At, and every T ∈ Etlt(A)s, if (x, y) ∈ Φt, then
(T (x), T (y)) ∈ Φs.
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(3) Φ is closed under the translations on A, i.e., for every every t, s ∈ S, every
x, y ∈ At, and every T ∈ Tlt(A)s, if (x, y) ∈ Φt, then (T (x), T (y)) ∈ Φs.

Proof. Let us first prove that (1) and (2) are equivalent.
Let us suppose that Φ is a congruence on A. We want to show that Φ is closed

under the elementary translations on A. Let t and s be elements of S and T
a t-elementary translation of sort s for A. Then T : At //As and there is a
word w ∈ S⋆ − {λ}, an i ∈ |w|, a σ ∈ Σw,s, a family (aj)j∈i ∈

∏
j∈iAwj

, and a

family (ak)k∈|w|−(i+1) ∈
∏
k∈|w|−(i+1)Awk

such that wi = t and, for every z ∈ At,

T (z) = Fσ(a0, . . . , ai−1, z, ai+1, . . . , a|w|−1). Let x and y be elements of At such
that (x, y) ∈ Φt. Since, for every j ∈ i, (aj , aj) ∈ Φwj

, for every k ∈ |w| − (i + 1),
(ak, ak) ∈ Φwk

, and, in addition, (x, y) ∈ Φt = Φwi
, then (T (x), T (y)) ∈ Φs.

Reciprocally, let us suppose that, for every t, s ∈ S, every x, y ∈ At, and
every T ∈ Etlt(A)s, if (x, y) ∈ Φt, then (T (x), T (y)) ∈ Φs. We want to show
that Φ is a congruence on A. Let (w, u) ∈ (S⋆ − {λ}) × S, σ : w // u, and
a = (ai)i∈|w|, b = (bi)i∈|w| ∈ Aw such that, for every i ∈ |w| we have that
(ai, bi) ∈ Φwi

. We now define, for every i ∈ |w|, Ti, the wi-elementary transla-
tion of sort u for A, as the mapping from Awi

to Au which sends x ∈ Awi
to

Fσ(b0, . . . , bi−1, x, ai+1, . . . , a|w|−1) ∈ Au. Then Fσ(a0, . . . , a|w|−1) = T0(a0) and
(T0(a0), T0(b0)) ∈ Φw0 . But T0(b0) = T1(a1) and (T1(a1), T1(b1)) ∈ Φw1 . By
proceeding in the same way we, finally, come to T|w|−2(b|w|−2) = T|w|−1(a|w|−1),
(T|w|−1(a|w|−1), T|w|−1(b|w|−1)) ∈ Φw|w|−1

, and T|w|−1(b|w|−1) = Fσ(b0, . . . , b|w|−1).

Therefore (Fσ(a), Fσ(b)) ∈ Φu.
We shall now proceed to verify that (2) and (3) are equivalent.
Since every elementary translations on A is a translation on A, it is obvious that

if Φ is closed under the translations on A, then Φ is closed under the elementary
translations on A.

Reciprocally, let us suppose that Φ is closed under the elementary translations
on A. We want to show that Φ is closed under the translations on A. Let t
and s be elements of S, x, y elements of At, T ∈ Tlt(A)s, and let us suppose
that (x, y) ∈ Φt. Then there is an n ∈ N − 1, a word (sj)j∈n+1 ∈ Sn+1, and a
family (Tj)j∈n such that s0 = t, sn = s, T0 ∈ Etlt(A)s1 , T1 ∈ Etls1(A)s2 , . . . ,
Tn−1 ∈ Etlsn−1(A)s and T = Tn−1 ◦ · · · ◦ T0. Then, from (x, y) ∈ Φt = Φs0 , we
infer that (T0(x), T0(y)) ∈ Φs1 . By proceeding in the same way we, finally, come
to (Tn−1(. . . (T0(x)) . . .), Tn−1(. . . (T0(y)) . . .)) ∈ Φs = Φsn , i.e., to (T (x), T (y)) ∈
Φs. �

Our next aim is to assign, in a functional way, to every subset L of the underlying
S-sorted set A of a Σ-algebra A the so-called congruence on A cogenerated by L,
and to investigate its properties. But before doing it we need to recall the following
result. For every S-sorted set A, the mapping from Sub(A) to Hom(A, (2)s∈S) that
assigns to L ∈ Sub(A) precisely chL, the character of L, i.e., the S-sorted mapping
from A to (2)s∈S whose s-th coordinate, for s ∈ S, is chLs

, the characteristic
mapping of Ls, is a natural isomorphism, in other words, (2)s∈S together with
⊤S = (⊤)s∈S : 1 // (2)s∈S , where, for every s ∈ S, ⊤ is the mapping from 1 to

2 that sends 0 to 1, is a subobject classifier for SetS . Then, given a Σ-algebra A

and a subset L of A, we associate to L the S-sorted equivalence Ker(chL) on A
determined by chL. So, for every s ∈ S, we have that:

Ker(chL)s = Ker(chLs
) = { (x, y) ∈ A2

s | x ∈ Ls ↔ y ∈ Ls }.

We next prove that there exists a congruence ΩA(L) on A that saturates L, i.e.,
which is such that ΩA(L) ⊆ Ker(chL), and is the largest congruence on A having
such a property.
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Definition 2.47. Let A be a Σ-algebra and L ⊆ A. Then ΩA(L) is the binary
relation on A defined, for every t ∈ S, as follows:

ΩA(L)t =

{
(x, y) ∈ A2

t

∣∣∣∣
∀ s ∈ S ∀T ∈ Tlt(A)s

(T (x) ∈ Ls ↔ T (y) ∈ Ls)

}
.

Proposition 2.48. Let A be a Σ-algebra and L ⊆ A. Then

(1) ΩA(L) is a congruence on A.
(2) ΩA(L) ⊆ Ker(chL).
(3) For every congruence Φ on A, if Φ ⊆ Ker(chL), then Φ ⊆ ΩA(L).

In other words, ΩA(L) is the greatest congruence on A which saturates L.

Proof. To prove (1) it suffices to take into account Proposition 2.46. To prove (2),
given t ∈ S and (x, y) ∈ ΩA(L)t, it suffices to consider idAt

∈ Tlt(A)t, to conclude
that x ∈ Lt if and only if y ∈ Lt, i.e., that (x, y) ∈ Ker(chL)t. We now proceed to
prove (3). Let Φ be a congruence on A such that Φ ⊆ Ker(chL), i.e., such that,
for every s ∈ S and every x, y ∈ As, if (x, y) ∈ Φs, then x ∈ Ls if and only if
y ∈ Ls. We want to show that, for every t ∈ S, Φt ⊆ ΩA(L)t. Let t be an element
of S and (x, y) ∈ Φt. Then, since Φ is a congruence on A, for every s ∈ S and
every T ∈ Tlt(A)s, we have that (T (x), T (y)) ∈ Φs. Hence, by the hypothesis on
Φ, T (x) ∈ Ls if and only if T (y) ∈ Ls. Therefore Φ ⊆ ΩA(L). �

Definition 2.49. Let A be a Σ-algebra and L ⊆ A. Then we call ΩA(L) the
congruence on A cogenerated by L, or the syntactic congruence on A determined
by L (which is shorthand for “the congruence on A cogenerated by the equivalence
Ker(chL) on A canonically associated to L”).

Remark. For every subset L of the underlying S-sorted set of a Σ-algebra A,
ΩA(L) can be viewed as the value at L of a mapping ΩA from Sub(A) to Cgr(A).
We will call ΩA the congruence cogenerating operator for A (with regard to subsets
of A).

With regard to the congruence cogenerated by an equivalence it is worthwhile to
quote what Büchi, in [5], on p. 113, wrote: “The notion of induced [≡ cogenerated,
we add ] congruence therefore is clearly relevant to automata theory. For some
reason it seems to have escaped the attention of algebraists. In contrast, its mate,
the generated congruence, is widely used in algebra.”

It may be worth reminding the reader that in the theory of formal languages, a
congruence of the type ΩA⋆

(L), where L is a subset of the underlying set of a free
monoid A⋆ on an alphabet A, is called the syntactic congruence determined by L
(or the two-sided principal congruence of L). According to Lallement (in [25], on
p. 175): “the fact that the principal equivalence of L is the largest congruence for
which L is a union of equivalence classes is due to Teissier in [39] [for demi-groups,
i.e., sets with an associative binary operation, we add ].” To this we append that
these congruences were defined by Schützenberger (in [36], on p. 10) for monoids
(he speaks of: “demi-groupes contenant un élément neutre”). It should also be
pointed out that, for a single-sorted algebra A and for an equivalence relation Φ on
A, in [20], on p. 65, Green defined the congruence on A analysed (≡ cogenerated, we
add) by Φ as the join (≡ supremum) of the set of all congruences Ψ on A contained
in Φ and asserted that it is the greatest congruence on A contained in Φ; and
in [37], on pp. 32–33, S lomiński proved that there exists the greatest congruence
on A contained in Φ. In this respect it should be noted that in [1], and for single-
sorted algebras, Almeida addressed, in particular, the issue of the definition and
basic properties of the syntactic congruence.

The theorem of Green and S lomiński is also valid for the many-sorted case, as
shown below.
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Proposition 2.50. Let A be a Σ-algebra and Φ an S-sorted equivalence on A.

Then there exists a congruence Ω̃A(Φ) on A such that Ω̃A(Φ) ⊆ Φ and, for every

congruence Ψ on A, if Ψ ⊆ Φ, then Ψ ⊆ Ω̃A(Φ). We will call Ω̃A(Φ) the congruence
on A cogenerated by Φ.

Proof. Since: (1) the join in Eqv(A) of a family (Ψi)i∈I of congruences on A is the
S-sorted equivalence Ψ on A whose s-th coordinate, Ψs, for s ∈ S, is:

Ψs =

{
(a, b) ∈ A2

s

∣∣∣∣
∃n ≥ 1 ∃x ∈ An+1

s (x0 = a & xn = b &

∀p ∈ n((xp, xp+1) ∈
⋃
i∈I Ψi

s))

}
;

(2) for the join Ψ in Eqv(A) of a family (Ψi)i∈I of congruences on A, we have
that, for every (w, s) ∈ (S⋆ − {λ}) × S, every σ ∈ Σw,s, every j ∈ |w|, every a,
b ∈ Awj

, every (ci)i∈j ∈
∏
i∈j Awi

, and every (ck)k∈|w|−(j+1) ∈
∏
k∈|w|−(j+1)Awk

,

if (a, b) ∈ Ψwj
, then

(Fσ(c0, . . . , cj−1, a, cj+1, . . . , c|w|−1), Fσ(c0, . . . , cj−1, b, cj+1, . . . , c|w|−1)) ∈ Ψs;

(3) the join in Eqv(A) of a family (Ψi)i∈I of congruences on A is a congruence
on A (this follows from (2)); and (4) ∆A is a congruence on A contained in Φ, it

suffices to take as Ω̃A(Φ) the join of {Ψ ∈ Cgr(A) | Ψ ⊆ Φ} in Eqv(A). �

Remark. For every S-sorted equivalence Φ on the underlying S-sorted set of a Σ-

algebra A, Ω̃A(Φ) can be viewed as the value at Φ of a mapping Ω̃A from Eqv(A) to

Cgr(A). We will call Ω̃A the congruence cogenerating operator for A (with regard
to S-sorted equivalences on A).

Remark. For every subset L of the underlying S-sorted set of a Σ-algebra A,

ΩA(L) = Ω̃A(Ker(chL)). In other words, the mapping ΩA from Sub(A) to Cgr(A)
is the composition of the mapping from Sub(A) to Eqv(A) that sends L in Sub(A)
to Ker(chL) in Eqv(A) (which in general is neither injecive, nor surjective, nor

isotone) and the mapping Ω̃A from Eqv(A) to Cgr(A).

Remark. It is possible to provide a proof of Proposition 2.50 along the lines of
Proposition 2.48. Let Φ be an S-sorted equivalence on the underlying S-sorted set

of a Σ-algebra A. Then the S-sorted binary relation Ω̃A(Φ) on A defined, for every
t ∈ S, as follows:

Ω̃A(Φ)t =

{
(x, y) ∈ A2

t

∣∣∣∣
∀ s ∈ S ∀T ∈ Tlt(A)s

(T (x), T (y)) ∈ Φs)

}
,

is the greatest congruence on A contained in Φ.

We next provide, for a Σ-algebra A, some basic properties of the congruence

cogenerating operator Ω̃A.

Proposition 2.51. Let A be a Σ-algebra. Then Ω̃A, considered as an endomapping
of Eqv(A), is a kernel (≡ interior) operator, i.e., it is contractive (≡ deflationary),

isotone, and idempotent. Moreover, Ω̃A(∆A) = ∆A, Ω̃A(∇A) = ∇A and, for every

nonempty set I in U and every (Φi)i∈I ∈ Eqv(A)I , Ω̃A(
⋂
i∈I Φi) =

⋂
i∈I Ω̃A(Φi).

Proposition 2.52. Let A be a Σ-algebra, Φ an S-sorted equivalence on A, t, s ∈ S,
and T ∈ Tlt(A)s. Then ΩA(Φ) ⊆ ΩA((T × T )−1[Φ]), where (T × T )−1[Φ] stands
for the S-sorted equivalence on A defined, for every u ∈ S, as follows:

ΩA((T × T )−1[Φ])u =

{
(T × T )−1[Φs], if u = t;

∇Au
, otherwise.
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Proposition 2.53. Let f be a homomorphism from A to B and Υ an S-sorted

equivalence on B. Then (f × f)−1[Ω̃B(Υ)] ⊆ Ω̃A((f × f)−1[Υ]). Moreover, if f is

an epimorphism, then (f × f)−1[Ω̃B(M)] = Ω̃A((f × f)−1[Υ]).

Remark. For every Σ-algebra A, Ω̃A can be regarded as the component at A

of a natural transformation Ω̃ between two contravariant functors from a suitable
category of Σ-algebras to the category Set. In fact, let Alg(Σ)epi be the category
whose objects are the Σ-algebras and whose morphisms are the epimorphisms be-
tween Σ-algebras. Then we have, on the one hand, the functor Eqv from Alg(Σ)opepi,

the dual of Alg(Σ)epi, to Set which assigns to a Σ-algebra A the set Eqv(A), and
to an epimorphism f : A //B the mapping (f × f)−1[·] from Eqv(B) to Eqv(A),
and, on the other hand, the functor Cgr from Alg(Σ)opepi to Set which assigns to

a Σ-algebra A the set Cgr(A), and to an epimorphism f : A //B the mapping

(f × f)−1[·] from Cgr(B) to Cgr(A). Then the mapping Ω̃ from Alg(Σ), the set
of objects of Alg(Σ), to Mor(Set), the set of morphisms of Set, which assigns to

a Σ-algebra A the mapping Ω̃A from Eqv(A) to Cgr(A) is a natural transforma-
tion from Eqv to Cgr, because, for every epimorphism f : A //B, we have that

(f × f)−1[·] ◦ Ω̃B = Ω̃A ◦ (f × f)−1[·], i.e., for every S-sorted equivalence Υ on B,

(f × f)−1[Ω̃B(Υ)] = Ω̃A((f × f)−1[Υ]).

We next gather together, for a Σ-algebra A, some basic properties of the con-
gruence cogenerating operator ΩA.

Proposition 2.54. Let A be a Σ-algebra, L a subset of A, and Φ ∈ Cgr(A). Then
L ∈ Φ-Sat(A), i.e., L = [L]Φ, if and only if Φ ⊆ ΩA(L). Moreover, for s ∈ S and
L ⊆ As, we have that L = [L]Φs if and only if Φs ⊆ ΩA(δs,L)s.

Proof. Let us suppose that L = [L]Φ. Then, since ΩA(L) is the greatest congruence

on A such that L = [L]Ω
A(L), we have that Φ ⊆ ΩA(L).

Reciprocally, let us suppose that Φ ⊆ ΩA(L) then, by Corollary 2.16, we have
that ΩA(L)-Sat(A) ⊆ Φ-Sat(A). Since L belongs to ΩA(L)-Sat(A), we conclude
that L ∈ Φ-Sat(A). �

Proposition 2.55. Let A be a Σ-algebra and L a subset of A. Then it happens
that ΩA(L) = ΩA(∁AL).

Proposition 2.56. Let A be a Σ-algebra, I a nonempty set in U , and (Li)i∈I
an I-indexed family of subsets of A. Then

⋂
i∈I ΩA(Li) ⊆ ΩA(

⋂
i∈I L

i), i.e.,⋂
i∈I Ω̃A(Ker(chLi)) ⊆ Ω̃A(Ker(ch⋂

i∈I L
i)).

Proof. To prove that
⋂
i∈I ΩA(Li) ⊆ ΩA(

⋂
i∈I L

i) it suffices, by part (3) of Propo-

sition 2.48, to verify that
⋂
i∈I ΩA(Li) ⊆ Ker(ch⋂

i∈I L
i). But

⋂
i∈I ΩA(Li) ⊆⋂

i∈I Ker(chLi) and, in addition, we have that
⋂
i∈I Ker(chLi) ⊆ Ker(ch⋂

i∈I L
i).

Therefore
⋂
i∈I ΩA(Li) ⊆ Ker(ch⋂

i∈I L
i). �

With regard to the following proposition, it must be borne in mind that, for
every set C, Ker(ch∅) = Ker(chC) = ∇C .

Proposition 2.57. Let A be a Σ-algebra, L a subset of A, t, s ∈ S, and T ∈

Tlt(A)s. Then ΩA(L) ⊆ ΩA(T−1[L]), i.e., Ω̃A(Ker(chL)) ⊆ Ω̃A(Ker(chT−1[L])),
where, for every u ∈ S − {t}, Ker(chT−1[L])u = Ker(ch∅) = ∇Au

and

Ker(chT−1[L])t = Ker(chT−1[Ls]) = {(x, y) ∈ A2
t | T (x) ∈ Ls ↔ T (y) ∈ Ls}.

Proposition 2.58. Let f be a homomorphism from A to B and M a subset of B.
Then (f × f)−1[ΩB(M)] ⊆ ΩA(f−1[M ]). Moreover, if f is an epimorphism, then
(f × f)−1[ΩB(M)] = ΩA(f−1[M ]).
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Remark. Let P− be the functor from Alg(Σ)opepi to Set which assigns to a Σ-

algebra A the set Sub(A), and to an epimorphism f : A //B the mapping f−1[·]
from Sub(B) to Sub(A). Then the mapping Ω from Alg(Σ) to Mor(Set) which
assigns to a Σ-algebra A the mapping ΩA from Sub(A) to Cgr(A) is a natural
transformation from P− to Cgr, since, for every epimorphism f : A //B, we have
that (f × f)−1[·] ◦ ΩB = ΩA ◦ f−1[·], i.e., for every M ⊆ B, (f × f)−1[ΩB(M)] =
ΩA(f−1[M ]).

We finish this section by reviewing a few aspects of recognizability for subsets
of the underlying many-sorted set of an arbitrary many-sorted algebra. But before
going any further it is worth noting what Gécseg and Steinby, in [14], at the begin-
ning of Chapter 2, wrote: “. . . one should note that there are often many ways to
generalize from languages [sets of words of the underlying set of a free monoid on a
set, we add ] to forest [sets of terms of the underlying set of a free algebra on a set,
we add ], and a right choice among the alternatives is essential if one wants to gener-
alize the corresponding results, too.” In this regard, concerning the congruences on
a many-sorted algebra—on which, ultimately, the notion of recognizability will be
founded—we have two nonequivalent ways of defining the concept of congruence of
“finite” index on it, depending on the notion of finiteness we choose: The categorial
or the non-categorial notion of finiteness.

We shall now go on to define both notions of congruence of finite index on a
many-sorted algebra.

Definition 2.59. Let A be a Σ-algebra and Φ ∈ Cgr(A). We will say that Φ is
of finite index, abbreviated as fi, if A/Φ ∈ Subf(A

℘), i.e., if card(suppS(A/Φ)) is
finite and, for every s ∈ suppS(A/Φ), As/Φs is finite. We will denote by Cgrfi(A)
the set of all congruences on A of finite index. Moreover, we will say that Φ is of
S-finite index or of locally finite index, abbreviated as lfi, if A/Φ ∈ Sublf(A

℘) i.e.,
if, for every s ∈ S, card(As/Φs) < ℵ0. We will denote by Cgrlfi(A) the set of all
congruences on A of locally finite index.

Let us note that in [9], on p. 99, and in [10], on p. 30, and for a set of sorts
S, eventually infinite, and a many-sorted algebra A such that, for every s ∈ S,
As 6= ∅, Courcelle says that a congruence on A is locally finite if it has finitely
many classes of each sort. To this we add that he uses such a type of congruence
to investigate, for a many-sorted algebra A, subject to satisfy the above condition,
and a sort s ∈ S, the recognizable subsets of As. So, if we disregard the condition
imposed by Courcelle on the many-sorted algebras, our notion of congruence of
locally finite index coincides with Courcelle’s notion of locally finite congruence.

Proposition 2.60. Let A be a Σ-algebra. Then Cgrfi(A) 6= ∅ if and only if
suppS(A) is finite. Moreover, card(S) < ℵ0 if and only if, for every Σ-algebra A,
Cgrfi(A) 6= ∅. Therefore, the following conditions are equivalent: (1) for every
Σ-algebra A, suppS(A) is finite, (2) for every Σ-algebra A, Cgrfi(A) 6= ∅, and (3)
S is finite.

Proof. Since the first assertion is straightforward, we restrict ourselves to verify
the second one. If the set of sorts S is finite, then, for every Σ-algebra A, ∇A ∈
Cgrfi(A). If S is infinite, then the final Σ-algebra 1 is such that Cgrfi(1) = ∅. �

Remark. If S is finite, then, obviously, for every X ∈ U
S , suppS(TΣ(X)) is finite.

If S is infinite, then there exists an X ∈ U
S such that suppS(TΣ(X)) is infinite, e.g.,

for X = 1 = (1)s∈S , we have that suppS(TΣ(1)) = S, thus suppS(TΣ(1)) is infinite.

Hence, if, for every X ∈ U
S , suppS(TΣ(X)) is finite, then S is finite. Therefore,

the following conditions are equivalent: (1) for every X ∈ U
S , suppS(TΣ(X)) is

finite, (2) for every X ∈ U
S , Cgrfi(TΣ(X)) 6= ∅, and (3) S is finite.
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Proposition 2.61. Let A be a Σ-algebra. Then

(1) for every n ∈ N− {0} and every (Φi)i∈n ∈ Cgrfi(A)n,
⋂
i∈n Φi ∈ Cgrfi(A);

(2) Cgrfi(A) is an upward closed set of the lattice Cgr(A), i.e., for every Φ,Ψ ∈
Cgr(A), if Φ ⊆ Ψ and Φ ∈ Cgrfi(A), then Ψ ∈ Cgrfi(A).

Therefore, if suppS(A) is finite, then Cgrfi(A) is a filter of the lattice Cgr(A).

Proof. Let n be a non-zero natural number and (Φi)i∈n ∈ Cgrfi(A)n. Then the
congruence

⋂
i∈n Φi on A is of finite index because

∏
i∈nA/Φ

i is finite and the

homomorphism p(Φi)i∈n from A/
⋂
i∈n Φi to

∏
i∈nA/Φ

i, defined, for every s ∈ S,
as follows:

p
(Φi)i∈n
s

{
As/

⋂
i∈n Φis // ∏

i∈nAs/Φ
i
s

[a]⋂
i∈n Φi

s
7−→

(
[a]Φi

s

)
i∈n

is a subdirect embedding of A/
⋂
i∈n Φi into

∏
i∈nA/Φ

i. Let us note that p(Φi)i∈n is〈
p⋂

i∈n Φi,Φi

〉
i∈n

(the unique homomorphism from A/
⋂
i∈n Φi to

∏
i∈nA/Φ

i such

that, for every i ∈ n, prΦi ◦
〈

p⋂

i∈n Φi,Φi

〉
i∈n

= p⋂

i∈n Φi,Φi , where p⋂

i∈n Φi,Φi and

prΦi are the canonical homomorphisms from A/
⋂
i∈n Φi and

∏
i∈nA/Φ

i, respec-

tively, to A/Φi).
Now let Φ be a congruence on A of finite index and Ψ a congruence on A such

that Φ ⊆ Ψ. Then, since A/Φ is finite and prΦ,Ψ (the unique homomorphism from
A/Φ to A/Ψ such that prΦ,Ψ ◦ prΦ = prΨ) is surjective, A/Ψ is finite. Hence
Ψ ∈ Cgrfi(A). �

Proposition 2.62. Let A be a Σ-algebra. Then Cgrlfi(A) is a filter of the lattice
Cgr(A).

As for congruences of finite index on a many-sorted algebra, for many-sorted
languages we have, on the one hand, those whose definition is based on the categorial
notion of finiteness and which will be called recognizable, and, on the other, those
whose definition is founded on the notion of local finiteness and which will be called
locally finitely recognizable, abbreviated to lf recognizable.

Definition 2.63. Let A be a Σ-algebra, T ⊆ S, and L ⊆ A↾T= (At)t∈T .

(1) We will say that L is T -recognizable if there exists a finite Σ-algebra B, a ho-
momorphism f : A //B, and a subset M of B↾T such that (f↾T )−1[M ] =
L, where (f↾T )−1[M ] = (f−1

t [Mt])t∈T . We will denote by RecT (A) the set
of all subsets of A↾T which are T -recognizable.

(2) We will say that L is (lf, T )-recognizable if there exists a locally finite (≡
S-finite) Σ-algebra B, a homomorphism f : A //B, and a subset M of
B↾T such that L = ((f↾T )−1[M ]. We will denote by Reclf,T (A) the set of
all subsets of A↾T which are (lf, T )-recognizable.

For T = S we will denote by Rec(A) and Reclf(A) the sets RecS(A) and
Reclf,S(A), respectively. We will call the elements of Rec(A) and Reclf(A) rec-
ognizable and lf-recognizable, respectively.

For s ∈ S we will denote by Recs(A) and Reclf,s(A) the sets Rec{s}(A) and
Reclf,{s}(A), respectively. We will call the elements of Recs(A) and Reclf,s(A)
s-recognizable and (lf, s)-recognizable, respectively.

Remark. Let A be a Σ-algebra, T ⊆ S, and s ∈ S. Then RecT (A) ⊆ Reclf,T (A),
Rec(A) ⊆ Reclf(A), and Recs(A) ⊆ Reclf,s(A). If S is infinite, then the converse
inclusions are not valid. Let T be an infinite subset of S and A a Σ-algebra such
that T ⊆ suppS(A). Then A↾T is a language in Recl.f,T (A), but not in RecT (A).
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Remark. If S is finite, T ⊆ S, s ∈ S, and A is a Σ-algebra, then RecT (A) =
Reclf,T (A), Rec(A) = Reclf(A), and Recs(A) = Reclf,s(A).

In what follows, among other things, we investigate, for a many-sorted algebra
and a language of it, the relationships between the different notions of recogniz-
ability for the language and the two notions of congruence of finite index on the
many-sorted algebra saturating the language. In particular, we investigate such a
relationship for the case of the congruence cogenerated by a many-sorted language.

Proposition 2.64. Let A be a Σ-algebra, T ⊆ S, and L ⊆ A↾T . Then the following
assertions are equivalent:

(1) L is T -recognizable.
(2) There exists a congruence Φ on A of finite index such that L = [L]Φ↾T ,

where Φ↾T= (Φt)t∈T and, for every t ∈ T , [L]Φ↾Tt = [Lt]
Φt .

(3) ΩA([L,∅S−T ]) is of finite index, where ∅
S−T is the mapping from S−T to

U constantly ∅ and [L,∅S−T ] the unique mapping from S to U such that
[L,∅S−T ]↾T= L and [L,∅S−T ]↾S−T= ∅

S−T .

Proposition 2.65. Let A be a Σ-algebra and L ⊆ A. Then the following assertions
are equivalent:

(1) L is recognizable.
(2) There exists a congruence Φ on A of finite index such that L = [L]Φ.
(3) ΩA(L) is of finite index.

Proof. We first prove that (1) ⇒ (2).
Let us suppose that L is recognizable, i.e., that there exists a finite Σ-algebra

B, a homomorphism f : A //B, and a subset M of B such that L = f−1[M ].
Then, since Im(f) is a subalgebra of a finite algebra, Im(f) is finite. Therefore
A/Ker(f) is finite, because it is canonically isomorphic to Im(f). Hence Ker(f) is
a congruence on A of finite index. Let us check that L = [L]Ker(f). The inclusion
L ⊆ [L]Ker(f) is always true. To show that [L]Ker(f) ⊆ L, let s be a sort in S, a ∈ As,
x ∈ Ls, and let us suppose that (a, x) ∈ Ker(fs), i.e., that fs(a) = fs(x). Then,
since L = f−1[M ], we have that Ls = f−1

s [Ms], thus fs(x) ∈Ms, but fs(a) = fs(x),
therefore fs(a) ∈Ms, consequently a ∈ Ls. From this it follows that [L]Ker(f) ⊆ L.

We next prove that (2) ⇒ (3).
Let us suppose that there exists a congruence Φ on A such that Φ is of finite

index and L = [L]Φ. Then, by Proposition 2.54, we have that Φ ⊆ ΩA(L). Thus,
by Proposition 2.61, since, by hypothesis, Φ ∈ Cgrfi(A), ΩA(L) ∈ Cgrfi(A).

Finally, we prove that (3) ⇒ (1).
Let us suppose that ΩA(L) ∈ Cgrfi(A). Then A/ΩA(L) is finite. Let M be the

subset prΩA(L)[L] of A/ΩA(L), where prΩA(L) is the canonical projection from A

to A/ΩA(L). To verify that L = (prΩA(L))
−1[M] it suffices to check the inclusion

from right to left. Let s be an element of S and b ∈ pr−1
ΩA(L)s

[Ms] (recall that

(prΩA(L))
−1[M] = (pr−1

ΩA(L)s
[Ms)s∈S). Then prΩA(L)s [b] ∈ Ms. Hence, there ex-

ists an a ∈ Ls such that [a]ΩA(L)s = [b]ΩA(L)s . But, by Proposition 2.54, L is ΩA(L)-

saturated and, since a ∈ Ls, we have that b ∈ Ls. Therefore (prΩA(L))
−1[M] ⊆

L. �

Proposition 2.66. Let A be a Σ-algebra, s ∈ S, and L ⊆ As. Then the following
assertions are equivalent:

(1) L is s-recognizable.
(2) There exists a congruence Φ on A of finite index such that L = [L]Φs .
(3) ΩA(δs,L) is of finite index.



24 CLIMENT AND COSME

Proposition 2.67. Let A and B be Σ-algebras. Then

(1) ∅
S, A ∈ Rec(A).

(2) If K,L ∈ Rec(A), then K ∪ L,K ∩ L,K − L ∈ Rec(A).

(3) If T ∈ Tlt(A)s, and L ∈ Rec(A), then T−1[L] = δt,T
−1[Ls] ∈ Rec(A).

(4) If f : A //B and M ∈ Rec(B), then f−1[M ] ∈ Rec(A).

Proposition 2.68. Let A be a Σ-algebra, s ∈ S, and L ⊆ As. Then L ∈ Recs(A)
if and only if δs,L ∈ Rec(A). Thus Recs(A) is isomorphic to a subset of Rec(A).

Assumption. To prove the following proposition we will assume that the set of
sorts S is finite.

Proposition 2.69. Let A be a Σ-algebra and L ⊆ A. Then L ∈ Rec(A) if and only
if, for every s ∈ S, Ls ∈ Recs(A). Thus there exists an embedding from Rec(A)
into

∏
s∈S Recs(A) and Rec(A) is a subdirect product of (Recs(A))s∈S .

Proof. If L ∈ Rec(A), then, from the definitions, it follows that, for every s ∈ S,
Ls ∈ Recs(A).

Conversely, let us suppose that, for every s ∈ S, Ls ∈ Recs(A). Then, for every
s ∈ S, there exists a finite Σ-algebra Bs, a homomorphism f s : A //Bs and
Ms ⊆ Bss such that (f ss )−1[Ms] = Ls. Let

∏
s∈S B

s be the product of (Bs)s∈S ,
which is finite—since, for every s ∈ S, Bs is finite and, by hypothesis, S is finite—,
and 〈f s〉s∈S the canonical homomorphism from A to

∏
s∈S B

s. Let N = (Nt)t∈S be
the subset of

∏
s∈S B

s = (
∏
s∈S B

s
t )t∈S defined, for every t ∈ S, up to isomorphism,

as: Nt = Mt ×
∏
s∈S−{t}B

s
t . Then (〈f s〉s∈S)−1[N ] = L. Consequently, L is

recognizable.
Before proceeding any further, we provide another proof of the just proved result.

If, for every s ∈ S, Ls ∈ Recs(A), then, for every s ∈ S, by Proposition 2.68,
δs,Ls ∈ Rec(A). Therefore, by part (2) of Proposition 2.67 and since, by hypothesis,
S is finite,

⋃
s∈S δ

s,Ls = L ∈ Rec(A).
The mapping from Rec(A) to

∏
s∈S Recs(A) that sends L in Rec(A) to L in∏

s∈S Recs(A) is well-defined and injective. Moreover, for every s ∈ S and every

K ∈ Recs(A), the S-sorted set δs,K is in Rec(A) and its s-th projection is K. �

From the just stated proposition (which, we recall, has been obtained under
the assumption that S is finite) and since, for a Σ-algebra A and an L ⊆ A,
L =

⋃
s∈S δ

s,Ls , it follows that in order to investigate the languages in Rec(A) it
suffices to investigate, for every s ∈ S, the languages in Recs(A).

Proposition 2.70. Let A and B be Σ-algebras and s, t ∈ S. Then

(1) ∅, As ∈ Recs(A).
(2) If K,L ∈ Recs(A), then K ∪ L,K ∩ L,K − L ∈ Recs(A).
(3) If T ∈ Tlt(A)s, and L ∈ Recs(A), then T−1[L] ∈ Rect(A).
(4) If f : A //B and M ∈ Recs(B), then f−1

s [M ] ∈ Recs(A).

For the notions of lf-recognizability and congruence of locally finite index there
are results similar to those we have just stated for recognizability and congruence
of finite index. By way of illustration, here are some examples of it.

Proposition 2.71. Let A be a Σ-algebra, T ⊆ S, and L ⊆ A↾T . Then the following
assertions are equivalent:

(1) L is lf-recognizable.
(2) There exists a congruence Φ on A of S-finite index such that L = [L]Φ↾T ,

where Φ↾T= (Φt)t∈T and, for every t ∈ T , [L]Φ↾Tt = [Lt]
Φt .

(3) ΩA([L,∅S−T ]) is of S-finite index.
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Proposition 2.72. Let A be a Σ-algebra, s ∈ S, and L ⊆ As. Then L is (lf, s)-
recognizable if and only if δs,L is lf-recognizable, i.e., L ∈ Reclf,s(A) if and only if
δs,L ∈ Reclf(A). Thus Reclf,s(A) is isomorphic to a subset of Reclf(A).

Proposition 2.73. Let A be a Σ-algebra and L ⊆ A. Then the following assertions
are equivalent:

(1) L ∈ Reclf(A).
(2) There exists a congruence Φ on A of S-finite index such that L = [L]Φ.
(3) ΩA(L) ∈ Cgrlfi(A).

3. Recognizable subsets of a free many-sorted algebra

This section is devoted to provide congruence based proofs of the recognizability
theorems for free many-sorted algebras. Actually, in order to deal with the different
cases of recognizability, classified according to the type of operator under considera-
tion, we have divided this section into several subsections. In Subsection 1, entitled
Basic terms, we prove that the final sets containing a variable, a constant or an
operation symbol applied to a suitable family of variables are recognizable. These
results will be used later on to prove that the set of recognizable languages of a
many-sorted term algebra forms an algebra of the same signature. In Subsection
2, entitled Substitutions, after defining several substitution operators associated to
a free many-sorted algebra and investigating the relationships between them, we
prove that, if all input languages for a given substitution are recognizable, then the
output language is recognizable as well. In Subsection 3, entitled Iterations, we
introduce the notion of iteration of a language with respect to a variable and we
prove that, if the input language is recognizable then its iteration with respect to a
variable is also recognizable. In Subsection 4, entitled Quotients, we introduce the
notion of quotient of a language by another with respect to a variable and we prove
that if the input language is recognizable then its quotient is also recognizable.
In Subsection 5, entitled Tree Homomorphisms, we introduce the notion of hyper-
derivor as a way of transforming terms relative to a signature into terms relative to
another signature. We show that tree homomorphisms are, really, homomorphisms
from a free many-sorted algebra to another many-sorted algebra, itself derived from
a many-sorted algebra relative to another signature. Then we prove that the inverse
image of a recognizable language under a tree homomorphism is recognizable and
that the direct image of a recognizable language by a linear tree homomorphism,
which is a particular type of tree homomorphism, is also recognizable. Finally,
Subsection 6 is devoted to the study of derivors. We first introduce the category of
many-sorted signatures and derivors. Next, after defining a contravariant functor
from this category to the category of U -locally small categories and functors, we
obtain by means of the Grothendieck contruction, the category of ordered pairs
consisting of a many-sorted signature and an algebra of the same signature and
the pairs of derivors and derived homomorphisms of algebras as morphisms. As a
consequence, after showing that every derivor, together with some additional data,
gives rise to a hyperderivor, the counterparts of the two main results in Subsection 5
are immediately obtained.

From now on, following a strongly rooted tradition in the fields of formal lan-
guages and automata, we agree to call languages the subsets of the underlying
many-sorted set of the free many-sorted algebra on a many-sorted set.

3.1. Basic terms. In this subsection we prove some basic recognizability results
relative to a free algebra on an S-sorted set. Concretely, we prove that the final
sets consisting, respectively, of a variable, a constant, and the action of an operator
symbol on a family of variables, are recognizable.
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Assumption. In this subsection we will assume that S is finite.

Proposition 3.1. Let Σ be an S-sorted signature, X an S-sorted set, s ∈ S, and
x and element in Xs. Then the language {x} ⊆ TΣ(X)s is recognizable.

Proof. We will denote by 2S or, to abbreviate, by 2, the S-sorted set (2)s∈S , where
2 = {0, 1}. Let 2 = (2, G2) be the finite Σ-algebra defined as follows: For every
(w, t) ∈ S⋆ × S and every σ ∈ Σw,t, the structural operation associated to σ,
G2
σ : 2w // 2, is the constant mapping with value 0. Let f : X // 2 be the S-

sorted mapping such that fs : X // 2 is ch{x}, the characteristic mapping of {x},

and, for t ∈ S − {s}, ft is the mapping constantly 0. Then, for f ♯, the unique
homomorphism from TΣ(X) to 2 such that f ♯ ◦ ηX = f , we have that, for every
P ∈ TΣ(X)s, f

♯
s(P ) = ch{x}(P ) = 1 if and only if P = x. Hence, since {x} =

(f ♯s)−1[{1}], the language {x} is recognizable. �

Proposition 3.2. Let Σ be an S-sorted signature, X an S-sorted set, and σ ∈ Σλ,s.
Then the language {σ} ⊆ TΣ(X)s is recognizable.

Proof. Let 2 = (2, H2) be the finite Σ-algebra defined as follows: H2
σ is the mapping

from 2λ to 2 that sends the unique member of 2λ to 1, and, for every (w, t) ∈ S⋆×S
and every τ ∈ Σw,t, H

2
τ : 2w // 2 is the constant mapping to 0. Let κ : X // 2

be the S-sorted mapping constantly zero at each sort. Then, for κ♯, the unique
homomorphism from TΣ(X) to 2 such that κ♯ ◦ ηX = κ, we have that, for every
P ∈ TΣ(X)s, κ

♯
s(P ) = 1 if and only if P = σ. Hence, since {σ} = (κ♯s)

−1[{1}], the
language {σ} is recognizable. �

Proposition 3.3. Let Σ be an S-sorted signature, X an S-sorted set, (w, s) ∈
(S⋆ − {λ}) × S, σ ∈ Σw,s, and (xi)i∈|w| a family of variables in Xw. Then the
language {σ((xi)i∈|w|)} ⊆ TΣ(X)s is recognizable.

Proof. For w ∈ S⋆ − {λ}, let ↓w be the S-sorted set defined, for every t ∈ S
as follows: (↓w)t = {i ∈ |w| | wi = t}, i.e., (↓w)t = w−1[{t}]. Therefore, for
every t ∈ S − Im(w), (↓w)t = ∅, while, for every t ∈ Im(w), (↓w)t 6= ∅. For
every S-sorted set X , the sets Hom(↓w,X) and Xw are naturally isomorphic. If
x = (xi)i∈|w| ∈ Xw, i.e., if x is a mapping from |w| to

⋃
i∈|w|Xwi

such that, for

every i ∈ |w|, xi ∈ Xwi
, then we will denote by x the S-sorted mapping from ↓w

to X which is associated, in virtue of the natural isomorphism, to x and is defined
as follows: For every t ∈ S and every i ∈ (↓w)t, then xt(i) = xi. Let us note that,
for every t ∈ S − Im(w), xt is the unique mapping from ∅ to Xt. Thus, given
w ∈ S⋆ − {λ} and x = (xi)i∈|w| ∈ Xw, let k = (kt)t∈S be the S-sorted set defined,

for every t ∈ S, as kt = card((Im(xt))) = card({xi | i ∈ w−1[{t}]}). Then, for every
t ∈ S, kt is the number of different variables of type t in x.

Let ϕ : Im(x) // k be a fixed S-sorted mapping such that, for every t ∈ S,
ϕt : Im(xt) // kt is a bijection. Let K be the S-sorted set such that, for every
t ∈ S − {s}, Kt = kt + 1 and Ks = ks + 2. Then let K = (K, IK) be the Σ-algebra
defined as follows: For (u, t) ∈ S⋆×S and τ ∈ Σu,t, if (u, t) 6= (w, s) or τ 6= σ, then
IK : Ku

//Kt is the constant mapping with value kt, and for τ = σ, IK is the
mapping:

IKσ





Kw
// Ks

a 7−→

{
ks + 1, if a = ϕ(x);

ks, otherwise.
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Let f : X //K be the S-sorted mapping defined, for every s ∈ S, as follows:

fs





Xs
// Ks

z 7−→

{
ϕs(z), if z is a variable in Im(x)s;

ks, otherwise.

Then, for the unique homomorphism f ♯ from TΣ(X) to K such that f ♯ ◦ ηX = f ,
we have that, for every P ∈ TΣ(X)s, f

♯(P ) = ks+1 if and only if P = σ((xi)i∈|w|).

Hence, since {σ((xi)i∈|w|)} = (f ♯)−1
s [{ks + 1}], the language {σ((xi)i∈n)} is recog-

nizable. �

3.2. Substitutions. In this subsection we introduce several substitution operators
associated to a free algebra with the aim of proving that, if the languages under
consideration are recognizable, then the language that results from the substitution
operator applied to these languages is also recognizable.

Definition 3.4. Let X be an S-sorted set, s ∈ S, and P ∈ TΣ(X)s. Then

we will denote by
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) the mapping from

∏
(x,t)∈

∐

X TΣ(X)
|P |x
t to

TΣ(X)s that assigns to
(
(Qx,tα )α∈|P |x

)
(x,t)∈

∐

X
in
∏

(x,t)∈
∐

X TΣ(X)
|P |x
t the term(

(x,t)

(Qx,t
α )α∈|P |x

)
(x,t)∈

∐

X
(P ) in TΣ(X)s obtained by substituting in P , for every t ∈ S,

every x ∈ Xt, and every α ∈ |P |x, Qx,tα for the iα-th occurrence of x in P . We will

call
(

(x,t)

(Qx,t
α )α∈|P |x

)
(x,t)∈

∐

X
(P ) the substitution of (Qx,tα )α∈|P |x for x in P for every

t ∈ S and every x in Xt, and
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) the global substitution operator for

P .
Let u be a sort in S and z ∈ Xu. Then we will denote by (z·) (P ) the map-

ping from TΣ(X)
|P |z
u to TΣ(X)s that assigns to (Qzα)α∈|P |z in TΣ(X)

|P |z
u the term( z

(Qz
α)α∈|P |z

)
(P ) in TΣ(X)s obtained by substituting in P , for every α ∈ |P |z , Q

z
α

for the iα-th occurrence of z in P . We will call
( z
(Qz

α)α∈|P |z

)
(P ) the substitution of

(Qzα)α∈|P |z for z in P .

Remark. For an S-sorted set X , a sort s ∈ S, and a term P in TΣ(X)s, the domain

of
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) is the set of all choice functions for (TΣ(X)

|P |x
t )(x,t)∈

∐

X .

Regarding the index set
∐
X , since VarX(P ), the S-sorted of the variables of P , is

finite, we can, without loss of generality, replace it by
⋃
t∈sort(VarX (P ))(Xt × {t}),

where sort(VarX(P )) is the finite set of the sorts of the variables which appear in
P . However, for uniformity, we will continue using

∐
X .

Remark. Let X be an S-sorted set, s a sort in S, and P a term in TΣ(X)s. Then

we will denote by (x·)x∈Xs
(P ) the mapping from

∏
x∈Xs

TΣ(X)
|P |x
s to TΣ(X)s that

assigns to
(
(Qxα)α∈|P |x

)
x∈Xs

in
∏
x∈Xs

TΣ(X)
|P |x
s the term

( x
(Qx

α)α∈|P |x

)
x∈Xs

(P ) in

TΣ(X)s obtained by substituting in P , for every x ∈ Xs and every α ∈ |P |x, Qxα for
the iα-th occurrence of x in P . We will call

( x
(Qx

α)α∈|P |x

)
x∈Xs

(P ) the substitution of

(Qxα)α∈|P |x for x in P for every x in Xs, and (x·)x∈Xs
(P ) the substitution operator

for P .
Since (1) for every s ∈ S, Xs

∼= Xs×{s}, (2) by the associativity of the product,∏
(x,t)∈

∐

X TΣ(X)
|P |x
t

∼=
∏
t∈S(

∏
x∈Xt

TΣ(X)
|P |x
t ), and (3)

∏
x∈Xs

TΣ(X)
|P |x
s is

naturally isomorphic to a subset of
∏
t∈S(

∏
x∈Xt

TΣ(X)
|P |x
t ), we have that (x·)x∈Xs

(P )

is, essentially, the restriction of
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) to

∏
x∈Xs

TΣ(X)
|P |x
s . Similarly

(z·) (P ) is, essentially, the restriction of
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) to TΣ(X)

|P |z
u .
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We next prove that, for every s ∈ S and every P ∈ TΣ(X),
(
(x,t)
·

)
(x,t)∈

∐

X
(P )

is, actually, a mapping from
∏

(x,t)∈
∐

X TΣ(X)
|P |x
t to TΣ(X)s.

Proposition 3.5. Let X be an S-sorted set, s ∈ S, and P a term in TΣ(X)s.

Then, for every
(
(Qx,tα )α∈|P |x

)
(x,t)∈

∐

X
in
∏

(x,t)∈
∐

X TΣ(X)
|P |x
t , we have that(

(x,t)

(Qx,t
α )α∈|P |x

)
(x,t)∈

∐

X
(P ) is a term in TΣ(X)s. Therefore

(
(x,t)
·

)
(x,t)∈

∐

X
(P ) is

a mapping from
∏

(x,t)∈
∐

X TΣ(X)
|P |x
t to TΣ(X)s.

Proof. Let T be the subset of TΣ(X) defined, for every s ∈ S, as follows:

Ts =
{
P ∈ TΣ(X)s

∣∣∣ Im(
(
(x,t)
·

)
(x,t)∈

∐

X
(P )) ⊆ TΣ(X)s

}
.

To prove that T = TΣ(X) it suffices to show, by Proposition 2.32, that X ⊆ T and
that T is a subalgebra of TΣ(X).

We first prove that X ⊆ T .
Let s be a sort in S and z ∈ Xs. Then we have that |z|z = 1, whilst, for every

x ∈ Xs − {z}, |z|x = 0, and, for every t ∈ S − {s} and every x ∈ Xt |z|x = 0.
Therefore, for a term Qz,s in TΣ(X)s associated to z, the global substitution of
Qz,s for z in z is equal to Qz,s. Hence is a term in TΣ(X)s. Consequently X ⊆ T .

We next prove that T is a subalgebra of TΣ(X).
Let s be a sort in S and σ ∈ Σλ,s. Then, for every t ∈ S and every x ∈ Xt, we

have that |σ|x = 0. Hence the global substitution operator leaves σ invariant.
Let (w, s) ∈ (S⋆−{λ})× S, σ ∈ Σw,s, and let (Pi)i∈|w| ∈ TΣ(X)w be such that,

for every i ∈ |w|, Pi satisfies the given requirement. Then, for every t ∈ S and
every x ∈ Xt, we have that

|σ((Pi)i∈|w|)|x =
∑

i∈|w||Pi|x.

But we have that

(3.1)
(

(x,t)

(Qx,t
α )α∈|σ((Pi)i∈|w|)|x

)

(x,t)∈
∐

X
(σ((Pi)i∈|w|)) =

σ

(((
(x,t)

(Qx,t

α+
∑

k∈i|Pk|x
)α∈|Pi|x

)

(x,t)∈
∐

X
(Pi)

)

i∈|w|

)

and, by induction hypothesis, for every i ∈ |w|,
(

(x,t)

(Qx,t

α+
∑

k∈i|Pk|x
)α∈|Pi|x

)

(x,t)∈
∐

X
(Pi)

is a term in TΣ(X)wi
. Therefore the left side of the above equation is a term in

TΣ(X)s. Consequently T is a subalgebra of TΣ(X). Thus T = TΣ(X). Hereby
completing our proof. �

Corollary 3.6. Let X be an S-sorted set, u ∈ S, z ∈ Xu, and P a term in TΣ(X)s.

Then, for every (Qzα)α∈|P |z in TΣ(X)
|P |z
u , we have that

( z
(Qz

α)α∈|P |z

)
(P ) is a term

in TΣ(X)s. Therefore (z·) (P ) is a mapping from TΣ(X)
|P |z
u to TΣ(X)s.

Remark. For every S-sorted set X the family
((

(x,t)
·

)
(x,t)∈

∐

X
(P )
)
s∈S

of global

substitution operators is in
∏

(P,s)∈
∐

TΣ(X) Hom(
∏

(x,t)∈
∐

X TΣ(X)
|P |x
t ,TΣ(X)s).

We next prove that every homomorphism from TΣ(X) is compatible with the
substitution operator.

Lemma 3.7. Let X be an S-sorted set, s ∈ S, W ∈ TΣ(X)s, A a Σ-algebra, and
g a homomorphism from TΣ(X) to A. Then, for every

(
(P x,tα )α∈|W |x

)
(x,t)∈

∐

X
,
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(
(Qx,tα )α∈|W |x

)
(x,t)∈

∐

X
∈
∏

(x,t)∈
∐

X TΣ(X)
|W |x
t , if, for every (x, t) ∈

∐
X and

every α ∈ |W |x, we have that gt(P
x,t
α ) = gt(Q

x,t
α ), then

gs

((
(x,t)

(Px,t
α )α∈|W |x

)
(x,t)∈

∐

X
(W )

)
= gs

((
(x,t)

(Qx,t
α )α∈|W |x

)
(x,t)∈

∐

X
(W )

)
.

Proof. We prove it by algebraic induction on W . But for W , either (1) W = z, for a
unique z ∈ Xs , or (2) W = σ, for a unique σ ∈ Σλ,s, or (3) W = σ((Wi)i∈|w|), for a
unique w ∈ S⋆−{λ}, a unique σ ∈ Σw,s, and a unique family (Wi)i∈|w| ∈ TΣ(X)w.

In case (1), |W |z = 1, whilst for every x ∈ Xs − {z}, |W |x = 0, and for every
t ∈ S −{s} and every x ∈ Xt, |W |x = 0. Therefore, for two terms P z,s and Qz,s in
TΣ(X)s with gs(P

z,s) = g(Qz,s) then it holds that

gs(P
z,s) = gs

(( z
P z,s

α

)
(z)
)

= gs
(( z
Qz,s

α

)
(z)
)

= gs(Q
z,s).

In case (2), we note that no constant symbol σ ∈ Σλ,s has variables in X and,
consequently no proper substitution is made. To prove the statement, we need to
show that gs(σ) = gs(σ), which trivially holds.

Finally, in case (3), we have the following equations

gs

((
(x,t)

(Px,t
α )α∈|W |x

)
(x,t)∈

∐

X
(W )

)

= gs

((
(x,t)

(Px,t
α )α∈|σ((Wi)i∈|w|)|x

)

(x,t)∈
∐

X
(σ((Wi)i∈|w|))

)

= gs

(
σ

(((
(x,t)

(Px,t

α+
∑

k∈i|Wk|x
)α∈|Wi|x

)

(x,t)∈
∐

X
(Wi)

)

i∈|w|

))
(†1)

= σA

((
gwi

((
(x,t)

(Px,t

α+
∑

k∈i|Wk|x
)α∈|Wi|x

)

(x,t)∈
∐

X
(Wi)

))

i∈|w|

)
(†2)

= σA

((
gwi

((
(x,t)

(Qx,t

α+
∑

k∈i|Wk|x
)α∈|Wi|x

)

(x,t)∈
∐

X
(Wi)

))

i∈|w|

)
(†3)

= gs

(
σ

(((
(x,t)

(Qx,t

α+
∑

k∈i|Wk|x
)α∈|Wi|x

)

(x,t)∈
∐

X
(Wi)

)

i∈|w|

))
(†2)

= gs

((
(x,t)

(Qx,t
α )α∈|σ((Wi)i∈|w|)|x

)

(x,t)∈
∐

X
(σ((Wi)i∈|w|))

)
(†1)

= gs

((
(x,t)

(Qx,t
α )α∈|W |x

)
(x,t)∈

∐

X
(W )

)
,

where, to shorten notation, we let (†1), (†2), and (†3) stand for (by equation 3.1),
(by definition of homomorphism), and (by inductive hypothesis), respectively. �

As a consequence of the last lemma we have the following corollary, that states
that every congruence on TΣ(X) is compatible with the substitution operator.

Corollary 3.8. Let X be an S-sorted set, s ∈ S, W ∈ TΣ(X)s, and Φ be a congru-
ence on TΣ(X). Then, for every

(
(P x,tα )α∈|W |x

)
(x,t)∈

∐

X
,
(
(Qx,tα )α∈|W |x

)
(x,t)∈

∐

X
∈

∏
(x,t)∈

∐

X TΣ(X)
|W |x
t , if, for every (x, t) ∈

∐
X and every α ∈ |W |x, we have that

[P x,tα ]Φt
= [Qx,tα ]Φt

, then
[(

(x,t)

(Px,t
α )α∈|W |x

)
(x,t)∈

∐

X
(W )

]

Φs

=

[(
(x,t)

(Qx,t
α )α∈|W |x

)
(x,t)∈

∐

X
(W )

]

Φs

.

Since it will be used in the following definition we recall that, as a particu-
lar case of Proposition 2.29, for an S-sorted set X , we have the power Σ-algebra
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TΣ(X)℘ associated to TΣ(X), which has as underlying S-sorted set TΣ(X)℘ =
(Sub(TΣ(X)s))s∈S and, for every (w, s) ∈ S⋆×S and every σ ∈ Σw,s, as structural
operation associated to σ, the mapping σ℘ from TΣ(X)℘w =

∏
i∈|w| Sub(TΣ(X)wi

)

to TΣ(X)℘s = Sub(TΣ(X)s) that sends (Li)i∈|w| in TΣ(X)℘w to

σ℘((Li)i∈|w|) = {σ((Pi)i∈|w|) | (Pi)i∈|w| ∈
∏
i∈|w| Li}

in TΣ(X)℘s . We remind the reader that in accordance with what is established in
Proposition 2.35, we have let, for abbreviation, for every (w, s) ∈ S⋆×S and every

σ ∈ Σw,s, σ stand for F
TΣ(X)
σ , the structural operation of TΣ(X) associated to σ.

Definition 3.9. For every t ∈ S, let (Lx)x∈Xt
be a mapping from Xt to TΣ(X)℘t =

Sub(TΣ(X)t), also written, in this context, as ( xLx
)x∈Xt

. Then, for the S-sorted

mapping
(
( xLx

)x∈Xt

)
t∈S

from X to TΣ(X)℘, we will denote by
((

( xLx
)x∈Xt

)
t∈S

)♯

the unique homomorphism from TΣ(X) to TΣ(X)℘ such that
((

( xLx
)x∈Xt

)
t∈S

)♯
◦ ηX =

(
( xLx

)x∈Xt

)
t∈S

.

Let u be a sort in S, z an element of Xu, and L ∈ TΣ(X)℘u. Then, for the S-
sorted mapping (zL) from X to TΣ(X)℘ defined as: (zL)u is the mapping from Xu to
Sub(TΣ(X)u) that sends z to L and y ∈ Xu−{z} to {y}, while, for t ∈ S−{u}, (zL)t
is the mapping from Xt to Sub(TΣ(X)t) that sends x ∈ Xt to {x}, we will denote by

(zL)
♯

the unique homomorphism from TΣ(X) to TΣ(X)℘ such that (zL)
♯
◦ ηX = (zL).

We recall that the homomorphism
((

( xLx
)x∈Xt

)
t∈S

)♯
from TΣ(X) to TΣ(X)℘ is

defined, by algebraic recursion, as follows. Let s be a sort in S and P ∈ TΣ(X)s.
Then we know that P either has the form (1) z, for a unique z ∈ Xs, or (2), σ, for a
unique σ ∈ Σλ,s, or (3) σ((Pi)i∈|w|), for a unique w ∈ S⋆−{λ}, a unique σ ∈ Σw,s,
and a unique family (Pi)i∈|w| ∈ TΣ(X)w.

In case (1), we have that
((

( xLx
)x∈Xt

)
t∈S

)♯
s

(z) = Lz.

In case (2), we have that
((

( xLx
)x∈Xt

)
t∈S

)♯
s

(σ) = {σ}.

Finally, in case (3), and under the hypothesis that, for every i ∈ |w|, the subset((
( xLx

)x∈Xt

)
t∈S

)♯
wi

(Pi) of TΣ(X)wi
has been defined, we have that

((
( xLx

)x∈Xt

)
t∈S

)♯
s

(σ((Pi)i∈|w|)) =

σ℘

((((
( xLx

)x∈Xt

)
t∈S

)♯
wi

(Pi)

)

i∈|w|

)
=

{
σ((Qi)i∈|w|)

∣∣∣ (Qi)i∈|w| ∈
∏
i∈|w|

((
( xLx

)x∈Xt

)
t∈S

)♯
wi

(Pi)
}
.

We next prove that, for every S-sorted mapping
(
( xLx

)x∈Xt

)
t∈S

fromX to TΣ(X)℘,

every s ∈ S, and every P ∈ TΣ(X)s,
((

( xLx
)x∈Xt

)
t∈S

)♯
s

(P ) is given by collecting

together the terms
(

(x,t)

(Qx,t
α )α∈|P |x

)
(x,t)∈

∐

X
(P ) with

(
(Qx,tα )α∈|P |x

)
(x,t)∈

∐

X
varying

in
∏

(x,t)∈
∐

X L
|P |x
x . Let us note that, since, for every x ∈ Xt, L

|P |x
x is embedded

into TΣ(X)
|P |x
t ,

∏
x∈Xt

L
|P |x
x is also embedded into

∏
x∈Xt

TΣ(X)
|P |x
t . Therefore

∏
(x,t)∈

∐

X L
|P |x
x is embedded into

∏
(x,t)∈

∐

X TΣ(X)
|P |x
t and, consequently, the

restriction of
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) to

∏
(x,t)∈

∐

X L
|P |x
x is available.
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Proposition 3.10. Let X be an S-sorted set, s ∈ S, and P a term in TΣ(X)s.
Then, for every S-sorted mapping

(
( xLx

)x∈Xt

)
t∈S

from X to TΣ(X)℘, we have that

((
( xLx

)x∈Xt

)
t∈S

)♯
s

(P ) = Im
((

(x,t)
·

)
(x,t)∈

∐

X
(P )↾∏

(x,t)∈
∐

X L
|P |x
x

)
.

Proof. Let T be the subset of TΣ(X) defined, for every s ∈ S, as follows: For every
P ∈ TΣ(X)s, P ∈ Ts if and only if

((
( xLx

)x∈Xt

)
t∈S

)♯
s

(P ) = Im
((

(x,t)
·

)
(x,t)∈

∐

X
(P )↾∏

(x,t)∈
∐

X L
|P |x
x

)
.

To prove that T = TΣ(X) it suffices to show, by Proposition 2.32, that X ⊆ T and
that T is a subalgebra of TΣ(X).

We first prove that X ⊆ T .

Let s be a sort in S and z ∈ Xs. Then
((

( xLx
)x∈Xt

)
t∈S

)♯
s

(z) = Lz. On the

other hand, we have that |z|z = 1, whilst, for every x ∈ Xs − {z}, |z|x = 0, and,
for every t ∈ S − {s} and every x ∈ Xt |z|x = 0. Therefore, since, for every

Q ∈ Lz, it happens that (zQ) (z) = Q, we have that Im
((

(x,t)
·

)
(x,t)∈

∐

X
(P )
)

=

Lz. Thus Im
((

(x,t)
·

)
(x,t)∈

∐

X
(P )↾∏

(x,t)∈
∐

X L
|P |x
x

)
= Lz. Hence both sets coincide.

Consequently X ⊆ T .
We next prove that T is a subalgebra of TΣ(X).

Let s be a sort in S and σ ∈ Σλ,s. Then
((

( xLx
)x∈Xt

)
t∈S

)♯
s

(σ) = {σ}, which

is the interpretation of the constant symbol σ in the subset algebra. On the

other hand, Im
((

(x,t)
·

)
(x,t)∈

∐

X
(P )↾∏

(x,t)∈
∐

X L
|P |x
x

)
, which is the result of collect-

ing together the terms
(

(x,t)

(Qx,t
α )α∈|P |x

)
(x,t)∈

∐

X
(σ) when

(
(Qx,tα )α∈|P |x

)
(x,t)

varies in

∏
(x,t)∈

∐

X L
|P |x
x , is, simply, {σ}. Consequently

Im
((

(x,t)
·

)
(x,t)∈

∐

X
(P )↾∏

(x,t)∈
∐

X L
|P |x
x

)
= {σ}.

Let (w, s) ∈ (S⋆−{λ})× S, σ ∈ Σw,s, and let (Pi)i∈|w| ∈ TΣ(X)w be such that,

for every i ∈ |w|, Pi satisfies the given requirement. Then, since
((

( xLx
)x∈Xt

)
t∈S

)♯

is a homomorphism from TΣ(X) to TΣ(X)℘, we have that

((
( xLx

)x∈Xt

)
t∈S

)♯
s

(σ((Pi)i∈|w|)) = σ℘

((((
( xLx

)x∈Xt

)
t∈S

)♯
wi

(Pi)

)

i∈|w|

)
.

On the other hand, by the induction hypothesis, bearing in mind that, for every t ∈
S, every x ∈ Xt, |σ((Pi)i∈n)|x =

∑
i∈n|Pi|x, and taking into account Equation 3.1,

we have that

Im
((

(x,t)
·

)
(x,t)∈

∐

X
(P )↾∏

(x,t)∈
∐

X L
|P |x
x

)
= σ℘

((((
( xLx

)x∈Xt

)
t∈S

)♯
wi

(Pi)

)

i∈|w|

)
.

Consequently T is a subalgebra of TΣ(X). Thus T = TΣ(X). Hereby completing
our proof. �

Remark. Given an S-sorted mapping
(
( xLx

)x∈Xt

)
t∈S

from X to TΣ(X)℘, and P a

term in TΣ(X)s, for some s ∈ S, we have that
((

( xLx
)x∈Xt

)
t∈S

)♯
s

(P ) is equal to

⋃
((Qx,t

α )α∈|P |x)
(x,t)∈

∐

X
∈
∏

(x,t)∈
∐

X L
|P |x
x

{(
(x,t)

(Qx,t
α )α∈|P |x

)
(x,t)∈

∐

X
(P )

}
.
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In other words, the value of
((

( xLx
)x∈Xt

)
t∈S

)♯
s

at P is the union of the image of

the mapping {·}TΣ(X)s◦
((

(x,t)
·

)
(x,t)∈

∐

X
(P )↾∏

(x,t)∈
∐

X L
|P |x
x

)
from

∏
(x,t)∈

∐

X L
|P |x
x

to Sub(TΣ(X)), where
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) ↾∏

(x,t)∈
∐

X L
|P |x
x

is the restriction of the

substitution mapping
(
(x,t)
·

)
(x,t)∈

∐

X
(P ) to

∏
(x,t)∈

∐

X L
|P |x
x , and {·}TΣ(X)s the

canonical embedding of TΣ(X)s into TΣ(X)℘s .

Corollary 3.11. Let s and u be sorts in S, z ∈ Xu, L ∈ TΣ(X)℘u , and P a term
in TΣ(X)s. Then

(zL)
♯
s (P ) = Im ((z·) (P )↾L|P |z ) .

Definition 3.12. Let
(
( xLx

)x∈Xt

)
t∈S

be an S-sorted mapping from X to TΣ(X)℘.

Then we will denote by
((

( xLx
)x∈Xt

)
t∈S

)♯p
the S-sorted mapping from TΣ(X)℘ to

TΣ(X)℘ that, for every s ∈ S, sends K in TΣ(X)℘s to
((

( xLx
)x∈Xt

)
t∈S

)♯p
s

(K) =
⋃
P∈K

((
( xLx

)x∈Xt

)
t∈S

)♯
s

(P )

in TΣ(X)℘s . Therefore
((

( xLx
)x∈Xt

)
t∈S

)♯p
is the canonical extension of the under-

lying S-sorted mapping of the homomorphism
((

( xLx
)x∈Xt

)
t∈S

)♯
from TΣ(X) to

TΣ(X)℘.

Let u be a sort in S, z ∈ Xu, and L ∈ TΣ(X)℘u. Then we will denote by (zL)
♯p

the canonical extension of the underlying mapping of the homomorphism (zL)
♯

from
TΣ(X) to TΣ(X)℘.

Remark. Let
(
( xLx

)x∈Xt

)
t∈S

be an S-sorted mapping from X to TΣ(X)℘, s ∈ S,

K ⊆ TΣ(X)s, and W ∈ TΣ(X)s. Then W ∈
((

( xLx
)x∈Xt

)
t∈S

)♯p
s

(K) if and only if

there are P ∈ K and
(
(Qx,tα )α∈|P |x

)
(x,t)∈

∐

X
∈
∏

(x,t)∈
∐

X L
|P |x
x such that

W =
(

(x,t)

(Qx,t
α )α∈|P |x

)
(x,t)∈

∐

X
(P ).

In particular, for z ∈ Xs and L ∈ Sub(TΣ(X)s), we have that W ∈ (zL)♯ps (K) if and

only if there are P ∈ K and (Qzα)α∈|P |z ∈ L|P |z such that W =
( z
(Qz

α)α∈|P |z

)
(P ).

We next prove the many-sorted version of Theorem 4.6, on p. 74, in [14]. The
proposition states that, for every sort s ∈ S, every s-recognizable language K,
and every operator

(
( xLx

)x∈Xt

)
t∈S

such that, for every t ∈ S and every x ∈ Xt,

Lx ∈ Rect(TΣ(X)),
((

( xLx
)x∈Xt

)
t∈S

)♯p
s

(K) is s-recognizable.

Assumption. To prove the following proposition we will assume that S and X are
finite.

Proposition 3.13. Let s be a sort in S, K ∈ Recs(TΣ(X)), and
(
( xLx

)x∈Xt

)
t∈S

an S-sorted mapping from X to (Rect(TΣ(X)))t∈S. Then
((

( xLx
)x∈Xt

)
t∈S

)♯p
s

(K) ∈ Recs(TΣ(X)).

Proof. Let Φ be the congruence on TΣ(X) defined as follows:

Φ =
⋂

((
⋃
t∈S{ΩTΣ(X)(δt,Lx) | x ∈ Xt}) ∪ {ΩTΣ(X)(δs,K)}).

By the assumption and Proposition 2.61, Φ is of finite index. Moreover, for every
t ∈ S − {s} and every x ∈ Xt, Φt saturates Lx, and, for t = s, Φs saturates K.
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From now on, for every r ∈ S, kr and WΦr
= {Wr,l | l ∈ kr} stand for the index

of Φr and a fixed transversal of TΣ(X)r/Φr in TΣ(X)r, respectively. Moreover, k
and WΦ denote the S-sorted sets (kr)r∈S and (WΦr

)r∈S , respectively.
Let Ψ = (Ψr)r∈S be the binary relation on TΣ(X) defined as follows: For every

r ∈ S, Ψr is the subset of TΣ(X)2r consisting of all ordered pairs (P,Q) in TΣ(X)2r
such that the following two conditions are satisfied:

(1) (P,Q) ∈ Φr.
(2) For every l ∈ kr
(
P ∈

((
( xLx

)x∈Xt

)
t∈S

)♯p
r

([Wr,l]Φr
) ↔ Q ∈

((
( xLx

)x∈Xt

)
t∈S

)♯p
r

([Wr,l]Φr
)

)
.

By definition, for every r ∈ S, Ψr is a refinement of Φr and an equivalence
relation on TΣ(X)r. Moreover, for every r ∈ S, the index of Ψr on TΣ(X)r is
bounded by kr2

kr . Consequently, the S-sorted set TΣ(X)/Ψ is finite.
Let us check that Ψ is a congruence on TΣ(X). Let (w, u) ∈ (S⋆ − {λ}) × S,

σ ∈ Σw,u, and let (Pi)i∈|w| and (Qi)in|w| be sequences of terms in TΣ(X)w such
that, for every i ∈ |w|, (Pi, Qi) ∈ Ψwi

. We want to show that
(
σ((Pi)i∈|w|), σ((Qi)i∈|w|)

)
∈ Ψu.

Let us note that, by definition of Ψ, for every i ∈ |w|, we have that (Pi, Qi) ∈ Φwi
.

Since Φ is a congruence on TΣ(X), we conclude that
(
σ((Pi)i∈|w|), σ((Qi)i∈|w|)

)
is

a pair in Φu, so σ((Pi)i∈|w|) and σ((Qi)i∈|w|) satisfy the first condition for being
related under Ψ.

Regarding the second condition, let l be an element of ku. Assume that

σ((Pi)i∈|w|) ∈
((

( xLx
)x∈Xt

)
t∈S

)♯p
u

([Wu,l]Φu
).

Then there are W † ∈ [Wu,l]Φu
and

(
(Ux,tα )α∈|W †|x

)
(x,t)∈

∐

X
in
∏

(x,t)∈
∐

X L
|W †|x
x

such that

(3.2) σ((Pi)i∈|w|) =
(

(x,t)

(Ux,t
α )

α∈|W†|x

)
(x,t)∈

∐

X
(W †).

But for W †, either (a) Var(W †) ∩X = ∅
S or (b) Var(W †) ∩X 6= ∅

S .
In case (a), since for every t ∈ S and x ∈ Xt, |W †|x = 0, we derive from

Equation 3.2 that W † = σ((Pi)i∈|w|). It follows that, for every i ∈ |w|, for every
t ∈ S and x ∈ Xt, |Pi|x = 0. Therefore, for every i ∈ |w|, the term Pi is a term in((

( xLx
)x∈Xt

)
t∈S

)♯p
wi

([Pi]Φwi
). Thus, by assumption, for every i ∈ |w|, the term Qi

is in
((

( xLx
)x∈Xt

)
t∈S

)♯p
wi

([Pi]Φwi
). Hence, for every i ∈ |w|, there are W ‡i ∈ [Pi]Φwi

and
(

(V x,t,iβ )β∈|W ‡i |x

)
(x,t)∈

∐

X
in
∏

(x,t)∈
∐

X L
|W ‡i |x
x such that

Qi =
(

(x,t)

(V x,t,i
α )

α∈|W‡i |x

)

(x,t)∈
∐

X
(W ‡i).

Let us denote by W ‡ the term σ((W ‡i )i∈|w|). Since, for every i ∈ |w|, W ‡i is a term

in [Pi]Φwi
and Φ is a congruence on TΣ(X), we have that (W †,W ‡) ∈ Φwu

. Thus

W ‡ ∈ [Wu,l]Φu
. Moreover, let us note that, for every t ∈ S and x ∈ Xt, |W

‡|x =
∑

i∈|w||W
‡i |x. Let

(
(V x,tβ )β∈|W ‡|x

)
(x,t)∈

∐

X
be the element in

∏
(x,t)∈

∐

X L
|W ‡|x
x

obtained by joining, in order, the family

((
(V x,t,iβ )β∈|W ‡i |x

)
(x,t)∈

∐

X

)

i∈|w|

. Then,
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from Equation 3.1, it follows that

σ((Qi)i∈|w|) = σ

(((
(x,t)

(V x,t,i
α )

α∈|W‡i |x

)

(x,t)∈
∐

X
(W ‡i )

)

i∈|w|

)

=
(

(x,t)

(V x,t
α )

α∈|W‡|x

)
(x,t)∈

∐

X
(W ‡).

Therefore, σ((Qi)i∈|w|) ∈
((

( xLx
)x∈Xt

)
t∈S

)♯p
u

([Wu,l]Φu
). The other implication fol-

lows by a similar reasoning, thus proving case (a).
In case (b), either (b.1) W † is a variable or (b.2) W † has the form of an operation

symbol applied to a suitable family of terms. Let us note that the case in which W †

is a constant is excluded because a term of such type does not contain any variable.
In case (b.1), we have that W † = z, for some z ∈ Xu. Thus, |W †|z = 1, whilst,

for every x ∈ Xu − {z}, |W †|x = 0, and, for every r ∈ S − {u} and every x ∈ Xr,
|W †|x = 0. Therefore, from Equation 3.2 we obtain the following equation
(

(x,t)

(Ux,t
α )

α∈|W†|x

)
(x,t)∈

∐

X
(W †) =

(
(x,t)

(Ux,t
α )

α∈|W†|x

)
(x,t)∈

∐

X
(z) = Uz,u0 = σ((Pi)i∈|w|).

Hence σ((Pi)i∈|w|) is a term in Lz. Let us consider the term V z,u0 = σ((Qi)i∈|w|)
in Lz. Since, for every i ∈ |w|, (Pi, Qi) ∈ Φwi

, we have that (Uz,u0 , V z,u0 ) ∈ Φu,
and, since Lz is Φu-saturated, we have that V z,u0 is a term in Lx. Moreover,

σ((Qi)i∈|w|) =
( z
V z,u
0

)
(z). Therefore σ((Qi)i∈|w|) ∈

((
( xLx

)x∈Xt

)
t∈S

)♯p
u

([Wu,l]Φu
).

The other implication follows from a similar reasoning, thus proving case (b.1).
In case (b.2), we conclude, from Equation 3.2, that the term W † has the form

σ((W †i )i∈|w|) for some sequence of terms (W †i)i∈|w| ∈ TΣ(X)w, since no substitu-
tion replaces the operation symbol. From Equation 3.1, for every i ∈ |w|,

Pi =

((
(x,t)

(Ux,t

α+
∑

j∈i|W
†j |x

)
α∈|W†i |x

)

(x,t)∈
∐

X

(W †i)

)
.

Hence, for every i ∈ |w|, Pi ∈
((

( xLx
)x∈Xt

)
t∈S

)♯p
wi

([W †i ]Φwi
).

By definition of Ψ, for every i ∈ |w|, Qi ∈
((

( xLx
)x∈Xt

)
t∈S

)♯p
wi

([W †i ]Φwi
). There-

fore, for every i ∈ |w|, there are W ‡i ∈ [W †i ]Φwi
and

(
(V x,t,iβ )β∈|W ‡i |x

)
(x,t)∈

∐

X
in

∏
(x,t)∈

∐

X L
|W ‡i |x
x such that

Qi =
(

(x,t)

(V x,t,i
α )

α∈|W‡i |x

)

(x,t)∈
∐

X
(W ‡i).

For W ‡ = σ((W ‡i )i∈|w|) and
(

(V x,tβ )β∈|W ‡|x

)
(x,t)∈

∐

X
of
∏

(x,t)∈
∐

X L
|W ‡|x
x ob-

tained by joining, in order, the family

((
(V x,t,iβ )β∈|W ‡i |x

)
(x,t)∈

∐

X

)

i∈|w|

, we have

that σ((Qi)i∈|w|) is in
((

( xLx
)x∈Xt

)
t∈S

)♯p
u

([Wu,l]Φu
). The other implication follows

by a similar reasoning, thus proving case (b.2).
Therefore Ψ is a congruence of finite index in Cgrfi(TΣ(X)).

Finally, we prove that
((

( xLx
)x∈Xt

)
t∈S

)♯p
s

(K) is Ψs-saturated. Note that, by

definition of Ψ, for every r ∈ S and every l ∈ kr,
((

( xLx
)x∈Xt

)
t∈S

)♯p
r

([Wr,l]Φr
) is
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Ψr-saturated. Moreover,
((

( xLx
)x∈Xt

)
t∈S

)♯p
s

(K) =
⋃
Ws,l∈WΦs & [Ws,l]Φs⊆K

((
( xLx

)x∈Xt

)
t∈S

)♯p
s

([Ws,l]Φs
).

Hence,
((

( xLx
)x∈Xt

)
t∈S

)♯p
s

(K) is Ψs-saturated because it is a finite union of Ψs-

saturated languages. The statement follows from Proposition 2.67. �

Corollary 3.14. Let u and s be sorts in S, z ∈ Xu, L ∈ Recu(TΣ(X)), and

K ∈ Recs(TΣ(X)). Then (zL)
♯p
s (K) ∈ Recs(TΣ(X)).

We next state the many-sorted version of Corollary 4.12, on p. 78, in [14].

Corollary 3.15. Let (w, s) be an element of S⋆ × S, σ ∈ Σw,s, and (Li)i∈|w| ∈∏
i∈|w| Recwi

(TΣ(X)). Then the language σ℘((Li)i∈|w|) ∈ Recs(TΣ(X)).

Proof. It follows from Proposition 3.3 and Proposition 3.13. �

Corollary 3.16. The S-sorted set (Recs(TΣ(X)))s∈S is a subalgebra of TΣ(X)℘.
We will denote by Rec·(TΣ(X)) the Σ-algebra canonically associated to the subal-
gebra (Recs(TΣ(X)))s∈S of TΣ(X)℘.

3.3. Iterations. In this subsection we introduce the notion of iteration of a lan-
guage with respect to a variable with the aim of proving that, when the considered
language is recognizable, then its iteration with respect to a variable is also a rec-
ognizable language.

We begin by stating the many-sorted counterpart of the single-sorted notion of
z-iteration as defined by Gécseg and Steinby in [14], Definition 4.7, on p. 76.

Definition 3.17. Let s be a sort in S, z ∈ Xs, and L ∈ TΣ(X)℘s . Then the
z-iteration of L is the language

L⋆ z =
⋃
j∈N

Lj,z,

where (Lj,z)j∈N is the family of subsets of TΣ(X)s defined recursively as follows:

L0,z = {z}, and, for j ∈ N, Lj+1,z = Lj,z ∪ ( z
Lj,z)

♯p

s (L).

Remark. The language L⋆ z is obtained as follows. First include z. New members
of L⋆ z are obtained by substituting in some term of L, for every occurrence of z,
some term already known to be in L⋆ z. Let us note that L1,z = L ∪ {z} and that
(Lj,z)j∈N is an ascending chain of subsets of TΣ(X)s, i.e., that, for every j ∈ N,
Lj,z ⊆ Lj+1,z .

We next prove the many-sorted version of Theorem 4.8., on p. 76, in [14]. The
proposition states that, for every sort s ∈ S and z ∈ Xs, if the input language
L ⊆ TΣ(X)s is recognizable, then its z-iteration is also recognizable.

Assumption. To prove the following proposition we will assume that S is finite.

Proposition 3.18. Let s be a sort in S and z ∈ Xs. If L ∈ Recs(TΣ(X)), then
L⋆ z ∈ Recs(TΣ(X)).

Proof. Let Φ be the congruence on TΣ(X) defined as follows:

Φ = ΩTΣ(X)(δs,L) ∩ ΩTΣ(X)(δs,z).

By Proposition 2.61, Φ is of finite index (recall that, by Proposition 3.1, {z} ⊆
TΣ(X)s is recognizable). Moreover, for the sort s ∈ S, Φs saturates L and {z}.

From now on, for every r ∈ S, kr and WΦr
= {Wr,l | l ∈ kr} stand for the index

of Φr and a fixed transversal of TΣ(X)r/Φr in TΣ(X)r, respectively. Moreover, k
and WΦ denote the S-sorted sets (kr)r∈S and (WΦr

)r∈S , respectively.
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Let Ψ = (Ψr)r∈S be the binary relation on TΣ(X) that is defined as follows: For
every r ∈ S, Ψr is the binary relation on TΣ(X)r consisting of all ordered pairs
(P,Q) ∈ TΣ(X)2r such that the following two conditions are satisfied:

(1) (P,Q) ∈ Φr.

(2) For every l ∈ kr,
(
P ∈ ( z

L⋆ z)♯pr ([Wr,l]Φr
) ↔ Q ∈ ( z

L⋆ z)♯pr ([Wr,l]Φr
)
)

.

By definition, for every r ∈ S, Ψr is a refinement of Φr and an equivalence
relation on TΣ(X)r. Moreover, for every r ∈ S, the index of Ψr on TΣ(X)r is
bounded by kr2

kr . Consequently, the S-sorted TΣ(X)/Ψ is finite.
Let us check that Ψ is a congruence on TΣ(X). Let (w, u) ∈ (S⋆−{λ}×S), σ ∈

Σw,u and let (Pi)i∈|w| and (Qi)i∈|w| be sequences of terms in TΣ(X)w such that for
every i ∈ |w|, (Pi, Qi) ∈ Ψwi

. We want to show that (σ((Pi)i∈|w|), σ((Qi)i∈|w|)) ∈
Ψu.

Let us note that, by definition of Ψ, for every i ∈ |w|, we have that (Pi, Qi) ∈ Φwi
.

Since Φ is a congruence on TΣ(X), we conclude that (σ((Pi)i∈|w|), σ((Qi)i∈|w|)) is
a pair in Φu, so σ((Pi)i∈|w|) and σ((Qi)i∈|w|) satisfy the first condition for being
related under Ψu.

Regarding the second condition, let l be an element of ku. Assume that

σ((Pi)i∈|w|)) ∈ ( z
L⋆ z)♯pu ([Wu,l]Φu

).

Then there are W † ∈ [Wu,l]Φs
and (Uzα)α∈|W †|z in (L⋆z)|W

†|z such that

(3.3) σ((Pi)i∈|w|) =
(

z
(Uz

α)
α∈|W†|z

) (
W †
)
.

Note that, for W †, either (a) z 6∈ Var(W †)s or (b) z ∈ Var(W †)s.
Case (a) follows by a similar argument to that presented in case (a) of Proposi-

tion 3.13.
In case (b), either (b.1) W † is the variable z (and u = s) or (b.2) W † has the

form of an operation symbol applied to a suitable family of terms.
In case (b.1), from Equation 3.3, we obtain the following equation:

(
z

(Uz
α)

α∈|W†|z

) (
W †
)

=
(

z
(Uz

α)
α∈|W†|z

)
(z) = Uz0 = σ((Pi)i∈|w|).

It follows that σ((Pi)i∈|w|) is a term in L⋆ z. Thus, there exists a j ∈ N such that

σ((Pi)i∈|w|) ∈ Lj,z. Let j ∈ N be the smallest natural number satisfying the just

mentioned property. Since L0,z = {z} it follows that j 6= 0. Therefore, we have
that

σ((Pi)i∈|w|) ∈ Lj,z = Lj−1,z ∪ ( z
Lj−1,z)

♯p

s (L).

By the minimality of j, we conclude that σ((Pi)i∈|w|) ∈ ( z
Lj−1,z)

♯p

s (L). Then there

are W
†
∈ L and (U

z

α)
α∈|W

†
|z
∈ (Lj−1,z)|W

†
|z such that

(3.4) σ((Pi)i∈|w|) =
( z

(Uz

α)
α∈|W†|z

)(
W

†
)
.

For W
†
, either (b.1.i) z /∈ Var(W

†
)s or (b.1.ii) z ∈ Var(W

†
)s.

In case (b.1.i). since we are assuming that |W
†
|z = 0, the substitution leaves

W
†

invariant. Hence W
†

= σ((Pi)i∈|w|). It follows that σ((Pi)i∈|w|) ∈ L. Let
V z0 = σ((Qi)i∈|w|). Let us note that, for every i ∈ |w|, (Pi, Qi) ∈ Φwi

. Therefore,
(Uz0 , V

z
0 ) ∈ Φs and, since L is Φs-saturated, we conclude that V z0 ∈ L ⊆ L⋆ z. It

follows that σ((Qi)i∈|w|) is a term in ( z
L⋆ z)

♯p
s ([Ws,l]Φs

), as desired.

In case (b.1.ii), where we are assuming that |W
†
|z 6= 0, we claim that W

†
cannot

be the term z. Otherwise, from Equation 3.4, we can conclude that σ((Pi)i∈|w|)

is a term in Lj−1,z, contradicting the minimality of j. Thus, from Equation 3.4
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we conclude that W
†

= σ((W
†i

)i∈|w|), for a unique (W
†i

)i∈|w| ∈ TΣ(X)w. Hence,
from Equation 3.1, for every i ∈ |w|, we have that

Pi =

( z
(

U
z

α+
∑

k∈i|W
†k |z

)

α∈|W†i |z

)(
W

†i
)
∈ ( z

L⋆ z)♯pwi

(
[W

†i
]Φwi

)
.

By construction, for every i ∈ |w|, Qi ∈ ( z
L⋆ z)

♯p
wi

([W
†i

]Φwi
). Therefore, for every

i ∈ |w|, there are W
‡i

∈ [W
†i

]Φwi
and (V

z,i

β )
β∈|W

‡i |z
∈ (L⋆ z)|W

‡i |z such that

Qi =
( z
(

V
z,i

β

)

β∈|W‡i |z

)(
W

‡i
)
.

Let us note that the term W
‡

= σ((W
‡i

)i∈n) is in L because, for every i ∈ |w|, the

pair (W
†i
,W

‡i
) is in Φs, W

†
∈ L, and L is Φs-saturated.

Let (V
z

β)
β∈|W

‡
|z

be the element of (L⋆ z)|W
‡
|z obtained by joining, in order, the

|w|-indexed family
(

(V
z,i

β )
β∈|W

†i |z

)
i∈|w|

. Since (V
z

β)
β∈|W

†
|z

is finite, there exists

a t ∈ N such that, for every β ∈ |W
‡
|x, the term V

z

β is in Lt,z. On the whole, we
conclude that

σ((Qi)i∈|w|) ∈ ( z
Lt,z)

♯p
s (L) ⊆ L⋆ z.

Therefore σ((Qi)i∈|w|) is a term in ( z
L⋆ z)

♯p
s ([Ws,l]Φs

), as desired. The other impli-
cation follows by a similar reasoning, thus proving case (1.b.ii).

Case (b.2) follows by an argument similar to that used in case (b.2) of Proposi-
tion 3.13.

Therefore Ψ is a congruence of finite index in Cgrfi(TΣ(X)).
Finally, we prove that L⋆ z is Ψs-saturated. Note that, by definition of Ψ, for

every r ∈ S and l ∈ kr, the language ( z
L⋆ z)

♯p
r ([Wr,l]Φr

) is Ψr-saturated. In particu-

lar, since Φs recognizes {z}, we conclude that L⋆ z = ( z
L⋆ z)

♯p
s ({z}) is Ψs-saturated,

thus proving the stamement. �

3.4. Quotients. We next define the notion of quotient of a language by another
with respect to a variable of a specified sort with the aim of proving that, when one
of the languages is recognizable, then the resulting quotient is also recognizable.

We begin by stating the many-sorted counterpart of the single-sorted notion of
z-quotient as defined by Gécseg and Steinby in [14], Definition 4.9., on p. 77.

Definition 3.19. Let s be a sort in S and L ∈ TΣ(X)℘s . Let t be a sort in S, z an
element of Xt, and K ∈ TΣ(X)℘t . Then the z-quotient of L by K is the language

K−zL =
{
U ∈ TΣ(X)s | ( zK)

♯
s (U) ∩ L 6= ∅

}
.

This operation may be seen as a converse of the z-substitution. If K = {x} is a
final set, then we will write x−zL instead of K−zL.

We prove now the many-sorted version of Theorem 4.10., on p. 77, in [14]. The
proposition states that, for a sort s in S, if L ∈ TΣ(X)℘s is recognizable, then, for
every t ∈ S, z ∈ Xt and every K ∈ TΣ(X)℘t , the z-quotient of L by K is also
recognizable.

Assumption. To prove the following proposition we will assume that S is finite.

Proposition 3.20. Let s be a sort in S. If L ∈ Recs(TΣ(X)), then, for every
t ∈ S, every z ∈ Xt, and every K ∈ TΣ(X)℘t , K

−zL ∈ Recs(TΣ(X)). Moreover,
the number of different z-quotients K−zL for any fixed L ∈ Recs(TΣ(X)) is finite.
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Proof. Let Φ be the congruence on TΣ(X) defined as follows:

Φ = ΩTΣ(X)(δs,L).

Then Φ is of finite index because it is the syntactic congruence of a recognizable
language. Moreover, for the sort s ∈ S, Φs saturates L.

From now on, for every r ∈ S, let kr and WΦr
= {Wr,l | l ∈ kr} stand for

the index of Φr and a fixed transversal of TΣ(X)r/Φr in TΣ(X)r, respectively.
Moreover, k and WΦ denote the S-sorted sets (kr)r∈S and (WΦr

)r∈S , respectively.
Let Ψ = (Ψr)r∈S be the binary relation on TΣ(X) that is defined as follows: For

every r ∈ S, Ψr is the binary relation on TΣ(X)r consisting of all ordered pairs
(P,Q) ∈ TΣ(X)2r such that the following two conditions are satisfied:

(1) (P,Q) ∈ Φr.
(2) for every l ∈ kr (P ∈ K−z[Wr,l]Φr

↔ Q ∈ K−z[Wr,l]Φr
).

By definition, for every r ∈ S, Ψr is a refinement of Φr and an equivalence relation
on TΣ(X)r. Moreover, for every r ∈ S, the index of Ψr on TΣ(X)r is bounded by
kr2

kr . Consequently, the S-sorted set TΣ(X)/Ψ is finite.
Analysis similar to that in the proof of Proposition 3.13 shows that Ψ is a

congruence on TΣ(X).
Finally, we prove that K−zL is Ψs-saturated. Note that, by definition of Ψ, for

every r ∈ S and every l ∈ kr, the language K−z[Wr,l]Φr
is Ψr-saturated. Moreover

K−zL =
⋃
Ws,l∈WΦs & [Ws,l]Φs⊆L

K−z[Ws,l]Φs
.

Hence, K−zL is Ψs-saturated because it is a finite union of Ψs-saturated languages.
The statement follows from Proposition 2.67. �

3.5. Tree Homomorphisms. Tree automata and tree homomorphisms were de-
fined for the first time by Thatcher in [40]. In the just cited paper Thatcher
proved, among other things, that linear tree homomorphisms preserve recogniz-
ability. We shall now consider a class of many-sorted homomorphisms, the tree
homomorphisms—which are the generalization to the many-sorted field of the tree
homomorphism defined by Gécseg and Steinby in [14], Definition 4.13., on p. 78—
which go from a free many-sorted algebra (of a certain many-sorted signature (S,Σ))
to another many-sorted algebra (of the same many-sorted signature), itself derived
from a free many-sorted algebras (of another many-sorted signature (T,Ξ)). These
tree homomorphisms, as we will prove, have the property of reflecting suitable rec-
ognizable languages. Moreover, we will define a proper subset of the set of the tree
homomorphisms, the linear tree homomorphisms, and we will prove that they have
the remarkable property of preserving recognizable languages.

Definition 3.21. Let ϕ : S // T be a mapping. Then we will denote by ∆ϕ

the functor from SetT to SetS that sends a T -sorted set A the S-sorted set Aϕ =
(Aϕ(s))s∈S , i.e., A◦ϕ, and a T -sorted mapping f : A //B to the S-sorted mapping
fϕ = (fϕ(s))s∈S : Aϕ //Bϕ.

Remark. The functor ∆ϕ has a left and a right adjoint.

Let ϕ : S // T be a mapping, ϕ⋆ the canonical homomorphism from S⋆, the
free monoid on S, to T⋆, the free monoid on T , and w ∈ S⋆. Then, for a stan-
dard T -infinite countable T -sorted set of variables V T = ({vtn | n ∈ N})t∈T , which
is assumed to be disjoint from all other alphabets, we will denote by V T↓ϕ⋆(w) =

(V T(↓ϕ⋆(w))t
)t∈T the T -sorted set, where, for every t ∈ T , (↓ ϕ⋆(w))t = (ϕ⋆(w))−1[{t}]

and V T(↓ϕ⋆(w))t
is the subset of V Tt defined as follows:

V T(↓ϕ⋆(w))t
= {vti | i ∈ (↓ϕ⋆(w))t} = {vti | i ∈ |ϕ⋆(w)| & ϕ(wi) = t}.
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Since V T↓ϕ⋆(w) is isomorphic to ↓ϕ⋆(w), we abbreviate V T↓ϕ⋆(w) to ↓ ϕ⋆(w). Let us

note that card(V T↓ϕ⋆(w)), the total number of variables, is |w| = |ϕ⋆(w)|. Moreover,

for every i ∈ |w|, the number of variables of type ϕ(wi) is |ϕ⋆(w)|ϕ(wi) (while, for

t ∈ T − Im(ϕ⋆(w)), V T(↓ϕ⋆(w))t
= ∅).

Remark. For V T↓ϕ⋆(w), if we disregard the classification into types, then we have

the following variables:

v
ϕ(w0)
0 , . . . , v

ϕ(wi)
i , . . . , v

ϕ(w|w|−1)

|w|−1 .

On the other hand, instead of V T↓ϕ⋆(w) we can, equivalently, use the T -sorted set

(↓ vt|ϕ⋆(w)|t
)t∈T , where, for every t ∈ T , ↓ vt|ϕ⋆(w)|t

is the set of the first |ϕ⋆(w)|t

variables in V Tt . Therefore, ↓ vt|ϕ⋆(w)|t
= ∅, if t /∈ Im(ϕ⋆(w)); while ↓ vt|ϕ⋆(w)|t

=

{vtj | j ∈ |ϕ⋆(w)|t}, if t ∈ Im(ϕ⋆(w)).
Thus, preserving the classification into types of the variables, we have:

v
ϕ(w0)
0 . . . v

ϕ(w0)
|ϕ⋆(w)|ϕ(w0)−1

...
. . .

...

v
ϕ(w|w|−1)
0 . . . v

ϕ(w|w|−1)

|ϕ⋆(w)|ϕ(w|w|−1)−1

Definition 3.22. A many-sorted signature is an ordered pair Σ = (S,Σ) where S
is a set (of sorts) and Σ an S-sorted signature.

We next define the notion of hyperderivor from a pair (Σ, X), where Σ is a many-
sorted signature and X an S-sorted set, to another pair (Ξ, Y ), where Ξ = (T,Ξ)
is a many-sorted signature and Y a T -sorted set.

Definition 3.23. Let Σ and Ξ be many-sorted signatures, X an S-sorted set, and
Y a T -sorted set. A hyperderivor from (Σ, X) to (Ξ, Y ) is an ordered pair ((ϕ, c), f),
denoted by (c, f), where ϕ is a mapping from S to T , c = (cw,s)(w,s)∈S⋆×S an S⋆×S-
sorted mapping from Σ to (TΞ(Y ∪ ↓ ϕ⋆(w))ϕ(s))(w,s)∈S⋆×S , and f an S-sorted
mapping from X to TΞ(Y )ϕ. We will say that a hyperderivor (c, f) from (Σ, X)
to (Ξ, Y ) is linear if, for every (w, s) ∈ S⋆ × S, every σ ∈ Σw,s, and every i ∈ |w|,

no variable v
ϕ(wi)
i appears more than once in cw,s(σ), i.e., |cw,s(σ)|

v
ϕ(wi)

i

≤ 1.

Remark. The reason for the terminology hyperderivor lies in the analogy with the
notion of derivor defined by Goguen, Thatcher, and Wagner in [16], on p. 137.

We show now that, for every hyperderivor (c, f) from (Σ, X) to (Ξ, Y ), the S-
sorted set TΞ(Y )ϕ is equipped, in a natural way, with a structure of Σ-algebra.
But for this we need to show that, given a mapping ϕ from a set of sorts S to
another T and a T -sorted set Y , it happens that, for every w ∈ S⋆ and every
(Pi)i∈|w| ∈ TΞ(Y )ϕ⋆(w), there exists a canonical homomorphism Sw(Pi)i∈|w|

from

TΞ(Y ∪ ↓ϕ⋆(w)) to TΞ(Y ). In what follows we will assume that, for every w ∈ S⋆,
Y ∩ ↓ϕ⋆(w) = ∅

T .

Remark. Let us note that the just stated assumption is not, in anyway, a loss
in generality. Actually, given a T -sorted set A and an I-indexed family (Bi)i∈I of
T -sorted sets there exists a T -sorted set C such that A ∼= C and, for every i ∈ I,
C ∩ Bi = ∅

T . In fact, it suffices, by the Axiom of Regularity, to take as C the
T -sorted set defined, for every t ∈ T , as Ct = At × {{(i, Bit) | i ∈ I}}.

Let w be an element of S⋆. Then the sets TΞ(Y )ϕ⋆(w) and Hom(↓ϕ⋆(w),TΞ(Y ))

are naturally isomorphic. On the basis of this isomorphism, we let
(
v
ϕ(wi)

i

Pi

)
i∈|w|



40 CLIMENT AND COSME

stand for the T -sorted mapping from ↓ϕ⋆(w) to TΞ(Y ) canonically associated to

(Pi)i∈|w| ∈ TΞ(Y )ϕ⋆(w). And then we let

((
v
ϕ(wi)

i

Pi

)
i∈|w|

)♯
stand for the unique

homomorphism from TΞ(↓ϕ⋆(w)) to TΞ(Y ) such that
((

v
ϕ(wi)

i

Pi

)
i∈|w|

)♯
◦ η↓ϕ⋆(w) =

(
v
ϕ(wi)

i

Pi

)
i∈|w|

.

On the other hand, since TΞ has a right adjoint, the Ξ-algebras TΞ(Y ∪ ↓ϕ⋆(w))
and TΞ(Y )

∐
TΞ(↓ϕ⋆(w)) are naturally isomorphic. Then, finally, we let Sw(Pi)i∈|w|

stand for

[
idTΞ(Y ),

((
v
ϕ(wi)

i

Pi

)
i∈|w|

)♯]
, the unique homomorphism from TΞ(Y ∪ ↓

ϕ⋆(w)) to TΞ(Y ) obtained, from idTΞ(Y ) and

((
v
ϕ(wi)

i

Pi

)
i∈|w|

)♯
, by the universal

property of the coproduct.

Proposition 3.24. Let (c, f) be a hyperderivor from (Σ, X) to (Ξ, Y ). Then the
S-sorted set TΞ(Y )ϕ is equipped, in a natural way, with a structure of Σ-algebra.

Proof. Let c(TΞ(Y )) be the Σ-algebra defined as follows: The underlying S-sorted
set of c(TΞ(Y )) is TΞ(Y )ϕ while, for (w, s) ∈ S⋆ × S and σ ∈ Σw,s, the operation

σc(TΞ(Y )) from TΞ(Y )ϕ⋆(w) to TΞ(Y )ϕ(s) associated to σ is defined as:

σc(TΞ(Y ))

{
TΞ(Y )ϕ⋆(w)

// TΞ(Y )ϕ(s)
(Pi)i∈|w| 7−→ Sw(Pi)i∈|w|

(cw,s(σ))

Thus σc(TΞ(Y ))((Pi)i∈|w|) is the term obtained by substituting in cw,s(σ), for ev-

ery i ∈ |w|, Pi for v
ϕ(wi)
i . Let us note that since (

⋃
i∈|w| Var(Pi)) ∩ V T = ∅

T ,

Var(σc(TΞ(Y ))((Pi)i∈|w|)) ∩ V
T = ∅

T . Therefore σc(TΞ(Y ))((Pi)i∈|w|) ∈ TΞ(Y )ϕ(s).

Consequently, the operation σc(TΞ(Y )) is well-defined.
�

Definition 3.25. Let (c, f) be a hyperderivor from (Σ, X) to (Ξ, Y ). Then the
unique homomorphism f ♯ from TΣ(X) to c(TΞ(Y )) such that f ♯ ◦ ηX = f will be
called the tree homomorphism determined by the hyperderivor (c, f). Moreover, f ♯

will be called linear if (c, f) is linear.

The just defined tree homomorphisms are a generalization of those proposed by
Gécseg and Steinby, in [14], Definition 4.13., on p. 78, for single-sorted algebras,
which, in its turn, generalize those of Thatcher in [40].

Gécseg and Steinby in [14], on p. 70, wrote: “Tree homomorphisms are not really
homomorphisms in the sense of algebra.” Literally speaking the above assertion
is true due, simply, to the fact that the signatures of the domain and codomain
of a tree homomorphism are, in general, not identical. However, as we have seen
TΞ(Y )ϕ is equipped with a structure of Σ-algebra and f ♯ is a homomorphism of
Σ-algebras from TΣ(X) to c(TΞ(Y )).

In [14], Theorem 4.18., on p. 82, Gécseg and Steinby proved, in the single-sorted
case, that the inverse image of a recognizable language under a tree homomorphism
is a recognizable language. We next extend Gécseg and Steinby’s result to the
many-sorted case.

Proposition 3.26. Let (c, f) be a hyperderivor from (Σ, X) to (Ξ, Y ), A a Ξ-
algebra, and g a surjective homomorphism from TΞ(Y ) to A. Then there exists a
structure of Σ-algebra F c(A) on Aϕ such that gϕ is a homomorphism from c(TΛ(Y ))

to c(A) = (Aϕ, F
c(A)).
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Proof. Let (w, s) be an element of S⋆× S and σ ∈ Σw,s. Then we denote by F
c(A)
σ

the mapping from Aϕ⋆(w) to Aϕ(s) defined as follows:

F c(A)
σ

{
Aϕ⋆(w)

// Aϕ(s)
(ai)i∈|w| 7−→ gϕ(s)(σ

c(TΞ(Y ))((Pi)i∈|w|))

where, for every i ∈ |w|, Pi ∈ TΛ(Y )ϕ(wi) such that gϕ(wi)(Pi) = ai.

The operation F
c(A)
σ is well-defined. In fact, let (ai)i∈|w| be an element of Aϕ⋆(w)

and (Pi)i∈|w|, (Qi)i∈|w| elements of TΛ(Y )ϕ⋆(w) such that, for every i ∈ |w|,

gϕ(wi)(Pi) = ai = gϕ(wi)(Qi).

But we have that:

gϕ(s)(σ
TΛ(Y )Σϕ ((P

ϕ(wi)
i )i∈|w|)) = gϕ(s)

((
v
ϕ(wi)

i

P
ϕ(wi)

i

)

i∈|w|

(cw,s(σ))

)
(†1)

= gϕ(s)

((
v
ϕ(wi)

i

Q
ϕ(wi)

i

)

i∈|w|

(cw,s(σ))

)
(†2)

= gϕ(s)(σ
TΛ(Y )Σϕ ((Q

ϕ(wi)
i )i∈|w|)) (†1)

where, to shorten notation, (†1) and (†2) stand for (by definition of c(TΞ(Y ))) and
(by Lemma 3.7), respectively. Therefore

gϕ(s)(σ
c(TΞ(Y ))((Pi)i∈|w|)) = gϕ(s)(σ

c(TΞ(Y ))((Qi)i∈|w|)).

It is obvious that gϕ is a homomorphism of Σ-algebras.
By construction g♯ϕ is a homomorphism from TΛ(Y )Σϕ to g♯[TΛ(Y )]Σϕ . Indeed,

for σ ∈ Σw,s and a family (P
ϕ(wi)
i )i∈|w| ∈ TΛ(Y )ϕ⋆(w) we have that

g♯ϕ(s)(σ
TΛ(Y )Σϕ ((P

ϕ(wi)
i )i∈|w|)) = σg

♯[TΛ(Y )]Σϕ ((g♯(P
ϕ(wi)
i ))i∈|w|).

�

Proposition 3.27. Let (c, f) be a hyperderivor from (Σ, X) to (Ξ, Y ), f ♯ the
tree homomorphism from TΣ(X) to c(TΞ(Y )) determined by (c, f), s ∈ S, and

L ∈ Recϕ(s)(TΞ(Y )). Then
(
f ♯ϕ(s)

)−1

[L] ∈ Recs(TΣ(X)).

Proof. It follows from the definition of recognizability relative to a sort and from
Proposition 3.26. �

Our immediate goal is to prove the many-sorted version of Theorem 4.16., on
p. 80, in [14]. The proposition states that, for a sort s ∈ S, if the language
L is s-recognizable, then its direct image by the s-th coordinate of a linear tree
homomorphism f ♯ is ϕ(s)-recognizable.

Assumption. To prove the following proposition we will assume that S, T , Σ and
X are finite.

Proposition 3.28. Let (c, f) be a linear hyperderivor from (Σ, X) to (Ξ, Y ), f ♯ the
linear tree homomorphism from TΣ(X) to c(TΞ(Y )) determined by (c, f), s ∈ S,
and L ∈ TΣ(X)℘s . If L ∈ Recs(TΣ(X)), then f ♯s [L] ∈ Recϕ(s)(TΞ(Y )).

Proof. Let Φ be the congruence on TΞ(Y ) defined as follows:

Φ =
⋂

(x,r)∈
∐

X ΩTΞ(Y )(δϕ(r),{fr(x)}).

Since f : X //TΞ(Y )ϕ we have that, for every r ∈ S and every x ∈ Xr, the

language {fr(x)} is in Recϕ(r)(TΞ(Y )). Hence, ΩTΞ(Y )(δϕ(r),{fr(x)}) is of finite
index. Therefore, by the assumption and Proposition 2.61, Φ is of finite index.
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Moreover, for every r ∈ S and every x ∈ Xr, the language {fr(x)} is Φϕ(r)-
saturated.

For abbreviation we let Θ stand for ΩTΣ(X)(δs,L), the syntactic congruence on
TΣ(X) determined by L. Since L is a language in Recs(TΣ(X)), Θ is of finite
index. Moreover, for s ∈ S, L is Θs-saturated.

From now on, for every r ∈ S, kr and WΘr
= {Wr,l | l ∈ kr} stand for the index

of Θr and a fixed transversal of TΣ(X)/Θr in T(X)r, respectively. Moreover, k
and WΘ denote the S-sorted sets (kr)r∈S and (WΘr

)r∈S , respectively.
Let Ψ = (Ψt)t∈T be the binary relation on TΞ(Y ) defined as follows: For every

t ∈ T , Ψt is the binary relation on TΞ(Y )t consisting of all ordered pairs (M,N) ∈
TΞ(Y )2t such that the following two conditions are satisfied:

(1) (M,N) ∈ Φt.
(2) ∀ (w, r) ∈ S⋆ × S, ∀σ ∈ Σw,r, ∀R ∈ Subt(cw,r(σ))t, ∀ i ∈ |w|, ∀ li ∈ kwi


M ∈

((
v
ϕ(wi)

i

f♯
wi

[[Wwi,li
]Θwi

]

)

i∈|w|

)♯

t

(R) ↔ N ∈

((
v
ϕ(wi)

i

f♯
wi

[[Wwi,li
]Θwi

]

)

i∈|w|

)♯

t

(R)


 .

By definition, for every t ∈ T , Ψt is a refinement of Φt and an equivalence
relation on TΞ(Y )t. Moreover, if a = card(TΞ(Y )/Φ), b = card(Σ),

d = max{card(Subt(cw,r(σ))t) | (w, r) ∈ S⋆ × S, σ ∈ Σw,r, t ∈ T }

and e = max{|w| | (w, r) ∈ S⋆ × S & Σw,r 6= ∅}, then the index of Ψt is bounded

by a2bd card(k)
e

. In addition, all different possibilities defining Ψ are bounded. Con-
sequently, the T -sorted set TΞ(Y )/Ψ is finite.

Let us check that Ψ is a congruence on TΞ(Y ). Let (u, t) be an element
of (T ⋆ − {λ}) × T , ξ ∈ Ξu,t, and let (Mj)j∈|u| and (Nj)j∈|u| be elements of
TΞ(Y )u such that, for every j ∈ |u|, (Mj , Nj) ∈ Ψuj

. We want to show that
(ξ((Mj)j∈|u|), ξ((Nj)j∈|u|)) is an element of Ψt. Let us note that, by definition
of Ψ, for every j ∈ |u|, we have that (Mj, Nj) ∈ Φuj

. Therefore, since Φ is
a congruence on TΞ(Y ), (ξ((Mj)j∈|u|), ξ((Nj)j∈|u|)) belongs to Φt. So the pair
(ξ((Mj)j∈|u|), ξ((Nj)j∈|u|)) satisfies the first condition for being related under Ψt.

Regarding the second condition, let us assume that, for (w, r) ∈ S⋆×S, σ ∈ Σw,r,
R ∈ Subt(cw,r(σ))t, i ∈ |w|, and li ∈ kwi

, we have that

ξ((Mj)j∈|u|) ∈

((
v
ϕ(wi)

i

f♯
wi

[[Wwi,li
]Θwi

]

)

i∈|w|

)♯

t

(R).

However, given that the tree homomorphism f ♯ is linear, we have that, for every

(w, r) ∈ S⋆×S, every σ ∈ Σw,r, and every i ∈ |w|, no variable v
ϕ(wi)
i appears more

than once in cw,r(σ). Thus, for every i ∈ |w|, |R|
v
ϕ(wi)

i

≤ 1. Hence there exists a

family (Wi)i∈|w| in TΣ(X)w such that, for every i ∈ |w|, Wi ∈ [Wwi,li ]Θwi
and

(3.5) ξ((Mj)j∈|u|) =

(
v
ϕ(wi)

i

f♯
wi

(Wi)

)

i∈|w|

(R).

Now, for R, either (a) ↓ϕ⋆(w) ∩ Var(R) = ∅
T or (b) ↓ϕ⋆(w) ∩ Var(R) 6= ∅

T .
In case (a), Equation 3.5 turns into ξ((Mj)j∈|u|) = R. It follows that, for every

i ∈ |w| and every j ∈ |u|, |Mj|vϕ(wi) = 0. Moreover, since R ∈ Subt(cw,r(σ))t, we
have that, for every j ∈ |u|, Mj ∈ Subt(cw,r(σ))uj

. In addition, for every j ∈ |u|,

Mj ∈

((
v
ϕ(wi)

i

f♯
wi

[[Wwi,li
]Θwi

]

)

i∈|w|

)♯

uj

(Mj) = {Mj}.
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Since, for every j ∈ |u|, (Mj, Nj) ∈ Ψuj
, it happens that Nj = Mj . Thus

ξ((Nj)j∈|u|) = ξ((Mj)j∈|u|) = R. Therefore this case is settled.

In case (b), in its turn, either (b.1) there exists an i ∈ |w| such that R = v
ϕ(wi)
i

or (b.2) there exists a unique (Rj)j∈|u| ∈ TΞ(Y )u such that R = ξ((Rj)j∈|u|). Note
that if R starts with an operation symbol from Ξ, then, from Equation 3.5, it follows
that ξ is the only possibility.

In case (b.1), Equation 3.5 turns into

(3.6) ξ((Mj)j∈|u|) = f ♯wi
(Wi).

Note that in this case t must be equal to ϕ(wi).
Case (b.1) still needs to be further refined attending to the different possibilities

for Wi according to the definition of the tree homomorphism f ♯. Either (b.1.i)
there exists a unique x ∈ Xwi

such that Wi = x or (b.1.ii) there exists a unique
w′ ∈ S⋆ a unique ν ∈ Σw′,wi

, and a unique ((Qi′)i′∈|w′|) ∈ TΣ(X)w′ such that
Wi = ν((Qi′)i′∈|w′|).

In case (b.1.i), the value of the tree homomorphism f ♯wi
at Wi is fwi

(x). Let us
recall that Φ was defined so that the set {fwi

(x)} is recognized by Φϕ(wi). Since,
for every j ∈ |u|, (Mj , Nj) ∈ Φu, it follows that ξ((Nj)j∈|u|) ∈ {fwi

(x)}. Therefore
this case is settled.

In case (b.1.ii), the value of the tree homomorphism f ♯wi
at Wi is given by

f ♯wi
(Wi) =

(
v
ϕ(w′

i′
)

i′

f♯

w′
i′
(Qi′ )

)

i′∈|w′|

(dw′,wi
(ν)).

In virtue of Equation 3.6, this last term is equal to ξ((Mj)j∈|u|). On the other
hand, since no substitution changes the operation symbol, we have that dw′,wi

(ν)
has the form ξ((Rj)j∈|u|) for a unique (Rj)j∈|u| ∈ TΞ(Y ∪ ↓ϕ⋆(w))u. Moreover, for
every j ∈ |u|, Rj is a subterm of sort uj of dw′,wi

(ν). Hence, by the linearity of the
tree homomorphism f ♯, we have that

(
v
ϕ(w′

i′
)

i′

f♯

w′
i′
(Qi′ )

)

i′∈|w′|

(ξ((Rj)j∈|u|)) = ξ






(

v
ϕ(w′

i′
)

i′

f♯

w′
i′
(Qi′ )

)

i′∈|w′|

(Rj)



j∈|u|


 .

Consequently, for every j ∈ |u|, Mj =

(
v
ϕ(w′

i′
)

i′

f♯

w′
i′
(Qi′ )

)

i′∈|w′|

(Rj). Thus, for ev-

ery j ∈ |u|, Mj ∈



(

v
ϕ(w′

i′
)

i′

f♯

w′
i′
[[Qi′ ]Θw′

i′
]

)

i′∈|w′|



♯

uj

(Rj). However, since, for every

j ∈ |u|, (Mj , Nj) ∈ Ψuj
, we can assert that Nj ∈



(

v
ϕ(w′

i′
)

i′

f♯

w′
i′
[[Qi′ ]Θw′

i′
]

)

i′∈|w′|



♯

uj

(Rj).

Therefore, for every i′ ∈ |w′|, there exists a Qi′ ∈ [Qi′ ]Θw′
i′

such that Nj =
(

v
ϕ(w′

i′
)

i′

f♯

w′
i′
(Qi′ )

)

i′∈|w′|

(Rj). Let W i stand for ν((Qi′)i′∈|w′|).

Before proceeding any further, let us note that

f ♯wi
(W i) =

(
v
ϕ(w′

i′
)

i′

f♯

w′
i′
(Qi′)

)

i′∈|w′|

(dw′,wi
(ν)) = ξ((Nj)j∈|u|).
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Now, since, for every i′ ∈ w′, Qi′ ∈ [Qi′ ]Θw′
i′

, it follows that W i ∈ [Wi]Θwi
and

ξ((Nj)j∈|u|) ∈

((
v
ϕ(wi)

i

f♯
wi

[[Wi]Θwi
]

)

i∈|w|

)♯

t

(v
ϕ(wi)
i ). Therefore this case is settled.

It only remains to consider the case (b.2), in which R = ξ((Rj)j∈|u|). Again, by

the linearity of the tree homomorphism f ♯, it follows, from Equation 3.5, that

ξ((Mj)j∈|u|) = ξ



((

v
ϕ(wi)

i

f♯
wi

(Qi)

)

i∈|w|

(Rj)

)

j∈|u|


 .

Hence, for every j ∈ |u|, Mj =

(
v
ϕ(wi)

i

f♯
wi

(Qi)

)

i∈|w|

(Rj). Then the statement may be

handled in much the same way as in case (b.1.ii).
Therefore Ψ is a congruence on TΞ(Y ) of T -finite index.
Finally, we prove that [f ♯s [L]]Ψϕ(s) = f ♯s [L], i.e., that f ♯s [L] is Ψϕ(s)-saturated.

Since, obviously, f ♯s [L] ⊆ [f ♯s [L]]Ψϕ(s), we restrict ourselves to prove the other inclu-

sion.
Let M be a term in [f ♯s [L]]Ψϕ(s), then there exists a term P ∈ L such that M and

f ♯s(P ) are Ψϕ(s)-related. Now, for P , either (a) P = x, for a unique variable x ∈ Xs,
or (b) P = σ((Pi)i∈|w|), for a unique w ∈ S⋆, a unique σ ∈ Σw,s, and a unique
(Pi)i∈|w| ∈ TΣ(X)w. Before proceeding any further, let us explain the reason why,
in the second case, it is unnecessary to take into account sorts r ∈ S − {s}. The
reason is simple, terms of the form σ((Pi)i∈|w|), for σ ∈ Σw,r with r 6= s and
(Pi)i∈|w| ∈ TΣ(X)w are terms of sort r, and, consequently, terms that are not in L.

In case (a), f ♯s(x) = fs(x). By construction of Φ, the set {fs(x)} is Φϕ(s)-
saturated. Moreover, since Ψϕ(s) is a refinement of Φϕ(s), we conclude that {fs(x)}
is Ψϕ(s)-saturated. In this case, sinece M is related to fs(x) for Ψϕ(s), we conclude

that M must be equal to fs(x) and, consequently, M is an element in f ♯s [L].

In case (b), f ♯s(σ((Pi)i∈|w|)) =

(
v
ϕ(wi)

i

f♯
wi

(Pi)

)

i∈|w|

(cw,s(σ)). Note that

(
v
ϕ(wi)

i

f♯
wi

(Pi)

)

i∈|w|

(cw,s(σ)) ∈

((
v
ϕ(wi)

i

f♯
wi

[[Pi]Θwi
]

)

i∈|w|

)♯

s

(cw,s(σ)).

By construction of Ψ, it follows that M ∈

((
v
ϕ(wi)

i

f♯
wi

[[Pi]Θwi
]

)

i∈|w|

)♯

s

(cw,s(σ)). There-

fore, there exists, for every i ∈ |w|, terms Qi in [Pi]Θwi
such that

M =

(
v
ϕ(wi)

i

f♯
wi

(Qi)

)

i∈|w|

(cw,s(σ)).

It follows that M = f ♯s(σ((Qi)i∈|w|)). Since Qi ∈ [Pi]Θwi
, and Θ is a congruence

on TΣ(X), we conclude that σ((Pi)i∈|w|) and σ((Qi)i∈|w|) are Θs-related. More-
over, since L is Θs-saturated and σ((Pi)i∈|w|) is a term in L, we can assert that

σ((Qi)i∈|w|) is also a term in L. Consequently, M is a term in f ♯s [L].

Hence, f ♯s [L] is Ψϕ(s)-saturated. �

In [15], Proposition 7.7, on p. 18, Gécseg and Steinby state that, for a homo-
morphism f : TΣ(X) //TΣ(Y ) between single-sorted algebras and a subset L of
TΣ(X), if L ∈ Rec(TΣ(X)), then f [L] ∈ Rec(TΣ(Y )). Moreover, they, seemingly,
provide a proof of it. One can obtain a plain proof of such a result, as an immediate
corollary of Proposition 3.28 and particularizing it to the single-sorted case, taking
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into account the following fact: Every homomorphism f : TΣ(X) //TΣ(Y ) be-
tween many-sorted algebras is an instance of a linear tree homomorphism. Indeed,
for ((idS , c), f ◦ ηX), where c = (cw,s)(w,s)∈S⋆×S is the family of mappings defined,
for every (w, s) ∈ S⋆ × S, as follows:

cw,s

{
Σw,s // TΣ(Y ∪ ↓w)s

σ 7−→ σ
(
vw0
0 , . . . , v

w|w|−1

|w|−1

)

we have that (f ◦ ηX)♯ : TΣ(X) //TΣ(Y ), the tree homomorphism determined
by the pair ((idS , c), f ◦ ηX), is f .

Corollary 3.29. Let f be a homomorphism from TΣ(X) to TΣ(Y ), s ∈ S and
L ∈ TΣ(X)℘s . If L ∈ Recs(TΣ(X)), then fs[L] ∈ Recs(TΣ(Y )).

We next provide, among other things, a categorial rendering of the just indicated
result, but for a suitable class of homomorphisms.

Proposition 3.30. Let RecΣ be the mapping that sends an S-sorted set X to
the Σ-algebra Rec·(TΣ(X)) and an S-sorted mapping f from X to Y to the S-
sorted mapping (f@)℘ = (f@

s [·])s∈S from (Recs(TΣ(X)))s∈S to (Recs(TΣ(Y )))s∈S ,
where, we recall, f@ is the unique homomorphism from TΣ(X) to TΣ(Y ) such that
f@ ◦ ηX = ηY ◦ f—let us note that (f@)℘ is an S-sorted mapping from TΣ(X)℘

to TΣ(Y )℘, and that to simplify notation we have used the same symbol for its
restriction to (Recs(TΣ(X)))s∈S and (Recs(TΣ(Y )))s∈S . Then, for every (w, s) ∈
S⋆ × S and every σ ∈ Σw,s, f

@
s [·] ◦ σ℘ = σ℘ ◦ f@

w [·], i.e., for every (Li)i∈|w| ∈∏
i∈|w| Recwi

(TΣ(X)), the sets

(f@
s [·] ◦ σ℘)((Li)i∈|w|) = {f@

s (σ((Pi)i∈n)) | (Pi)i∈|w| ∈
∏
i∈|w| Li} and

(σ℘ ◦ f@
w [·])((Li)i∈|w|) = {σ((Qi)i∈n) | (Qi)i∈|w| ∈

∏
i∈|w| f

@
wi

[Li]}

are equal. Thus (f@)℘ is a homomorphism from the Σ-algebra Rec·(TΣ(X)) to the

Σ-algebra Rec·(TΣ(Y )). Therefore RecΣ is a functor from SetS to Alg(Σ) and a
subfunctor of (·)℘ ◦TΣ.

Let f be an S-sorted mapping from X to Y , {·}♯X the canonical extension of the
S-sorted mapping {·}X from X to (Recs(TΣ(X)))s∈S that, for every s ∈ S, sends

x in Xs to {x} in Recs(TΣ(X)), and {·}♯Y the canonical extension of the S-sorted
mapping {·}Y from Y to (Recs(TΣ(Y )))s∈S . Then the following diagram commutes

TΣ(X)
{·}♯X //

f@

��

Rec·(TΣ(X))

(f@)℘

��
TΣ(Y )

{·}♯Y

// Rec·(TΣ(Y ))

Therefore ({·}♯X)X∈U is a natural transformation from TΣ to RecΣ.
Let X be an S-sorted set, (w, s) ∈ S⋆ × S, σ ∈ Σw,s, i ∈ |w|, and (Li)i∈|w| ∈∏
i∈|w| Recwi

(TΣ(X)) such that Li = L′ ∪ L′′. Then

σ℘((Li)i∈|w|) = σ℘(L0, . . . , L
′, . . . , L|w|−1) ∪ σ

℘(L0, . . . , L
′′, . . . , L|w|−1).

Hence Rec·(TΣ(X)) is a many-sorted Boolean Algebra with operators, i.e., a Σ-
algebra such that, for every s ∈ S, Recs(TΣ(X)) is a Boolean algebra and the
structures of Σ-algebra and of Boolean algebra are compatibles as stated above (for
the concept of single-sorted Boolean algebra with operators see [23] and [24]).
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Finally, let f : X // Y an S-sorted mapping. Then the homomorphism (f@)℘ =
(f@
s [·])s∈S is such that, for every s ∈ S, f@

s [·] is a Boolean algebra homomorphism
from Recs(TΣ(X)) to Recs(TΣ(Y )).

From the just stated proposition and Proposition 2.69 we obtain the following
corollary.

Corollary 3.31. Let X be an S-sorted set. Then the Boolean algebra Rec(TΣ(X))
is a subdirect product of the family of Boolean algebras (Recs(TΣ(X)))s∈S . More-
over, if f : X // Y is an S-sorted mapping, then f@[·] and

∏
(f@)℘ =

∏
s∈S f

@
s [·]

are compatible with the subdirect embeddings of Rec(TΣ(X)) and Rec(TΣ(Y )) into∏
s∈SRecs(TΣ(X)) and

∏
s∈SRecs(TΣ(Y )), respectively.

Remark. From the results stated above it seems natural to consider categories of
the type BoolOp

S , where BoolOp is a category of Boolean algebras with opera-
tors, and to investigate a duality theory for them. Toward this end it is perhaps
worth pointing out that, for a finite set of sorts S, since the discrete category de-
termined by S is loopless (it has no non-identity endomorphisms), Pro(SetSf ) is

equivalent to (Pro(Setf))
S . But (Pro(Setf))

S and StoneS are equivalent, because

Pro(Setf) and Stone are equivalent. Thus Pro(SetSf ) and StoneS are equivalent.

Therefore (BoolS)op and StoneS are equivalent.

3.6. Derivors and recognizability. Thatcher in [40], on p. 132, wrote: “Gener-
ally, the term ‘transformation’ will mean any map from TΣ [the free algebra TΣ(∅),
we add ] into TΩ [the free algebra TΩ(∅), we add ] where Σ = (Σ, r) and Ω = (Ω, s)
are ranked alphabets. We will, in the sequel, define several types of transformations
which are of particular interest. In formulating these definitions, there were three
principal considerations or objectives: (1) It was intended that the transformations
be, in some sense, natural in that they would fit the algebraic framework within
which we are working; (2) We should be able to generalize the conventional con-
cept of finite state mapping . . . to the case for trees; and (3) It was hoped that the
end result would be a unified approach taking into account various formulations
of ‘transformation,’ ‘transduction,’ and ‘translation’ which have appeared in the
literature.”

Following Thatcher’s first dictum, in this subsection, after defining the variety
of Hall algebras, we introduce the notion of derivor between many-sorted signa-
tures. This will allow us, using the homomorphisms between Hall algebras, to
obtain Sigd, the category of many-sorted signatures and derivors—we recall that
we were unable to show that hyperderivors are the morphisms of a category with
objects ordered pairs (Σ, X), where Σ = (S,Σ) is a many-sorted signature and X
an S-sorted set. Next, after defining a suitable contravariant functor from Sigd to
Cat, the category of U -locally small categories and functors, we obtain, by means
of the Grothendieck construction, Algd, the category with objects the ordered pairs
((S,Σ), (A,F )), with (S,Σ) a many-sorted signature and (A,F ) a Σ-algebra, and
morphisms from ((S,Σ), (A,F )) to ((T,Λ), (B,G)) the ordered pairs ((ϕ, d), f),
with (ϕ, d) a derivor from (S,Σ) to (T,Λ) and f a homomorphism of Σ-algebras
from (A,F ) to (Bϕ, G

(ϕ,d)), a canonically derived algebra of (B,G). Finally, after
showing that every derivor is a hyperderivor, we state the counterparts of Proposi-
tions 3.27 and 3.28 for suitable morphisms of Algd.

Before defining the notion of Hall algebra, we recall that (1) a finitary specifica-
tion is an ordered triple (S,Σ, E), where S is a set of sorts, Σ an S-sorted signature,
and E ⊆ EqV S (Σ) = (TΣ(X)2s)(X,s)∈Subf (V S)×S , i.e., a set of finitary Σ-equations,

where V S , the S-sorted set of the variables, is a fixed S-countably infinite S-sorted
set; and that (2) a Σ-algebra A is a (S,Σ, E)-algebra if A |=Σ E , i.e., if, for every
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(X, s) ∈ Subf(V
S) × S and every (P,Q) ∈ EX,s, A is a model of (P,Q), in symbols

A |=Σ
X,s (P,Q), which in turn means that, for every a ∈ Hom(X,A), a♯s(P ) = a♯s(Q).

Definition 3.32. Let S be a set of sorts and V HS the S⋆×S-sorted set of variables
(Vw,s)(w,s)∈S⋆×S where Vw,s = { vw,sn | n ∈ N }, for every (w, s) ∈ S⋆ × S. A Hall

algebra for S is a HS = (S⋆×S,ΣHS , EHS )-algebra, where ΣHS is the S⋆×S-sorted
signature, i.e., the (S⋆ × S)⋆ × (S⋆ × S)-sorted set, defined as follows:

HS1. For every w ∈ S⋆ and i ∈ |w|,

πwi : λ // (w,wi),

where |w| is the length of the word w and λ the empty word in the underlying
set of the free monoid on S⋆ × S.

HS2. For every u, w ∈ S⋆ and s ∈ S,

ξu,w,s : ((w, s), (u,w0), . . . , (u,w|w|−1)) // (u, s);

while EHS is the sub-(S⋆ × S)⋆ × (S⋆ × S)-sorted set of Eq(ΣHS ), where

Eq(ΣHS ) = (TΣHS (↓w)2(u,s))(w,(u,s))∈(S⋆×S)⋆×(S⋆×S),

defined as follows:

H1. Projection. For every u, w ∈ S⋆ and i ∈ |w|, the equation

ξu,w,wi
(πwi , v

u,w0

0 , . . . , v
u,w|w|−1

|w|−1 ) = vu,wi

i

of type (((u,w0), . . . , (u,w|w|−1)), (u,wi)).
H2. Identity. For every u ∈ S⋆ and j ∈ |u|, the equation

ξu,u,uj
(v
u,uj

j , πu0 , . . . , π
u
|u|−1) = v

u,uj

j

of type (((u, uj)), (u, uj)).
H3. Associativity. For every u, v, w ∈ S⋆ and s ∈ S, the equation

ξu,v,s(ξv,w,s(v
w,s
0 , vv,w0

1 , . . . , v
v,w|w|−1

|w| ), vu,v0|w|+1, . . . , v
u,v|v|−1

|w|+|v| ) =

ξu,w,s(v
w,s
0 ,ξu,v,w0(vv,w0

1 , vu,v0|w|+1, . . . , v
u,v|v|−1

|w|+|v| ), . . . ,

ξu,v,w|w|−1
(v
v,w|w|−1

|w| , vu,v0|w|+1, . . . , v
u,v|v|−1

|w|+|v| ))

of type (((w, s), (v, w0), . . . , (v, w|w|−1), (u, v0), . . . , (u, v|v|−1)), (u, s)).

We call the formal constants πwi projections, and the formal operations ξu,w,s
substitution operators. Furthermore, we will denote by Alg(HS) the category of
Hall algebras for S and homomorphisms between Hall algebras. Since Alg(HS) is

a variety, the forgetful functor GHS
from Alg(HS) to SetS

⋆×S has a left adjoint
THS

, situation denoted by THS
⊣ GHS

, or diagrammatically by

Alg(HS)

GHS //
⊤ SetS

⋆×S

THS

oo

which assigns to an S⋆×S-sorted set Σ the corresponding free Hall algebra THS
(Σ).

Remark. From H3, for w = λ, the empty word on S, we get the invariance of
constant functions axiom in [17]: For every u, v ∈ S⋆ and s ∈ S, we have the
equation

ξu,v,s(ξv,λ,s(v
λ,s
0 ), vu,v01 , . . . , v

u,v|v|−1

|v| ) = ξu,λ,s(v
λ,s
0 )

of type (((λ, s), (u, v0), . . . , (u, v|v|−1)), (u, s)).
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For every S-sorted set A, OpHS
(A) = (Hom(Aw, As))(w,s)∈S⋆×S , the S⋆ × S-

sorted set of operation for A, is naturally equipped with a structure of Hall al-
gebra, as stated in the following proposition, if we realize the projections as the
true projections and the substitution operators as the generalized composition of
mappings.

Proposition 3.33. Let A be an S-sorted set and OpHS
(A) the ΣHS -algebra with

underlying many-sorted set OpHS
(A) and algebraic structure defined as follows:

(1) For every w ∈ S⋆ and i ∈ |w|, (πwi )OpHS
(A) = prAw,i : Aw

//Awi
.

(2) For every u,w ∈ S⋆ and s ∈ S, ξ
OpHS

(A)
u,w,s is defined, for every f ∈ AAw

s

and g ∈ AAu
w , as ξ

OpHS
(A)

u,w,s (f, g0, . . . , g|w|−1) = f ◦ 〈gi〉i∈|w|, where 〈gi〉i∈|w|

is the unique mapping from Au to Aw such that, for every i ∈ |w|, we have
that

prAw,i ◦ 〈gi〉i∈|w| = gi.

Then OpHS
(A) is a Hall algebra, the Hall algebra for (S,A).

Remark. The closed sets of the Hall algebra OpHS
(A) for (S,A) are precisely the

clones of (many-sorted) operations on the S-sorted set A. On the other hand, every
Σ-algebra A has associated a Hall algebra. In fact, it suffices to consider OpHS

(A),
denoted by OpHS

(A). Moreover, the finitary term operations on A and the finitary
algebraic operations on A are subalgebras of the Hall algebra OpHS

(A).

For every S-sorted signature Σ, TerHS
(Σ) = (TΣ(↓w)s)(w,s)∈S⋆×S is also e-

quipped with a structure of Hall algebra that formalizes the concept of substitution
as stated in the following proposition.

Proposition 3.34. Let Σ be an S-sorted signature and TerHS
(Σ) the ΣHS -algebra

with underlying many-sorted set TerHS
(Σ) and algebraic structure defined as fol-

lows:

(1) For every w ∈ S⋆ and i ∈ |w|, (πwi )TerHS
(Σ) is the image under η↓w,wi

of the variable vwi

i , where η↓w = (η↓w,s)s∈S is the canonical embedding of
↓w into TΣ(↓w). Sometimes, to abbreviate, we will write πwi instead of

(πwi )TerHS
(Σ).

(2) For every u,w ∈ S⋆ and s ∈ S, ξ
TerHS

(Σ)
u,w,s is the mapping

ξ
TerHS

(Σ)
u,w,s





TΣ(↓w)s × TΣ(↓u)w0 × · · · × TΣ(↓u)w|w|−1
// TΣ(↓u)s

(P, (Qi)i∈|w|) 7−→

((
v
wi
i

Qi

)
i∈|w|

)♯

s

(P )

where, for
(
v
wi
i

Qi

)
i∈|w|

, the S-sorted mapping from ↓w to TΣ(↓u) canonically

associated to the family (Qi)i∈|w|,

((
v
wi
i

Qi

)
i∈|w|

)♯
, also denoted by Q♯, is the

unique homomorphism from TΣ(↓w) into TΣ(↓u) such that
((

v
wi
i

Qi

)
i∈|w|

)♯
◦ η↓w =

(
v
wi
i

Qi

)
i∈|w|

.

Sometimes, to abbreviate, we will write ξu,w,s instead of ξ
TerHS

(Σ)
u,w,s .

Then TerHS
(Σ) is a Hall algebra, the Hall algebra for (S,Σ).

Remark. For every Σ-algebra A there exists a homomorphism from the Hall al-
gebra TerHS

(Σ) to the Hall algebra OpHS
(A) and its image is the Hall subalgebra

of the finitary term operations on A.
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Proposition 3.35. Let Σ be an S-sorted signature. Then TerHS
(Σ)℘ is a Hall

algebra.

Our next goal is to prove that, for every S⋆ × S-sorted set Σ, THS
(Σ), the free

Hall algebra on Σ, is isomorphic to TerHS
(Σ). We remark that the existence of this

isomorphism is interesting because it enables us to get a more tractable description
of the terms in THS

(Σ).
To attain the goal just stated we begin by defining, for a Hall algebra A, an

S-sorted signature Σ, an S⋆ × S-mapping f : Σ //A, and a word u ∈ S⋆, the
concept of derived Σ-algebra of A for (f, u), since it will be used afterwards in the
proof of the isomorphism between THS

(Σ) and TerHS
(Σ).

Definition 3.36. Let A be a Hall algebra and Σ an S-sorted signature. Then, for
every f : Σ //A and u ∈ S⋆, Af,u, the derived Σ-algebra of A for (f, u), is the
Σ-algebra with underlying S-sorted set Af,u = (Au,s)s∈S and algebraic structure
F f,u, defined, for every (w, s) ∈ S⋆ × S, as

F f,uw,s





Σw,s // Opw(Af,u)s

σ 7−→

{ ∏
i∈|w|Au,wi

// Au,s
(a0, . . . , a|w|−1) 7−→ ξAu,w,s(f(w,s)(σ), a0, . . . , a|w|−1)

where Opw(Af,u)s = A
∏

i∈|w| Au,wi
u,s .

Furthermore, we will denote by pu the S-sorted mapping from ↓u to Af,u de-
fined, for every s ∈ S and i ∈ |u|, as pus (vsi ) = (πui )A, and by (pu)♯ the unique
homomorphism from TΣ(↓u) to Af,u such that (pu)♯ ◦ η↓u = pu.

Remark. For a Σ-algebra B = (B,G), we have that G : Σ // OpHS
(B) and

B ∼= OpHS
(B)G,λ, where λ is the empty word on S. Besides, for every u ∈ S⋆, we

have that BBu , the direct Bu-power of B, is isomorphic to OpHS
(B)G,u.

Lemma 3.37. Let Σ be an S-sorted signature, A a Hall algebra, f : Σ //A and
u ∈ S⋆. Then, for every (w, s) ∈ S⋆ × S, P ∈ TΣ(↓w)s and a ∈

∏
i∈|w|Au,wi

, we

have that

PAf,u

(a0, . . . , a|w|−1) = ξAu,w,s((p
w)♯s(P ), a0, . . . , a|w|−1).

Proof. By algebraic induction on the complexity of P . If P is a variable vsi , with
i ∈ |w|, then

vs,A
f,u

i (a0, . . . , a|w|−1) = a♯wi
(vsi )

= ai

= ξAu,w,s((π
w
i )A, a0, . . . , a|w|−1) (by H1)

= ξAu,w,s((p
w)♯s(v

s
i ), a0, . . . , a|w|−1).
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Let us assume that P = σ(Q0, . . . , Q|x|−1), with σ : x // s and that, for every
j ∈ |x|, Qj ∈ TΣ(↓w)xj

fulfills the induction hypothesis. Then we have that

(σ(Q0, . . . , Q|x|−1))
Af,u

(a0, . . . , a|w|−1)

= σAf,u

(QAf,u

0 (a0, . . . , a|w|−1), . . . , Q
Af,u

|x|−1(a0, . . . , a|w|−1))

= ξAu,x,s(f(σ), QAf,u

0 (a0, . . . , a|w|−1), . . . , Q
Af,u

|x|−1(a0, . . . , a|w|−1))

= ξAu,x,s(f(σ),ξAu,w,x0
((pw)♯x0

(Q0), a0, . . . , a|w|−1), . . . ,

ξAu,w,x|x|−1
((pw)♯x|x|−1

(Q|x|−1), a0, . . . , a|w|−1)) (by Ind. Hypothesis)

= ξAu,w,s(ξ
A
w,x,s(f(σ), (pw)♯x0

(Q0), . . . , (pw)♯x|x|−1
(Q|x|−1)), a0, . . . , a|w|−1)(by H3)

= ξAu,w,s(σ
Aw ((pw)♯x0

(Q0), . . . , (pw)♯x|x|−1
(Q|x|−1)), a0, . . . , a|w|−1)

= ξAu,w,s((p
w)♯s(σ,Q0, . . . , Q|x|−1), a0, . . . , a|w|−1)

= ξAu,w,s((p
w)♯s(P ), a0, . . . , a|w|−1). �

Next we prove that, for every S⋆ × S-sorted set Σ, the Hall algebra for (S,Σ) is
isomorphic to the free Hall algebra on Σ.

Proposition 3.38. Let Σ be an S-sorted signature, i.e., an S⋆×S-sorted set. Then
the Hall algebra TerHS

(Σ) is isomorphic to THS
(Σ).

Proof. It is enough to prove that TerHS
(Σ) has the universal property of the free

Hall algebra on Σ. Therefore we have to specify an S⋆ × S-sorted mapping h from
Σ to TerHS

(Σ) such that, for every Hall algebra A and S⋆ × S-sorted mapping f

from Σ to A, there is a unique homomorphism f̂ from TerHS
(Σ) to A such that

f̂ ◦ h = f . Let h be the S⋆ × S-sorted mapping defined, for every (w, s) ∈ S⋆ × S,
as

hw,s

{
Σw,s // TΣ(↓w)s

σ 7−→ σ
(
vw0

0 , . . . , v
w|w|−1

|w|−1

)

Let A be a Hall algebra, f : Σ //A an S⋆× S-sorted mapping and f̂ the S⋆× S-

sorted mapping from TerHS
(Σ) to A defined, for every (w, s) ∈ S⋆ × S, as f̂w,s =

(pw)♯s, where, we recall, (pw)♯ is the unique homomorphism from TΣ(↓w) to Af,w

such that (pw)♯ ◦ η↓w = pw. Then f̂ is a homomorphism of Hall algebras, because,
on the one hand, for w ∈ S⋆ and i ∈ |w| we have that

f̂w,wi
((πwi )TerHS

(Σ)) = f̂w,wi
(vwi

i )

= pwwi
(vwi

i )

= (πwi )A,

and, on the other hand, for P ∈ TΣ(↓w)s and (Qi)i∈|w| ∈ TΣ(↓u)w we have that

f̂u,s(ξ
TerHS

(Σ)
u,w,s (P,Q0, . . . , Q|w|−1))

= (pu)♯s(Q
♯
s(P ))

= ((pu)♯ ◦ Q)♯s(P ) (because (pu)♯ ◦ Q♯ = ((pu)♯ ◦ Q)♯)

= PAf,u

((pu)♯w0
(Q0), . . . , (pu)♯w|w|−1

(Q|w|−1))

= ξAu,w,s((p
w)♯s(P ), (pu)♯w0

(Q0), . . . , (pu)♯w|w|−1
(Q|w|−1)) (by Lemma 3.37)

= ξAu,w,s(f̂w,s(P ), f̂u,w0(Q0), . . . , f̂u,w|w|−1
(Q|w|−1)).
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Therefore the S⋆×S-sorted mapping f̂ is a homomorphism. Furthermore, f̂ ◦h = f ,
because, for every w ∈ S⋆, s ∈ S, and σ ∈ Σw,s, we have that

f̂w,s(hw,s(σ)) = (pw)♯s(σ(vw0

0 , . . . , v
w|w|−1

|w|−1 ))

= σAw (pww0
(vw0

0 ), . . . , pww|w|−1
(v
w|w|−1

|w|−1 ))

= ξAw,w,s(f(w,s)(σ), (πw0 )A, . . . , (πw|w|−1)A)

= fw,s(σ) (by H2).

It is obvious that f̂ is the unique homomorphism such that f̂ ◦ h = f . Henceforth
TerHS

(Σ) is isomorphic to THS
(Σ). �

This isomorphism together with the adjunction THS
⊣ GHS

has as an immedi-
ate consequence that, for every S-sorted set A and every S-sorted signature Σ, the

sets Hom(Σ,OpHS
(A)), in the category SetS

⋆×S , and Hom(TerHS
(Σ),OpHS

(A)),
in the category Alg(HS), are naturally isomorphic. Actually, (1) the mapping
that assigns, for an S-sorted set A, to a structure of Σ-algebra F on A (i.e., an
S⋆×S-sorted mapping F from Σ to OpHS

(A)) the homomorphism of Hall algebras

Tr(A,F ) = (Tr↓w,(A,F )
s )(w,s)∈S⋆×S from TerHS

(Σ) to OpHS
(A), where, for every

w ∈ S⋆, the subfamily Tr↓w,(A,F ) = (Tr↓w,(A,F )
s )s∈S of Tr(A,F ) is the unique ho-

momorphism from TΣ(↓w) to (A,F )Aw , the direct Aw-power of (A,F ), such that

Tr↓w,(A,F )◦η↓w = pA↓w, where pA↓w is the S-sorted mapping from ↓w to AAw defined,

for every s ∈ S and vsi ∈ (↓w)s, as pA↓w,s(v
s
i ) = prAw,i; together with (2) the map-

ping that sends an homomorphism h from TerHS
(Σ) to OpHS

(A) to, essentially,
the algebraic structure GHS

(h)◦ηΣ on A, where ηΣ is the canonical embedding of Σ
into THS

(Σ), which are mutually inverse bijections, provide the mentioned natural
isomorphism.

The derived operation symbols of an signature can be considered as the operation
symbols of a new signature. The mappings that assign to operation symbols of a
signature terms relative to another signature, together with mappings between the
corresponding sets of sorts, form a new class of morphisms denominated derivors.

Definition 3.39. Let Σ = (S,Σ) and Λ = (T,Λ) be many-sorted signatures.
A derivor from Σ to Λ is an ordered pair d = (ϕ, d), where ϕ : S // T and
d : Σ // TerHT

(Λ)ϕ⋆×ϕ. Thus, for every (w, s) ∈ S⋆ × S,

dw,s : Σw,s //TerHT
(Λ)ϕ⋆(w),ϕ(s) = TΛ(↓ϕ⋆(w))ϕ(s).

Remark. While derivors are not the most general type of morphism that might
be considered between many-sorted signatures—for instance, one could consider,
in addition to hyperderivors, polyderivors, see [7]—, they are an important class of
such morphisms. One reason for its relevance is its formal properties (see below),
another that there are many mathematical examples of them which are of interest
(see [7]).

We next introduce the linear derivors, which, as we will see later on, are a remark-
able subclass of the class of the derivors, especially in regards to recognizability,
the same as linear hyperderivors are with respect to hyperderivors.

Definition 3.40. Let d : Σ //Λ be a derivor from Σ to Λ. We will say that d

is linear if, for every (w, s) ∈ S⋆×S, every σ ∈ Σw,s, and every i ∈ |w|, no variable

v
ϕ(wi)
i appears more than once in dw,s(σ), i.e., |dw,s(σ)|

v
ϕ(wi)

i

≤ 1.

For every many-sorted signature Λ, TerHT
(Λ) is the underlying many-sorted

set of TerHT
(Λ), the Hall algebra for T . Since by, Proposition 3.38, TerHT

(Λ) is
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isomorphic to THT
(Λ), the derivors can be defined, alternative, but equivalently,

as ordered pairs d = (ϕ, d) with d : Σ //THT
(Λ).

On the other hand, every mapping ϕ : S // T determines a functor from the
category Alg(HT ) to the category Alg(HS), so TerHT

(Λ)ϕ⋆×ϕ is in its turn e-
quipped with a structure of Hall algebra for S, which will allow us, in particular,
to define the composition of derivors. We next show the existence of such a functor
by defining a morphism of algebraic presentations from (ΣHS , EHS ) to (ΣHT , EHT ).

Proposition 3.41. Let ϕ : S // T be a mapping between sets of sorts and hϕ the
S⋆ × S-sorted mapping from ΣHS to ΣHT

ϕ⋆×ϕ defined as follows:

(1) For every w ∈ S⋆ and every i ∈ |w|, hϕ(πwi ) = π
ϕ⋆(w)
i .

(2) For every u, w ∈ S⋆ and every s ∈ S, hϕ(ξu,w,s) = ξϕ⋆(u),ϕ⋆(w),ϕ(s).

Then (ϕ⋆ × ϕ, hϕ) : (S⋆ × S,ΣHS , EHS ) // (T ⋆ × T,ΣHT , EHT ) is a morphism of
algebraic presentations.

The morphisms of algebraic presentations determine functors in the opposite
direction between the associated categories of algebras. Therefore, each mapping
ϕ : S // T between sets of sorts, determines a functor (ϕ⋆×ϕ, hϕ)∗ from Alg(HT )
to Alg(HS), which transforms Hall algebras for T into Hall algebras for S. The
action of the functor on the free Hall algebra on a T -sorted signature Λ is a Hall
algebra for S, whose underlying S⋆ × S-sorted set is TerHT

(Λ)ϕ⋆×ϕ.
If d : Σ //Λ is a derivor, then d : Σ // TerHT

(Λ)ϕ⋆×ϕ determines a homo-
morphism of Hall algebras d♯ : TerHS

(Σ) //TerHT
(Λ)ϕ⋆×ϕ. Thus, for every

(w, s) ∈ S⋆ × S, d♯w,s sends terms in TΣ(↓w)s to terms in TΛ(↓ϕ⋆(w))ϕ(s).

Definition 3.42. Let d : Σ //Λ and d : Λ //Ω be derivors. Then e ◦ d =
(ψ, e) ◦ (ϕ, d), the composition of d and e, is the derivor (ψ ◦ ϕ, e♯ϕ⋆×ϕ ◦ d), where

e♯ϕ⋆×ϕ ◦ d is obtained from

Λ
ηΛ //

e
&&▼▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

TerHT
(Λ)

e♯

��
TerHU

(Ω)ψ⋆×ψ

as

TerHT
(Λ)ϕ⋆×ϕ

e♯ϕ⋆×ϕ

��

Σ
doo

TerHU
(Ω)ψ⋆×ψϕ⋆×ϕ

being e♯ the canonical extension of e to the free Hall algebra on Λ.
For every many-sorted signature Σ = (S,Σ), the identity at (S,Σ) is (idS , ηΣ).

The just stated definition allows us to form a category of many-sorted signatures
whose morphisms are the derivors.

Proposition 3.43. The many-sorted signatures together with the derivors consti-
tute a category, denoted by Sigd.

Remark. Let Sig be the category whose objects are the many-sorted signatures
and whose morphisms from Σ to Λ are the ordered pairs (ϕ, d), where ϕ is a map-
ping from S to T and d an S⋆×S-sorted mapping from Σ to Λϕ⋆×ϕ (thus a mapping
in Sig(S)). Note that Sig is the category obtained by means of the Grothendieck
construction for an appropriate contravariant functor from Set to Cat. We next
show that the category Sigd can be obtained as the Kleisli category for a suitable
monad. In fact, for every set of sorts S, we have the adjoint situation THS

⊣ GHS

and, thus, a monad on Sig(S) which we will denote by THS
= (THS

, ηHS , µHS ).
Then the ordered triple d = (d, η, µ) in which (1) d is the endofunctor at Sig that
sends (S,Σ) to (S,THS

(Σ)) and a morphism (ϕ, d) from (S,Σ) to (T,Λ) to the
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morphism (ϕ, d♯) from (S,THS
(Σ)) to (T,THT

(Λ)), (2) η the natural transforma-

tion from IdSig to d that sends (S,Σ) to η(S,Σ) = (id, ηHS

Σ ), and (3) µ the natural

transformation from d ◦ d to d that sends (S,Σ) to µ(S,Σ) = (id, µHS

Σ ), is a monad
on Sig and Kl(d), the Kleisli category for d, is isomorphic to Sigd. This shows,
in our opinion, the mathematical naturalness of the notion of derivor. Moreover,
by defining a suitable notion of transformation between derivors one can equip the
category Sigd with a structure of 2-category (this was, in fact, already done in [7]
for polyderivors).

Remark. Since Sig has coproducts, Kl(d) ∼= Sigd has coproducts.

We next associate to every derivor d : Σ //Λ a functor from Alg(Λ)(= Alg(Λ))
to Alg(Σ)(= Alg(Σ)).

Proposition 3.44. Let d : Σ //Λ be a morphism in Sigd. Then Algd(d) is
the functor from Alg(Λ) to Alg(Σ) that sends (B,G) to (Bϕ, G

d) and a homo-
morphism f from (B,G) to (B′, G′) to the homomorphism fϕ from (Bϕ, G

d) to

(B′
ϕ, G

′d), where, for every Λ-algebra (B,G), Gd = G♯ϕ⋆×ϕ ◦ d is obtained from

Λ
ηΛ //

G
$$❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

TerHT
(Λ)

G♯

��
OpHT

(B)

as

TerHT
(Λ)ϕ⋆×ϕ

G♯ϕ⋆×ϕ

��

Σ
doo

OpHT
(B)ϕ⋆×ϕ = OpHS

(Bϕ)

Proof. For every Λ-algebra (B,G), G : Λ // OpHT
(B), and since OpHT

(B) is a
Hall algebra, G can be extended up to the free Hall algebra on Λ. Moreover, we
have that OpHT

(B)ϕ⋆×ϕ = OpHS
(Bϕ) since, for every (w, s) ∈ S⋆×S it holds that

(OpHT
(B)ϕ⋆×ϕ)w,s = OpHT

(B)ϕ⋆(w),ϕ(s)

= Bϕ⋆(w)
//Bϕ(s)

= B(ϕ(w0),...,ϕ(w|w|−1))
//Bϕ(s)

=
∏

(Bϕ(wi) | i ∈ |w|) //Bϕ(s)

=
∏

((Bϕ)wi
| i ∈ |w|) // (Bϕ)s

= (Bϕ)w // (Bϕ)s

= OpHS
(Bϕ)w,s,

thus, so defined, G(ϕ,d) is an algebraic structure on Bϕ.
Let f : (B,G) // (B′, G′) be a homomorphism of Λ-algebras, (w, s) ∈ S⋆ × S,

and σ ∈ Σw,s. Then fϕ : (Bϕ, G
d) // (B′

ϕ, G
′d) is a homomorphism of Σ-algebras,

because Gd(σ) is a term operation and, consequently, the following diagram

Bϕw
G(ϕ,d)(σ)

//

fϕw

��

Bϕs

fϕs

��
B′
ϕw

G′(ϕ,d)(σ)

// B′
ϕs

commutes. Moreover, (g ◦ f)ϕ = gϕ ◦ fϕ, so that Algd(d) is a functor. �
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From the definition of the functor Algd, for every derivor d : Σ //Λ, it is
obvious that the following diagram

Alg(Σ)
GΣ // SetS

Alg(Λ)

Algd(d)

OO

GΛ

// SetT

∆ϕ

OO

commutes.
The previous construction can be extended up to a contravariant functor from

the category Sigd to the category Cat.

Proposition 3.45. From Sigd to Cat there exists a contravariant functor, denoted
by Algd, that sends (S,Σ) to Alg(S,Σ) and a morphism (ϕ, d) from (S,Σ) to (T,Λ)
to the functor Algd(ϕ, d) from Alg(T,Λ) to Alg(S,Σ).

Proof. Given (ϕ, d) : (S,Σ) // (T,Λ) and (ψ, e) : (T,Λ) // (U,Ω), we show that
Algd(ϕ, d) ◦ Algd(ψ, e) = Algd((ψ, e) ◦ (ϕ, d)).

Let (A,F ) be a (U,Ω)-algebra. Then Aψϕ = Aψ◦ϕ. Moreover, we have that

F (ψ,e)(ϕ,d) = (F ♯ψ⋆×ψ ◦ e)(ϕ,d)

= (F ♯ψ⋆×ψ ◦ e)♯ϕ⋆×ϕ ◦ d

= (F ♯ψ⋆×ψϕ⋆×ϕ
◦ e♯ϕ⋆×ϕ) ◦ d

= F ♯ψ⋆×ψϕ⋆×ϕ
◦ (e♯ϕ⋆×ϕ ◦ d)

= F ♯
(ψ◦ϕ)♯×(ψ◦ϕ)

◦ (e♯ϕ⋆×ϕ ◦ d)

= F ((ψ◦ϕ),e♯
ϕ⋆×ϕ

◦d)

= F (ψ,e)◦(ϕ,d)

thus (Aψϕ, F
(ψ,e)(ϕ,d)) = (Aψ◦ϕ, F

(ψ,e)◦(ϕ,d)). Finally, if f is a homomorphism of

(U,Ω)-algebras, then fψϕ = fψ◦ϕ. �

Definition 3.46. The category Algd is
∫ Sig

d Algd, i.e., the category obtained by
means of the Grothendieck construction applied to the contravariant functor Algd.

The category Algd has as objects the ordered pairs (Σ,A), with Σ a many-
sorted signature and A a Σ-algebra, and as morphisms from (Σ,A) to (Λ,B) the
ordered pairs (d, f), with d a derivor from Σ to Λ and f a homomorphism of
Σ-algebras from (A,F ) to (Bϕ, G

(ϕ,d)).

Remark. There exists a pseudo-functor Alg
d

from the 2-category Sig
d

to the 2-
category Cat, contravariant in the 1-cells, i.e., the derivors, and covariant in the
2-cells, i.e., the transformations between derivors (this was already done in [7] for
polyderivors).

Proposition 3.47. Let d = (ϕ, d) be a derivor (resp., a linear derivor) from Σ

to Λ, X an S-sorted set, Y a T -sorted set, and f an S-sorted mapping from X
to TΛ(Y )ϕ. Then (dY , f) = ((ϕ, dY ), f), where dY is, for every (w, s) ∈ S⋆ ×
S, the composition of dw,s, which is a mapping from Σw,s to TΛ(↓ ϕ⋆(w))ϕ(s),

and (in@
↓ϕ⋆(w),Y ∪↓ϕ⋆(w))ϕ(s), the underlying mapping of the component at ϕ(s) of

the canonical Λ-homomorphism in@
↓ϕ⋆(w),Y ∪↓ϕ⋆(w) from TΛ(↓ ϕ⋆(w)) to TΛ(Y ∪ ↓

ϕ⋆(w)), is a hyperderivor (resp., a linear hyperderivor) from (Σ, X) to (Λ, Y ).
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In other words, some hyperderivors, but not all of them, are factorizable through
a derivor.

Proposition 3.48. Let d be a derivor from Σ to Λ, X an S-sorted set, Y a
T -sorted set, f an S-sorted mapping from X to TΛ(Y )ϕ, f

♯ the canonical ho-
momorphism of Σ-algebras from TΣ(X) to Algd(d)(TΛ(Y )), s ∈ S, and L ∈

Recϕ(s)(TΛ(Y )). Then
(
f ♯ϕ(s)

)−1

[L] ∈ Recs(TΣ(X)).

Proof. It follows from Proposition 3.27. �

Assumption. For the following proposition, as was the case with Proposition 3.28,
we will assume that S, T , Σ and X are finite.

Proposition 3.49. Let d be a linear derivor from Σ to Λ, X an S-sorted set,
Y a T -sorted set, f an S-sorted mapping from X to TΛ(Y )ϕ, f

♯ the canonical
homomorphism of Σ-algebras from TΣ(X) to Algd(d)(TΛ(Y )), s ∈ S, and L ∈
TΣ(X)℘s . If L ∈ Recs(TΣ(X)), then f ♯s [L] ∈ Recϕ(s)(TΛ(Y )).

Proof. It follows from Proposition 3.28. �
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