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We live in an uncertain world, which makes it difficult to know what we should
believe. In the absence of certainty, the Bayesian approach provides a formal framework
that results in assigning each possible state of the world a probability, and using the laws
of probability to calculate what to believe and what to do. This theoretical framework was
developed in the 1940s and 1950s to provide prescriptions for human behaviour, and has been
particularly influential in developing theories of how people behave in economic situations
(Edwards, 1961; Peterson & Beach, 1967; Savage, 1954; von Neumann & Morgenstern,
1947).

Advances in methodology and computational power in the past two decades has seen
researchers begin to compare human performance to Bayesian models in complex domains,
such as vision, motor control, language, categorisation or common-sense reasoning. In
these domains, people’s performance has been found to be similar to that of highly complex
probabilistic models, if these models assume the same sensory limitations that people have
(Anderson, 1991; Chater & Manning, 2006; Goodman et al., 2008; Griffiths et al., 2007;
Griffiths & Tenenbaum, 2011; Houlsby et al., 2013; Oaksford & Chater, 2007; Pantelis
et al., 2014; Petzschner et al., 2015; Sanborn, Griffiths, & Navarro, 2010; Wolpert, 2007;
Yuille & Kersten, 2006). Some of the most compelling demonstrations have been in the
domain of intuitive physics, in which participants are asked to make judgments about
various physical quantities, such as blocks in motion or liquids. Despite the complexities
of these predictions, complex probabilistic models often explain people’s judgments better
than competing frameworks like heuristics (Battaglia et al., 2013; Sanborn et al., 2013).

These results are surprising as they run counter to an extensive literature show-
ing that people make systematic errors when reasoning about probabilities (Gigerenzer &
Gaissmaier, 2011; Kahneman, 2011; Tversky & Kahneman, 1974). First, there are many
demonstrations of how asking a question in different ways will alter the probability judg-
ment that a person makes. For example, unpacking effects show that people’s estimate of the
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probability that someone “can buy a gun in a hardware store” is more than the probability
that they “can buy an antique gun or some other type of gun in a hardware store”, but less
than the probability that they “can buy a staple gun or some other type of gun in a hard-
ware store”, despite all three questions asking about the same set of events and therefore
having the same probabilities (Dasgupta et al., 2017; Sloman et al., 2004). Perhaps more
damning, however, is the observation that people’s probability estimates are not consistent
with one another – that combinations of estimates do not follow the rules of probability
theory as they should (e.g., Costello and Watts, 2014). One salient demonstration of this is
the conjunction fallacy made famous by Tversky and Kahneman (1983): people will more
often than not judge the probability that a highly-educated, liberal-seeming person is a
bank teller to be lower than the probability that this person is both a feminist and a bank
teller, despite the fact that the group of bank tellers includes all feminists who are also bank
tellers. As probability theory is at the heart of complex probabilistic models, it appears a
paradox that people’s judgments in complex tasks match those of probabilistic models, yet
their probability judgments disagree with probability theory.

How can we explain this apparent paradox? First, we note that the idealised way
of implementing complex probabilistic models, representing all possible probabilities and
making exact calculations with these probabilities, is implausible for any physical system,
including brains (Aragones et al., 2005; Sanborn & Chater, 2016). An example of why this is
the case is to consider the problem of categorising objects in the world into different natural
kinds, and then making a decision in the light of that categorisation. A common Bayesian
approach to this problem is to represent all possible ways of dividing the observed objects
into different categories, and then summing over all these possible partitions to make a
decision (Anderson, 1991; Sanborn, Griffiths, & Navarro, 2010). This calculation becomes
intractable long before we reach a number that could realistically correspond to a lifetime
of experience: even for just 100 objects there are over 4.7 × 10115 ways to divide them
into categories, which is far greater than the number of atoms in the observable universe.
Therefore, explicitly using probabilities in categorisation or other complex domains where
Bayesian models have been successful such as vision, intuitive physics, and language, is thus
clearly impossible.

But how can a Bayesian model of categorisation, vision, intuitive physics, or lan-
guage possibly work without explicitly representing probabilities? A key insight is that it is
not necessary to explicitly represent probabilities in order to implement complex probabilis-
tic models. Instead, these models can be approximated, and a straightforward way in which
to do so is to draw samples from the probability distribution rather than representing it
explicitly. Using sampling as an approximation to complex probabilistic models has a long
history beginning in the 1940s and ’50s (Metropolis et al., 1953); and as the computational
resources available to researchers have increased, it has become a common way in which
to approximate these models in both cognitive science and artificial intelligence (Griffiths
et al., 2007; Susskind et al., 2008). The major attraction of sampling is that it comes with a
theoretical guarantee: an infinite number of samples will provide the same answer as exactly
calculating with explicit probabilities. Additionally, using a finite and achievable number of
samples provides useful approximations, though this can lead to erroneous answers in some
situations. Cognitive science researchers have recently been intrigued by the possibility that
the mind implements a sampling algorithm, both for their positives and negatives: the pos-
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itives could explain how people with finite brains could approximate complex probabilistic
models, while the negatives could explain the systematic errors people show when reasoning
about probabilities.

One particularly revealing bias is probability matching. For example, on a multiple-
choice test if a student believes that Option A has a 90% chance of being the right answer,
instead of always choosing Option A he or she will still choose an alternative 10% of the time
(Mosteller & Nogee, 1951; Vulkan, 2000). This behaviour contradicts a key supposition of
rationality — that people always choose the option they consider best — and instead shows
that human decision making is stochastic. This puzzling bias can though be explained, at
least as a first approximation, by sampling: drawing a single independent sample from the
probability distribution of which option is correct will result in Option A being sampled
90% of the time (Vul et al., 2014). A host of other reasoning fallacies have also begun
to be explained by sampling, including the unpacking effect described above (Dasgupta
et al., 2017; Lieder et al., 2018a; Sanborn & Chater, 2016). However, research in this
area is only beginning, and the current state of the art is that different algorithms are
used to explain different effects, as the tasks investigated thus far make it very difficult to
distinguish between sampling algorithms. Ignorance of the sampling process makes it then
difficult to arrive at a coherent explanation of how sampling can produce biases, and also
prevents precise quantitative predictions from being made.

A sense of location in the human sampling algorithm

The best-known and often most efficient method for drawing samples is to draw them
independently from the probability distribution of interest – we term this direct sampling.
In statistics, there are a variety of methods for drawing samples independently. Computer
algorithms have been developed to generate samples from simple distributions such as Gaus-
sian or uniform distributions, and with more complex distributions there are other methods
that can generate independent samples, such as rejection or importance sampling. However,
to take advantage of these efficient sampling methods requires knowing a fair amount about
the distribution of interest – either characterizing it exactly or, as is the case for rejection
or importance sampling, knowing it well enough to be able to identify another distribution
that is very similar (Bishop, 2006).

However, it does not seem likely the mind or the brain directly samples from prob-
ability distributions. To develop an intuition for why this is the case, consider the task
of unscrambling a jumbled-up string of letters to make a word, knowing that each string
can only be unscrambled so as to make a single word. In this example, the three strings
of letters are “CIBRPAMOLET”, “NNLNRIEITOAAT”, and “AABRMSTENMESR”. We
can think of this problem as implying a probability distribution where the different hy-
potheses are each of the possible orderings of a letter string. This means that there are 11
factorial or 39,916,800 orderings for “CIBRPAMOLET” and 13 factorial or 6,227,020,800
orderings each for “NNLNRIEITOAAT” and “AABRMSTENMESR”. The probability of
each ordering is then simply the probability that that ordering of the letters is a word. As
there is only one way that each string can be unscrambled to be a word, this probability
distribution must be concentrated on the single correct ordering, with the small remainder
divided amongst the huge number of non-word orderings.
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If it was possible to directly and efficiently sample from the probability distribution
over hypotheses, it would be easy to unscramble each of the letter strings – as samples
are generated according to their probabilities, almost all of the generated samples would
be of the correct ordering. However, as will be obvious, we cannot immediately generate
the correct answers. This might be because samples are just generated very slowly in this
task, so another observation is useful: changing the task to be to unscramble the mildly
scrambled strings “PROBELMATIC”, “INTERNATOINAL”, and “EMABRRASSMENT”
makes it a lot easier, even though these are the same sets of letters. Therefore, taken
from the perspective of sampling, sampling the correct answer is much easier when starting
from a mildly scrambled string; but this cannot arise through direct sampling, which is
independent of the starting point.

While direct sampling does not seem tenable as a result of these observations, there
are sampling algorithms for which new samples do depend on previous samples. One
very well-known algorithm that has this property is Markov Chain Monte Carlo (MCMC;
Metropolis et al., 1953). MCMC works by constructing a Markov chain that is character-
ized by a set of transition probabilities between potential states of the chain. During any
one iteration, the chain is in a specific state, and a nearby state is blindly proposed as the
next potential state. The ratio of the probability of the new state to the probability of the
current state is then calculated, and this ratio is used to stochastically decide whether the
chain stays put or transitions to the proposed state.

An MCMC chain generates a series of states through many iterations of this proce-
dure, and under mild assumptions this series of states can be treated as samples from the
probability distribution. Of course, the order in which samples arise from this algorithm is
not independent, as in direct sampling. This is because the proposed state is selected from
those states that are nearby the current state, and so the states of the Markov chain change
more slowly than do the states in direct sampling. The greater chance MCMC has of tran-
sitioning to nearby hypotheses, that is, a “sense of location,” helps explain our observations
in the example above, where it is much easier to unscramble the letter strings “PROBEL-
MATIC”, “INTERNATOINAL”, and “EMABRRASSMENT” than it is to unscramble the
strings we initially presented.

MCMC’s sense of location has led to this algorithm being used to explain a variety
of cognitive biases, such as the anchoring effect. In anchoring experiments, participants are
first asked to make a decision about whether a quantity is higher or lower than an irrelevant
number. For example, participants are asked to add 400 to the last three digits of their
phone number, to think of the resulting number as a date, and to decide whether Atilla
the Hun was defeated before or after that date. Finally, participants were asked to provide
the specific year in which Atilla the Hun was defeated. Despite the fact that the numbers
generated from the participants’ phone numbers were transparently irrelevant, participants’
estimates were pulled toward these values (Russo & Schoemaker, 1989).

MCMC has been used to explain these results by assuming that the decision about
whether a quantity is higher or lower than an irrelevant number sets the initial state of the
Markov chain. Once this initial state is set, the algorithm samples from the probability
distribution (e.g., of possible dates when Atilla the Hun was defeated), and the last sample
generated is taken as the estimated date of defeat. If the number of iterations is great
enough, then distribution of estimates will be unbiased. However, a limited number of
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iterations will result in an estimate distribution that is biased by the algorithm’s starting
point, producing an anchoring effect. MCMC can also explain how various manipulations
affect the strength of the anchoring effect, including whether the anchor is provided or self-
generated, the level of participant expertise, cognitive load, and financial incentives (Lieder
et al., 2012; Lieder et al., 2018a, 2018b).

The final example of explaining cognitive biases with MCMC we will discuss here is
the unpacking effect. In experiments by Dasgupta et al. (2017), participants were told that
their friend sees a table in a visual scene that they themselves cannot see, and in the first
condition were asked to judge the probability that “any object starting with a C” is also in
the scene. In the second condition, participants were asked to judge the probability that a
“chair, computer, curtain, or any other object starting with a C” shares the scene with the
table. Finally, in the third condition, participants were asked to judge the probability that a
“cannon, cow, canoe, or any other object starting with a C” shares the scene with the table.
These three questions are formally identical: the two unpacked versions of the questions
just list kinds of objects that are implicit in the packed question ‘any object starting with
a C”. Despite this, average estimates are highest when the question is unpacked as “chair,
computer, curtain, or any other object starting with a C”, intermediate for the simple
question “any object starting with a C”, and lowest for unpacking “cannon, cow, canoe, or
any other object starting with a C” .

As with anchoring, MCMC has been used to explain this effect as the result of its
starting point. First, it is assumed that object names are arranged in a semantic space
and that asking participants which objects share a scene with a table induces a probability
distribution over objects. Then the question that is asked helps position the starting point
of the sampler: towards a region in which objects that begin with C are likely as in “chair,
computer, curtain, or any other object starting with a C”, or towards a region in which
objects that begin with C are unlikely as in “cannon, cow, canoe, or any other object starting
with a C”. This starting point bias can thus explain how this unpacking effect depends on
the probability of the unpacked hypotheses (Dasgupta et al., 2017).

The list above is illustrative, but certainly not complete. A variety of other biases
have also been explained by MCMC, including the base-rate fallacy, conjunction fallacy,
the weak evidence effect, the dud alternative effect, the self-generation effect, and wisdom
of the crowd effects (Dasgupta et al., 2017; Sanborn & Chater, 2016). Even perceptual
effects, such as switching times in bistable perception, have also been explained by MCMC
(Gershman et al., 2012).

Key properties of cognitive times series

While MCMC has been used to explain a variety of judgment biases, it is certainly
not the only sampling algorithm with a sense of location. MCMC is often slow to converge,
particularly for multi-modal probability distributions, properties that have been exploited
for explaining cognitive biases. These weaknesses have resulted in computer scientists and
statisticians developing a variety of algorithms based on simple MCMC that mitigate these
problems. Various proposals include methods that learn to adapt state proposals to the
problem at hand, methods that involve running multiple chains, and methods that use
the gradient of the probability distribution (Robert et al., 2018). This list only considers
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elaborations of MCMC algorithms, and additionally there are alternative algorithms such
as particle filtering that allow for changing posterior distributions (Doucet et al., 2001).

For the most part, cognitive scientists comparing sampling algorithms to human
data have evaluated the qualitative properties of these algorithms, though a few researchers
have quantitatively fit individual sampling algorithms to human data (Abbott & Griffiths,
2011; Lieder et al., 2018a). What has been lacking are quantitative comparisons between
sampling algorithms to determine which algorithm best matches human behavior amongst
the many possible candidates.

Part of the problem stems from the fact that the types of data that researchers have
been using sampling algorithms to explain are not very diagnostic. First, the qualitative
finding that the starting point has an influence (e.g., the algorithm has a sense of location)
can be produced by a number of algorithms. Second, cognitive biases are generally biases in
decision making, and decisions are commonly understood to be the result of the aggregation
of a number of samples (Bogacz et al., 2006). As sampling algorithms all converge to
the correct distribution in the limit, the sample aggregates produced by various sampling
algorithms will often be similar, and this problem is compounded by the fact that sampling
algorithms can closely mimic one another, given suitable choices of parameters (Lieder et
al., 2018a).

Intuitively, there should be more power to discriminate between sampling algorithms
if individual samples are observed, rather than only observing a decision based on an ag-
gregation of samples. In particular, different sampling algorithms will generate different
proposals, and will show different dependencies on previously generated hypotheses, often
for a wide range of the settings of their parameters. Characterizing the properties of the
time series of candidate sampling algorithms and comparing them against the properties of
“cognitive time series” is thus a promising avenue for distinguishing between algorithms.

Fortunately, there exists a body of work by psychologists investigating such cognitive
time series, which we can re-purpose to compare and contrast sampling algorithms. Classic
work by Bousfield and Sedgewick (1944) asked participants to generate responses in a task
in which the number of potential responses was large but limited, e.g., asking participants to
generate the names of quadruped mammals. While the focus of this work was quantifying
the rate at which quadruped animal names and other responses were produced, it was
noted in passing that responses tended to be clustered. For example, participants would
first produce a set of animals that could be found on a farm, and then produce a set of
animals that could be found on a safari.

More recent work in this paradigm by Rhodes and Turvey (2007) looked more closely
at the time intervals between successive recalls of animal names. While retrieval intervals
lengthened as the pool of unreported animal names shrank, there were also bursts of short
retrieval intervals interleaved with long waits, which were perhaps due to participants slowly
searching for a new cluster of animal names to report and then quickly reporting the names
in that cluster. Qualitatively, there were many more short retrieval times than long retrieval
times. Quantitatively, the retrieval intervals were examined in the raw data and in data
that were de-trended to remove the effect of slowing retrieval intervals. In both data sets,
the retrieval intervals l were well characterized by Lévy probability density distributions

P (l) ∼ l−u (1)
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showing a power-law relationship between the length of retrieval times and their probabil-
ities. In particular, the best-fitting values of the exponent were u ≈ 2 for most individual
participants.

Lévy distributions with u ≈ 2 suggest an interesting correspondence with the animal
foraging literature. This same distribution (or a truncated version of it) has been used to
characterize the mobility patterns of a wide array of species, including Albatrosses, marine
predators, monkeys, and people (González et al., 2008; Ramos-Fernández et al., 2004; Sims
et al., 2008; Viswanathan et al., 1996). The theoretical justification for Lévy distributions
of mobility patterns is that when resources are patchy (i.e., clustered), steps that follow
this distribution are more likely to result in successful foraging than Gaussian-distributed
steps are. In particular, in environments with patchy resources, u = 2 has been analytically
shown to be the exponent that produces the most effective foraging (Viswanathan et al.,
1999). As a result of this correspondence, Rhodes and Turvey (2007) suggested that human
memory retrieval is essentially a foraging task within a mental representation, with response
times equated with the distances between samples.

Aside from the distances between successive responses, researchers have also found
long-range dependencies in cognitive time series. These dependencies have been investigated
in a separate line of work from that on step sizes, at least in the literature on sampling from
internal representations, though the two have been found to co-occur in investigations of eye
movements, which is a process of sampling information from the external world (Rhodes
et al., 2011). Gilden et al. (1995) first gave participants one minute’s worth of training
with a metronome that was set to produce a target temporal interval, such as 1 second.
Following this short period of training, participants were asked to repeatedly press the
spacebar on a computer keyboard every time they believed the target interval had elapsed.
Participants then continued to “drum” the keyboard at the target interval 1,000 times in
a row, which generated enough responses to characterize how a new response depended on
previous responses.

There are various ways in which responses can depend on one another. Most cogni-
tive models assume that responses are independent of one another. For example, standard
drift-diffusion models of response times assume that people make independent responses on
each trial (Ratcliff, 1978)1. Standard models of categorization assume that responses are
independent given what has been learned (Nosofsky, 1986). Alternatively, the next response
may depend solely on the most recent response, as would result from a model that produces
a random walk over the space of possibilities (e.g., Abbott et al., 2015).

However, the temporal production task of Gilden et al. (1995) showed neither in-
dependence nor short-range dependencies, but instead showed long-range dependencies,
termed 1/f noise. This name comes from the process of quantifying long-range dependen-
cies: performing a Fourier transform and examining how the spectral power S(f) depends on
frequency f . For independent responses, S(f) = 0, for random walk responses, S(f) = 1/f2,
and for long-range dependencies S(f) = 1/f . These long-range 1/f dependencies are much
more difficult to generate than independent responses or the dependencies found in random
walks. As such they are often considered the hallmarks of complex processes, and have been
found in the dynamics of leaky faucets, heart rates, turbulence, and stock markets (Bak,

1However, these models can be augmented to produce long-range dependencies (Wagenmakers et al.,
2004).
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1996).
1/f noise is also not unique to temporal production tasks, and it has been found

in a variety of similar cognitive tasks, including reproducing complex drumming patterns
(Hennig et al., 2011). It has also been found in the estimation of spatial intervals, the time
taken for mentally rotating objects, the time taken for lexical decision, the time required
for either serial or parallel visual search, and in measures of implicit bias (Correll, 2008;
Gilden, 1997; Gilden et al., 1995). Interestingly, these long-range dependencies disappear if
a different task is interleaved with the task of interest (Gilden, 2001), or if the task is both
very simple and unpredictable (Gilden et al., 1995).

Sampling algorithms to explain cognitive times series

These two properties of human samples, Lévy distributed distances between sam-
ples, and 1/f noise, are diagnostic for any theory of human inference via sampling. In
probabilistic terms, a patchy representation is one that is multimodal: it has regions of
high probability separated by troughs of low probability. These types of distributions are a
difficult challenge for sampling algorithms with a sense of location, and distances between
samples that follow a Lévy probability density distribution are a sign that the sampling
algorithm used is successfully navigating this challenge.

However for a sampling algorithm, 1/f noise is not at all desirable. Direct sampling,
as described above, would be the most efficient in terms of sample size: N independent
samples contain more information than the same number of dependent samples. For a set
of dependent samples, we can estimate the number of independent samples that they would
be equivalent to in terms of the information they contain, which is termed the effective
sample size (ESS)

ESS = N

1 + 2
∑∞
k C(k) (2)

where C(k) is the degree of autocorrelation in the sample sequence at lag k. Thus, for
an equivalent level of autocorrelation at the first lag, 1/f noise in the samples is also less
efficient in terms of sample size than a random walk.

What algorithm could produce both of these properties, and why? As we have
noted, direct sampling is the most efficient in uncovering the underlying distribution. Di-
rectly drawing independent samples from the underlying distribution will result in a pos-
terior distribution resembling the true distribution, as long as sufficiently many samples
are used. Thus, direct sampling will explore even far-apart modes of the true distribution.
However, because these samples are drawn independently, direct sampling will not produce
characteristic human autocorrelation patterns. Furthermore, while direct sampling allows
exploration of far-apart modes, the rate at which distant and close regions of the landscape
are visited does not resemble Lévy distributions, but instead will resemble uncorrelated,
white noise (Zhu et al., 2018). For an example of direct sampling, see Figure 1a.

In contrast to direct sampling, MCMC does not require knowledge of the true un-
derlying distribution and samples are not drawn independently. Instead, MCMC samplers
are initialized at some random location and sequentially explore the probability landscape
by performing a random walk, moving to nearby locations proportionally to the proba-
bility of the underlying space. For an illustration of the sampling behavior of MCMC in
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(a) Samples obtained from di-
rect sampling.

(b) Samples from MCMC. (c) Samples from MC3.

Figure 1

The behavior of the three sampling procedures in a patchy environment. The under-
lying distribution that the samplers are exploring corresponds to a mixture of 20 Gaussian
distributions. Direct sampling does not require a starting position and subsequent samples
are drawn independently from the underlying distribution. As a result, successive samples
cover the whole distribution. In contrast, MCMC requires a starting state (solid gray point).
Successive samples are proposed by performing a random walk, biased towards regions of
high probability of the underlying distribution. However, these proposals do not allow the
rapid exploration of multiple modes. Instead, the sampler will slowly traverse the space,
and in many cases, never explore far-away modes. Finally, Metropolis-coupled Markov
chain Monte Carlo (MC3, explained below) also rests on a starting state and iteratively
explores the underlying distribution. However, since it does so in multiple parallel chains
at higher temperatures, it will occasionally jump into far-away modes.

multi modal environments, see Figure 1b. However, while these samples are correlated,
the correlations do not exhibit long-range dependencies. Instead, MCMC samplers produce
random-walk (Brownian) noise. Furthermore, distances between subsequent MCMC states
do not resemble Lévy distributions. Importantly, this cannot be alleviated by replacing the
common Gaussian proposal with a heavy-tailed distribution, as the resulting far-ranging
proposals are very unlikely to ever be accepted, since these proposals tend to correspond to
regions of very low probability2.

Other algorithms can produce both long-range autocorrelations and Lévy dis-
tributed distances. We have previously suggested Metropolis-coupled Markov chain Monte
Carlo (MC3), a type of MCMC sampler3. As in MCMC, MC3 is started at a random loca-
tion and sequentially traverses the underlying probability landscape, producing a chain of
locations, that, given enough samples, will be proportional to the true distribution. How-
ever, to allow the sampler to explore far-away areas of the distribution, MC3 maintains
several of these chains, each chain corresponding to an MCMC random walk.

The key idea underlying MC3 is that of annealing Kirkpatrick et al., 1983 – to
2Heavy-tailed proposal distributions in a uniform space do however produce Lévy-distributed distances,

as every proposal is equally likely to be accepted.
3This algorithm is also sometimes called parallel-tempering or replica-exchange MCMC.
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allow the sampler to explore far-away modes each of its parallel chains explores an increas-
ingly flatter version of the underlying distribution by applying different temperatures and
thereby “melting down” modes of the underlying space. MC3 generates chains in parallel
at increasing temperatures and occasionally swaps the states of these chains, therefore al-
lowing the sampler to jump to far-off modes of the distributions. For an example of MC3

samples, see Figure 1c. The resulting posterior distribution is then commonly obtained
from the first chain, for which no temperature is applied. As we have shown previously,
this kind of sampler will sometimes produce long-range jumps, but commonly stay close
to the previous location, thus producing Lévy distributed distances. Furthermore, samples
obtained by MC3 will produce slowly decaying autocorrelations resembling those of human
data. Essentially, MC3 pays the price of 1/f noise in order to generate the Lévy distributed
distances that signify successful jumps between modes.

As, MC3 is a type of MCMC procedure, it can account for the cognitive biases
outlined above, by manipulating its starting point. Furthermore, inferences based on MC3

will be strongly biased when the number of samples is reduced, for example due to the
temporal constraints or cognitive load.

Going beyond individuals to markets

Interestingly, the properties arising in the structure of human behavior, including
Lévy distributed distances and 1/f noise, also can arise in complex real-world tasks. In
particular, many (although not all) financial time series, such as asset prices and currency
exchange rates show these properties. It is therefore interesting to see if MC3 can explain
some of the excess variability seen in these prices. To do so, though, requires finding a bridge
between internal samples (which might be an individual trader’s estimate of the price at
the next time step) and the asset prices. It turns out that, using a classic model from
behavioral finance (De Long et al., 1990), it is possible to map samples (from traders) to
prices in a straightforward way, such that it turns out that prices have the same statistical
properties as the samples themselves4 (Sanborn et al., 2019).

Before doing so, though, we consider the surprising empirical parallels between
cognitive and financial time series. For example, the log price changes of cotton and stocks
traded in the New York Stock Exchange has been modeled as a stochastic process with
Lévy stable non-Gaussian increments (Fama, 1965; Mandelbrot, 1997). This indicates that
large price changes in speculative markets happen far more frequently than a simple random-
walk market would predict. That is, a person trading in a hypothetical random-walk market
would expect a financial crisis of magnitudes greater than four standard deviations to occur
merely once every 126 years. The random-walk assumption cannot, though, be correct, as
that same person trading with a portfolio of the largest 100 UK companies listed in the
London Stock Exchange would have experienced such losses 11 times just between 22 Oct
1987 and 21 Jan 2008, even excluding the 2008 financial crisis (Frain, 2009).

Another well-studied property of financial markets is volatility clustering (Granger
& Ding, 1995; Mandelbrot, 1997). Qualitatively, this describes how large changes are
more likely to be followed by large changes of both positive and negative changes, and

4The mapping between sampled expected future prices and actual future prices is linear, at least in the
simplest case.
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similarly for small changes (Mandelbrot, 1997). That is, markets do not allocate volatile
time periods randomly across economic periods but the volatility of price changes is serially
correlated. The long-range correlations in volatility has also been examined by the power
spectrum analysis, and the absolute value of price changes of the Standard & Poor 500
index measured in one-hour intervals can be characterized as 1/f noise with the power-law
exponent estimated equal to 0.7 (Liu et al., 1999; Mantegna & Stanley, 1997).

The heavy-tailed distributions of price changes and long-range dependence in the
magnitudes of price changes resemble the Lévy distributed distances and 1/f noise that
psychologists have observed in time estimation and animal naming tasks, where people’s
change in hypothesis space is measured (Bousfield & Sedgewick, 1944; Gilden, 1997, 2001).
We have begun to do a more careful parallel analysis of price dynamic and cognitive time
series is much needed in order to establish appropriate analogies and differences between
price changes in the market and hypothesis changes in the mind (Sanborn et al., 2019). Here,
we envision a hypothesis that a large part of variability in price changes can be attributed
to the variability in opinion changes among market participants. As searching behaviours
in mental space of hypotheses can be understood through sampling in a mental space, the
price dynamics could reflect the stochastic behaviour of a sampler searching in a mental
space regarding the future prospects of a commodity, a stock, or a financial portfolio.

Making the sampling algorithm more Bayesian

While sampling algorithms are commonly employed to approximate the answer that
a complex probabilistic model would produce under uncertainty, they themselves are not
Bayesian: the algorithms have no sense of the uncertainty in the answers that they pro-
duce. The algorithms can however be augmented to have probabilistic models over their
outputs and therefore giving the sampling algorithms a way to incorporate uncertainty. In
statistics and machine learning, this has been called Bayesian Monte Carlo (Rasmussen
& Ghahramani, 2003), but for consistency with the above work we term it the Bayesian
sampler.

Although the aforementioned sampling processes can explain a range of biases in
human judgment as the consequence of dependent samples drawn from a large and unevenly
distributed hypothesis space, this does not explain why biases also arise when the hypothesis
space is small and easy to explore, such as outcomes of six-sided dice (Wedell & Moro, 2008).
Human probability judgments in particular tend to exhibit a conservatism bias, in the sense
that people’s probability estimates tend to be less extreme than one would expect (Costello
& Watts, 2014, 2017; Erev et al., 1994; Fiedler, 1991; Hilbert, 2012; Peterson & Beach,
1967). This effect cannot be explained by sampling in itself, but it can be shown that such
conservatism is a natural consequence of reasoning with samples of limited size.

Imagine an urn with an unknown proportion of red and/or blue balls. If we draw
one ball that turns out to be blue, then presumably we would not on that basis alone con-
clude that the urn contained only blue balls. Assuming that we lack any prior information
regarding the proportion of red and blue balls (i.e., assuming a uniform prior distribution),
the optimal Bayesian estimate is that the urn has a proportion of .67 blue balls, that is,
that the probability of drawing a blue ball is .67. More generally, for a prior defined by
the Beta distribution Beta(α, β) the optimal Bayesian probability estimate P̂ based on S
outcomes in a sample of size N is
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P̂ = S + α

N + α+ β
(3)

From this equation, it is easy to see that for any prior distribution where α = β > 0 (i.e.,
any prior that is both symmetric and continuous) a Bayesian estimate must necessarily be
moderated towards the middle of the distribution; even if we observe ten blue balls in a row,
and assuming a uniform prior, the optimal Bayesian estimate of the probability of drawing a
blue ball is approximately .92 rather than 1. Thus, if we presume that people generally make
judgments based on a relatively small number of samples, and there is evidence suggesting
this is the case (Goodman et al., 2008; Mozer et al., 2008; Vul et al., 2014), then, in order
to minimize average error, conservatism is not a bias but a necessity.

This adjustment to the sampled proportions will sometimes result in incoherence
in the sense that estimates for mutually exclusive events will not necessarily sum to one
(De Finetti, 1937), and it has been shown that such adjustments will produce the same
quantitative conservatism biases as have been observed empirically (Zhu et al., 2020). In-
deed, if one assumes that conjunctions require more effort and time to sample than singular
events, in turn resulting in relatively fewer samples, then conjunctions will quite naturally
be subject to greater Bayesian adjustment, producing conjunction fallacies. For example,
sampling the proportions of liberal-seeming persons who are bank tellers is arguably more
straightforward than sampling the proportion of liberal-seeming persons who are both fem-
inists and bank tellers and, as a consequence, the latter proportion is likely to be based on
a smaller sample and therefore subject to greater adjustment.

Efficient accumulation of samples explains perceptual biases

This Bayesian sampler can also be extended to provide potential explanations for
previously observed perceptual biases. When making estimates of perceptual features such
as stimulus motion or numerosity, an initial decision regarding this feature can bias subse-
quent estimates: for example, deciding whether the linear direction of motion of a set of
dots is clockwise or counter-clockwise of some boundary line pushes direct estimates of the
direction of that motion further from the considered boundary compared with estimates
made without such preceding decisions (Jazayeri & Movshon, 2007; Luu & Stocker, 2018;
Zamboni et al., 2016). These results then contrast with the anchoring effects described in
the previous sections: both tasks observe an impact of a decision on subsequent estimates,
but in the cognitive domain, estimates move towards the queried boundary, while in the
perceptual domain, estimates move away from the queried boundary.

While other explanations have been offered for these effects, we suggest that one
explanation could be the reuse of samples between decisions and estimates, known as amor-
tisation (Gershman & Goodman, 2014): learners may draw samples from a sensory repre-
sentation to make their initial decision regarding the boundary, then reuse those samples
in their estimates rather than expending further cognitive resources on additional sam-
pling. This then creates a consistency between the two responses, as both the decision and
estimate are based on the same set of observations, and so will both reflect any pattern
contained in the sample. Simple amortised sampling with a fixed number of samples will
not however produce such repulsion effects as there is no bias in this sample: the samples
taken for a decision and reused for an estimate would be roughly equivalent to those used
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for an estimate alone, leading to no systematic difference between these two cases. There is
however the possibility that the number of samples is not fixed, but adapts to the strength
of evidence collected to that point: if a set of samples provides compelling evidence towards
a particular decision, the cost of further sampling may outweigh any potential gain in in-
formation, encouraging the early termination of sampling. This would then produce a bias
in the sample, as sampling is more likely to stop where a high number of samples favor one
decision: in the direction of motion example, if several successive samples are clockwise of
the decision boundary, we may conclude that the true direction of motion is on this side,
and stop sampling.

This then raises the question of how the threshold for the termination of sampling
is decided. In keeping with the above sections, this could use a Bayesian updating process
in which prior beliefs are updated with each sample to provide a posterior probability
for each potential decision. This then allows for the comparison of the cost of terminating
sampling with the cost of continuing sampling. Thus, the cost of termination is the expected
probability of making an error based on the currently collected evidence, given by the
minimum posterior at that point. The cost of continuation, meanwhile, is the sum of the
inferred costs of the outcomes of future samples, plus a fixed cost for the generation of
the sample itself. As with the probability estimates described above, we assume a Beta
prior across the two potential sampling outcomes, here being the two sides of the decision
boundary. The sampler therefore begins in a position of ambiguity, and updates this belief
with each piece of evidence until the value of further information is outweighed by the cost of
its generation. We term this system the Bayesian Amortised Sequential Sampler, or BASS.
In comparisons with empirical data, we find BASS provides a better match to behaviour than
previously offered candidate models: while other methods are able to predict the decision
bias, BASS also explains the strong consistency between decisions and estimates shown
by real learners, and more closely matches belief distributions collected from participants
regarding their estimates (Zhu et al., 2019).

A question remaining to be answered regarding this process however is how these
samples are drawn, as discussed previously in this chapter; amortisation describes the reuse
of samples in decision making, but makes no assumptions about the mechanism by which
these samples are originally generated. As noted previously, one possibility is direct sam-
pling from the sensory representation; indeed, the results described above were based on
direct sampling, and show that such a mechanism is able to predict previously observed per-
ceptual biases. If however the BASS system were to use a sampler with a sense of location
such as the MCMC algorithm noted in the previous sections, the resulting estimation system
could then capture both these perceptual biases as well as the more traditional anchoring
effects found in the cognitive domain (e.g. Russo and Schoemaker, 1989). Specifically, as
noted above, MCMC can account for anchoring effects under the suggestion that the anchor
provides a starting point for the sampler which, under a limited number of samples, the
chain is unable to move far from (Lieder et al., 2012; Lieder et al., 2018a, 2018b). Combin-
ing an MCMC sampling algorithm with an adaptive stopping rule such as BASS could then
provide a single estimation system able to produce both the attraction and repulsion effects
observed in existing research. Future work may then wish to examine whether both effects
can appear in the same task as a test of such a system, including the potential cross-over
in these effects between the cognitive and perceptual domains.
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Conclusions

In this chapter, we have explored the idea that the brain carries out approximate
probabilistic reasoning through local sampling, rather than through intractable Bayesian
calculations. This approach has many of the virtues of a Bayesian analysis of cognition, be-
cause it explains why the cognitive system will reason successfully, if the number of samples
is sufficiently large. In practice, though, the probability distributions that the brain must
deal with will be enormously complex and cannot possibly be sampled in their entirety. If
the Bayesian sampling perspective is correct, we might hope that the biases observed in
human cognition, including those directly involved the probabilistic estimation, might be
those that would be expected from limited Bayesian sampling, where there will be excessive
influence of the starting point (as in the anchoring effect in probability judgment). More-
over, a concrete sampling account requires choosing a specific sampling algorithm. We have
argued that the characteristic statistics of successive samples (e.g., 1/f autocorrelation be-
tween durations in rhythmic tapping; and a Lévy distribution on the sizes of jumps between
successive durations) provide powerful empirical constraints on the sampling process. We
suggest that a specific sampling algorithm, Metropolis-coupled Markov chain Monte Carlo
(MC3), designed to deal with complex multimodal distributions, may be a good candidate
sampling mechanism, able to capture patterns in both human judgements, and financial
time series, which presumably arise from the aggregation of many judgements. We note
that the brain should not simply read off the relative frequencies from any sample that it
generates. Instead, the correction of such a sample based on prior knowledge is likely to be
appropriate, leading to what appears to be conservatism in some cognitive tasks. Moreover,
given that sampling is likely to be cognitively slow and costly, an intelligent sampler will
actively continue or terminate the sampling process, depending on how results are accumu-
lating. As we have seen, this can lead to estimation biases that push away from a decision
boundary, in some ways yielding the opposite pattern to that observed in anchoring.

From the perspective creating human-like computation, we suggest that sampling
algorithms provide an attractive research direction. Such algorithms provide a mechanism
for approximating complex calculations required to deal with a rich and highly uncertain
world, a challenge as relevant for artificial intelligence as for the human brain. Even for
designers of machine intelligence that only aspire to effectively interact with people rather
than imitate them, samples can be a common framework for collaboration (e.g., Sanborn,
Griffiths, and Shiffrin, 2010). Finally, an interesting commonality in our work is that people
seem to utilise only a handful of samples – far fewer than what is considered the minimum
in statistical applications (e.g., Gelman and Rubin, 1992) – but use them effectively. As
people of course operate effectively in the world despite theses restrictions, this may offer a
broad lesson for designers of machine intelligence that needs to operate in real-time: careful
use of a few samples can provide a rough but effective characterisation of uncertainty.
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