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Abstract

Motivation: The emerging of abundant biological networks, which benefit from the development of
advanced high-throughput techniques, contribute to describing and modeling complex internal interactions
among biological entities such as genes and proteins. Multiple networks provide rich information for
inferring the function of genes or proteins. To extract functional patterns of genes based on multiple
heterogeneous networks, network embedding-based methods, aiming to capture non-linear and low-
dimensional feature representation based on network biology, have recently achieved remarkable
performance in gene function prediction. However, existing methods mainly do not consider the shared
information among different networks during the feature learning process. Thus, we propose a novel
multi-networks embedding-based function prediction method based on semi-supervised autoencoder and
feature convolution neural network, named DeepMNE-CNN, which captures complex topological structures
of multi-networks and takes the correlation among multi-networks into account.
Results: We design a novel semi-supervised autoencoder method to integrate multiple networks and
generate a low-dimensional feature representation. Then we utilize a convolutional neural network based
on the integrated feature embedding to annotate unlabeled gene functions. We test our method on both
yeast and human dataset and compare with four state-of-the-art methods.The results demonstrate the
superior performance of our method over four state-of-the-art algorithms. From the future explorations, we
find that semi-supervised autoencoder based multi-networks integration method and CNN-based feature
learning methods both contribute to the task of function prediction.
Availability: DeepMNE-CNN is freely available at https://github.com/xuehansheng/DeepMNE-CNN
Contact: jiajiepeng@nwpu.edu.cn; shang@nwpu.edu.cn
Supplementary information:

1 Introduction
With the rapid development of high-throughput experimental techniques,
the quality and variety of biological data have experienced an exponential
increase during the past decades. This phenomenon has posed new
challenges for biologists to effectively extract and comprehensively
understand intrinsic relation information cross various data sources. Thus,
many approaches have been proposed to integrate multiple data sources
to improve the effectiveness on many tasks (Zitnik et al., 2018a), such

as protein function prediction (Cozzetto et al., 2013; Wass et al., 2012),
drug-target interaction prediction (Zitnik et al., 2018b) and gene function
prediction (Re and Valentini, 2010).

Accurate annotation of gene function is one of the most important and
challenging problems in biological area. Annotating gene function, also
termed as gene function prediction, aims to assign an unknown gene to
the correct functional category in the annotation database, such as Gene
Ontology. To solve this problem, lots of methods based on different types
of biological data have been proposed, such as amino acid sequence-based
method (Clark and Radivojac, 2011), protein structure-based method (Pal
and Eisenberg, 2005) and gene expression-based method (Huttenhower
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et al., 2006). With the improvement of experimental methods, several
types of association between genes could be obtained, such as gene co-
expression, genetic interaction. The complex associations between genes
are usually represented in terms of gene association networks, such as
gene co-expression network Stuart et al. (2003) and genetic interaction
network Baryshnikova et al. (2013). Generally, each type of network
represents a kind of association between genes. Based on gene association
networks, several gene or protein function prediction methods have been
proposed (Lehtinen et al., 2015; Roded et al., 2007). Recently, network-
based gene function prediction has been ushered into a new era by
integrating multiple networks. Specifically, multi-network-based function
prediction has been proved better than single-network-based methods (Re
and Valentini, 2010; Cozzetto et al., 2013; Wass et al., 2012), because of the
complementary nature of different data sources. Thus, several algorithms
have been proposed for gene function prediction by integrating multiple
biological networks (Cho et al., 2016; Mostafavi et al., 2008; Cao et al.,
2014).

Most of existing multi-networks based gene function prediction
methods mainly contain two components: integrating multiple functional
association networks into a single network and utilizing classification
algorithms (such as support vector machine (Chang and Lin, 2011)) to
label unannotated genes based on the ensemble network.

Several approaches focus on generating an integrated network by
combing information from multiple networks, such as probabilistic
methods, like Bayesian inference (Franceschini et al., 2013; Lee et al.,
2011; Wong et al., 2015), kernel-based methods (Yu et al., 2015) or
weighted averaging or summing (Mostafavi et al., 2008; Lanckriet et al.,
2004; Tsuda et al., 2005). For instance, a weighted-sum method fuses
networks by assigning weights for different individual networks. The
weight of each network relies on its predictiveness of a set of positively
labeled genes that have the same specific function (Lanckriet et al.,
2004; Tsuda et al., 2005). However, these methods prone to overfitting
because some functional categories have only a few annotations (Sara
and Quaid, 2010). GeneMANIA (Sara and Quaid, 2010; Mostafavi et al.,
2008) is a network-based gene function prediction method which solves
a constrained linear regression problem by integrating various networks
into a single kernel, and this method utilizes Gaussian label propagation
on the resulting kernel to annotate unlabeled genes. Similarity Network
Fusion (SNF) (Wang et al., 2014) is a widely used networks integration
method, which constructs gene association network for each available
data source and then efficiently fuses these networks into one integrated
network. The core of SNF is merging multi-networks into a single network
by taking advantages of the complementarity of all networks. However,
these methods may lead to information loss problem in the process of
summarizing multiple networks into a single one (Cho et al., 2016).
In contrast, some methods try to train individual classifiers on different
networks and combine these predictions to a final result using ensemble
learning methods (Yan et al., 2010; Yu et al., 2013; Hansen et al.,
2018; Valentini, 2014). However, these approaches do not consider the
correlations among different networks during the model training process.
In addition, such methods often suffer from time and machine equipment
constraints.

Mashup (Cho et al., 2016) is an integrative and scalable framework for
capturing low-dimensional feature representations of genes from multiple
networks constructed from various data sources. It utilizes a matrix
factorization-based approach on a collection of gene interaction networks
to obtain compact and low-dimensional feature vectors of genes. These
feature vectors can describe the internal and hidden features across all
networks for genes. Then, Mashup trains a support vector machine (SVM)
classifier to calculate functional probabilistic distribution for unannotated
genes based on the obtained low-dimensional feature representations. The
key of Mashup is the feature learning from multi-networks. Node feature

extraction based on multi-networks has been proved useful and effective
on many tasks, including gene function prediction. However, matrix
factorization-based method (e.g. singular value decomposition) used in
Mashup is a linear and shallow approach which would be difficult to capture
complex and highly non-linear structure across all networks.

In addition, Diffusion State Distance (Cao et al., 2014) is a diffusion-
based method that uses random walk with restart to capture the local
topology for each gene. The idea is that genes with similar diffusion
states should have similar function. Collective Matrix Factorization (Zitnik
et al., 2015) is a kind of matrix factorization-based approach, which
jointly factorizes multiple networks to obtain a latent representation of
genes. Similar to Mashup, these feature representations could be used in
the following classification mode. However, these approaches both cause
information loss when summarizing multiple networks into a single one.

Due to information loss within multi-networks integration and
complex non-linear features across multi-networks, it is significant
but challenging to generate feature representations of genes based
on multi-network integration. Learning network topology features and
generating low-dimensional vector representations can be described as
network representation learning or network embedding. Most existing
network embedding methods aims to learn feature representation from
single network, such as node2vec (Grover and Leskovec, 2016),
DeepWalk (Perozzi et al., 2014) and LINE (Zhang et al., 2015). However,
to the best of our knowledge, no existing method is designed for learning
feature representation of genes from multiple networks, although there is
urgent requirement in related area.

During past decades, Deep Learning has been widely used in
image processing (Krizhevsky et al., 2012; Karpathy et al., 2014),
natural language processing (Kim, 2014) and achieved remarkable results.
Recently, researchers have tried to apply deep learning models on the areas
of bioinformatics (S et al., 2016), such as gene ontology annotation (Chicco
et al., 2014), miRNA-disease association (Peng et al., 2018), regulatory
genomics and cellular imaging analysis (Angermueller et al., 2016).
Deep learning can solve the high dimensional feature learning problems
effectively by the non-linear activation function. A few approaches
have been proposed recently to learn non-linear network representations
from complex data sources using autoencoder and convolutional neural
network (Tian et al., 2014; Cao et al., 2016; Zitnik et al., 2018b;
Gligorijevic et al., 2017). AutoEncoder (Rumelhart et al., 1986; Baldi,
2011) is a typical unsupervised deep learning model, which aims to learn
a new encoding representation of input data. Because of its superiority
on dimensionality reduction and feature extraction, autoencoder is
often used on graph clustering (Tian et al., 2014) and medical image
search (Sharma et al., 2016). Convolutional neural network (Krizhevsky
et al., 2012) is a typical feed-forward artificial neural network, which
has been commonly applied on computer vision and natural language
processing (Ronan Collobert, 2008). Besides, CNN is also introduced
in drug discovery (Wallach et al., 2015) and achieved promising results.

Although autoencoder and convolutional neural network have been
proved useful end effective in learning biological network topology
information, none of existing model is designed for multi-network
embedding specifically. In this paper, we propose a novel multi-networks
embedding approach and use it to annotate unlabeled gene function, named
DeepMNE-CNN. DeepMNE-CNN mainly contains two components. One
component is multi-networks integration framework, which applies a novel
semi-supervised autoencoder to map input networks into a low-dimension
and non-linear space based on prior information constraints. The other is
CNN-based function predictor, which use convolutional neural network to
learn feature embedding. Here are the major contributions:

• To incorporate prior information as constraints, we propose a novel
semi-supervised autoencoder model, DeepMNE, to obtain compact
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and non-linear topological feature representations of genes based on
multiple networks.

• We utilize a convolutional neural network (CNN) architecture to
predict gene function based on the feature vectors summarized from
multiple networks.

• The evaluation results show that DeepMNE-CNN outperforms the
existing state-of-the-art methods on the task of gene function
prediction, and multi-networks integration framework implies
promising priority comparing with the others.

2 Methods
DeepMNE-CNN contains two main parts, integrating multi-networks
based on revised autoencoder and predicting gene function using CNN.
Multi-networks integration can be described as a semi-supervised feature
learning algorithm, which considers constraints extracted from other
networks in multi-network embedding. Then, we utilize convolutional
neural network to predict gene function based on the output of DeepMNE.
The workflow of DeepMNE-CNN is shown in Figure 1.

Given k networks that include the same set of nodes V but different
connectivity between nodes, labeled as {G(1),G(2), ...,G(k)}, a specific
network Gi, each network is represented as G(i) = (V,E(i)), where i ∈
{1,2, ...,k}. Let V be a set of n nodes {v1,v2, ...,vn} in a multi-networks
set. Let E be a set if edges between pairs of n-nodes {v1,v2, ...,vn} in
a specific single network. Our aim is to learn a low-dimension feature
representation for each v ∈ V based on the topological information
contained in {G(1),G(2), ...,G(k)}.

2.1 Multiple networks integration framework

In this section, we propose a novel multi-network embedding algorithm,
termed as DeepMNE. The main framework is a DNN structure with
autoencoder (AE) and Semi-Supervised autoencoder (semiAE) as its
building block. The whole process includes three parts: learning single
network topology information, extracting prior constraints and integrating
constraints with semiAE model. The main framework of DeepMNE is
shown in Figure 1.A.

Specifically, the first layer of DeepMNE framework is the original
autoencoder, which is used for feature extraction and dimension reduction.
Starting from the second layer, a revised autoencoder (semiAE) is used for
constraint integration and dimension reduction. The dimension of input
networks decreases constantly with the extension of the whole iteration
model.

Step 1: Learning the global structure of single network based on RWR
It has been proved that random walk with restart (RWR) could capture
global associations between nodes in a network (Cho et al., 2016). Instead
of inputting adjacency matrices into DeepMNE directly, we run RWR
on each network to capture single network topological information and
convert it into feature representations of nodes. The adjacency matrix
only describes the relationships between any directly connected nodes,
ignoring the global structure of a network. RWR can overcome this
drawback, and represent nodes using these high-dimensional network
structural information. Besides, we choose the RWR method instead
of other recently proposed network embedding approaches, such as
node2vec (Grover and Leskovec, 2016) and DeepWalk (Perozzi et al.,
2014), to capture the topological information, because these state-of-
the-art algorithms are computationally intense and require additional
hyper-parameter fitting (Gligorijevic et al., 2017).

Let Mk denote the adjacency matrix of the k−layer network G(k) =

(V,E(k)). The RWR from node vi can be described as the following
recurrence relation.

st+1
i = (1−α)T st

i +αei (1)

where α is the restart probability; ei is a n-dimensional initial feature
vector; st

i is a n-dimensional feature vector of gene i, and each entry
indicates the probability of a gene being visited after t steps in the random
walk; T is the transition probability matrix, and each entry Ti j saves the

probability from gene j to gene vi, which can be calculated as Ti j =
Mk

i j

∑i Mk
i j

.

Based on RWR, we can obtain a matrix S, in which Si j is the relevance score
between node vi and v j defined by RWR-based steady state probabilities.

Step 2: Extracting prior constraints
The idea of constraints comes from semi-supervised clustering. The
pairwise constraints can be typically formatted as must-link and cannot-
link constraints (Basu et al., 2004). The pairwise constraints can be
described as follows: a must-link constraint indicates that these nodes are
highly similar or belong to the same cluster, while a cannot-link constraint
indicates that two points in the pair are highly dissimilar or belong to
different clusters.

In our model, we calculate pearson correlation coefficient (PCC) value
to measure the pairwise similarity between gene nodes. Given two gene
feature vectors A and B, the pcc value of these two genes can be calculated
as:

COR(A,B) =
COV (A,B)

σA ·σB
=

∑
n
1(Ai−A)(Bi−B)√

∑
n
1(Ai−A)2

√
∑

n
1(Bi−B)2

(2)

After calculating pcc value of all pairs of genes, we use two strategies to
extract constraints. One is to calculate and sort pairwise pearson correlation
coefficient (PCC) of all pairs of nodes based on their feature vectors. The
top-k pairs are considered as the must-link constraints and the bottom-k
pairs are considered as the cannot-link constraints. The other is to set two
thresholds for must-link and cannot-link, labeled as f1 and f2 respectively.
In detail, a pairs can be adopted as a must-link constraint if its PCC value
is larger than f1, and a pair is considered as cannot-link constraint if the
PCC value is smaller than f2.

After extracting the constraints from the previous layer (i layer), we
can apply the must-link and cannot-link constraints to the next layer (i+1
layer) as the prior information.

Step 3: Integrating constraints using Semi-supervised AutoEncoder
The key question of DeepMNE is how to integrate prior constraints into
the network representation through autoencoder. We revise the original
autoencoder and propose a novel variant of autoencoder, termed as Semi-
Supervised AutoEncoder (semiAE). Starting from the second layer, the
input includes both low-dimensional representations and constrains from
previous layer. It is noted that constraints from previous layers’ building
blocks are based on different networks. Therefore, constraints may be
conflicting. To solve this problem, we would merge these constraints and
take the intersection of all the constraints as the input of semiAE.

Autoencoder is an unsupervised model which is composed of two
parts, i.e. the encoder and decoder. The encoder operation transforms the
input high-dimensional data into a low-dimensional feature representation,
and a similar "decoder" operation to recover the input data from the
low-dimensional feature vectors. The low-dimensional code is then used
as a compressed representation of the original data. Let xi be the i-
th input vector or node representation of network, and f and g be the
activations of the hidden layer and the output layer respectively. We have
hi = f (Wxi +b) and yi = g(Mhi +d), where Θ = {θ1,θ2}= {W,b,M,d}
are the parameters to be learned, f and g are the non-linear operators
such as the sigmoid function (sigmoid(z) = 1/(1 + exp(−z))) or tanh
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Fig. 1. The structure of DeepMNE-CNN algorithm. This framework mainly contains two parts, multi-networks integration framework (DeepMNE) and CNN-based gene function prediction.
For DeepMNE, we first run random walk with restart (rwr) to learn global structure of networks. Then, constraints extraction and application with semi-supervised autoencoder are iteratively
implemented on DeepMNE framework to integrate multi-networks. After obtaining the integrated representations of multi-networks, we can train convolution neural network based on the
outputs of DeepMNE to annotate gene function categories.

function (tanh(z) = (ez − e−z)/(ez + e−z)). Then the optimization goal
is to minimize the reconstruction error between the original data xi and the
reconstructed data yi from the new representation hi.

argmin
θ∈Θ

n

∑
i=1
‖ yi− xi ‖2 (3)

The original autoencoder cannot model the constraints obtained from
previous layers. We propose semiAE to take these constraints into account.
Let M be a set of must-link pairwise constraints where (xi,x j)∈M implies
the strong association between xi and x j . Let C be a set of cannot-link
pairwise constraints where (xi,x j)∈C implies xi and x j are unrelated. The
number of constraints is much less than the size of the network |M|+ |C| ≤
|S|.

The hypothesis is that xi and x j should also close based on
the low-dimensional space if there is a must-link constraint between
them in previous layer. Ideally, after encoding, two must-link nodes
should be closer, and two cannot-link nodes may be more distant.
Mathematically, let d(h(xi),h(x j)) be the error score (difference) between
xi and x j in the encoded space. For Must-link, d(xi,x j) should be larger
than d(h(xi),h(x j)); for Cannot-link, d(xi,x j) should be smaller than
d(h(xi),h(x j)). If the pair (xi,x j) is a must-link constraint, we add a
penalty on the loss function. Similarity, if the pair (xi,x j) is a cannot-
link constraint, we add a reward on the loss function. The loss function for
modeling constraints is defined as follows:

Lmc = λ1 ∑
(xi ,x j)∈M

d(h(xi),h(x j))−λ2 ∑
(xi ,x j)∈C

d(h(xi),h(x j))

= λ1

n

∑
i, j=1

Mi, j||h(xi),h(x j)||22−λ2

n

∑
i, j=1

Ci, j||h(xi),h(x j)||22
(4)

where matrix M and C are extracted must-link and cannot-link constraint
matrix from previous layer respectively; h(xi) and h(x j) are hidden layer
representation of input gene representations xi and x j; λ1 and λ2 are weight
coefficient, controlling the influence of penalty and reward respectively.

To combine constraints with autoencoder, we propose a novel semi-
supervised autoencoder, which integrates Eq. (3) and Eq. (4) and joint
minimizes the following objective function:

loss = argmin
θ∈Θ

n

∑
i=1
‖ yi− xi ‖2 +λLmc (5)

The first part of Equation 5 measures the squared error between input
and output node features, and the second part measures error score of
constraints in hidden layer.

2.2 Gene Function Prediction with CNN

After obtaining low-dimensional feature representations by DeepMNE,
we train a convolutional neural network (CNN) model to annotate gene
function. The whole structure of CNN-based gene function prediction is
shown in Figure 1.B.

Let E ∈Rn×m×k be the low-dimensional network representation, which
obtain from multi-networks integration framework, DeepMNE. n, m and
k represent the number of genes, the length of gene feature embedding,
and the number of networks respectively. Let xi be the i-th (i ∈ 1,2, ...,m)
feature vector. Each convolution operation in our model involves a filter,
w ∈ Rh×k , which is applied to a window of h features (xi,xi+1, ...,xi+h−1)
to produce a new refeature ci. And we can obtain a refeature map through
convolution operation, C = [c1,c2, ...,cm−h+1]. In our model, we also add
several random feature embedding layers (i.e. 4) based on the original
input integrated feature vectors, which are obtained from DeepMNE, to
eliminate the effect of feature order. Therefore, the refeature map C ∈
Rm−h+1 of convolution operation using single filter can be described as:

C = [c1
1, ...,c

1
m−h+1,c

2
1, ...,c

2
m−h+1, ...,c

t
1, ...,c

t
m−h+1]

ci = f (w � xi:i+h−1 +b)
(6)

where t is the number of random feature embedding layers, b is a bias term
and f is a non-linear function. After convolution operation, ci is passed
through a activation function (i.e. ReLu function f (x) = max(0,x)) that
ignores negative outputs and propagates positive outputs from previous
layer, because a higher ci indicates that this captured refeatures of the
feature combination very well. ReLU activations are used widely in deep
learning model because of its computational efficiency and sparsity (Nair
and Hinton, 2010), thus we also utilize in our CNN-based gene function
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prediction model. Besides, we also add batch normalization (Ioffe and
Szegedy, 2015) layer in our model to accelerate training.

A max-pooling operation over the refeature map C ia utilized
in our model, and we take the maximum value Ĉ = max{C} =

max{c1
1, ...,c

1
m−h+1, ...,c

t
1, ...,c

t
m−h+1} as the refeature corresponding to

this particular filter, which can capture the most important refeature for
each refeature map. Note that we use multiple filters in our model to obtain
multiple refeatures in our model. Finally, these obtained refeatures are
transferred to a fully connected sigmoid layer to obtain the final probability
distribution over multi-labels.

We employed a constraint on l2-norms of the weight vectors on the
penultimate layer (Hinton et al., 2012). Besides, we also adopted dropout
operations to prevent overfitting or co-adaptation of hidden units during
forward-back propagation.

2.3 The DeepMNE-CNN algorithm

The core of DeepMNE algorithm is the semi-supervised autoencoder,
and the goal of this model is to minimize the loss function Eq. (5). In
this part, we will calculate the partial derivative of ∂Lmc

∂W to validate the
aforementioned model. Thus, the loss function of integrating constraints
(Eq. 4) can be rephrased as follows:

Lmc = λ1

n

∑
i, j=1

Mi, j||h(xi),h(x j)||22−λ2

n

∑
i, j=1

Ci, j||h(xi),h(x j)||22

= 2λ1tr(HTLMH)−2λ2tr(HTLCH)

= tr(HT(LM−LC)H)

(7)

where LM = DM −M, DM ∈ Rn×n is a diagonal matrix, DMi, j = ∑ j Mi, j .
And LC is similar as LM . H is the simplified representation of hidden layer.
Thus, ∂Lmc

∂W can be translated as:

∂Lmc

∂W
=

∂Lmc

∂H
�

∂H
∂W

=
∂ tr(HT(LM−LC)H)

∂H
�

∂ f (XW +b)
∂W

(8)

where f is activation function(i.e. sigmoid or ReLU), and we can obtain
the partial derivatives of LMC . Thus, with a random initialization of the
parameters, the proposed semi-supervised autoencoder can be optimized
by using stochastic gradient descent (SGD).

The pseudocode for DeepMNE-CNN is given in Algorithm 1.
In the first phase of DeepMNE algorithm, we run random walk with

restart algorithm to learn global structure of single biological network.
Then, semi-autoencoder is trained to learn low-dimensional feature and
extract prior constraints based on the network representation of hidden
layer. Finally, CNN is employed for gene function prediction.

In the feature learning phase, DeepMNE algorithm uses an iterative
model to train semi-supervised autoencoder with prior constraints.
In each iteration, DeepMNE mainly contains three steps: merging
constraints, training semi-autoencoder and extracting novel constraints.
With the increasing of iterations, the model tends to converge and the
constraints tends to be unchanged. Then, DeepMNE generates several low-
dimensional feature representations of nodes. The DeepMNE algorithm is
a scalable framework model, its training complexity is linear to the number
of vertexes N. The part of extracting constraints need to calculate pair-wise
PCC value which requires O(N2) . Therefore, the training complexity
of DeepMNE algorithm is O((N2 +N)T K), where T is the number of
iteration and K is the number of multiple-networks.

Algorithm 1 The DeepMNE-CNN algorithm

Input: Multi-networks G = {G1,G2, ...,GK} with G(i) = (V,E i), the
number of iteration L, the percentage of constraints P, the number
of random feature embedding layers T , initialization parameters;

Output: Gene function prediction results R;
1: Run Random Walk with Restart on multi-networks G;
2: Train AutoEncoder to obtain novel feature representations of nodes

inG′ and extract initial must-link, cannot-link constraints M, C;
3: for all i ∈ L do
4: for all k ∈ K do
5: M′, C′ = Merge constraints from other networks Mall 6=k , Call 6=k;
6: G′k = Train semi-AutoEncoder with initial parameters on Gk to

optimize Eq. (5);
7: Mk , Ck = Extract must-link and cannot-link constraints based on

G′k;
8: end for
9: end for
10: Random feature embedding layers with T times;
11: Train CNN on the feature embedding sets to annotate unlabeled genes;

return Gene function prediction results R;

3 Results

3.1 Data preparation

To evaluate the performance of multi-networks integration framework
(DeepMNE) and CNN-based gene function prediction, we implemented
our method on Yeast and Human datasets respectively, which collected
from the STRING database v9.1 (Franceschini et al., 2013).

For yeast and human, the same dataset is also used in Mashup (Cho
et al., 2016). Yeast dataset mainly contains six networks with 6,400 gene
nodes. The number of edges among different networks are between 1,1361
and 314,013. The edge weight in these networks varying from 0 to 1, which
present the probability of edge presence. The functional annotations were
downloaded from MIPS (Ruepp et al., 2004). In detail, the functional
categories in MIPS are grouped into three hierarchies, including Level-1,
Level-2, and Level-3. In order to keep the independence among different
categories, we removed categories whose Jaccard index score no less than
0.1 with other categories within the same hierarchy iteratively.

Human dataset also contains six networks with 18,362 genes, while
the number of edges in these networks varying from 3,717 t0 1,544,348.
The functional annotations were downloaded from the Gene Ontology
database (M et al., 2000). By grouping gene ontology terms, we can get
three different functional categories, where each category contains 11-30,
31-100 and 101-300 genes respectively.

3.2 Parameters Setting

We compare our method, DeepMNE-CNN, with two state-of-the-art
algorithms, Mashup (Cho et al., 2016) and SNF (Wang et al., 2014), to
evaluate the performance on the task of annotating gene function. Function
prediction can be treated as a multi-label classification task. Therefore, we
adopt accuracy, micro-averaged F1, micro-averaged AUPRC and micro-
averaged AUROC as the evaluation metrics. We randomly hold out 10%
of the whole labeled genes as the validation set, 10% as the test set and
utilized the remaining 80% as the train set to annotate unlabeled gene
function. We repeatedly ran each method five times and adopt the average
value as the final experimental results.

In the part of DeepMNE, parameters vary with different datasets.
The dimension of each layer on multi-networks integration framework
(DeepMNE) is listed in the supplementary document.

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted January 29, 2019. ; https://doi.org/10.1101/532408doi: bioRxiv preprint 

https://doi.org/10.1101/532408


“main” — 2019/1/29 — page 6 — #6

6 Xue and Peng et al.

Fig. 2. DeepMNE-CNN improves gene function prediction performance in yeast. We
compared the function prediction performance of DeepMNE-CNN to other state-of-the-
art approaches, Mashup and SNF in yeast. Figure represents the three different levels of
functional categories respectively.

In the RWR part of our model, we use the same restart probability
value as Mashup, which is 0.5. The final dimension of network
representation are 500 and 800 respectively. The whole DeepMNE-based
multi-networks integration algorithm is optimized by using stochastic
gradient descent (Bottou, 1991). The batch size is 128 for yeast and 256
for human, the initial learning rate is 0.1 for yeast and 0.2 for human, and
the epochs are 200 and 400 respectively. In the part of CNN-based gene
function prediction, we add a dropout layer and batch normalization layer.
We also employed l2-norms of the weight vectors. Parameters varies from
different mini-datasets. For yeast level-1, the batch size is 64, learning rate
is 0.001, the value of dropout is 0.5 and the epochs is 300. We utilized
Adadelta optimizer to optimize the cnn model. For 31-100 category of
human mf, the batch size is 64, learning rate is 0.01, the value of dropout
is 0.5, the parameter of l2-norms is 0.005 and the epochs is 3000. We also
utilized Adadelta algorithm to optimize the model.

For SNF, we generate an ensemble network and we run singular value
decomposition to learn low-dimensional feature representation, and the
dimension is same with our model.

3.3 Performance evaluation on Yeast datasets

We apply DeepMNE-CNN on three distinct functional categories of yeast
dataset (level 1 with 17 categories, level 2 with 74 categories and level 3
with 154 categories) to validate its performance.

Comparing DeepMNE-CNN algorithm with two other approaches, we
can observe consistent improvement on yeast dataset at all three annotation
levels (see Figure 2). On the level-1 category of yeast dataset, DeepMNE-
CNN labeled around 0.8378 of genes to their correct functional categories,
in contrast to 0.8063 for Mashup and 0.6734 for SNF. Besides, the micro-F1
value of DeepMNE-CNN algorithm is 0.7096, which is sightly higher than
other two methods, 0.6921 and 0.5957 respectively. The micro-average
AUPRC and AUROC achieved by DeepMNE-CNN on level 1 of yeast
are 0.7405 and 0.9100 respectively, which are significantly higher than
the scores of Mashup and SNF. The detailed PRC and ROC figures of
DeepMNE-CNN algorithm implemented on yeast can be found in the
supplementary document.

We also implement DeepMNE-CNN algorithm on each individual
networks without integration and compared these AUPRC values with
integrated network feature embedding on yeast-level-1 dataset (see Figure
3). We observed that our method significantly outperforms Mashup on
single network except for cooccurrence and fusion network. Besides,
we find that integrating multi-networks contributes to improving the

Fig. 3. Integrating multi-networks performs better than individual networks in function
prediction. The red shaded is the performance of DeepMNE-CNN implemented on
integrated networks and the gray shaded is the AUPRC value of each individual network.
The white one is the performance of Mashup.

performance of function prediction, which underscores the importance
of integrating multiple types of data from various sources.

3.4 Performance evaluation on Human datasets

For further evaluation, we also implement DeepMNE-CNN algorithm on
human dataset to evaluate its performance. As described in the previous
section, human covers three domains (BP, CC and MF) and three levels of
functional categories. Thus, we can obtain nine distinct mini datasets and
implement DeepMNE-CNN algorithm on these mini datasets to evaluate
the performance.

Figure 4 shows the significant improvement of DeepMNE-CNN
implemented on human Molecular Function and Cellular Component
dataset. The accuracy of DeepMNE-CNN on human CC-101-300 is
0.5882, which is higher than Mashup and SNF (0.5626 and 0.4121
respectively). On human MF-101-300 mini dataset, DeepMNE-CNN still
achieves the highest accuracy (0.5813) and significantly higher than the
other two methods (Mashup, SNF are 0.5484 and 0.4137 respectively).
The AUPRC values of DeepMNE-CNN implement on three categories of
human MF are 0.5263, 0.3649 and 0.4007, which are all higher than two
other methods (0.5150, 0.3636 and 0.3656 for Mashup, 0.3410, 0.1609
and 0.1748 for SNF). Besides, the AUROC values of DeepMNE-CNN
(0.8280, 0.8488 and 0.8222 respectively) are all significantly higher than
Mashup (0.8135, 0.8147, 0.8154) and SNF (0.7384, 0.7379, 0.7456). The
detailed experimental results of DeepMNE-CNN on Biological Process
(BP) dataset are listed in the supplementary document. ROC and P-R
curves of nine mini datasets are also shown in the supplementary document.

3.5 Effects of DeepMNE-CNN components

The deep learning-based gene function prediction approach proposed on
this paper mainly contains two parts, multi-networks integration algorithm
(DeepMNE) and CNN-based annotation of gene function. In order to
evaluate the performance of this two different parts, we implement a
multi-networks integration framework without constraints sharing, called
MultiAE-CNN, to evaluate the effects of proposed semi-AE. Furthermore,
we implement SVM algorithm based on the integrated results of DeepMNE
to predict gene function instead of CNN, termed as DeepMNE-SVM,
which could evaluate the effectiveness of CNN on the task of annotating
gene function. Besides, we also run Convolutional Neural Network (CNN)
on multiple networks directly to predict gene function, which could
validate the contribution of DeepMNE algorithm. Finally, we compare our
method, DeepMNE-CNN, with these variational approaches to validate the
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Fig. 4. DeepMNE-CNN improves the performance of gene function prediction in Molecular Function and Cellular Component. We compared the function prediciton results of DeepMNE-
CNN with other two state-of-the-art approaches, Mashup and SNF in human dataset. Figure A and B are evaluation results of MF and CC. Figure C displays the roc of 31-101 level of MF
category on human.

Table 1. The Accuracy, micro-F1, AUROC and AUPRC of DeepMNE-CNN,
DeepMNE-SVM, MutiAE-CNN, CNN on gene function prediction on yeast
dataset.

Accuracy F1 AUROC AUPRC

DeepMNE-CNN 0.8378 0.7096 0.9100 0.7405

Yeast DeepMNE-SVM 0.8178 0.7066 0.9041 0.7368

Level-1 MultiAE-CNN 0.8146 0.6901 0.9105 0.7332

CNN 0.8108 0.6854 0.8944 0.7198

DeepMNE-CNN 0.7810 0.6449 0.9331 0.6605

Yeast DeepMNE-SVM 0.7706 0.6437 0.9287 0.6536

Level-2 MultiAE-CNN 0.7549 0.6341 0.9327 0.6479

CNN 0.7572 0.6360 0.9149 0.6281

DeepMNE-CNN 0.7379 0.6165 0.9598 0.6066

Yeast DeepMNE-SVM 0.7209 0.6107 0.9214 0.5965

Level-3 MultiAE-CNN 0.7209 0.5892 0.9520 0.5856

CNN 0.7069 0.5874 0.9317 0.5827

effects of two distinct parts and the experimental results have been listed
in Table 1.

The result shows that two parts of our proposed DeepMNE-CNN
algorithm shows substantial superiority on the task of predicting gene
function. Comparing with Mashup, which mainly contains network
integration and SVM-based gene function prediction, DeepMNE-SVM
indicates great performance in multi-networks integration (DeepMNE
algorithm), where four evaluation indexes of DeepMNE-SVM are all
significantly higher than Mashup. We also can find the superiority of
DeepMNE algorithm by comparing with CNN. Besides, CNN-based gene
function prediction also show great performance on the task of annotation
of gene function by comparing DeepMNE-CNN with DeepMNE-SVM
method. For instance, top prediction based on DeepMNE-SVM correctly
labeled 0.8378 percentage of genes to true function categories on the level 1
of yeast dataset, where DeepMNE-SVM, MultiAE-CNN, CNN are 0.8178,
0.8146, and 0.8108 separately.

The restart probability of RWR and the dimension of embedding are
critical parameters for the whole function prediction model. In order to

Fig. 5. The AUPRC and AUROC score of DeepMNE with different restart probabilities
and numbers of dimensions for function prediction on yeast dataset.

evaluate the effects of these parameters to DeepMNE-CNN, we re-run
our model with different number of restart probability and embedding
dimension respectively. Figure 5. a shows that the AUPRC and AUROC
are stable when varying embedding dimension from 100 to 900. Besides,
the value of restart probability has a few effect on the performance of
DeepMNE-CNN (see Figure 5. b). It is shown that DeepMNE-CNN is
stable and robust, the effect of restart probability and embedding dimension
on DeepMNE-CNN can be ignored.

4 Conclusion
In this paper, we propose a novel multi-network integration algorithm,
termed as DeepMNE, and apply it on gene function prediction using
CNN model. We first extract constraints from various networks and use
the semi-autoencoder to integrate different networks. Then, we utilize
a convolutional neural network to predict gene function based on the
feature vectors learned from DeepMNE framework. To demonstrate the
performance of DeepMNE-CNN, we compare our method with two
state-of-the-art measures. The evaluation on two real-world datasets
demonstrates that DeepMNE-CNN performs better than other existing
state-of-the-art approaches. Furthermore, we test the contribution of each
component of DeepMNE-CNN. Overall, all evaluation tests show that
DeepMNE-CNN implies great performance on multi-networks integration
and function prediction.
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