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Abstract

Genomics has benefited from an explosion in affordable high-throughput technology for whole-genome sequencing. The
regulatory and functional aspects in non-coding regions may be an important contributor to oncogenesis. Whole-genome
tumor-normal paired alignments were used to examine the non-coding regions in five cancer types and two races. Both a
sliding window and a binning strategy were introduced to uncover areas of higher than expected variation for additional
study. We show that the majority of cancer associated mutations in 154 whole-genome sequences covering breast invasive
carcinoma, colon adenocarcinoma, kidney renal papillary cell carcinoma, lung adenocarcinoma and uterine corpus
endometrial carcinoma cancers and two races are found outside of the coding region (4 432 885 in non-gene regions versus
1 412 731 in gene regions). A pan-cancer analysis found significantly mutated windows (292 to 3881 in count) demonstrating
that there are significant numbers of large mutated regions in the non-coding genome. The 59 significantly mutated
windows were found in all studied races and cancers. These offer 16 regions ripe for additional study within 12 different
chromosomes—2, 4, 5, 7, 10, 11, 16, 18, 20, 21 and X. Many of these regions were found in centromeric locations. The X
chromosome had the largest set of universal windows that cluster almost exclusively in Xq11.1—an area linked to
chromosomal instability and oncogenesis. Large consecutive clusters (super windows) were found (19 to 114 in count)
providing further evidence that large mutated regions in the genome are influencing cancer development. We show
remarkable similarity in highly mutated non-coding regions across both cancer and race.
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Introduction
High-throughput genomic sequencing technology has revolu-
tionized biology [1, 2]. In the past, the non-coding region of the
genome had been derided as junk DNA [3] or otherwise ignored
[4]. More recently, regulatory and other functional aspects of
non-coding DNA have been shown [5–9]. An example is the
long non-coding RNA (lncRNA) MALAT-1’s involvement in the
progression of colorectal cancer [10]. Hypermethylation of CpG
islands associated with transcribed and ultra-conserved regions
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of DNA has been associated with various tumor types suggesting
that non-coding RNAs can stabilize at least some subset of
cell regulation [11]. Additional work has also pointed to the
role of lncRNAs in cancer progression [12–17]. This body of
work focused on known functional elements including lncRNAs,
micro RNAs, enhancers and promotors. Other work has looked
at regions beyond the exome but has not been extended to
the whole genome systematically [18]. Examination of the
non-coding region for cancer-associated variation bias could
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Table 1. Final counts of paired samples by cancer and race. Final counts of paired samples broken down by both cancer and race. This table
shows the number of samples examined in the final analysis after excluding outliers and other data that did not pass quality control checks.
Orange bars represent visualizations of the number of relative samples within the same group while red bars represent the total scale of the
cancer type within all samples

highlight currently unknown but functionally relevant DNA
[19]. It stands to reason that at least some variations found
within associated cancer tissue and not in normal adjacent
tissue would be involved in the regulation or oncogenesis of
that cancer.

We introduce a sliding window and binning approach in
order to find windows in non-coding regions that are associated
with five different cancer types. Due to the large amount of
data found in the non-coding region of the genome, a window
approach decreases the degrees of freedom of single nucleotide
variation (SNV) analysis. Windows of interest in the genome are
defined as 10k bases outside of the coding region with higher
than expected mutations. We hypothesis that these windows,
particularly universally occurring ones, provide an interesting
opportunity for study. Further, we hypothesis that there are
larger regions of these significantly mutated windows that can
have a structural impact in oncogenesis or regulation.

Material and methods
Sample selection

For this study, a subsample of 154 samples were chosen for
analysis over five different cancer types from The Cancer
Genome Atlas (TCGA) whole-genome sequencing (WGS) tumor-
normal paired data. Samples were chosen by filtering available
data by both race and cancer. Five cancers were chosen: lung
adenocarcinoma (LUAD), breast invasive carcinoma (BRCA),
kidney renal papillary cell carcinoma (KIRP), uterine corpus
endometrial carcinoma (UCEC) and colon adenocarcinoma
(COAD). These specific cancers were chosen for several reasons.
First, computational limitations required us to select a sample
set smaller than the full scope of the data available. Second,
lung, breast and colorectal are consistently ranked high in
new cases. Third, we wanted a range in coverage within our
data set—shown by fairly low sequencing coverage in COAD
samples to much higher sequencing coverage in LUAD and
BRCA samples in TCGA. Fourth, we needed cancer types that had
enough white and African American samples in order to analyze,
and this limited us significantly (Supplementary Table S1). See
Supplementary Figure S1 for summary statistics on the raw data
and Supplementary Table S1 for available samples in TCGA by
race and cancer. (Additionally, there were roughly 20 samples
additionally included in the study which had already had the
variant call pipeline run for them from additional research. Since
they were spread out among the five cancers and there was not
identical numbers for each group, these were included them in
the sample set for additional power in the analysis. They are
included in the counts listed.) These samples were downloaded
through dbGaP access in Google Cloud in collaboration with
the Institute for Systems Biology, one of the projects making

this type of data available to researchers in a cloud setting
which provides a BigQuery table to retrieve access locations
of specific data [20]. The exact TCGA IDs used are included in
Supplementary Table S2.

Target samples sizes were determined by using the power
formula:

n =
(

Zσ

E

)2

Where Z represents a 95% confidence interval (1.96), σ was
estimated by taking the standard deviation of TCGA VarScan
samples somatic mutation counts in the TCGA data portal
(∼1212) [21] and setting the margin of error for raw count of
cancer-associated SNVs to 200 since there was an expectation
of sequencing artifacts in the pipeline. This formula can be
used to estimate the power for a study with an estimate of the
mean (average SNVs expected) of a continuous variable (number
of SNVs can be thought of as continuous). The calculation
result is that ∼141 samples are needed to meet the goals of
the study. The 154 final samples were used to hedge against
some needed to be discarded for quality control purposes out
of 161 targeted, exceeding the 141 predicted samples to give the
study enough power. See Table 1 for final counts used in this
study.

Variant calling

The SNV data set was then constructed from these samples. The
alignment procedure from raw sequence data to BAM files was
done by the TCGA network and is presented online [22]. Variant
calling on normal-tumor pairs was then done through the TCGA
VarScan2 pipeline performed in the Google Cloud Platform with
custom scripts, see Figure 1.

BioCompute Object

BioCompute is a standardized format for the documentation
of computational analyses. A computational workflow captured
in this format is called a BioCompute Object (BCO). A BCO
can be leveraged by the scientific community in lieu of tra-
ditional documentation as it captures the history and execu-
tion environment of the analysis, including any dependencies
and prerequisites. A BCO therefore serves as documentation
of provenance, substantially improves reproducibility and sup-
ports the generation of novel pipelines from existing workflows.
More information on the BioCompute framework can be found
online [23].

A BioCompute Object of the workflow developed in this paper
is provided online [24].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
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Figure 1. Variant calling pipeline from within Google Cloud. (A) Flowchart of the pipeline structure built in Google Cloud Engine. This required access to the TCGA data

set hosted there as well as construction of a queuing system main node (Slurm was chosen), a variable series of computational nodes, a datastore to hold output data,

an analytics database to track computations and a basic visualization system (web page) to inspect computation progress. Compute nodes were created using a custom

Ubuntu image with appropriate bioinformatics and queuing software installed and configured. (B) Flowchart of the internal working on a single computational node.

The main node submits a sample request to the computational node which then is able to parallelize the computation by splitting the BAM file and running the variant

calling pipeline (panel C) in parallel. Information is saved to the analytics database, and output data is moved to the datastore. (C) Full pipeline for variant calling. This

follows the canonical TCGA variant calling pipeline using VarScan as well as some custom metadata extraction and storage. (D) Pipeline of Manhattan plot generation

pipeline for quality control metrics. Variant output files are downloaded from the datastore, file size is checked for quality control purposes, high confidence VCF files

are extracted and indexed with tabix software. Variant calls per 10 000 base window are counted and used as the locations for plotting purposes and the counts are

used as the y axis. Output data is arranged in the appropriate form and generated into Manhattan plots using R software.

Window generation

High confidence somatic SNV files were extracted and then
indexed with the tabix [25] program. Windows were generated
for each sample, as well as for pooled samples by cancer and
race. The windows were 10 000 in base size to facilitate possi-
ble polymerase chain reaction (PCR) validation (email commu-
nications ThermoFisher Scientific). Pysam [26], pyvcf [27] and
bespoke software were used to automate window calculations
across all samples.

Windows were then plotted using a modified Manhattan plot.
The x axis corresponded to the window by location and the y
axis corresponded to the number of variations found within that
window area. This was chosen in order to quickly visualize areas
of the genome where there are significant clusters of variations.
This quality control check was performed on each sample to look
for inconsistencies due to failed computations. Visualizations
are shown in Supplementary Figure S2.

Consensus coding region and gene masking

In addition to generating the above for the raw whole-genome
output, consensus coding sequence regions were masked in
order to focus on the non-coding region. These were chosen in
order to focus on the non-coding region in line with the goals

of this study. The CCDS track was used in the Genome Browser
[28, 29] where the coding exons option was selected for the full
genome. This output browser extensible data (BED) file was used
with the bamstats [30, 31] tool to remove consensus CDS regions
from the variant calling output from the WGS for samples in this
study. Additionally, whole gene (Genome Browser, CCDS track,
whole gene option) masking was also generated. These masking
regions were more expansive than the CDS regions and included
flanking gene features (5′ UTR, 3′ UTR, etc.) and introns.

Window hot spots

Next, the areas where there are ‘hot spots’ were examined.
Hot spots are defined as 10k base regions where there were
more variants found than were expected. The assumption for
expected variations was that they would be found dispersed
evenly throughout the genome in the non-coding region. This
assumes that each part of the genome contributes to cellular
function and regulation. Regions where there were significantly
more variations than expected were extracted. Each pooled can-
cer/race pair was also examined in order to generate lists of
highly mutated regions found across these grouped samples in
a pan-cancer analysis.

In addition to raw values of counts (which lead to a bias for
samples with extremely high coverage), a relative score for each



4 Torcivia and Mazumder

window was calculated. The study employed a normalization
strategy to weight the ‘value’ of a variant.

The normalization strategy used was:

S = Ws(
Ts
Wn

)

Where Ws is the number of SNVs in the current window,
Ts is the total number of SNVs in the sample, and Wn is the
total number of non-zero windows (windows that have at least
one SNV). This analysis was run on individual sample levels for
comparison purposes and then run on pooled sample levels for
pan-cancer analysis.

Calculations of total variants in a sample were done with
the bcftools [32] stats. The normalized top 20 windows were
calculated for all results, all results by race and each cancer type
by race.

Highly significant windows

Highly mutated regions found associated with race-specific can-
cer types were examined by looking at the pooled variants across
each cancer. P-values were calculated for each window based
on expected distribution of cancer-associated SNVs across the
genome. The null hypothesis was that SNVs would be distributed
equally throughout the genome. Regions where they cluster lead
us to reject that hypothesis. P-values are shown as adjusted with
the Bonferroni multiple testing correction.

Significance was calculated using the methodology described
in [33] and in other work such as [34, 35]. This was based off
of the statistics approach used in protein analysis through evo-
lutionary relationships (PANTHER) pathway [36]. The P-values
calculated represent the amount of deviance between a global
ratio and an observed ratio in SNV counts and location. The
calculation of the expected number of SNVs within a window
region is shown below:

pnuc = nsnp

G

Calculating the expected variants is as follows:

nexp = pnuc × Wsize

Combining the previous two equations:

nexp = Wsize × nsnp

G

The probability of seeing a variation at a nucleotide site (pnuc)
was calculated by the total number of SNVs isolated and related
to the cancer type (nsnp), divided by the size of the genome (G).
The number of expected variants in a window (nexp) was calcu-
lated by taking the probably expected at a single position and
multiplying it by the window size (Wsize). The expected number
of sites, along with the observed number of sites, nobs, was then
used to calculate the P-value through the binomial statistic:

Pvalue =
∑(

N
nobs

)
× pnuc

nobs × (
1 − pnuc

)N−nobs

P-value scores that are shown as 0 are P-value << 10−50.
Highly mutated windows (adjusted P-values < 0.05) were pooled
across all cancers and races.

Super windows

Regions where there were many windows over a short stretch of
genome suggest that there may be 3D structural changes that
have occurred. Isolating these stretches gives researchers the
ability to narrow down on how chromosomes arrange them-
selves in the genome to understand better the regulatory effects
of mutations there with respect to oncogenesis.

Significant windows were examined in aggregate for each
gene-masked pooled sample (each race and cancer type). Gene-
masked samples were chosen to remove coding and gene pro-
duction regions in order to focus analysis on the non-coding
portion of the DNA. All sets of windows in regions with no more
than nine window gaps between them were brought together
into a ‘super window’. This gave a size that is in line with an
expansive view of a centimorgan as a unit of distance where the
chromosomal crossover rate is around 0.01.

Results and discussion
Summary

The 154 variant call data sets were generated and examined out
of approximately 2500 entries in TCGA. Entries in TCGA varied
somewhat (see Supplementary Table S3) so this analysis was
restricted to the pool of normal-tumor paired samples. Within
that large data set, 154 samples were selected. Within those
samples, 5 845 616 total cancer associated SNVs were identified
across the whole genome for an average of about 37 958 SNVs
per sample with a range of as low as 236 cancer-associated SNVs
to as high as 484 464 cancer associated SNVs and a standard
deviation of approximately 55 612. This suggests a wide range of
sample preparation and read depth decisions particular for each
experiment, as expected. When excluding the CDS, 5 821 577
cancer-associated SNVs were found with a minimum and max-
imum of 235 to 484 077 respectfully and a standard deviation
of about 55 446. Lastly, when excluding consensus gene regions
(including up- and downstream elements), a total of 4 432 885
cancer-associated SNVs ranging from 212 to 442 995 with a
standard deviation of about 45 274 were found. The majority of
cancer-associated SNVs fell outside of the coding region of the
genome.

Manhattan style plots in Supplementary Figure S2 show evi-
dence that there are larger regions with multiple proximate win-
dows with high levels of SNVs. This suggests that these highly
mutated areas are cancer associated since that is not expected
that by chance [37–39]. These larger windows might represent
larger regulatory structures such as three-dimensional position-
ing or other elements. Three-dimensional structural changes
have been implicated in the cancer genome [40–43]. Cancer-
specific three-dimensional structures have been found [44] and
are potentially an important.

Window hotspots

SNV counts for a window were normalized and then calculated
as described in the Methods section. Supplementary Tables S4
and S5 show three different analysis—raw high confident vari-
ant calls; high confident variant calls with CDS regions filtered
out and high confidence variant calls with full gene regions
filtered out for both analyzed races. Additionally, heat maps

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
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Figure 2. Visualization of each sample w/ normalized counts when whole gene structure is masked: heat map of individual samples’ windows. SNVs within gene

regions are masked and therefore removed from this analysis to focus on the non-coding region. SNV density of each window is shown in the color histogram key

as normalized counts (normalized as described in the Methods section). Samples (X legend, right) are sorted by cancer type (Y legend, left) and clustered based on

chromosome position (X legend, bottom) and chromosome (X legend, top). Dendrogram is based off of similarity of regions that are clustered (top). There is noticeable

similarity on specific chromosome windows with high levels of SNV density across BRCA, LUAD and UCEC cancers. COAD and KIRP appear to have different footprints

in this sample set versus the other cancers and each other. Clustering among this dimension (not shown) did not reveal any obvious pattern, however. Groups of

windows with high levels of SNV density also cluster within each cancer group separately. This is the dimension clustered with the dendrogram and shows segments

(specifically on the Y chromosome represented by the pink color in the top axis) where groups of windows with high density SNV counts appear across many if not all

of the samples inter-cancer group. The Y chromosome group within KIRP has exceptionally consistent high SNV density that falls on a single chromosome suggesting

an active and localized region of onco-related activity.

for individual samples clustered by cancer type and chromo-
some are given. Figure 2 shows the heat map of individual sam-
ple’s windows with gene structures masked while raw and CDS
regions masked are shown in Supplementary Figure S3 and S4,
respectively.

Looking at the heat map of individual samples, the most
notable takeaway is a cluster of high variant windows clustered
together in KIRP patients in the Y chromosome. This intrigu-
ing result deserves closer inspection in future study especially
considering the (maybe controversial) role that the loss of Y
chromosome has played in renal tumor classification [45].

Highly significant windows
A pan-cancer analysis was then done with variant data col-
lected in this study. Normalized results for cancers pooled at
the variant level and number of variants found in dbSNP are
shown in Supplementary Table S6. Variant data among individ-
uals with the same cancer designation and race were pooled

into 10 comprehensive variant sets. These are grouped by cancer
type and race pair—for full results, CDS masked and gene-
masked—and are provided as Supplementary Table S4 and S5
(African American and White, respectively). The pooled data
sets were then used to generate highly mutated windows of
10k bases. Counts of significantly mutated windows are show
in Supplementary Table S7.

Universal highly significant windows. Within the data set, we
found some windows that are found universally. There were 59
total 10k base windows that were found significantly mutated
in all 10 race and cancer combinations (Figure 3, panel A). The
windows were found in 12 different chromosomes—2, 4, 5, 7, 10,
11, 16, 18, 20, 21 and X. Visual representation is condensed due to
the proximity of many of these windows to each other. A list of
windows found across all cancers is in Supplementary Table S8.
Figure 3, panel B shows a single chromosome—X—with 11 win-
dows that cluster almost exclusively in Xq11.1, where the chro-
mosome is divided by the centromere.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
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Figure 3. Significantly mutated 10k base regions found in all race-cancer groupings. (A) visualization of significantly mutated 10k base regions throughout the genome.

Chromosomes sizes are proportional to nucleotide length and shown in a circular plot with nucleotide position labels. Each orange bar marks a set of one or more

significantly mutated 10k region (P < 0.05) that was found in all 10 cancer and race combinations in the location as labeled. Purple circles represent the average level

of variant counts found in those marked regions and are proportional by size (as per the legend in the center of the diagram). Because of overlap, only the largest

average in overlapping regions is visible (if a single orange line is representing five in close proximity, significantly mutated 10k regions, only the largest average variant

count will be visible at the genome level). These regions exclude gene defined regions and are inclusive of significantly mutated 10k base regions that were found

in all cancer and races. A total of 59 windows are shown, although many are clustered around each creating 16 distinct regions from a high-level view. (B) Zoomed

in visualization of chromosome X, highlighting the additional windows found that are collapsed on the full genome visualization. Chromosome is shown in circular

notation with significantly mutated 10k regions (P < 0.05) that were found across all 10 cancer and race combinations. This visualization shows that the 11 regions

found highly mutated in Chromosome X are clustered into two proximate regions around base 60 000 000. (C) Number of 10k base regions found across all cancers and

races with counts per chromosome (only chromosomes with at least one 10k window are shown). Chromosome X had the largest count although 12 chromosomes

were represented. (D) Table view of the number of universal windows found for each chromosome.

In many of the chromosomes, we found that universal win-
dows are either in the centromeric region or just outside of
it. Other researchers have found that genetic instability can
be associated with cancer, specific colorectal cancer [46, 47].
These have been mostly associated with gain or loss of whole
chromosomes or regions of chromosomes [48]. Large scale muta-
tion could also contribute to genetic instability in the same
way that loss or rearrangement does. As shown with chromo-
some X, centromere instability could contribute to oncogenesis.

Other research has found links between cancer and centromere-
related proteins [49–53], centromere copy number variations [54]
and chromosome instability [55, 56]. With this in mind, regions
of these highly impacted chromosomes offer ample opportunity
for study.

Due to their universal appearance, these regions are the
strongest candidates for research to see if they are drivers
in cancer. Chromosomes 4, 11, 16 and X show the highest
numbers of highly mutated window counts across all groups
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as shown in Figure 3, panels C and D. We also show in
Supplementary Table S8 that these regions are found more
often than expected using a binomial test. This is true in 11
different chromosomes after adjusting for multiple testing, with
the exception being chromosome 18.

Additionally, Figure 4 shows a more detailed breakdown of
the regions that the highly mutated windows reside in. Shown
are the affected chromosomes. Each cluster of windows is shown
in a zoomed-in window of the region in the associated boxes. P-
value indicators are by each chromosome label for whether or
not the universal windows in that chromosome were found in
centromere regions more often than expected using a binomial
test.

Conservation of the universal windows was also looked
at in Supplementary Figure S5. The phyloP46Way data set
was retrieved from http://hgdownload.cse.ucsc.edu/goldenPa
th/hg19/phyloP46way/primates/ for primates and the uni-
versal windows individual bases were annotated with it.
Supplementary Table S9 includes the scores by individual
positions. A number of the universal windows are shown
to have positive phyloP scores that suggest slower evolution
than expected. This conservation is indicative of these regions
having some function that could be related to oncogenesis.
Conservation in these regions track with the hypothesis that
these highly mutated regions found in cancer have some type
of structural or otherwise functional impact on the cell. Many of
the universal windows lack overlap with conserved regions and
suggest that there may be different methods of impact that these
windows have on oncogenesis. It is possible that the mechanism
of action varies by window and this analysis helps to categorize
some of these windows for further study.

Validation

Although the non-coding region is understudied, we were
able to validate the results by examining the 59 universally
found windows. Given that these regions are highly mutated
with cancer associated variants, we believe that at least some
of them should show known cancer variations. To examine
this, we compared against the COSMIC database’s non-coding
variants [57]. We found a majority—31—of the universal
windows carried multiple known cancer-associated variants
(Supplementary Table S10).

In addition, we examined the regions individually and found
supporting evidence for many of them. Windows in 2q21 have
been linked to oxyphilic tumors, specifically through loss of
heterozygosity [58] and in non-medullary thyroid carcinoma [59].
3p12.3 also has reported loss of heterozygosity (LOH) associated
with lung and other malignancies [60]. 3p11 and 3p12 regions
have multiple genetic pathways that are known to amplify vari-
ous tumors through increased expression of VGLL3 and CHMP2B
[61]. 4q35.2 analysis has shown long range interactions related to
disease [62] and the region has shown hypersensitivity to DNase
I [63]. This region has also been linked to acute myeloid leukemia
[64]. 7p11.2 has features that have been found in numerous
cancers [65]. There are also breakpoint enriched differentially
methylated regions directly upstream of EGFR and HIPI [66].
11p11.12 has been shown to be linked to esophageal squamous
cell carcinoma [67] and linkage in the region was shown for fami-
lies suffering from primary renal cell carcinoma [68]. This survey
of known associations related to these windows provides an
additional validation that the technique used can be successful
in narrowing down regions of interest.

Finally, we examined whether or not the clinical outcome
could be predicted with either the number of universal win-
dows found in a particular sample or the total cancer-associated
variants found within these windows. The clinical outcome
chosen was vital status that is coded as either 0 (deceased) or
1 (alive). A logistic regression was run to test their correlation
with controlling for cancer type. The results can be found in
Supplementary Table S11. The number of variants in these win-
dows does not appear to have predictive power, but the number
of universal windows an individual has mutated might. This
validation provides additional evidence that the sliding window
method can help determine non-coding hot-spots in cancer.

Super windows

Gene-masked super windows with an overrepresentation of
SNVs were generated. This information gives some indication of
highly impacted regions at a higher level than the window level.
Figure 5 shows the overlay between the two races examined for
each cancer type with Giemsa staining regions highlighted while
Supplementary Table S12 shows the counts for each race broken
down by cancer type.

When looking at the visualizations in Figure 5, there is
remarkable overlap of regions between the two races both
within cancer and across all cancers. There are some notable
differences that offer opportunity for further study since it
has been observed that race-related mutational differences can
have clinical implications [69, 70]. It is also possible that some
of these results are related to data irregularities. For example,
there is a region towards the beginning of chromosome 1 that
is found in both African American and White pooled samples
in BRCA, KIRP and UCEC. In COAD, it is only in the African
American pooled sample while in LUAD, it is only found in the
White sample. Given the regularity across the other samples,
this may be a data issue in both COAD and LUAD. However,
chromosome Y shows regions that appear similar as well as
ones that are not consistent across the various cancers. This
is particularly noticeable in the super window region in KIRP
for this chromosome, matching the individual sample analysis
above where Y chromosome windows were clustered together
in these patients.

Conclusion
We generated a large variant pool of high confidence cancer-
associated single nucleotide variations for analysis genome
wide, excluding CDS regions, and finally excluding entire gene
regions. This data was shared with the Institute for Systems
Biology and is accessible to dbGaP authenticated researchers
on their cancer cloud installation. Our focus was on the non-
coding region of the genome. This analysis was run on a
cluster of computers on Google Cloud Engine in association
with the NIH Cancer Cloud Pilot. We found that there is a wide
variety of variants over individual samples likely due to both
differences in read depth and sample preparation since the
samples themselves were prepared in a number of partner labs.
We also found that the vast majority of the cancer-associated
mutations fell outside of the gene coding regions suggesting
a widely understudied plethora of genetic variation in cancer
samples.

Windows throughout the genome of size 10 000 bases were
generated and then analyzed for overrepresentation of varia-
tions. We found that within KIRP there are a number of highly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way/primates/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way/primates/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa203#supplementary-data
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Figure 4. Universal window locations with normalized variant counts. Universal windows are shown across the affected chromosomes here. Giemsa staining regions

are also shown, including red regions representing the centromeric regions. Sections of super windows are drawn out for each chromosome. For each of the zoomed

in regions, the individual super windows are shown (they are typically clustered, with a few exceptions) with the individual super windows height representing the

variation level. These are drawn proportionally across all chromosomes, even though the zoomed region is of different base length size in a few of the illustrations. As

shown, many of the super windows across the genome (a strong majority) fall within the centromeric regions or are proximate to them.

mutated windows in the Y chromosome that were consistent
across samples. Pooling together the variants into a pan-cancer
analysis allowed us to further look at the mutation profile from
a higher level than the sample level. Significant windows that
were found universally in all cancers and races are predomi-
nantly clustered near the centromeric regions on about half of
human chromosomes suggesting that centromere stability may
have a role in cell dis-regulation. Many of the same super regions

(regions of high numbers of significantly varied windows) are in
similar locations between both races and even between cancer
types—with some notable exceptions.

Together, these results suggest that the non-coding region
of the genome offers rich opportunity for discovery of different
pathways that contribute to oncogenesis due to its complex dis-
ease status. They also suggest that cancer-associated mutations
are mostly indistinguishable between African Americans and
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Figure 5. Overlaps of super windows between race for each cancer type for gene-masked results. Display of super windows overlap between races for each cancer type.

Red represents African American super windows while blue represents White super windows. Super windows are defined as regions where there were statistically

significant levels of mutations for stretches of 10k base windows within 10 windows of each other with a minimum of four windows in a stretch. Chromosomes are

shown with Giemsa staining regions highlighted. This shows heterochromatic regions staining more darkly depending on how condensed and AT rich they are. These

regions are typically gene poor. Gene rich euchromatin regions, on the other hand, are stained lightly or not at all. These regions are typically more transcriptionally

active and often associated with the gene coding regions of the genome. Since gene regions have been masked in the super window regions, we anticipate a higher

proportion of windows in the stained regions—which is what is seen. The red coloring specifically shows the centromeric regions (for illustration, this does not map to

the staining results). There are notable visual similarities in where these highly mutated regions fall, not only within both races for many of them, but even between

cancer types themselves suggesting some common areas of structural mutation related to oncogenesis.

White Americans with some possible exceptions that could lead
to exciting discoveries in personalized medicine.

Key Points
• A sliding window analysis done of whole-genome

sequences showed that large numbers of 10k base pair
windows in the non-coding regions of the genome
exhibit highly significant mutations in differen
t cancers.

• The 59 of these windows were found universally
across all cancers and races examined in this study
and were found to cluster in general around the cen-
tromeric region.

• The use of this technique shows an approach that
can help understand large amounts of genomics data,
such as that found in the non-coding region of the
genome.
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Availability

The data sets generated and/or analyzed during the current
study are not publicly available due restricted access to
whole-genome TCGA data but are available from the corre-
sponding author on reasonable request. The variant call data
has been ingested by the Institute for Systems Biology to
be made available for authorized researchers both through
BigQuery and as raw VCF files.
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Supplementary data mentioned in the text are available to
subscribers in BRIBIO online.
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