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Abstract 

Identifying drug-target interactions (DTIs) is an important step for drug discovery 
and drug repositioning. To reduce heavily experiment cost, booming machine learning 
has been applied to this field and developed many computational methods, especially 
binary classification methods. However, there is still much room for improvement in 
the performance of current methods. Multi-label learning can reduce difficulties faced 
by binary classification learning with high predictive performance, and has not been 
explored extensively. The key challenge it faces is the exponential-sized output space, 
and considering label correlations can help it. Thus, we facilitate the multi-label 
classification by introducing community detection methods for DTIs prediction, 
named DTI-MLCD. On the other hand, we updated the gold standard data set 
proposed in 2008 and still in use today. The proposed DTI-MLCD is performed on the 
gold standard data set before and after the update, and shows the superiority than 
other classical machine learning methods and other benchmark proposed methods, 
which confirms the efficiency of it. The data and code for this study can be found at 
https://github.com/a96123155/DTI-MLCD. 
Keywords: Drug-target interaction, dataset updating, multi-label learning, label 
correlation, community detection 
 
1. Introduction 

For drug development, drug discovery (i.e. finding potential new drugs) and drug 
repositioning (i.e. obtaining old drugs with new efficacy) are two important strategies 
with heavy cost [2], and an important step to achieve them is predicting DTIs. In 
recent years, many studies have applied the popular machine learning technology to 
realize intelligent medical treatment, which has accelerated the process of drug 
development to a certain extent. For DTIs prediction, the use of machine learning 
techniques can not only reduce the experimental scope of experimental research but 
also play a guiding role in experimental research. 

There are many review articles [3-7] summarizing the progress of machine 
learning methods in the field of DTIs prediction in recent years, and the binary 
classification method is an important branch. For the binary classification method 
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[8-41], drug-target pairs and interactions are treated as samples and labels, 
respectively. It describes the drug-target pair by encoding drugs and targets as the 
feature vector, then, predicts DTIs by building a binary classifier. In addition to the 
binary classification methods, there are network inference methods [42-55], matrix 
factorization methods [56-63], kernel-based methods [64-68], restricted Boltzmann 
machine method [69], collaborative filtering method [70], clustering method [71], 
label propagation method [72], etc. It is worth noting that many of these other 
methods can be attributed to the binary classification method in a sense. For example, 
the network inference method regards the DTIs prediction problem as the bipartite 
network inference problem, and infers missing edges to achieve DTIs prediction. If 
the missing edges are regarded as negative samples and the existing edges are 
regarded as positive samples, it is converted into a binary classification problem. 

For the binary classification method, it requires the participation of positive and 
negative samples, so unknown DTIs are often treated as negative samples. This 
negative sample construction strategy will not only introduce noise but also cause data 
imbalance as a large number of negative samples. Besides, it is also faced with 
excessive computational load and overfitting due to the redundant feature space and 
extremely high feature dimensions. For example, 10 drugs and 10 targets will be 
combined into 10 × 10 = 100 samples, and the same drug or target in different 
samples has the same feature vector, that is, the feature vector of each drug or target 
will appear 10 times in the feature space of 100 samples. To reduce the above 
difficulties, the application of multi-label learning to DTI prediction problems is 
worth exploring. The multi-label classification problem trains a model that maps the 
input feature vector to more than one label. Transform the above binary classification 
example into a multi-label classification problem, described as: 10 drugs (or targets) as 
samples, and 10 targets (or drugs) as labels. The input feature is only a description of 10 
drugs (or targets). Then use the multi-label learning algorithm to predict drug targets (or 
drugs that can interact with the specific target). Obviously, unlike the binary 
classification problem, it only requires information about the drug (or target) to predict 
a series of DTIs. The experiments in this study prove that its performance is very 
competitive with the binary classification problem, and its speed is much higher than 
that of the binary classification method, especially for large data sets. Until now, there 
are few applications and a lot of space for exploring multi-label learning applied in 
the DTIs prediction problem. DrugE-Rank [73] is a method using the “Learning To 
Rank” paradigm to model the DTIs prediction problem as a multi-label task. A study 
[74] uses multi-task deep neural networks for drug targets prediction, and firstly uses 
extended connectivity fingerprints with radius 12 as drug representation. Moreover, to 
overcome the training difficulties caused by too many labels in multi-label learning, 
Pliakos et al. [75] proposed three multi-label learning methods for DTI prediction, 
which use k-means for label division.  

On the other hand, the gold standard data set currently used in the field of DTIs 
prediction is the data set collected by Yamanishi in 2008 [76], named Yamnishi_08. 
After 12 years, a large number of new DTIs have been discovered, but they were not 
considered. As we all know, positive samples (i.e. DTIs) are essential for method 
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construction. The missing of positive samples not only introduces error in the 
modeling process, but also hides a great risk of false negatives during the model 
evaluation, making the unknown bias between research results and the actual results. 
For this point, Keum and Nam [11] updated these datasets among the original drugs 
and targets. However, in reality, it cannot be limited to the original drugs and targets, 
and the DTI between new drugs and targets should also be considered. 

This study updates the gold standard data set of drugs, targets, and DTIs. In 
addition, we proposed the multi-label learning with community detection method for 
DTIs prediction (DTI-MLCD) and tested it on four original and updated gold standard 
data sets. The proposed DTI-MLCD first uses the community detection algorithm to 
divide the target space into multiple subspaces, then applies multi-label learning on 
each subspace, and finally performs DTIs prediction. Comparison with traditional 
machine learning methods and other benchmark DTIs prediction methods confirms 
the effectiveness of the proposed DTI-MLCD method. 
 
2. Material and Methods 
2.1. Problem description 

This study divides the DTIs prediction problem into two sub-tasks: (a) drug 
discovery, which predicts new drugs, named TD; (b) drug repositioning, which 
predicts new targets, named TT. These two tasks are regarded as multi-label 
classification problems, described below. 

 For task TD, suppose =R d
DX  and 1 2{ , , , }T pY y y y= K  denote the d-dimensional drug 

instance space and the label space with p possible target class labels. This task is to 

learn a function : 2 TY
Df X →  from the multi-label training set , ,{( ,y ) |1 }D i T iD x i m= ≤ ≤ , 

where m is the number of samples. For each sample , ,( , y )D i T ix , ,D i Dx X∈ , it is a 

d-dimensional feature vector and ,yT i TY∈  is the label set associated with ,D ix . For 

drug instances of the test set, the multi-label classifier ( )f ⋅  predicts the proper labels. 
The task TT can be defined by analogy. 

 
2.2. Data sets 

Yamnishi_08 derives from the KEGG BRITE [77], BRENDA [78], SuperTarget 
[79], and DrugBank [80] databases. It consists of four DTI datasets. These datasets 
are different according to the protein targets, namely nuclear receptor (NR), 
G-protein-coupled receptor (GPCR), ion channel (IC), and enzyme (E). To update 
these datasets, we collect new drugs, new targets, and new DTIs using KEGG BRITE, 
UniProt [81], and DrugBank databases in this study. The steps are divided into two 
parts: data integration and data cleaning. Data integration is achieved through web 
crawler technology. First, the DTI data corresponding to the 4 types of targets is 
obtained from the KEGG BRITE database and merged with Yamanishi_08 to prevent 
the loss of information in the SuperTarget and BRENDA databases. Then, use the 
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UniProt database as the connection database of KEGG BRITE and DrugBank, search 
the DrugBank database for each target obtained in the previous step, and add drugs 
and corresponding DTIs that are not in KEGG BRITE and Yamanishi_08. Next, 
search all known drugs one by one to maximize the DTI integrity of existing drugs 
and targets. After obtaining the integrated data, we deleted useless, invalid, and 
redundant data, including non-small molecule drugs (such as biotechnology drugs), 
mixed drugs, drugs with the same or unknown structure, and drugs with unknown end 
groups in the structure. It is worth noting that all drugs in the updated data set are 
approved drugs. The code for updating the dataset has been published on the GitHub 
page. Some statistics of the original gold standard and new updating four data sets are 
shown in Table 1. 

 
Table 1. Statistics of the original and updating four data sets. The NR is short for the 
nuclear receptor, GPCR for the G-protein-coupled receptor, IC for the ion channel, 
and E for the enzyme. Besides, the n represents the amount, D represents degree, and 
the subscripts d and t represent drug and target, respectively. 

Data sets nd nt ninteraction Density 
(%) 

Dd Dt Dd=1 
(%) 

Dt=1 
(%) 

NR Original 54 26 90 6.41 1.67 3.46 72.22 30.77 
Updated 541 33 886 4.96 1.64 26.85 65.99 18.18 

GPCR Original 223 95 635 3.00 2.85 6.68 47.53 35.79 
Updated 1680 156 5383 2.05 3.20 34.51 46.13 14.74 

IC Original 210 204 1476 3.45 7.03 7.24 38.57 11.27 
Updated 765 238 6385 3.51 8.35 26.83 21.70 8.82 

E Original 445 664 2926 0.99 6.58 4.41 39.78 43.37 
Updated 1777 1411 7371 0.29 4.15 5.22 45.24 37.99 

 
2.3. Features 
2.3.1. Drug representation 

Many representations can be used to describe drugs, in general, these can be 
categorized into two types: molecular descriptors (MDs), molecular fingerprints 
(MFs). To explore the drug representation that is most suitable for this study, we used 
some open source tools commonly used in DTI prediction to generate MDs and MFs. 
For the MDs or MFs generated by different software, this study treats them as 
different drug representations. The tools used in this study are CDK [82], Pybel [83], 
RDKit [84], and PaDEL [85]. The MDs generated by the above tools are called 
MD_CDK, MD_PYB, MD_RDK, and MD_PAD. Their dimensions are 275, 24, 196, 
and 1875, respectively. Further, we combine these four types of MDs as a new type of 
MDs, called MD_MER. Currently, MFs are always divided into three categories [86]: 
(a) topological path-based fingerprint. The representative FP2 [87] (MF_FP2) used in 
this study; (b) topological circular fingerprint. ECFP4 [88] (MF_EC4) and ECFP8 [88] 
(MF_EC8) are used as their representativeness; (III) substructure key-based 
fingerprint. MACCS [89] (MF_MAC) and PubChem fingerprint [90] (MF_PCP) are 
used as their popularity in DTIs prediction. The dimension of them is 1024, 2048, 
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2048, 167, and 881, respectively. In addition to the MDs and MF, we also used the 
Word2vec-inspired feature [33] (W2V), which extracts word information from drug 
SMILES. 

Further, we perform the feature combination of the above three types of features, 
because the complementarity between these three types of features may help enhance 
performance. In this process, we fuse the feature selection to obtain clean, highly 
complementary, and less redundant combined features. 

 
2.3.2. Target representation 

This study uses three types of target sequence-derived representations commonly 
used in DTIs prediction studies. The first is Composition, Transition, and Distribution 
(CTD), which is represented as the 504-dimensional feature vector obtained by 
PROFEAT web server [91]. The second is 1437 default protein descriptors generated 
by PROFEAT, named PRO. Besides CTD, it also includes amino acid composition, 
dipeptide composition, autocorrelation, quasi-sequence-order, amphiphilic 
pseudo-amino acid composition, and total amino acid properties. The third is the 
protein domain fingerprint (PDF), which is extracted from the PFAM v31.0 database 
[92]. For different data sets, we extracted different numbers of domains. The feature 
vector dimension of targets in NR, GPCR, IC, and E is 30, 61, 1404, and 2182, 
respectively. In addition, the feature combination is also performed. 
 
2.4. Methods 

The traditional supervised learning can be regarded as a degenerated version of 
multi-label learning as each sample is confined to have only one single label. 
However, the generality of multi-label learning makes harder to design the algorithm. 
The exponential-sized output space is the core issue of learning, i.e. there are 2m 
possible label sets for m labels. And exploiting label correlations or executing label 
space partition can help it. For this purpose, this study applies the community 
detection method from social networks to divide label space. Next, each divided label 
subspace corresponds to a multi-label learning sub-problem, and multiple Label 
Powerset (LP) multi-label classifiers are jointed to cover the entire label space. The 
base learner applied in LP is random forest (RF) because of its simplicity, parallelism, 
and superior capabilities, etc. In this section, we will introduce the typical algorithms 
of multi-label learning and community detection. The execution steps of the proposed 
DTI-MLCD method are shown in Figure 1. 
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Figure 1. The execution steps of the proposed DTI-MLCD method. 
 
2.4.1. Algorithms of multi-label learning 

The multi-label learning algorithm development is the key challenge in 
multi-label learning researches, although the algorithm has boomed in a big explosion 
in the past 10 years. A simple categorization is adopted as follows.  

The first category is the algorithm adaptation method, which works by fitting the 
existing algorithm to data and directly tackle the multi-label data. The representative 
algorithm is Multi-Label k-Nearest Neighbor (MLkNN) [93]. MLkNN is a lazy 
learning method based on the traditional k-Nearest Neighbor. It is now widely used in 
multi-label classification prediction tasks and has achieved satisfactory results [94, 
95]. The second category is the problem transformation method, which works by 
fitting data to the well-established algorithm and transforming multi-label learning 
problems into the other learning technique. Binary Relevance (BR) [96], Classifier 
Chains (CC) [97] and Label Powerset (LP) [98] are representative algorithms in this 
category. BR tackles multi-label learning problem into multiple independent binary 
classification problems, where one binary classifier corresponds to one label. It is 
based on the assumption that labels are independent of each other, and each classifier 
of this method only recognizes the characteristics related to one label, but cannot 
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identify the characteristics related to all labels. Thus, it is not valid in many fields in 
reality, which is also the limitation of the BR. CC is proposed based on BR and 
considers label correlation. It converts the multi-label learning problem into a chain of 
binary classification problems. The main idea is to add the labels of all previous 
classifiers to the feature vector of the next training set and pass them to the next 
classifier. Obviously, the order of labels has a great influence on the prediction result. 
However, the order of the classifiers in the classifier chain is always random. Unlike 
BR and CC, LP transforms the multi-label learning task into the multi-class or 
single-label classification task. In other words, LP models the joint distribution of 
labels. It treats each label subset in the multi-label training set as a class of a 
multi-class task, and the prediction will be one of these subsets. Although LP is 
simple, it has two impractical points that tend to cause over-fitting. One is 
incompleteness. It can only predict label sets appearing in the training set, and is 
powerless for other label sets. The other is inefficiency. As the number of labels 
increases, it may face high complexity because of the increase in the number of label 
subsets, and the high imbalance of samples in each class or subset.  

To overcome the shortcoming of LP while retaining its simplicity, the idea that 
dividing the label space into multiple subspaces and applying the LP algorithm in 
these subspaces has been proposed [99], which can be seen as combining ensemble 
learning with LP. This is the design principle of random k-labelsets (RAkEL) [99]. 
RAkEL divides the overall label set into multiple size-k label subsets randomly and 
implements LP on each label subspace to ensure computational efficiency. Then, it 
ensembles several LP classifiers to guarantee the completeness of the prediction. 
However, an obvious disadvantage of RAkEL is the random partition strategy, which 
makes the label correlation controlled only by k, and not considered training data.  

To consider the correlation among labels informatively, the data-driven clustering 
algorithm is used instead of the random partition strategy. Moreover, it has been 
confirmed that the data-driven method is superior to random selection for the label 
space division in multi-label classification problems [100]. Especially, the community 
detection method has been well applied to multiple benchmark data sets for 
multi-label learning, it divides the label space in a data-driven manner [100]. Thus, 
this study discusses the application of five classic community detection algorithms in 
DTIs prediction. 

 
2.4.2. Execution of community detection 

Community detection is to find tightly connected community structures in 
complex network structures, that is, to discover clusters of nodes in the network [100]. 
In this study, the goal of using the community detection method is to divide label 
space with a data-driven approach. For this purpose, the community detection method 
is used based on the weighted co-occurrence graph which is constructed based on 
training data.  
 
2.4.2.1. Construct the weighted label co-occurrence graph 

Defining the weighted undirected co-occurrence graph, where vertices represent 
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the label set, edges represent label pairs that occur together at least once in the 
training label set, and the weight assigned to each edge is defined as the number of 
samples that have both labels. The visualization of the weighted label co-occurrence 
graph is shown in Figure 1 (a) and (b). 
 
2.4.2.2. Algorithms of community detection 

There are many algorithms for community detection. This study uses only five 
typical algorithms.  

The modularity-based approach is a very important branch of the community 
detection algorithm. It works through maximizing the modularity to implement label 
space division. Modularity [101] is a measure to describe the quality of the 
community partition. A relatively good partition has a higher degree of similarity in 
the community. However, finding the maximum of modularity is NP-hard [102], so 
we employ three approximation-based techniques instead. 

The fast greedy algorithm (FGA) [103] is based on the greedy algorithm to search 
the maximization of modularity, which iteratively merges communities from a single 
instance. With each iteration, this method merges two communities to achieve the 
greatest contribution to modularity. When the modularity value of the current 
community can no longer increase as the community merges, it is defined as 
convergence.  

The multi-level algorithm (MLA) [104] is a bottom-up algorithm. In the beginning, 
each vertex is a separate community, and the vertices move iteratively between the 
communities by maximizing the local contribution of the vertices to the overall 
modularity. When modularity is not increased by any movement, each community in 
the original graph shrinks to a vertex while maintaining the total weight of adjacent 
edges, and then the process enters the next level. When communities shrink to 
vertices and the modularity can no longer be increased, the algorithm will stop. 

In addition to the modularity-based algorithm, we also use three other algorithms 
concerning flow. 

The label propagation algorithm (LPA) [105] is based on the graph 
semi-supervised learning algorithm, which simulates the diffusion of flow on the 
network through the diffusion of labels. In the graph, each vertex is assigned a unique 
label. Next, the tag of every vertex is updated iteratively with the majority tag 
assigned to the neighbors of the elements. The update order for each iteration is 
random. The convergent criterion of the algorithm is when all vertex tags are 
consistent with the most frequent tags in their neighborhood. 

The walk trap algorithm (WTA) [106] is a bottom-up approach based on random 
walks. One intuition is that when performing random walks on the graph, it is easy to 
fall into the dense connection of the graph, which can be regarded as a community. 
Consider each node as a community, and then calculate the random walk distance or 
flow distance between all communities with connected edges. Then, take two 
communities that are connected and have the shortest random walk distance to merge, 
recalculate the distance between the communities, and then iterate until all nodes are 
put into the same community. 
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 The infomap algorithm (IMA) [107] believes that a good community division 
should make the average description length of the flow the shortest. It divides the 
graph by calculating the minimum value of the map equation, where the map equation 
corresponds to the length of the information description corresponding to the 
partition. 
 
2.5. Performance evaluation 

The performance evaluation metrics of multi-label learning are much complex 
than binary classification [108]. Following the previous researches, this study adopts 
AUC and AUPR as performance evaluation metrics. It is convenient for comparison 
with other methods. It is worthy to note that the AUPR is more reliable metrics as a 
severe punishment on false positive instances for high imbalanced data. Therefore, the 
discussion in this article focuses on AUPR. 
 
2.6. Stratified cross-validation (SCV) 

Cross-validation is a typical method to do model selection. For multi-label data, 
many labels have class imbalance characteristics [109] that each data set has a large 
number of label sets, and most label sets only contain a small number of samples 
(Table 2). In this case, the random partitioning strategy used in standard 
cross-validation may result in some labels having no positive samples in a divided 
subset. Such a subset will not only affect the accuracy of the model, but may also 
cause the computational error.  

To overcome the above dilemma, a stratified sampling strategy in cross-validation 
is a proven solution [109, 110], called stratified cross-validation (SCV). Furthermore, 
the 10-fold SCV has been proved the best method in model selection from the 
perspective of statistical inference [110]. To ensure the confidence of the results, we 
performed 5 simulations on 10-fold SCV using different random seeds. 
 
Table 2. Statistics for labels of four multi-label data sets. The data in the table is the 
number of corresponding row and column headings. For the Data sets column, the NR 
is short for nuclear receptor, GPCR for G-protein-coupled receptor, IC for ion channel, 
and E for enzyme. For the Tasks column, the TD is predicting new drugs, TT is 
predicting new targets. 

Tasks Data sets Label sets 
Samples per label set Samples per label 

min mean max min mean max 
TD NR 77 1 7.0 132 1 26.8 159 

GPCR 352 1 4.8 135 1 34.5 249 
IC 280 1 2.7 67 1 26.8 144 
E 692 1 2.5 102 1 5.2 154 

TT NR 31 1 1.1 2 1 1.6 9 
GPCR 138 1 1.1 7 1 3.2 34 

IC 179 1 1.3 20 1 8.3 123 
E 713 1 2.0 154 1 4.1 293 
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2.7. Hypothesis test 
When comparing multiple algorithms on a set of data sets, Demšar [111] 

recommends using the non-parametric Friedman rank test [112, 113] which based on 
algorithm ranking. However, the Friedman rank test can only tell us whether there is a 
significant difference among algorithms, but cannot specify which algorithms have 
performance differences. Therefore, post-hoc analysis is needed to locate specific 
algorithms with differences. For the Friedman rank test, the commonly used post-hoc 
test method is the Nemenyi test [114], named Friedman-Nemenyi test. This method 
can indicate whether there is a significant difference between the two algorithms 
based on the significance level α.  

 
3. Results and Discussion 
3.1. Selecting drug representation 

We guess that for different data sets, the most suitable drug representation method 
is different. So far no other articles have explored this, and our following experiments 
prove this conjecture. And this phenomenon makes us apply different feature 
representation methods in different data sets. 

To achieve this goal, the experiment is conducted on the basic learning algorithm 
LP for each updated data set, and the same parameter settings were used. The AUPR 
and AUC are shown in Figure 2. However, AUPR is the focus as its more reliable, and 
its lower value is more valuable than high AUC for discussion and comparison.  

For MDs, on the four data sets, as the dimension of drug representation increases, 
the prediction performance tends to be higher because of the more information it 
describes. For MFs, MF_EC4 is the best MF among all four data sets, and it has been 
proved that is sufficient to describe chemical molecules [115]. Further, the result 
reveals the topological circular fingerprint is better than the other two categories in 
this study. Next, the feature combination procedure has been performed. There are 4 
combinations of MD_MER, MF_EC4, and W2V. Figure 4 indicates that the 
performance of any drug representation after adding W2V was lower than that 
without W2V. 

For different data sets, this study selects the drug representation with the best 
AUPR as the feature vector. NR and GPCR use MF_EC4, IC and E use the 
combination of MF_EC4 and MD_MER. 
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Figure 2. The performance among different drug representations. 
 
3.2.Selecting target representation 

We have adopted the same strategy as drugs, that is, there is no best target 
representation method, only the most suitable feature representation in a specific 
situation. Therefore, we also compare target representation methods under four 
updated data sets and select the most suitable features for each data set according to 
AUPR. 

According to Figure 3, it is obvious that the performance of CTD and PRO is 
close, probably because both of them are generated by the PROFEAT web server, and 
CTD is a subset of PRO. Further, for the combination of CTD or PRO with PDF, the 
performance is also close. Besides, on the NR and GPCR data sets, PDF appears to be 
a significant trough. Because the protein domain information is too little to fully 
describe the target. Also, its lower dimension than CTD and PRO makes it have little 
effect on the performance of feature combinations. On the contrary, on the IC and E 
data sets, the performance of PDF is significantly improved compared to CTD and 
PRO as its rich protein domain information. Therefore, PDF dominates the 
performance of feature combinations. 

Finally, we chose the most suitable target representation method for each data set. 
For NR, the most suitable target representation method is CTD, for IC is PDF, for 
GPCR and E is the combination of CTD and PDF. 
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Figure 3. The performance among different target representations. 
 
3.3. The DTI-MLCD and classical machine learning methods in updated data 

sets 
This study proposed the DTI-MLCD method which applies five data-driven 

community detection algorithms as label partitioning methods and ensembles them 
into the multi-label learning method. We explain the superiority of DTI-MLCD from 
two aspects. The first is the comparison of label partitioning algorithms. For 
data-driven label partitioning method, k-means is always used due to its simplicity 

and popularity, and has been applied with { }2,4,8,16,32k ∈  to solve the DTIs 

prediction problem [75]. So we use k-means as the benchmark label partition method 
to compare with community detection algorithms. To be more convincing, we 
expanded the value range of k from 2 to the number of the label set, and used the 
silhouette coefficient score as a measure of label division quality. The k value that 
maximizes the silhouette coefficient score will be used as the optimal number of 
clusters. The other is to compare the DTI-MLCD algorithm with other classic 
machine learning algorithms, (a) multi-label algorithms: MLkNN, BR, CC, LP, and 
RAkEL, and (b) binary classification algorithms: RF, extremely randomized Trees 
(ERT), and Gaussian naïve Bayes (GNB). 

The results of the above methods on the four updated data sets are listed in Table 3 
(task TD) and Table 4 (task TT), respectively. In the results, the proposed DTI-MLCD 
is superior to other machine learning methods in most cases. The reason why LP 
performs better than DTI-MLCD on the NR data set under the TT task is that NR has 
few label sets, and both each label set and each label has very few samples (see Table 
2 for details), but it has 541 labels. Therefore, only a single LP algorithm can achieve 
better results, but after adding the community detection algorithm, it will cause 
overfitting. On the other hand, although the binary classification methods RF and ERT 
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have achieved competitive results with DTI-MLCD, however, this research 
experiment proves that its long calculation time will make it difficult to achieve 
optimal performance through fine-tuning. Further, the Friedman-Nemenyi test with a 
significance level of 0.05 confirmed the significant differences among methods. All 
the five proposed methods are at the forefront of the ranking, and the overall 
performance of FGA is slightly lower than the other four proposed methods.  

To illustrate the biological explanation of the proposed methods, Figure 4 
visualizes the results of six data-driven label partitioning methods that applied to the 
NR dataset. Although the community structures obtained by different community 
detection algorithms have their own characteristics, they also have certain similarities. 
FGA, LPA, and MLA divide 33 labels into 6 communities. Especially, the community 
structure of FGA and MLA is the same, noted that both FGA and MLA belong to the 
modularity-based algorithm. In addition, for the random walk-based algorithm, the 
number of communities obtained by WTA and IMA is relatively large. Moreover, the 
k-means obtains only 4 communities, and the community structure is very different 
from community detection algorithms. 

On the other hand, we discuss the pathway and classification of three communities 
through the KEGG database, and the details shown in Table 5. The (1, 28) and (26, 27) 
are communities obtained by all six algorithms, and (20, 29, 32) are only available in 
IMA. For each of the first two communities, the two vertices belong to the same 
classification and pathway. The three vertices in the third community have similarities 
and differences. Therefore, we can think that the label clustering obtained by the 
community detection algorithm has a certain biological interpretation significance. 
This also confirms the classical assumption that similar targets tend to combine 
similar drugs. 

 
Table 3. The results of the proposed methods and other classical machine learning 
methods for task TD (i.e. predicting new drugs). WTA, IMA, LPA, MLA, and FGA are 
community detection algorithms in the proposed DTI-MLCD method. k-means is the 
benchmark method that can replace community detections. BR, CC, LP, RAkEL, 
MLkNN, RF, ET, and GNB are baseline methods. 
Algorithm AUC AUPR 

NR GPCR IC E NR GPCR IC E 
FGA 0.9613 0.9738 0.9349 0.8840 0.8135 0.7721 0.7184 0.4148 
IMA 0.9611 0.9766 0.9358 0.8768 0.8129 0.7765 0.7194 0.4165 
LPA 0.9611 0.9763 0.9345 0.8833 0.8135 0.7755 0.7179 0.4173 
MLA 0.9614 0.9745 0.9347 0.8833 0.8134 0.7734 0.7186 0.4165 
WTA 0.9611 0.9744 0.9355 0.8839 0.8129 0.7722 0.7187 0.4184 

k-means 0.9629 0.9754 0.9352 0.8771 0.8128 0.7731 0.7178 0.4040 
BR 0.9622 0.9814 0.9372 0.8771 0.8115 0.7307 0.6914 0.4040 
CC 0.9610 0.9767 0.9346 0.8664 0.8109 0.7219 0.6845 0.3822 
LP 0.9614 0.9755 0.9328 0.8688 0.8082 0.7667 0.7193 0.4099 

RAkEL 0.9532 0.9735 0.9306 0.8736 0.8004 0.7724 0.7048 0.4034 
MLkNN 0.9363 0.9575 0.8356 0.7962 0.6699 0.6340 0.1644 0.0454 
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RF 0.9626 0.9754 0.9423 0.8983 0.8102 0.7730 0.7113 0.3238 
ERT 0.9616 0.9688 0.9314 0.8786 0.8102 0.7571 0.7049 0.3546 
GNB 0.6818 0.7037 0.5015 0.5273 0.3732 0.3730 0.4197 0.0054 

 
Table 4. The results of the proposed methods and other classical machine learning 
methods for task TT (i.e. predicting new targets). WTA, IMA, LPA, MLA, and FGA 
are community detection algorithms in the proposed DTI-MLCD method. k-means is 
the benchmark method that can replace community detections. BR, CC, LP, RAkEL, 
MLkNN, RF, ET, and GNB are baseline methods. 
Algorithm AUC AUPR 

NR GPCR IC E NR GPCR IC E 
FGA 0.5715 0.8027 0.9489 0.8593 0.2311 0.3702 0.7468 0.5669 
IMA 0.5748 0.8002 0.9476 0.8598 0.2409 0.3683 0.7663 0.5669 
LPA 0.5759 0.8048 0.9459 0.8591 0.2494 0.3785 0.7518 0.5670 
MLA 0.5657 0.8062 0.9478 0.8640 0.2177 0.3759 0.7609 0.5677 
WTA 0.5745 0.8002 0.9463 0.8642 0.2401 0.3746 0.7574 0.5673 

k-means 0.5611 0.7893 0.9382 0.8639 0.2383 0.3693 0.7174 0.5668 
BR 0.5617 0.7892 0.9382 0.8639 0.2352 0.3694 0.7174 0.5673 
CC 0.5647 0.7580 0.9183 0.8563 0.2360 0.2424 0.6475 0.5152 
LP 0.5752 0.7927 0.9403 0.8568 0.2704 0.3670 0.7429 0.5651 

RAkEL 0.5642 0.7902 0.9395 0.8640 0.2352 0.3714 0.7242 0.5670 
MLkNN 0.5470 0.7351 0.9094 0.8053 0.1811 0.2751 0.6414 0.3112 

RF 0.6764 0.7610 0.9511 0.8775 0.2445 0.3104 0.7419 0.5652 
ERT 0.5804 0.7179 0.9459 0.8404 0.2632 0.3410 0.7650 0.5462 
GNB 0.4451 0.6566 0.5006 0.5347 0.3149 0.3770 0.3107 0.0035 
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Figure 4. The label partition results that community detection algorithms and 
benchmark k-means method applied in the label space of the nuclear receptor data set. 
 
Table 5. The details for three communities A: (1, 28), B: (26, 27), and C: (20, 29, 32). 
The numbers represent the nodes in Figure 7. 
Community Gene Details 
A 1 LXRA Classification: 

(1) Liver X receptor like receptor 
(2) Cys4 thyroid hormone-like transcription factor 
Pathway: Insulin resistance 

28 LXRB 

B 26 THRA Classification: 
(1) Cys4 thyroid hormone-like transcription factor 
(2) Thyroid hormone like receptor 
Pathway:  
(1) Neuroactive ligand-receptor interaction 
(2) Thyroid hormone signaling pathway 

27 THRB 

C 20 RORA Classification: 
(1) Cys4 thyroid hormone-like transcription factor 
(2) Thyroid hormone like RAR-related orphan receptor 

29 VDR Classification: 
(1) Cys4 thyroid hormone-like transcription factor 
(2) Thyroid hormone like vitamin D3 like receptor 

32 CAR Classification: 
(1) Cys4 thyroid hormone-like transcription factor 
(2) Thyroid hormone like vitamin D3 like receptor 
(3) constitutive androstane receptor 

 
3.4. The DTI-MLCD and benchmark methods in Yamanishi_08 data sets 

We compare the proposed method against three state-of-the-art methods for DTIs 
prediction. NetLapRLS [65], BLM-NII [116], and DDR [27]. NetLapRLS introduces 
the drug-target network information into the manifold Laplacian regularized the least 
square method which uses the concept of the bipartite local model. BLM-NII exploits 
bipartite local model with neighbor-based interaction profile inferring, which adds a 
preprocessing component to infer training data from neighbors’ interaction profiles. 
DDR executes the graph mining technique firstly to acquire the comprehensive feature 
vectors and then applies the random forest model by using different graph-based 
features extracted from the drug-target heterogeneous graph. Since these methods are 
proposed on the Yamanishi_08 data set, we perform the proposed DTI-MLCD method 
on this data set and compare it with other methods. All methods are carried out under 
the same experimental environment, such as SCV, random seeds, etc. And the results 
are obtained after fine-tuning. As reflected in Table 6, all the proposed methods in 
task TD outperform the benchmark methods in terms of AUPR. For task TT (Table 7), 
the proposed methods outperform benchmark methods in IC and E data sets while 
they are slightly inferior to BLM-NII in NR and GPCR. In order to comprehensively 
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test the superiority of the method proposed in this study, we conduct the 
Friedman-Nemenyi test for all 8 methods. This hypothesis test is performed on both 
AUPR and AUC for completeness although AUPR is more informative than AUC in 
this study. And the result reveals that all the proposed methods are ranked before the 
three benchmark methods. Moreover, they are significantly better than DDR and 
NetLapRLS with a significance level of 0.05 and 0.1, respectively.  
  
Table 6. The results of the proposed methods and three benchmark methods for task 
TD (i.e. predicting new drugs). WTA, IMA, LPA, MLA, and FGA are community 
detection algorithms in the proposed DTI-MLCD method. 
Algorithm AUC AUPR 

NR GPCR IC E NR GPCR IC E 
FGA 0.7829 0.8636 0.8220 0.8506 0.4990 0.4504 0.3887 0.4105 

IMA 0.7830 0.8698 0.8223 0.8537 0.4992 0.4593 0.3857 0.4045 

LPA 0.7785 0.8655 0.8197 0.8563 0.5079 0.4537 0.3924 0.4067 

MLA 0.7829 0.8632 0.8237 0.8522 0.4990 0.4488 0.3885 0.4088 

WTA 0.7828 0.8619 0.8219 0.8539 0.4989 0.4501 0.3860 0.4045 

BLM-NII 0.8042 0.8496 0.8119 0.8204 0.4503 0.3415 0.3260 0.2690 

NetLapRLS 0.7919 0.8281 0.7721 0.7933 0.4313 0.2456 0.2078 0.1287 

DDR 0.6019 0.5678 0.4994 0.4768 0.2878 0.1907 0.1471 0.1336 

 
Table 7. The results of the proposed methods and three benchmark methods for task 
TT (i.e. predicting new targets). WTA, IMA, LPA, MLA, and FGA are community 
detection algorithms in the proposed DTI-MLCD method. 
Algorithm AUC AUPR 

NR GPCR IC E NR GPCR IC E 

FGA 0.4961 0.7458 0.9104 0.9285 0.3472 0.2943 0.7047 0.7861 

IMA 0.4929 0.7429 0.9114 0.9214 0.3457 0.2919 0.7027 0.7875 

LPA 0.4925 0.7509 0.9105 0.9214 0.3398 0.2969 0.7082 0.7877 
MLA 0.4998 0.7481 0.9098 0.9286 0.3487 0.2942 0.7093 0.7868 

WTA 0.4923 0.7495 0.9103 0.9217 0.3460 0.3010 0.7046 0.7873 

BLM-NII 0.5042 0.7777 0.9093 0.9193 0.3726 0.3078 0.7028 0.7570 

NetLapRLS 0.4986 0.7425 0.9082 0.9161 0.2793 0.2515 0.6543 0.7064 

DDR 0.4932 0.6290 0.5784 0.6965 0.2365 0.2288 0.3108 0.5026 

 
3.5. Independent test 

We conduct independent tests of the proposed DTI-MLCD method according to 
the data set before and after the update. First, build the independent test set. Drugs and 
their DTIs that do not exist in the Yamanishi_08 data set but exist in the updated data 
set will be used as independent test samples for task TD. Similarly, independent test 
samples of task TT is constructed. Then, conduct independent tests on the model 
which trained on the Yamanishi_08 data set. The results are shown in Table 8 (task TD) 
and Table 9 (task TT). 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.087734doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.087734


Table 8. The results of independent tests on Yamanishi_08 data sets for task TD.  
Algorithm AUC AUPR 

NR GPCR IC E NR GPCR IC E 

FGA 0.8174 0.8941 0.8238 0.8457 0.5331 0.3953 0.2795 0.1369 

IMA 0.8172 0.9020 0.8262 0.8426 0.5331 0.4000 0.3012 0.1353 

LPA 0.8157 0.9000 0.8257 0.8430 0.5334 0.3982 0.3013 0.1375 

MLA 0.8174 0.8944 0.8246 0.8455 0.5331 0.3928 0.2776 0.1378 
WTA 0.8174 0.8920 0.8230 0.8427 0.5331 0.3935 0.2890 0.1363 

 
Table 9. The results of independent tests on Yamanishi_08 data sets for task TT. 

Algorithm AUC AUPR 

NR GPCR IC E NR GPCR IC E 

FGA 0.8224 0.6130 0.7353 0.7348 0.3787 0.0076 0.2090 0.1077 
IMA 0.8224 0.6135 0.7323 0.6834 0.3787 0.0075 0.2144 0.1057 

LPA 0.8223 0.6107 0.7383 0.6809 0.3840 0.0076 0.2127 0.1048 

MLA 0.8228 0.6255 0.7395 0.7339 0.3787 0.0080 0.2119 0.1071 

WTA 0.8224 0.6080 0.7363 0.6814 0.3787 0.0074 0.2142 0.1052 

 
4. Conclusion 

This study updated the gold standard data set Yamanishi_08, and proposed 
DTI-MLCD for DTIs prediction, which is a new multi-label learning framework 
empowered by community detection. This framework has 5 effective models 
corresponding to five community detection algorithms to do label partitioning. This 
study conducted experiments on the gold standard data set before and after the update. 
On the original data set, the DTI-MLCD is compared with other benchmark methods, 
and its superiority is confirmed. In the updated data set, DTI-MLCD is superior to 
other classic machine learning algorithms. In addition, this study also constructed 
independent tests with new and old data sets. On the other hand, the results of the five 
community detection algorithms used in this framework are not significantly different. 
Moreover, they are superior to the benchmark k-means algorithm in performance and 
interpretability. 

In the future, we will solve the problem of label imbalance and construct positive 
and negative samples in the form of semi-supervised learning to improve the 
performance of the framework in predicting DTIs. 
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