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Abstract 

Despite impressive improvement in the next-generation sequencing technology, reliable 

detection of indels is still a difficult endeavour. Recognition of true indels is of prime 

importance in many applications, such as, personalized health care, disease genomics, 

population genetics etc. Recently, advanced machine learning techniques have been 

successfully applied to classification problems with large-scale data. In this paper, we present 

SICaRiO, a gradient boosting classifier for reliable detection of true indels, trained with gold-

standard dataset from genome-in-a-bottle (GIAB) consortium. Our filtering scheme 

significantly improves the performance of each variant calling pipeline used in GIAB and 

beyond. SICaRiO uses genomic features which can be computed from publicly available 

resources, hence, we can apply it on any indel callsets not having sequencing pipeline-specific 

information (e.g., read depth). This study also sheds lights on prior genomic contexts 

responsible for indel calling error made by sequencing platforms. We have compared prediction 

difficulty for three indel categories over different sequencing pipelines. We have also ranked 

genomic features according to their predictivity in determining false indel calls. 

 

Introduction 

Reliable detection of short genomic insertion or deletion (Indel) still remains challenging for 

standard alignment-based variant calling methods (Wala et al. 2018). Indel detection has 

recently attained more focus from research community due to the advancement of next-

generation sequencing (NGS) technologies. Short indels are genomic variants defined by 

insertion or deletion of one or more base pairs (defined as <50bp in (Alkan et al. 2011)) at a 

particular locus within the DNA. Although rarer than SNPs (Single Nucleotide 

Polymorphisms), they comprised 16% to 25% of all genetic variations, the second most 

abundant form of polymorphism (Mills et al. 2006; Mullaney et al. 2010).  

Several genetic disorders are linked to deleterious indels such as cystic fibrosis, fragile X 

syndrome, trinucleotide repeat disorders, Mendelian disorders and Bloom syndrome (Kanehisa 

et al. 2015) and NGS has become the standard tool for disease variant discovery (Koboldt et al. 

2013; Wang et al. 2013). Short indels are also assumed to cause some cancers, e.g., acute 

myeloid leukaemia, and lung cancer. Besides, indels can also modify promoter structures and 

affect gene expressions (Cheung and Spielman 2009). Indels are also used as genetic markers 

for populations (Vali et al. 2008). Due to their importance in population genetics and clinical 
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genomics, accurate indel detection is of prime importance; more so in the case of germline de-

novo and somatic mutations which are rare but mostly account for aberrant genomic alterations.   

NGS technologies (Quail et al. 2012) have continued to mature, become cheaper and are 

gradually getting adopted into clinical applications. Accuracy of SNP detection has reached at 

the level of 99th percentile1. However, indel detection accuracy is not at the par, despite the 

advent of a large number of indel calling tools (Hasan et al. 2015). Highly used indel callers 

have an accuracy around 60% over whole genome (containing both high confidence and non-

high confidence regions) (Cornish and Guda 2015; Hasan et al. 2015), which is in fact validated 

in this work. Performance studies over only high-confidence regions (regions for which we 

have a complete map of indels) report high precision. For example, on PrecisionFDA truth 

challenge1, DeepVariant (Poplin et al. 2018) reports a precision greater than 99% for indels 

only from high-confidence regions. When measured over whole genome, its precision drops to 

63%. When we have taken concordance among multiple callers into account, performance 

drops even further. Indel calling error depends on sequencing platform characteristics, aligner 

and caller attributes as well as genomic context of the region (high vs. non-high confidence 

regions as mentioned in (Zook et al. 2016). Variant calling pipelines differ among their 

employed techniques and error landscapes. The techniques for one platform are hard to adapt 

across other platforms. The exact model of error distribution is also unknown (Poplin et al. 

2018).  

Over the years, lots of indel detection tools have appeared in the arena of NGS technologies. A 

comprehensive survey is out of the scope of this paper. Among the mainstreams, there are 

Samtools (Li 2011), GATK (McKenna et al. 2010a), Pindel (Ye et al. 2009), SOAPIndel (Li et 

al. 2013), VarScan (Koboldt et al. 2009), SplazerS (Emde et al. 2012), Dindel (Albers et al. 

2011), SVM-M (Yang et al. 2016), IndelSeek (Au et al. 2017), Gindel (Chu et al. 2014), Sclapel 

(Fang et al. 2016), VarDict (Lai et al. 2016), LoFreq (Wilm et al. 2012) and more. A 

performance evaluation for some of them can be found in (Sandmann et al. 2017). All of them 

take aligned sequencing reads and make indel calls. To improve accuracy, ensemble of different 

methods has also been employed, e.g., HugeSeq [25] and BaySiC [26]. Data-centric approaches 

have also been explored, such as, SVM2 (Chiara et al. 2012), ForestSV (Michaelson and Sebat 

2012), (Hwang et al. 2014) and Platypus (Rimmer et al. 2014). To address more difficult 

scenarios (e.g., de-novo and somatic indels) there exist tools like DeNovoGear (Ramu et al. 

2013), SomaticSeq (Fang et al. 2015), and DNMFilter (Liu et al. 2014) among others. To 

validate these tools, projects have been launched to establish gold-standard datasets, e.g., 

Genome in a bottle (Zook et al. 2016, 2014, 2018) as well as SVclassify (Parikh et al. 2016). 

Recently deep learning techniques have made their way into genomic data analysis (Telenti et 

                                                
1 https://precision.fda.gov/challenges/truth/results 
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al. 2018; Zou et al. 2019), particularly in variant calling, for both short-read data (Illumina, 

Complete Genomics), e.g., DeepVariant (Poplin et al. 2018), GARFIELD-NGS (Ravasio et al. 

2018) and long-read data (Pacific Bioscience, Oxford Nanopore), e.g., Clairvoyante (Luo et 

al. 2019).  

In this paper, we have shown that, training of machine learning-based variant filters with the 

gold-standard datasets, using genomic contexts improves the performance of indel callers while 

retaining high sensitivity. Most, if not all, indel-callers (including above mentioned ones) rely 

on actual platform specific sequence reads which might be unavailable for large public datasets, 

e.g., exome aggregation consortium (ExAC) (Lek et al. 2016) and haplotype reference 

consortium (HRC) (McCarthy et al. 2015). Our filter can post-prune potential false indel calls 

to deliver a more reliable variant set. 

Our specific contributions in this paper are summarized below: 

1. We have developed a machine learning-based probabilistic filtering scheme to reliably 

identify false short indel calls. This improves state-of-the-art indel detection 

performance significantly, particularly when we consider whole-genome callsets 

(including non-high confidence regions or NHCR). We plan to make SICaRiO publicly 

available which can be trained and seamlessly integrated with any variant calling 

pipeline. For now, we will provide the tool and annotation data on request. 

2. We have demonstrated that genomic contexts capture important prior information 

useful for reliable indel detection. To the best of our knowledge, no indel callers 

currently use this kind of features, e.g., GERP scores (Davydov et al. 2010), local DNA 

structures etc. We have also ranked genomic features according to their predictivity in 

determining false indel calls. 

3. We have shown that different sequencing platforms make analogous calling mistakes 

albeit with different degree of similarity. This enables us to apply models trained with 

the callset generated from one platform over the callset generated from another 

platform. We have further estimated the performance for this cross-platform scenario.  

Results 

Performance Improvement After Variant Filtering 

We have demonstrated the performance of our scheme by comparing the precisions before and 

after applying the variant filter. In Figure 1, we have shown precision improvement of five 

different variant calling pipelines (each consisting a combination of sequenced base caller, read 

aligner and variant caller) over three different indel categories (see Supplementary Table 3). 

The definitions of these three different indel categories are as follows: 

1. Homopolymers: In this category, the inserted/deleted nucleotides as well as the 

previous or following nucleotide (the flanking prefix or suffix context) consist of only 

one type of nucleotides. Example: [A → AA], [AA → A] 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 7, 2019. ; https://doi.org/10.1101/601450doi: bioRxiv preprint 

https://doi.org/10.1101/601450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 4 of 28 
 

 4

2. Tandem repeats: The variant in this category is not a homopolymer; the number of 

inserted/deleted nucleotides is more than one and an inserted/deleted sequence is 

followed or preceded by the same sequence. Example: [AT → ATAT]   

3. Aperiodic indels: Any other insertion/deletion which is not a homopolymer or a tandem 

repeat belongs to this category. Example: [A → AGT] 

 

Figure 1: Precision Improvement across Five Different Platforms and Variant 
Categories 

We have also evaluated all indels together, when our training and test data contain all variant 

categories.  

For aperiodic indels, before applying the filter, the maximum base precision of 70.3% is 

achieved by Complete Genomics (Peters et al. 2012). Illumina (mate pair2) with BWA-MEM 

(Li 2013) and GATK (McKenna et al. 2010b) ranks right after that with a base precision of 

around 62.22%. Illumina (long read3) with NovoAlign4 and GATK resides at the bottom of the 

table with a base precision of 57.16%. Application of our filter improves performances across 

all platforms/callers among which Illumina (long read) with NovoAlign and GATK shows the 

highest margin of improvement (30%). Complete Genomics shows the least albeit significant 

                                                
2 https://www.illumina.com/science/technology/next-generation-sequencing/mate-pair-sequencing.html 
3 https://www.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html 
4 http://www.novocraft.com/products/novoalign/ 
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improvement (19%). The highest precision (89.70%) is achieved by Illumina (long read) with 

NovoAlign and FreeBayes (Garrison and Marth 2012) at a recall rate of 89.32%. The lowest 

precision (85.95%), not too far from the maximum, is achieved by Illumina (mate pair) with 

BWA-MEM and GATK at a recall rate of 88.44% (see Supplementary Table 3).  

For homopolymers and combined indel calls, most of the measures, i.e., base precision, filtered 

precision and platform recall show similar results like those of aperiodic indels. Here 

improvement is even bigger in some cases. For example, Illumina (mate pair) with BWA-MEM 

and GATK shows 41.5% precision improvement at a recall rate of 79.5% for combined indel 

calls. For tandem repeats, we have observed higher precision (93%) across all platforms at a 

superior recall rate (97%). 

In Supplementary Table 4, we have compared the precision improvement for combined indel 

callset of five more platforms including DeepVariant for which precision improvement is 

greater than 18.44% while keeping the platform recall at 86.25%. For details see 

Supplementary Table 4. 

 

 

Figure 2: [Left panel] Precision vs. Training Sample Size for Complete Genomics 
Platform. True Positives Come from either True Platform Calls (Blue) or Genome-in-a-
Bottle Gold Standard (Green). [Right panel] Filtered and Base Precision for Different 

Test Samples.  

We have investigated the effect of training sample size over precision to demonstrate the 

efficacy and extensibility of our filter in case of the availability of more samples having gold 

standard callset. We have used training sample size from one to four. All four training samples 

and the fixed test sample (HG002) are sequenced by Complete Genomics platform. The first 

data point in Figure 2 [Left panel] is the base precision (no filter applied). This shows that the 

first training sample gives the largest improvement. Subsequently, the improvement slows 

down and after adding the fourth sample, tends to saturate. We have also investigated the effect 

using all gold-standard indel calls instead of only those true indels called by Complete 
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Genomics as the true positive training callset. We can see both approaches produce similar 

curves but training with only Complete Genomics indel callset always performs better. 

If training and test samples are different, there may exist a set containing indels common to 

both training and test callset. If the samples are from same population, this set will be larger 

and boost the classifier performance positively. To examine the interchangeability of the 

samples without common indel effect, we have used a single sample for both training and 

testing. From each sample we have trained with 80% indels and tested over the remaining non-

overlapping 20% indels. We have used four unrelated samples, coming from three different 

population and observed small (3%) precision variability (see Figure 2[Right panel]).   

 

 
Figure 3: A Precision-Recall Curve for Complete Genomics Platform Trained over 

Sample HG001, HG003, HG004, HG005 and Tested over Sample HG002 

Although we have chosen precision as our performance measure (reason explained in Methods 

and Discussion section), the precision-recall curve of Figure 3 shows that our filtering scheme 

has demonstrated high AUC or area under curve (0.965) for Complete Genomics platform. 

Since, AUC is a measure of ability to discriminate true and false indel calls, our filtering scheme 

can be used as an effective classifier. Supplementary Table 7 corroborates this assumption as 

we can see good F1 scores (harmonic mean of precision and recall) over a range of threshold. 

We have used 0.5 as our threshold score which gives the highest F1 score (0.91). We can adjust 

the threshold according to our preference of precision and recall. 

Cross-platform Performance  

Our platform-specific filtering scheme can be extended to the cross-platform scenario as well. 

We have trained nine different models from training callsets generated from nine different 
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platforms (see Figure 4). We have evaluated each of these trained models over nine different 

test callsets generated from the same nine platforms. The resulting matrix is shown as a heatmap 

in Figure 4. Our first observation is that a model trained from a callset generated from a 

platform does not always perform the best on the test callset generated from the same platform.  

 

Figure 4: Cross Platform Precision Heatmap. Rows are Platforms Generating Training 
Indel Calls for Sample HG001/HG005 and Columns are Platforms Generating Test 

Indel Calls for Sample HG002 

For example, the model trained using callset generated by 10x_Genomics achieves 83% 

precision over the test callset generated by 10x_Genomics, whereas for the same test callset, 

model trained from data generated by Illumina (long read) with GATK achieves 86% precision. 

On the contrary, the best precision (85%) over Complete Genomics test callset is achieved by 

the model trained with Complete Genomics training callset. 

Our second observation is that there are platforms whose generated callsets are hard to predict 

unless the model is trained with callsets generated from similar platform, e.g., Illumina (mate 

pair) with FreeBayes caller. On the other hand, there are platforms, whose generated callsets 

can be used to train models that can perform well over callsets produced from diverse platforms, 

e.g., Illumina (long read) with FreeBayes caller. So, these universal filters show the promise to 

be used in case we don’t have information about the data generating platform. An interesting 
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observation is that if the train and test callsets share a common variant caller, e.g. FreeBayes, 

GATK, the corresponding model is likely to perform well. The greenish rectangle at the bottom-

left corner of the matrix is created due to FreeBayes. Our cross-platform study demonstrates 

that using filter trained from any model will improve precision. Although some models will 

perform better than others, it is always better to use a filter than no filter. 

Feature Importance 

We have grouped our selected genomic features used for classification into 10 feature groups 

according to their categorical similarities. XGBoost provides a score for each feature which 

indicates how useful the feature has been in the construction of the boosted decision trees within 

the model. By dividing each score with the maximum score, we have defined a measure named 

relative importance. For each group, we have calculated mean and standard deviation of the 

relative importance from the individual relative importance of member features (see Figure 

5).  

 

 

Figure 5: Mean and Standard Deviation (Red Error Bars) of Relative Feature 
Importance for Different Feature Groups. 

 
We can see that the level of conservation (±10bp GERP score) is one of the best indicators of 

false indel calls. A feature is particularly useful in discriminating if its distribution differs 

between true and false positives. We have demonstrated that for 1bp downstream GERP score 

(see Figure 6), true positives have a heavier-tailed distribution than false positives. Local 
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physical DNA structure and flexibility are also good predictors. Longer genomic contexts, e.g., 

±100bp distribution have better predictivity than shorter ones, e.g., ±5bp composition. An 

interesting observation is that the composition of reference or alternative allele has less 

importance than the composition of surrounding contexts in discrimination of true and false 

indel calls. A description of features is given in Supplementary Table 2. and the ranking of 

features according to their importance is given in Supplementary Figure 4. 

 

Figure 6: Histogram of 1bp Downstream GERP Scores of True Indel Calls (Red) and 
False Indel Calls (Green) from Complete Genomics Platform for Sample HG002 

Discussion 

Identification of true indel calls is of prime importance in many personal genomics applications. 

Due to the proliferation of next-generation sequencing, we have large repositories of indel calls 

at our disposals. With a few exceptions, these datasets do not come with detailed publicly 

available sequencing read information. To extract reliable indel calls from these large-scale 

data, our sequencing-read-independent filter should be advantageous. Our selected features can 

be computed from publicly available genome annotations.  

Since, we are more interested in filtering false positives from called indels rather than 

identification of every rare indel call, we have reported precision as our primary performance 

measurement. However, our training algorithm minimize a loss function for binary logistic 

regression which does not prioritize precision in any way. We have provided all standard 

classification performance measures, i.e., recall, F1-score and area under precision-recall curve 

where appropriate. We have demonstrated that our filtering scheme has done well in all criteria; 

our choice of threshold has achieved the highest F1-score (.91) with an AUC > 0.965 for 

Complete Genomics platform. Our reported recall estimates the fraction of platform-supported 
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true indels (only those called by platform) passed by our filter as positive; this does not estimate 

the fraction of all GIAB-supported true indels (the gold standard, some of which are not called 

by the platform) passed by our filter as positives. This makes sense, as our filter will not get a 

chance to evaluate an indel not called by the platform. Thus, we cannot know the true recall of 

our filter, and this is another reason to use precision as our metric. 

We have demonstrated the efficacy of GERP scores in recognition of true indel calls. Figure 6 

shows a histogram of 1bp downstream GERP score for both true and false indel calls. Indel 

calls around the region with neutral GERP scores exhibit a strong bias for false indel calls. One 

possible explanation of this phenomenon is that regions under no selective pressure can easily 

accumulate repetitive elements (e.g., homopolymer, tandem repeats). Sequencing of these 

regions are inherently difficult and error-prone.  

Our training and validation data consist of gold-standard indel calls from both high and non-

high confidence region (NHCR). Since we do not have a complete map of NHCR indels for 

gold-standard samples, most of the performance evaluation tasks reported in the literature have 

been conducted using only indels from high confidence regions (e.g., PrecisionFDA truth 

challenge5). In our opinion, this approach has two drawbacks. First, density of false indels calls 

are much higher (10% of the genome harbours greater than 50% of false indel calls) in NHCR, 

despite the fact that a fraction of these NHCR indel calls (in our estimate around 3%, see 

Supplementary Table 9) is expected to be true. Second, for a new sample we do not know 

exactly which portions of the genome are high confidence regions. Thus, discarding NHCR 

indel calls beforehand is not a feasible option. We argue that the inclusion of NHCR indel calls 

in our training set improves our model’s capability of false indel call detection without putting 

us in any advantageous situation with respect to precision, our principal performance metric. 

Rather our reported precision can be seen as an underestimation of true precision (which could 

be calculated if we would know the complete NHCR indel map), since our training set is more 

biased towards type II error (from the viewpoint of statistical hypothesis testing) or false 

negative (missing true indel calls). 

We have observed that the performance of our classifier is consistently better in the context of 

different train-test sample than in the context of same sample train-test splits. We hypothesize 

that in case of a different train-test samples, a set of indel calls are common in both samples. In 

actual scenario, we are most likely to apply the classifier across samples and get that additional 

performance boost. 

One of the current tides in genomic data analysis and in the broader area of machine learning 

is the extensive application of deep neural network architecture. We have previously mentioned 

DeepVariant which shows promising results for variant calling. The biggest downside of deep 

                                                
5 https://precision.fda.gov/challenges/truth/results 
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architectures is the difficulty of model interpretation within the black-box, although researchers 

are actively working on this issue (Shrikumar et al. 2017). Unlike other areas, interpretability 

is very important in biology, as this lay the foundation of the broader understanding about living 

systems. Another downside is the existence of adversarial examples, a sample with marginal 

noise which will be disproportionately misclassified by the model. Requirement of large 

training data (with no clearly reliable techniques for genomic data augmentation), high-end 

GPU platform, complicated hyperparameter tuning add up to the complexity. In our context, 

our use of gradient tree boosting directly gives feature importance. Moreover, our annotation 

data is mostly static (as we don’t use read data and model particular error pattern) and will not 

vary with more samples. Rather, more training data will saturate our understanding about 

unreliable genomic contexts corresponding to a particular sequencing platform. 

A potential limitation of our filter is that it may have less sensitivity towards rare or de-novo 

variants. Discrimination between a sequencing error and a rare variant is an inherently 

complicated task and our filter also suffers in this context, more so since we don’t use 

sequencing reads. However, at a bare minimum, it can provide a prior probability of being a 

true indel to be used with other evidences for a hard to validate indel.  

 

Methods 

We have formalized the identification of false indel calls as a supervised binary classification 

problem. Our basic assumption is that the genomic context of a true indel callset and that of a 

false indel callset differs from each other. Decision tree is an effective model for classification 

problems. Ensembles of decision trees are some of the most powerful off-the-shelf classifiers 

available to data analysts (Friedman et al. 2000). We have particularly used XGBoost (Chen 

and Guestrin 2016), an implementation of decision tree-based gradient boosting classifier. 

XGBoost provides a verdict on being a true indel as well as an estimate of uncertainty with a 

probability score. For training and testing, we have used genome in a bottle (GIAB) data set. 

To train a binary classifier we need instances from both classes, i.e., true and false indel calls, 

annotated with relevant genomic contexts captured within a feature matrix. Our positive 

instances have come from the indel callset generated by the corresponding platform and 

supported by GIAB high-quality gold standard dataset. The generated indel callset not present 

in the gold standard dataset are our negative instances for corresponding platform. We have 

annotated both positive and negative instances using publicly available genomic features, not 

related to any specific platform or caller or population.   

Dataset 

We have used both platform-specific indel calls and the gold-standard indel calls from GIAB 

(Genome-in-a-bottle) consortium. In our primary evaluation, for training purposes we have 

used indel callsets of three samples, i.e., HG003, HG004 and HG005, generated from five 
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different sequencing pipelines (see Figure 1). For some platforms, indel callset of only one 

training sample (HG001) is available which we have used to evaluate them (see Supplementary 

Table 4). For testing purposes, we have always used sample HG002, as this was sequenced by 

each platform. To assess the effect of the sample size over performance, for training purposes 

we have added indel callsets from four samples generated from Complete Genomics, namely, 

HG005, HG004, HG003 and HG001, in the given order. For annotation purposes, we have used 

RepeatMasker (Tempel 2012) for identifying various repeat regions, e.g., tandem, interspersed 

etc.. To measure the level of conservation, we have used GERP scores (Davydov et al. 2010). 

All DNA sequence contexts are calculated with hg19 reference genome (Rosenbloom et al. 

2015). 

Feature Selection 

Extracting representative features is a crucial step for building any machine learning classifier. 

Here the goal is to select features which are relevant predictors for sample class, e.g., true vs 

false calls. We have tried a number of genome annotations as well as their combinations to find 

a good set of platform-independent genomic features. We have not used any platform or 

population specific features, such as, read depth, quality, alignment, allele frequency, genotype 

calls, etc. All of the features can be generated with publicly available genome sequences and 

annotations.  

We have found that functional features, e.g., gene annotation from GENCODE (Harrow et al. 

2012), open chromatin, binding sites, histone modification etc. from ENCODE (Bernstein et 

al. 2012) are less indicative of indel calling accuracy; instead physical properties (Thomas 

Abeel 2011), nucleotide composition (distribution of monomer, dimer and trimer),  level of 

conservation (GERP scores) (Davydov et al. 2010) and repeat structure of the indel and its 

surrounding DNA are more suggestive. We have calculated these features for four 

corresponding contexts of different scales, namely, ±5bp, ±10bp, ±50bp and ±100bp. In total, 

we have kept 219 features which are found to discriminate true indels from false ones.  

The Model 

Boosting is an ensemble technique in machine learning that combines several weak learners to 

build a strong learner (Friedman et al. 2000). We can formulate boosting using a general class 

of mathematical model, i.e., the adaptive basis function model. Here, for a given dataset 𝐱, a 

target function 𝑓(𝐱)  is expressed as a linear combination of 𝑑  basis functions as in the 

following equation: 

𝑓(𝐱) = 𝑤 𝜙 (𝐱) (1) 

Here, 𝜙 (𝐱) is the 𝑘th basis function, i.e., weak learner/classifier, and 𝑤  is the assigned weight 

of 𝜙 (𝐱) in decision making. In gradient tree boosting, each 𝜙 (𝐱) is a decision tree classifier. 
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Behind most supervised learning algorithm, the assumption is that optimal model parameters 

will minimize the risk of misclassification. True risk of misclassification is approximated 

through the introduction of some specified per-sample loss function ℓ 𝑦 , 𝑓(𝐱 )  for the 𝑖 th 

sample, where 𝑦  is the true class label. A general stage-wise boosting algorithm defines a 

recursive relation between the ensemble learner from stage 𝑘 and 𝑘 − 1 for the 𝑖th sample as 

follows: 

𝑓(𝐱 ) = 𝑓(𝐱 )( ) + 𝛽 𝜙 (𝐱 ) (2) 

Learning (𝛽 , 𝜙 ) can be cast as an optimization problem which tries to minimize the risk 

according to following equation: 

(𝛽 , 𝜙 ) = arg min
,

ℓ 𝑦 , 𝑓(𝐱 )( ) + 𝛽𝜙(𝐱 )  

Gradient boosting splits this single step optimization into two parts. First it fits 𝜙 (𝐱 ) to a new 

quantity called pseudo-residuals 𝑟  where, 

𝑟 = −
𝜕

𝜕𝑓(𝐱 )( )
ℓ 𝑦 , 𝑓(𝐱 )( )  (3) 

In fact, 𝑟  is the negative of the gradient of loss function for the 𝑖th sample with respect to 

𝑓(𝐱 )( )  from stage 𝑘 − 1. This is an example of functional gradient descent giving the 

direction of steepest descent in the space of loss function. The amount of total descent or the 

weight, 𝛽  of the basis function 𝜙 (𝐱 ) is calculated using the following equation: 

𝛽 = arg min ℓ 𝑦 , 𝑓(𝐱 )( ) + 𝛽𝜙 (𝐱 ) (4) 

Sometimes, instead of Equation 1 we use the following recursive equation: 

𝑓(𝐱)( ) = 𝑓(𝐱)( ) + 𝜈𝛽 𝜙 (𝐱) (5) 

Here, 𝜈 is called a shrinkage factor which is used to slow down stage wise model building to 

avoid overfitting. 

In our experiments, we have used XGBoost (Chen and Guestrin 2016), an efficient, scalable, 

sparsity-aware, cache-oblivious, distributed implementation of gradient tree boosting. It also 

uses second-order Taylor series approximation of a regularized loss function for fast 

computation. 

Decision tree-based learning models provide a natural framework for feature importance 

estimation. Gradient tree boosting extends the framework for an ensemble of decision trees. 

Since the importance of each feature is calculated separately without being entangled with other 

features, we can sort the relative importance of features and provide a global ranking. At every 

non-leaf node of a decision tree, a feature with an appropriate value (splitting point) is selected 

which will reduce the node impurity (mixture of samples from different classes) maximally. 

For each feature, the total weighted reduction across all the nodes represent its importance for 
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corresponding decision tree. For an ensemble of trees, we can estimate the actual feature 

importance by averaging the feature importance from individual decision trees (Friedman 

2001). We have used the feature score provided by XGBoost (Friedman et al. 2000) to assess 

the relative importance of used features. 

Performance Evaluation 

The stakes associated with decision errors by classifiers are not always symmetric across 

possible class labels. Using our tool, later we have plan to build a repository of high quality 

indels enriched with true positives (TP). To achieve this, we have been more interested on the 

reduction of false positive (FP) calls than that of false negative (FN) calls. Thus, we have 

reported precision or positive predictive value (PPV) as our main performance metric which is 

defined as follows: 𝑃𝑃𝑉 =  

For every sequencing pipeline of a particular platform, an aligner and a variant caller mentioned 

in Supplementary Table 1, we have calculated a base precision, intersection (using RTG tools 

(Cleary et al. 2015)) between indel callset generated by the sequencing pipeline and the gold 

standard GIAB indel callset. We have applied our classifier in two different settings. First, the 

classifier is trained using the gold standard indel calls (all or only platform generated) from one 

sample and tested on the indel callset of another sample produced by that particular pipeline. 

Unless otherwise specified, this is the default settings. Second, we have also performed train-

test split using the pipeline generated indel callsets for each sample to discard the effect of 

common instances between the training and test samples. This was only done (c.f., the analysis 

of Figure 2) to understand the classifier performance under completely randomized and 

controlled scenario. But this is not likely to be an actual application scenario. 

Tuning Hyperparameters 

We have performed a grid search in the hyperparameters’ space for the fine tuning of our 

classifier. Three most important hyperparameters are: 

1. Number of trees: this is the number of boosting rounds. 

2. Tree depth: the maximum number of conditions checking from the root to a leaf  

3. Learning rates: shrinkage factor for a new tree 

Number of trees or boosting rounds for our gradient boosting machine is one of the most 

important predefined hyperparameters. Supplementary Figure 2 shows the effect of increasing 

number of trees over performance. Evidently, initial boosting rounds improve performance 

drastically whereas later rounds show performance saturation.  

Other two significant hyperparameters are learning rate and tree depth. Supplementary Figure 

3 explores their mutual effect over performance. Increasing tree depth generally boosts 

performance. But similar to number of trees, the performance increment saturates with 

increasing tree depth. Supplementary Figure 3 shows that influence of learning rates and tree 
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depth on performance is intertwined. Low learning rates slow down the performance saturation. 

So, attaining a high-performance mark becomes possible. Higher learning rates tend to saturate 

performance quickly.  

Chosen values for our experiments are as follows, boosting round = 200, tree depth = 16 and 

learning rate = 0.25. 

  

Conclusions 

Our findings in this paper should help researchers to identify a more reliable set of indels. This 

study also sheds lights on the genomic contexts likely to be responsible for interesting mutation 

events. We have future plans to use our variant filter to extract more complicated class of 

variants, e.g., multi-allelic indels. This study should also help to elucidate mutation history.  
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 Supplemental Materials 

Supplementary Table 1: List of sequencing platform and variant caller combinations 
used in our experiment 

Platform Caller 

GIAB Consensus Gold-standard 

Complete Genomics CGATools 

10X Genomics GATK 

Illumina Paired End FreeBayes 

Illumina Paired End GATK 

Illumina Mate Pair FreeBayes 

Illumina Mate Pair GATK 

Illumina Long Read FreeBayes 

Illumina Long Read GATK 
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Supplementary Table 2: Selected features used for sample annotation 

Type Description 

Indel type Balanced and unbalanced substitution, homopolymer, 

generalized indel, tandem repeat 

Variant length Distance between reference and variant, affected reference 

length, alternative allele length 

Trimer 

distribution 

The probability distribution of all possible trimers within 100 

base pairs upstream and downstream. Reverse complements 

are considered equivalent which reduced the count by half.   

Nucleotide 

content  

A, C, G, T, AT, GC, Purine and Pyrimidine contents 

Helical structure DNA twist, tilt, roll, shift, slide, rise 

Stability Duplex stability free energy, Duplex stability disrupt energy, 

Denaturation, Stacking energy, Z-DNA,  

A-philicity 

Twist structure Propeller-twist, protein-DNA twist, b-DNA twist 

Flexibility Bendability, bending stiffness, protein deformation, 

nucleosome preference 

Radical 

Cleavage 

Intensity 

Dimer radical cleavage intensity, trimer radical cleavage 

intensity, tetramer radical cleavage intensity, pentamer radical 

cleavage intensity 

Repeat structure RepeatMasker annotations, e.g., LINE, SINE, LTR, RC, 

SATELLITE, LOW_COMPLEXITY, SIMPLE_REPEAT, 

OTHER_REPEAT, UNKNOWN, RNA, rRNA, scRNA, 

snRNA, srpRNA, tRNA 

Conservation Upstream GERP scores, downstream GERP scores, Average 

GERP score of affected reference allele 
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Supplementary Table 3: Precision (both before and after Filtering) and Recall across 
Different Platforms and Variant Categories (Training with HG003, HG004, HG005 and 

Testing with HG002) 

Variant Platform Filtered Precision Base Precision Improvement Platform Recall 

In
d

el
 

BWA_FB 0.868890026 0.583043444 0.285846582 0.883360069 

BWA_GATK 0.859497505 0.622203483 0.237294022 0.884426773 

CGAtools 0.896116064 0.702979592 0.193136472 0.938955828 

Novo_FB 0.897032378 0.612719866 0.284312511 0.893288653 

Novo_GATK 0.877508294 0.57158593 0.305922364 0.860690178 

T
an

de
m

  
R

ep
ea

t 

BWA_FB 0.940764718 0.812712126 0.128052592 0.980806547 

BWA_GATK 0.937302191 0.800719808 0.136582383 0.973697353 

CGAtools 0.934402393 0.821558788 0.112843604 0.988311802 

Novo_FB 0.94401434 0.804878823 0.139135516 0.976835043 

Novo_GATK 0.942267346 0.796464258 0.145803088 0.97089365 

H
om

op
ol

ym
er

 

BWA_FB 0.870649246 0.609115045 0.261534201 0.882427908 

BWA_GATK 0.882210569 0.691475896 0.190734673 0.90676607 

CGAtools 0.885474293 0.689986058 0.195488235 0.919632425 

Novo_FB 0.899932157 0.650754154 0.249178004 0.889525386 

Novo_GATK 0.884976479 0.609146049 0.27583043 0.857741692 

C
om

b
in

ed
 BWA_FB 0.865285106 0.450321038 0.414964068 0.794888386 

BWA_GATK 0.865642257 0.652947091 0.212695166 0.816405359 

CGAtools 0.892443364 0.610070535 0.28237283 0.931938682 

Novo_FB 0.888261042 0.536538358 0.351722684 0.79629738 

Novo_GATK 0.876234053 0.593069812 0.283164241 0.756913691 
 

 

Supplementary Table 4: Precision (both before and after Filtering) and Recall across 
Different Platforms (Training with HG001 and Testing with HG002) 

Platform Filtered Precision Base Precision Improvement Platform Recall 

10x_Genomics 0.829839207 0.654981899 0.174857308 0.882151456 

Complete_Genomics 0.848867008 0.610070535 0.238796474 0.890191933 

DeepVariant_PrecisionFDA 0.818655218 0.634213021 0.184442197 0.862526114 

IlluminaPairedEnd_FreeBayes 0.838743642 0.530593095 0.308150546 0.878192968 

IlluminaPairedEnd_GATK 0.820186934 0.557212315 0.262974618 0.846778272 
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Supplementary Table 5: Data for Figure 2 [Left panel] 

No of Samples Platform-TP GIAB-TP 

0 0.610070534578925 0.610070534578925 

1 0.849362313633914 0.827872729325533 

2 0.87795531017638 0.850080457715 

3 0.892443364103996 0.86390142852011 

4 0.894835812876568 0.868815875200175 
 

Supplementary Table 6: Data for Figure 2 [Right panel] 

Training Sample Overlapping Non-overlapping 

HG001 0.849266647064217 0.822827813535822 

HG003 0.867073369975678 0.836731004348079 

HG004 0.871835541071362 0.83580797576253 

HG005 0.849364939432526 0.825721263977402 
 

Supplementary Table 7: Data for Figure 3 

Threshold TP FP TN FN Precision Recall F1-score 

0.1 298280 95039 97840 3492 0.758366618 0.98842835 0.858247337 

0.2 294788 69895 122984 6984 0.808340394 0.9768567 0.884644875 

0.3 292501 54564 138315 9271 0.842784493 0.969278131 0.901616277 

0.4 289449 44672 148207 12323 0.866299933 0.959164535 0.910370141 

0.5 279808 32884 159995 21964 0.894835813 0.927216574 0.910738465 

0.6 266042 18404 174475 35730 0.935298791 0.881599353 0.907655514 

0.7 257484 12285 180594 44288 0.954461039 0.853240195 0.901016725 

0.8 242742 8471 184408 59030 0.966279611 0.804388744 0.877933398 

0.9 202766 4263 188616 99006 0.979408682 0.671917872 0.797034597 
 
 

Supplementary Table 8: Data for Figure 5 

Feature Mean STD 

GERP Score 0.893857254 0.069916296 

DNA Structure 0.687149784 0.112285741 

DNA Flexibility 0.575843505 0.101948985 

±100bp Composition 0.524790685 0.106620855 

±10/50bp Composition 0.432841764 0.16987573 

DNA Stability 0.392034154 0.073936636 

ALT Allele Composition 0.089534154 0.083501268 

REF Allele Composition 0.082080024 0.057725063 

±5bp Composition 0.036398041 0.012786659 

Repeat Structure 0.026875692 0.032858894 
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Supplementary Table 9: Calculation of the Fraction of False Indel Calls Made by 
Complete Genomics Platform in non-High Confidence Regions Expected to be True 

Figure 3 

Sample A B C D E F G H 

HG001 2437910000 432630 29125 14648 6208 3122 120124 0.026 

HG002 2358060000 434622 35198 24983 6478 4598 118572 0.039 

HG003 2346020000 431171 31470 30752 5928 5793 118051 0.049 

HG004 2349000000 437931 32288 30274 6355 5959 125417 0.048 

HG005 2376860000 369471 38285 9547 14872 3709 137480 0.027 
 

X = # of non-N base pairs in the whole reference genome excluding X chromosome = 2684573069 

A = # of non-N base pairs in high-confidence regions (HCR)  

B =  # of GIAB gold-standard indels in HCR  

C =  # of GIAB gold-standard indels in non-high confidence regions (NHCR) 

D =  Expected # of missing indels in NHCR = [X*B/A]-[B+C] 

E =  # of GIAB gold-standard indels in NHCR detected by Complete Genomics (CG) platform 

F =  Expected # of indels in NHCR supposed to be detected by CG platform 

G =  # of false indel calls made by CG platform in NHCR 

H =  Fraction of false indel calls made by CG platform in NHCR expected to be true. 
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Supplementary Figure 1: Precision Improvement over both Whole Genome and 
High/non-High Confidence Regions Separately for Different Platforms 

 

 
Supplementary Figure 2: Area under ROC curve vs. Number of Boosting Trees 
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Supplementary Figure 3: Area under ROC curve vs. Tree Depth for Different Learning 

Rates 
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Supplementary Figure 4: Usage Count of Classifier Features in Sorted Order 
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