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Abstract 
 
The power of genotype-phenotype association mapping studies increases greatly when 
contributions from multiple variants in a focal region are meaningfully aggregated. Currently, 
there are two popular categories of variant aggregation methods. Transcriptome-wide 
association studies (TWAS) represent a category of emerging methods that select variants 
based on their effect on gene expressions, providing pretrained linear combinations of variants 
for downstream association mapping. In contrast, kernel methods such as SKAT model 
genotypic and phenotypic variance using various kernel functions that capture genetic similarity 
between subjects, allowing non-linear effects to be included. From the perspective of machine 
learning, these two methods cover two complementary aspects of feature engineering: feature 
selection/pruning, and feature modeling. Thus far, no thorough comparison has been made 
between these categories, and no methods exist which incorporate the advantages of TWAS 
and kernel-based methods. In this work we developed a novel method called kTWAS that 
applies TWAS-like feature selection to a SKAT-like kernel association test, combining the 
strengths of both approaches. Through extensive simulations, we demonstrate that kTWAS has 
higher power than TWAS and multiple SKAT-based protocols, and we identify novel disease-
associated genes in WTCCC genotyping array data and MSSNG (Autism) sequence data. The 
source code for kTWAS and our simulations are available in our GitHub repository 
(https://github.com/theLongLab/kTWAS).  
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Transcriptome-wide association studies (TWAS), Kernel methods, Power analysis, Non-linear 
genetic effects.  
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Introduction 
  
Transcriptome-wide association studies (TWAS) have emerged as an important technique for 
associating genetic variants and phenotypic changes[1-5]. Pioneered by Gamazon et al.[6], 
TWAS is typically conducted in two steps: First, a model is trained to predict gene expression 
from genotypes, using a reference dataset which contains paired expression and genotype data. 
Techniques including ElasticNet[6], Bayesian sparse linear mixed models (BSLMM)[7-9], deep 
auto-encoder models[10] and deep learning regression models[11] are used to fit this 
genotype-expression model. The pretrained genotype-expression model is then used to predict 
expression activity from the main dataset for genotype-phenotype association mapping (referred 
to as GWAS dataset hereafter), which contains genotype and phenotype information (but not 
expression data) for each case or control in the GWAS cohort. As first demonstrated by Gusev 
et al.[8], meta-analysis methods for conducting TWAS using summary statistics from the GWAS 
dataset have also been developed[12]. The key insight of TWAS is that transcriptomic data can 
be used to select for genetic variants critical to gene expression (i.e., eQTLs), which improve 
the quality of downstream GWAS. By modelling the association between linear combinations of 
variants and expression, TWAS effectively aggregates many genetic variants into a small 
number of meaningful linear combinations. Remarkably, this approach remains effective even 
when the predictive power of the genotype-expression model is low. As a result, despite having 
average R2 values around 1%, the use of genotype-expression models in TWAS has led to 
significant successes in real data analyses[3, 4, 13-17]. Indeed, as demonstrated in our 
simulations[18], predicted expressions generated by a genotype-phenotype model can perform 
better than actual expression data when applying TWAS analysis. This may be because 
predicted gene expressions capture the genetic component of expressions more precisely than 
the actual expressions, which include multiple components such as experimental artifacts and 
environmental factors.  
 
The popularity of TWAS has overshadowed another well-established branch of kernel machine-
based models of genetic association, such as the sequence kernel association test, or SKAT[19, 
20]. Evidently, with the emergence of TWAS (Table 1 Column 3,4), the citation of the SKAT 
paper for common variants analysis is decreasing (Table 1 Column 2), although the community 
still cites the SKAT paper for rare variants analysis (Table 1 Column 1). The key insight of 
kernel methods is that the similarity of a genetic region between different subjects (as captured 
by a kernel) can be used to associate genotypic and phenotypic variance in that region, without 
knowing which specific genetic variants are causal in the focal region. As a result, kernel-based 
methods can model the aggregated effects of multiple genetic variants and capture genetic 
interactions within a local region, while being robust to noise. At first glance, TWAS and kernel-
based models appear quite different, as TWAS utilizes expressions, whereas kernel methods 
only use genetic data. Intuitively, TWAS may appear to be more powerful as it integrates more 
information in the form of expression data. However, in our opinion, TWAS and kernel methods 
are quite comparable because they are both variant-set analyses which test an aggregated set 
of genetic variants for associations with a phenotype. Essentially, TWAS selects and weights 
genetic variants for aggregation using a linear model, whereas kernel methods structure genetic 
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variants into various kernel machines. From the perspective of machine learning, these two 
methods cover two complementary aspects of feature engineering: feature selection/pruning, 
and feature modeling. Kernel methods organize genetic variants in a flexible way to cope with 
unknown genetic architecture, but do not provide a quantitative way to pre-select meaningful 
variants; while TWAS models select meaningful variants via gene expressions but leave the 
modeling of them to a simple linear form.  
 

 
Year SKAT(rare)[19] SKAT(common)[20] PrediXcan[6] TWAS(meta)[8] 

 

 
2010 1 4 0 0 

 

 
2011 14 32 0 0 

 

 
2012 70 55 0 0 

 

 
2013 161 53 0 0 

 

 
2014 242 61 0 0 

 

 
2015 201 73 21 3 

 

 
2016 272 62 55 28 

 

 
2017 263 66 119 96 

 

 
2018 223 65 154 116 

 

 
2019 239 46 188 188 

 
 
Table 1. Number of citations for SKAT and TWAS papers over the last ten years (Google Scholar). 
 
 
Surprisingly, a thorough comparison has yet to be made between TWAS and kernel methods. In 
their pioneering work on PrediXcan, Gamazon et al.[6] applied SKAT and PrediXcan to 
Wellcome Trust Case Control Consortium (WTCCC) data[21], reporting that PrediXcan 
produced an elevated proportion of significant genes across all P-values (Fig. 7 in [6]). However, 
the authors did not conduct simulations (under which the ground truth is known) to quantify the 
power of competing methods. Further developments to TWAS have incorporated multiple 
tissues[22], better models for predicting expression[9], methods to combating artifacts caused 
by co-expressed genes[23] and extensions to other middle-omes such as proteins[24, 25] and 
images[26]. These later developments have only been compared against the seminal TWAS 
tools[6, 8], and not directly with kernel methods such as the flagship tool, SKAT. Not only has 
this lack of comparisons unfairly discouraged the use of kernel methods, but there is also a 
missed opportunity for integrating the advantages of both approaches to better model the 
genetic basis of complex traits.  
 
In this work, we propose a novel model called kTWAS (kernel-based transcriptome-wide 
association study), which integrates TWAS and kernel methods. We expect that kTWAS will 
take advantage of expression data via TWAS-based feature selection, and take advantage of 
the kernel-based test, which is robust to the unknown (possibly non-linear) underlying genetic 
architecture of the focal phenotype. As a result, the power of kTWAS should be equivalent to 
TWAS, due to its ability to select genetic variants regulating gene expressions; and also as 
robust as SKAT to noise and interactions between associated genetic variants.  
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Using simulated data, we have conducted thorough power comparisons between six protocols: 
PrediXcan, kTWAS, and four different protocols using SKAT under different assumptions 
regarding the distributions of genetic effects. (Detailed descriptions and justifications are 
presented in Materials & Methods). Although our main focus is on cases where subject-level 
genotypes are available, we have also tested six corresponding meta-analysis protocols where 
association mapping is conducted using summary statistics instead of subject-level genotypes. 
We simulate phenotypes based on four representative genetic architectures: an additive 
architecture, heterogeneous architecture, and two interaction architectures, with multiple effect 
sizes and heritability levels. While each protocol has unique strengths, our kTWAS method 
outperforms alternatives with significant margins in the majority of cases. As expected, the 
corresponding meta-analysis protocols had similar performance trends in our meta-analysis 
simulations. Moreover, we have conducted extensive real data analysis using kTWAS, which 
identified a larger number of significant genes with supporting literature than standard TWAS. 
Evidences from literature search support the real phenotypic validity of the novel genes 
discovered by kTWAS. 
 
The following section presents the design of kTWAS, simulation details, and the power analysis 
procedure. The simulation outcomes and discoveries in real data are presented in Results. 
Finally, the conclusion discusses the potential impact of this work, additional literature, and 
future directions.   
 
Materials & Methods 
 
Mathematical details of SKAT, PrediXcan, and kTWAS  
 
The sequence kernel association test (SKAT) tool was selected to represent kernel-based 
methods. SKAT utilizes a score test to aggregate the phenotypic contributions of multiple 
genetic variants using a kernel machine[20]. In particular, SKAT employs a score test: 
 

� � ��� � 
 
Where y is the vector of phenotype values, and K is a kernel calculated from the centralized 
genotype matrix G, where Gij is the variant of the j-th genomic position in the GWAS focal region 
of the i-th individuals with. A simple example of a linear kernel is given by � � ����	�/n (where 
n is the total number of variants in the GWAS dataset).  
 
While Wu et al., originally subtracted cofactors such as sex and age from the phenotype vector 
y as ‘y-u’ [20], to simplify comparisons, this work will not include any cofactors when evaluating 
each model. Furthermore, while additional extensions to SKAT have been developed to handle 
rare variants[19, 27] and the combined effect of rare and common variants[28], this paper will 
only focus on common variants to be more comparable to TWAS.  
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Figure 1. The kTWAS protocol. (a) A pretrained model (such as the ElasticNet model from PrediXcan) is
used to linearly associate variants in a focal region to gene expressions, using genotype-expression data 
from a reference panel such as GTEx. (b) The regression parameters of the genotype-expression model 
from a are used to calculate the kernel  for the sequence kernel association test (SKAT), where  is 
based on the weight of each variant  from the parameters of the pretrained linear 
model. (c) Using the TWAS-informed kernel  from b, the Q score test from SKAT is conducted on the 
GWAS dataset to test the hypothesis that the variance components of a linear GWAS model are 
uniformly zero. Q follows a mixture of chi-squared distributions under the null hypothesis. 
 
 
As the earliest TWAS method, PrediXcan was selected to represent TWAS in this paper. 
PrediXcan is composed of two steps: First, a linear model is trained to predict genetically 
regulated gene expression (called GReX[6]) in the relevant tissue using a reference panel 
containing both genotype and expression data: 
 

 

 
Here,  are the regression parameters to be trained; and  is the matrix of 
genotype in the focal region. Various methods can be used to train this predictive model[8, 29], 

5

 
 is 
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and PrediXcan uses ElasticNet[30] to conduct this training. We use the pre-trained PrediXcan 
ElasticNet models which are available for download on the authors’ website[31]. 
 
Using the above model, GReX expressions are then estimated for the genotypes from GWAS 
dataset (which only provides genotype and phenotype information): 
 

�
 ~ � ���� 
 
The estimated GReX values �
 are then associated to the phenotype: 
 

� ~ �
 � � 
 
Various extensions to PrediXcan have since been developed for many cases in association 
mapping[8, 22, 23, 32, 33]. In particular, Gusev et al. pioneered the first tool utilizing summary 
statistics[8] to conduct TWAS. To ensure theoretical and technical consistency, in this paper we 
chose S-PrediXcan, the meta-analysis version of PrediXcan[12], to represent meta-analysis 
TWAS tools in our protocol comparisons.      
 
Based on the hypothesis that SKAT and TWAS have different advantages which can be 
integrated, we developed the novel method kTWAS, or kernel-based transcriptome-wide 
association study. The protocol of kTWAS is illustrated in Fig. 1. 
 
Mathematically, we first extract the regression coefficients �� from the pretrained genotype-
expression ElasticNet model provided by PrediXcan (Fig. 1a): 
 

� ~ � ���� �  � 

 
 
We then prepare the kernel �� for use in SKAT, where �� is weighted according to the 
contribution of each variant to the ElasticNet model above, � � �������, … , ��	, (Fig. 1b): 
 

�� � ���� 
 
Finally, we conduct the Q score test from SKAT using the TWAS-informed kernel ��. This tests 
the hypothesis that the variance components explained by the local genetic region are uniformly 
zero, where Q follows a mixture of chi-squared distributions under the null hypothesis (Fig. 1c):   
 

� � ����� 
 
As outlined in the Introduction, kTWAS should enjoy the advantages of both kernel methods and 
TWAS, allowing it to incorporate both feature selection and feature modeling using a kernel.  
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Protocols compared  
 
We selected a total of six genotype-based protocols for power comparisons, including kTWAS.  
(1) SKAT-naive applies the default setting of SKAT, which does not select a subset of genetic 
variants in a region. In practice, researchers may use this “naive” version of SKAT given no prior 
knowledge of the relative importance of variants in the focal region.  
(2) SKAT-S-LM pre-selects genetic variants based on their marginal associations to phenotype, 
which is assessed by associating each individual variant in the region independently to the 
phenotype. A linear model, such as the model implemented in PLINK[34], is used to pre-select 
an arbitrary number of variants. As different genes have wildly varying numbers of causal 
genotypes contributing to the phenotype, we chose a pragmatic approach where the number of 
variants selected by SKAT-S-LM is matched to the number of variants selected by the 
ElasticNet model from PrediXcan.  
(3) SKAT-S-LMM is similar to SKAT-S-LM, but uses a linear mixed model (LMM) to perform 
variant selection, as implemented by EMMAX[35]. Since LM and LMM are both representative 
models for conducting single-variant GWAS, we chose to test both to cover a wider spectrum of 
variant selection methods.  
(4) SKAT-eQTL pre-selects genetic variants based on published eQTLs[36], instead of 
screening for marginal effects in the GWAS dataset under analysis. Since this protocol selects 
eQTLs independently of the GWAS data, it may allow SKAT-eQTL to avoid overfitting which 
may be caused by associating GWAS markers directly to phenotype, such as in the cases of 
SKAT-S-LM and SKAT-S-LMM. As such, we expect the performance of SKAT-eQTL to show 
different behavior from SKAT-S-LM and SKAT-S-LMM, depending on the marginal effects of 
individual variants. These eQTLs are downloaded from the GTEx publication[36], which are also 
selected by associating expressions to genotypes. The difference between this selection and 
the ElasticNet selection is that the variants selected are not jointly modeled linearly. 
(5) PrediXcan, as discussed previously, is the first and most representative TWAS tool. 
(6) kTWAS, which is our novel tool integrating TWAS and SKAT. 
 
Additionally, we conducted an equivalent comparison of the above six protocols when applied to 
meta-analysis, based on the protocols MetaSKAT[27] and S-PrediXcan[12]. In all of the 
protocols that SKAT is relevant (including kTWAS), the default linear kernel is used in SKAT 
(https://cran.r-project.org/web/packages/SKAT/SKAT.pdf). Note that, as will be evidenced in the 
Results, a linear kernel is also more robust to non-linear effects than linear combinations 
adapted in TWAS. This is because the probability of two subjects carrying the same 
combinations of genetic variants is proportional to their genetic similarity captured by any 
(including linear) kernels.   
 
Data simulation procedure and power analysis  
 
Genotype data and selected gene region. We used genotype data with a sample size of N = 
2,548 from the 1000 Genomes Project[37] (available at 
http://hgdownload.cse.ucsc.edu/gbdb/hg38/1000Genomes/). We used the pretrained genotype-
expression ElasticNet models used by PrediXcan[6, 12], available at http://predictdb.org/. The 
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ElasticNet models are trained for all available tissue types in GTEx (v8). As the sample size and 
data quality varies between different GTEx tissues, the number of genes for which PrediXcan is 
applicable also varies. Whole-blood tissue is the largest and most frequently used gene set, with 
7,252 available genes (together with 1Mb flanking genetic regions) on which PrediXcan can be 
applied. We therefore simulated 7,252 datasets based on the whole-blood tissue gene set.  
 
Genetic architecture and parameterizations. For each gene, we simulated phenotypes based on 
four different genetic architectures. Their definitions and parameterizations are described below.  
 
(1) “Additive” architecture. In this architecture, phenotype is associated with the sum of genetic 
effects. For each gene, we selected a genetic region that includes the gene body and 1Mb of 
flanking sequences. From this region, 4 single nucleotide polymorphisms (SNPs) with minor 
allele frequency (MAF) higher than 1% were randomly selected, with 2 SNPs chosen from 
variants preselected by the ElasticNet model used in PrediXcan, and the other 2 SNPs chosen 
from known eQTLs excluding those identified by the ElasticNet model. The first category of 
ElasticNet SNPs (selected by the genotype-expression ElasticNet model) favor the performance 
of PrediXcan, while the second category of eQTL SNPs (not selected by the ElasticNet model) 
favor SKAT-related models, as kernels better capture the effects of unsampled variants. To 
simplify simulations, we fix the number of SNPs from each category to 2, and we further rescale 
the phenotypic variance components contributed by ElasticNet SNPs versus other eQTL SNPs 
by a “scale” parameter which is set to one of six different factors: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.  
 
(2) “Heterogeneous” architecture. In this architecture, we randomly select two SNPs in the focal 
region. Subjects carrying an alternate allele at either or both SNPs will have an associated 
phenotypic change, where subjects carrying both alternate alleles have the same phenotypic 
change as subjects carrying one alternate allele. As in the additive model, the use of ElasticNet 
SNPs (favoring TWAS) versus eQTL SNPs (favoring kernel methods) is adjustable. We 
introduce a “proportion” parameter to set the number of ElasticNet SNPs as 0, 1, and 2, where 
the remaining number of eQTL SNPs is 2, 1, and 0 respectively. This parameter is analogous to 
the “scale” parameter applied to the variance components of ElasticNet SNPs in the additive 
architecture. 
 
(3) & (4) “Recessive” and “Compensatory” interaction architectures. Similar to the 
heterogeneous architecture, we randomly select two SNPs in the focal region, and also include 
the “proportion” parameter which selects for 0, 1, and 2 ElasticNet SNPs. The effects of the 
SNPs are modeled differently, however. In the “Recessive” interaction architecture, a 
phenotypic change is made only when both alternate alleles are present. For the 
“Compensatory” interaction model, the phenotypic change is made only if there is exactly one 
alternate allele out of the two SNPs. Subjects carrying both alternate alleles will have the same 
phenotypic change as subjects carrying neither of the two alleles. This mirrors a situation where 
the effect of one mutation is compensated by the presence of another mutation, which is a 
phenomenon observed frequently in many organisms[38-41]. 
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Heritability. The above genetic architectures define how genetic components of a phenotype 
could be specified. Using the genetic components, we generated phenotypes where the 
variance component of genetics, or heritability, equals a preselected value  �. That is, given the 

variance of the phenotype’s genetic component as !��, we calculate !�� so that  
	�
�

	�
�
	�

� �  �. We 

then sample from the normal distribution "�0, !��	 to determine the strength with which non-
genetic components such as noise or environmental effects contribute to phenotype. Finally, the 
sum of the genetic and non-genetic components is stored as the simulated phenotype for use in 
association mapping and power calculations.  
  
Power calculations & Adjustments to type-I errors. For each of the genetic architectures and 
their associated parameters, we simulated 7,252 datasets containing 2,548 subjects each, on 
different focal regions (containing a gene flanked by 1Mb sequences) in which causal variants 
are randomly selected. We then test each protocol’s ability to successfully identify the causal 
gene in each dataset, where success is defined as a Bonferroni-corrected[42] P-value that is 
lower than a predetermined critical value. We aimed to fix the type-I error across all protocols to 
α = 0.05. However, due to various reasons including the uneven distribution of genetic variants 
among the 7,252 genes and inherent biases between the protocols (e.g., overfitting caused by 
SKAT-S-LM and SKAT-S-LMM models), we discovered that the actual type-I errors of different 
protocols varies widely under a fixed critical value of 0.05. To equalize the type-I error across all 
protocols, we simulated random phenotypes with no genetic components whatsoever, to 
empirically determine the null distribution of each protocol. We then analyzed data from all 
7,252 genetic regions using each protocol to empirically determine the critical value which 
separates out the smallest (most significant) 5% of all P-values. This ensures that all protocols 
are fairly compared with a type-I error of 0.05. 
 
The statistical power of each protocol is given by the number of successes divided by the total 
number of datasets (7,252). For the six protocols utilizing genotype data, we conduct 
association mapping directly on the simulated genotypes. For the six protocols utilizing 
summary statistics, we conduct association mapping on summary statistics calculated from the 
simulated genotypes according to the instruction manuals of S-PrediXcan and MetaSKAT.  
 
Real data analysis 
 
We compared the performance of kTWAS and PrediXcan on the WTCCC[43] and MSSNG[44] 
datasets. WTCCC contains 2,000 individual genotypes for each of the 7 complex diseases, of 
primarily European ancestry, along with 3,000 shared controls. The diseases surveyed by 
WTCCC are bipolar disease (BD), coronary artery disease (CAD), Crohn’s disease (CD), 
rheumatoid arthritis (RA), type 1 diabetes (T1D), type 2 diabetes (T2D), and hypertension (HT). 
Genotype data was collected from individuals using Affymetrix GeneChip 500K arrays. 
Following the PrediXcan paper, we used the whole-blood expressions to analyze all diseases. 
MSSNG is the largest available whole genome sequencing dataset for Autism Spectrum 
Disorder (ASD), containing 7065 sequences from ASD patients and controls[44]. As Cerebellum 
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is reported as the most relevant tissue to ASD[45-47], we used its expression in GTEx data in 
the analysis.   
 
Results 
 
Simulations  
 
Type-I errors & cutoffs. The 5% cutoff (determined by simulating the null distribution of each 
protocol) are generally close to the targeted type-I error of $ = 0.05, except in the cases of 
SKAT-S-LM and SKAT-S-LMM (Table 2). This is consistent with the intuition that the pre-
selection process in SKAT-S-LM and SKAT-S-LMM amplifies random false effects, which 
inflates type-I errors for these protocols. We apply a more stringent cutoff (determined from the 
simulations described above), to ensure fairness in the power comparisons below.    
 
 

Model 5% cutoff  Model 5% cutoff 

SKAT-naive 5.50E-02 MetaSKAT-naive 5.36E-02 

SKAT-eQTL 5.22E-02 MetaSKAT-eQTL 5.42E-02 

SKAT-S-LM 1.12E-14 MetaSKAT-S-LM 1.04E-14 

SKAT-S-LMM 1.27E-14 MetaSKAT-S-LMM 1.22E-14 

PrediXcan 5.04E-02 S-PrediXcan 5.79E-02 

kTWAS 5.29E-02 Meta-kTWAS 4.97E-02 

 
Table 2. Cutoffs that ensure Type-I error being 0.05 for compared protocols. 
 
 
Additive architecture. Fig. 2 and Fig. 3 plot the power of genotype and summary statistic-based 
protocols under the additive model of genetic architecture. kTWAS clearly outperforms 
PrediXcan at all scale factors of the contribution from ElasticNet SNPs, showing that kernel 
methods using TWAS-based feature selection can always outperform the linear model utilized 
by TWAS, even when the underlying genetic architecture is also linear. 
 
Comparisons between the four SKAT-based methods show that SKAT-eQTL performs best 
when the proportion of ElasticNet SNPs is low. This is expected since the eQTL SNPs (that are 
not in the ElasticNet selected list) favor kernel methods. When the proportion of ElasticNet 
SNPs is high, favoring the PrediXcan model, SKAT-eQTL has worse performance than both 
kTWAS and PrediXcan. SKAT-S-LM and SKAT-S-LMM, which select SNPs based on marginal 
effects, are generally less powerful than SKAT-eQTL and kTWAS, indicating that their pre-
selection process may overfit the GWAS data and therefore reduce power (even after type-I 
errors are adjusted to be equivalent). When regional heritability is low, the power of SKAT-S-LM 
and SKAT-S-LMM are both extremely low, likely due to noise caused by random artifacts. 
Overall, SKAT-naive, which does not pre-select variants, has the lowest power when heritability 
is greater than 0.05, but outperforms SKAT-S-LM and SKAT-S-LMM when heritability is less 
than 0.05. In particular, at a very high heritability of  � = 0.1, SKAT-S-LM and its meta-analysis 
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equivalent have very high power approaching that of SKAT-eQTL and kTWAS. This may be 
because SNPs have strong marginal associations when overall genetic effects are high, which 
reduces noise in the linear pre-selection process employed by SKAT-S-LM and SKAT-S-LMM. 
We do not have a clear interpretation on why SKAT-S-LM consistently outperforms SKAT-S-
LMM. 
 
The meta-analysis protocols utilizing summary statistics exhibit similar performance compared 
to their genotype-based counterparts, although their overall power is slightly lower than that of 
genotype-based protocols.  
 
 
 

 
 
Figure 2. Statistical power (y-axis) of genotype-based protocols compared on the additive architecture at 
varying levels of trait heritability (x-axis) and contribution from ElasticNet SNPs. The compared protocols 
are SKAT-naive, SKAT-eQTL, SKAT-S-LM, SKAT-S-LMM, PrediXcan, and kTWAS. The scale factors 
applied to ElasticNet SNPs are 0.0, 0.2, 0.4 in the top row (left to right), and 0.6, 0.8, 1.0 in the bottom 
row (left to right). 
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Figure 3. Statistical power (y-axis) of meta-analysis protocols compared on additive architecture at 
varying levels of trait heritability (x-axis) and contribution from ElasticNet SNPs. The compared protocols 
are MetaSKAT-naive, MetaSKAT-eQTL, MetaSKAT-S-LM, MetaSKAT-S-LMM, S-PrediXcan, and Meta-
kTWAS. The scale factors applied to ElasticNet-selected SNPs are 0.0, 0.2, 0.4 in the top row (left to 
right), and 0.6, 0.8, 1.0 in the bottom row (left to right). 
 
Non-linear architectures. Figs. 4, 5, and 6 plot the power of genotype and summary statistic-
based protocols under the Heterogeneous, Recessive interaction, and Compensatory 
interaction genetic architectures. Although these architectures fundamentally differ, several 
trends are consistent across all architectures: 1) kTWAS always outperforms PrediXcan; 2) 
SKAT-eQTL outperforms kTWAS when both causal SNPs are eQTL SNPs (that are not in the 
ElasticNet selected list); 3) SKAT-S-LM has high power only when heritability is high. Notably, 
under these non-linear architectures kTWAS and SKAT-eQTL outperform PrediXcan with larger 
margins than in the additive model. This is consistent with our expectation that kernel methods 
adapt better to the presence of genetic interactions, even when the kernel is linear.   
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Figure 4. Statistical power (y-axis) of protocols of genotypes (top row) and summary statistics (bottom 
row), compared on Heterogeneous architecture at varying levels of trait heritability (x-axis) and different 
proportions of ElasticNet SNPs. The number of ElasticNet SNPs in both rows is 0, 1, 2 (left to right), and 
the corresponding number of eQTL-selected SNPs is 2, 1, 0. 
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Figure 5. Statistical power (y-axis) of protocols of genotypes (top row) and summary statistics (bottom 
row) compared on Recessive architecture simulated at varying levels of trait heritability (x-axis) and 
different proportions of ElasticNet SNPs. The number of ElasticNet SNPs in both rows is 0, 1, 2 (left to 
right), and the corresponding number of eQTL SNPs is 2, 1, 0. 
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Figure 6. Statistical power (y-axis) of protocols of genotypes (top row) and summary statistics (bottom 
row), compared on Compensatory architecture simulated at varying levels of trait heritability (x-axis) and 
different proportions of ElasticNet SNPs. The number of ElasticNet SNPs in both rows is 0, 1, 2 (left to 
right), and the corresponding number of eQTL SNPs is 2, 1, 0. 
 
 
Applying kTWAS to real data  
 
ASD whole genome data provided by MSSNG.  Fig. 7a shows the Manhattan plot for the output 
of kTWAS. Based on a Bonferroni-corrected P-value < 0.05, we observed 6 peaks 
corresponding to RP11-575H3.1 (nominal P=1.73×10-6), NDUFV1 (P=2.06×10-6), PPP1R32 
(P=2.59×10-6), NBPF15 (P=3.11×10-6), NBPF9 (P=5.82×10-6), and SRGAP2B (P=6.44×10-6). 
Fig. 7b shows the corresponding Manhattan plot for PrediXcan. Two genes (RP11-575H3.1 and 
NBPF15) identified by kTWAS were also discovered by PrediXcan, but at weaker significance 
levels (nominal P-values of 2.74×10-6 and 7.17×10-6, respectively). The remaining four genes 
are not identified as significant with PrediXcan (nominal P-values of 0.23 for SRGAP2B, 
1.31×10-3 for NBPF9, 0.66 for NDUFV1, 4.67×10-4 for PPP1R32).  
 
Out of the four genes identified only by kTWAS, three have literature supporting their 
association with ASD. The inhibition of SRGAP2 function by its human-specific paralogs has 
contributed to the evolution of the human neocortex and plays an important role during human 
brain development[48, 49]. NBPF9 is a member of the neuroblastoma breakpoint family (NBPF) 
which consists of dozens of recently duplicated genes primarily located in segmental 
duplications on human chromosome 1. Members of this gene family are characterized by 
tandemly repeated copies of DUF1220 protein domains. Gene copy number variations in the 
human chromosomal region 1q21.1, where most DUF1220 domains are located, have been 
implicated in a number of developmental and neurogenetic diseases such as autism[50]. In 
particular, rare variants located in NBPF9 are reported to be associated with ASD[51].  
Additionally, evidence shows that NDUFV1 is a ‘developmental/neuropsychiatric’ susceptibility 
gene when a rare duplication CNV occurs at 11p13.3[51]. The only gene not supported by 
literature is PPP1R32, which may be a novel gene for ASD research. Both genes identified 
jointly by kTWAS and PrediXcan are supported by literature[52, 53].  
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Figure 7. GWAS Manhattan plots of negative log P-values (y-axis) for Autism-associated SNPs at 
genome coordinates (x-axis) of MSSNG consortium whole genome data. Plots show associations 
generated by kTWAS (a) and PrediXcan (b), with gene expressions predicted using the GTEx cerebellum 
ElasticNet model. The Bonferroni-corrected significance threshold (green dashed line) is 7.37×10-6 (= 
0.05/6794). 
 
WTCCC genotyping data. We applied kTWAS to type 1 diabetes (T1D) data, identifying 52 
genes significantly associated with risk of T1D (Bonferroni-corrected p-value < 0.05). In contrast, 
PrediXcan identified 32 genes, of which 31 were also detected by kTWAS (Table 3). Among the 
21 genes identified only by kTWAS, 19 are within the MHC region which has been shown to 
influence susceptibility to complex, autoimmune, and infectious diseases including T1D in 
particular[54]. Most (except for four) of these genes have been reported as having associations 
with T1D[43, 55-68]. 
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The PMIDs of supporting literatures are listed in Table 3. The remaining four genes lacking 
literature support are BTN3A2, ALDH2, LINC00243 and DXO. Of these four novel genes, 
BTN3A2 is reported to play important roles in regulating the immune response, and is a 
potential novel susceptibility gene for T1D[55] . ALDH2 is known to offer myocardial protection 
against stress conditions such as diabetes mellitus[69], although the underlying mechanism is 
unclear.  
 

Gene Chr Start End 
PrediXcan 

p-value 
kTWAS  
p-value 

PMID 

C1orf216 chr1 35713875 35719472 3.22E-06 8.41E-07 
 

HIST1H3E chr6 26224199 26227473 8.10E-08 8.40E-08 
 

BTN3A2 chr6 26365159 26378320 0.014022 1.35E-08 19295542? 

HIST1H2B chr6 27815044 27815424 5.08E-08 2.73E-07 
 

ZSCAN9 chr6 28224886 28233482 6.58E-11 1.86E-06 
 

ZFP57 chr6 29672392 29681110 2.06E-05 3.44E-07 27075368 

PPP1R11 chr6 30066709 30070265 0.001064 3.93E-14 25422764 

TRIM10 chr6 30151945 30160934 1.83E-28 4.71E-28 
 

TRIM15 chr6 30163206 30172696 2.34E-10 2.45E-16 
 

PPP1R18 chr6 30676389 30687895 2.37E-07 2.44E-07 
 

NRM chr6 30688047 30691420 1.82E-24 3.09E-24 
 

FLOT1 chr6 30727709 30742733 3.48E-17 4.07E-18 
 

IER3 chr6 30743199 30744554 1.20E-21 7.77E-20 
 

LINC00243 chr6 30798654 30830659 0.000443 3.32E-14 NA 

DDR1 chr6 30876421 30900156 7.35E-05 1.84E-11 20221424 

CCHCR1 chr6 31142439 31158238 1.36E-06 0.000535 
 

HLA-B chr6 31269491 31356442 1.82E-24 3.09E-24 
 

MICB chr6 31494881 31511124 5.76E-27 3.38E-29 
 

ATP6V1G2 chr6 31544462 31546848 7.35E-64 6.92E-48 
 

NFKBIL1 chr6 31546870 31558829 8.26E-13 2.08E-14 
 

NCR3 chr6 31588910 31592985 4.18E-40 1.00E-22 
 

AIF1 chr6 31615184 31617021 9.87E-13 4.62E-11 
 

LY6G5B chr6 31670167 31673776 3.54E-06 2.40E-13 
 

LY6G5C chr6 31676684 31684040 1.29E-13 1.48E-13 
 

ABHD16A chr6 31686949 31703444 3.40E-16 8.55E-23 
 

DDAH2 chr6 31727038 31730580 9.68E-58 3.23E-64 
 

CLIC1 chr6 31730618 31739763 1.47E-30 1.31E-34 
 

VWA7 chr6 31765590 31777294 0.032341 1.86E-07 31932636 

C6orf48 chr6 31834608 31839766 1.46E-05 1.26E-11 20221424 

C2 chr6 31897785 31945649 0.027457 8.99E-08 1684365 
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SKIV2L chr6 31959111 31969755 4.28E-27 1.72E-24 
 

DXO chr6 31969810 31972292 0.009281 3.17E-39 NA 

C4A chr6 31982024 32002681 3.00E-159 2.80E-131 
 

C4B chr6 32014762 32035418 1.81E-69 4.23E-77 
 

CYP21A2 chr6 32038265 32041670 0.44389 1.17E-30 25249698 

AGER chr6 32180968 32184324 1.99E-08 2.08E-08 
 

NOTCH4 chr6 32194843 32224067 0.000112 4.38E-07 22414874 

HLA-DRB5 chr6 32517343 32530287 5.29E-81 1.03E-121 
 

HLA-DRB1 chr6 32578769 32589848 4.31E-05 2.64E-54 19553558 

HLA-DQB1 chr6 32659467 32668383 5.09E-58 1.70E-61 
 

HLA-DQA2 chr6 32741342 32747215 0.004502 2.64E-35 19143816 

HLA-DQB2 chr6 32756098 32763534 0.975179 1.29E-15 15256073 

HLA-DOB chr6 32812763 32817048 1.19E-14 2.17E-20 
 

TAP2 chr6 32821833 32838780 4.83E-130 7.04E-228 
 

PSMB8 chr6 32840717 32844047 0.025 3.37E-06 20221424 

TAP1 chr6 32845209 32853978 0.454086 1.04E-06 8248212 

HLA-DOA chr6 33004178 33009612 0.007979 8.12E-10 19458622 

RPS18 chr6 33272048 33276510 0.007684 8.13E-10 19609442 

RPS26 chr12 56041853 56044675 1.66E-11 1.44E-11 
 

CNPY2 chr12 56309842 56316222 2.25E-10 3.09E-10 
 

ALDH2 chr12 111766887 111817529 0.001816 1.63E-07 27882330? 

 
Table 3. PrediXcan and kTWAS results for Bonferroni-corrected significant gene associations with type 1 
diabetes in WTCCC data. To account for multiple testing, we used a significance threshold of 6.89×10-6 
(0.05/7252) for all diseases. Significant genes are in bold. Chromosome and gene start positions are 
based on GENCODE version 26. The question marked PMIDs indicate relevant, however not supportive, 
literature. 
 
 
The other diseases in WTCCC have limited numbers of significant genes, except in the case of 
rheumatoid arthritis (RA). kTWAS identified 24 genes associated with RA, while PrediXcan 
identified 19 significant genes, of which 18 are also detected by kTWAS (Table 4). All six genes 
identified only by kTWAS (VARS2, NCR3, NOTCH4, TAP2, HLA-DQB2, LY6G5B) are in the 
MHC region and have substantial literature support. In particular, a nonsynonymous change in 
the VARS2 locus (rs4678) is strongly associated with RA[70]. One SNP in NCR3 can regulate 
the expression of two genes in RA cases, and increased NCR3 expression is significantly 
associated with reduced RA susceptibility[71]. NOTCH4 is also reported to be RA-susceptible 
by multiple researchers[72, 73]. Yu et al. provided genetic evidence that TAP2 gene codon 565 
polymorphism could play a role in RA[74]. A study on Italian patients found a mutation in HLA-
DQA2 (rs9275595) could contribute to RA pathogenesis. Although there is no direct evidence to 
show LY6G5B is associated with RA, strong associations have been found between RA and a 
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126-kb region in the MHC class III region between BAT2 and CLIC1, which contains the five Ly-
6 members including LY6G5B[75], indicating that LY6G5B might be a novel RA risk gene. 
 

Disease Gene Chr Start End PrediXcan 
p-value 

kTWAS  
p-value 

BD CTD-2589 chr11 46238382 46239267 5.43E-07 0.196195 

BD SLC48A1 chr12 47753916 47782721 7.24E-07 1.12E-06 

BD RP11-382 chr15 83112738 83208018 5.82E-06 9.46E-06 

BD ERVK3-1 chr19 58305319 58315663 1.85E-06 6.78E-08 

CAD C12orf43 chr12 121000486 121016502 0.000590514 5.23E-07 

CAD RP11-
347I19.8 chr12 121797511 121797872 1.09E-06 0.410928711 

CD APEH chr3 49674002 49683946 2.08E-06 2.13E-06 

RA NT5DC2 chr3 52524496 52535054 4.53E-08 0.000142 

RA TRIM7 chr5 181193924 181205293 6.50E-06 6.65E-06 

RA TRIM26 chr6 30184455 30213427 3.15E-11 3.46E-11 

RA FLOT1 chr6 30727709 30742733 1.34E-06 3.61E-07 

RA IER3 chr6 30743199 30744554 1.48E-09 1.91E-07 

RA VARS2 chr6 30914205 30926459 0.004841 5.19E-07 

RA ATP6V1G2 chr6 31544462 31546848 1.57E-06 3.85E-07 

RA NCR3 chr6 31588910 31592985 0.000505 1.28E-14 

RA PRRC2A chr6 31620720 31637771 4.75E-18 6.26E-18 

RA BAG6 chr6 31639028 31652705 4.03E-12 2.24E-09 

RA LY6G5B chr6 31670167 31673776 0.723351 6.37E-09 

RA DDAH2 chr6 31727038 31730580 4.47E-07 3.92E-07 

RA MSH5 chr6 31739948 31762798 1.78E-11 5.92E-18 

RA C6orf48 chr6 31834608 31839766 7.55E-22 1.44E-23 

RA SKIV2L chr6 31959111 31969755 4.72E-21 2.10E-12 

RA STK19 chr6 31971166 31981451 1.03E-17 1.34E-17 

RA CYP21A2 chr6 32038265 32041670 2.89E-07 5.72E-08 

RA NOTCH4 chr6 32194843 32224067 0.003209 1.43E-10 

RA HLA-DRB5 chr6 32517343 32530287 8.82E-09 4.66E-17 

RA HLA-DRB1 chr6 32578769 32589848 3.29E-33 1.21E-14 

RA HLA-DQA1 chr6 32628179 32643652 2.03E-10 1.76E-10 

RA HLA-DQA2 chr6 32741342 32747215 4.11E-07 3.94E-15 

RA HLA-DQB2 chr6 32756098 32763534 0.229988 1.24E-10 

RA TAP2 chr6 32821833 32838780 0.189783 1.86E-07 

RA C12orf43 chr12 121000486 121016502 2.24E-06 1.82E-15 

T2D C1orf216 chr1 35713875 35719472 1.37E-07 2.20E-08 

T2D CTD-
2589M5.5 chr11 46238382 46239267 4.68E-06 0.102425 
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T2D KCNMB4 chr12 70366276 70434292 2.22E-06 2.27E-06 

 
Table 4. PrediXcan and kTWAS results for Bonferroni-corrected significant gene associations with five 
diseases in WTCCC consortium. To account for multiple testing, we used a significance threshold of 
6.89×10-6 (0.05/7252) for all diseases. bipolar disease (BD), coronary artery disease (CAD), Crohn's 
disease (CD), rheumatoid arthritis (RA), type 2 diabetes (T2D). The significant genes are in bold. 
Chromosome and gene start positions are based on GENCODE version 26. 
 
Taken together, the above analyses of MSSNG sequence data and WTCCC genotype array 
data illustrate that kTWAS is able to identify a larger number of significant and meaningful 
genes in comparison to PrediXcan. These results confirm that the inclusion of kernel methods in 
TWAS increases statistical power in real and simulated data, whereas the use of linear 
combinations of selected SNPs in standard TWAS is unable to robustly model non-linear effects.  

 
Conclusion 
 
In this work, we have thoroughly highlighted the essential advantages and differences between 
TWAS and kernel methods in terms of their ability to select and model genetic features. From 
this perspective, we have designed kTWAS, a novel protocol integrating the advantages of both 
methods in order to utilize expression data while being robust to non-linear effects. We 
demonstrate that kTWAS improves the power of TWAS, by conducting extensive simulations 
and real data analyses. This work will help researchers understand the ideal conditions for 
applying TWAS versus kernel methods, and provide a method which integrates them to capture 
non-linear effects. This work also reveals that linear kernels are more effective than simple 
linear regression for detecting non-linear genetic effects. 
 
Other researchers have also investigated the link between SKAT and TWAS. Xu et al. have 
designed a power testing framework, where TWAS and SKAT are special cases of their test[29]. 
However, their framework does not directly compare the power of the two protocols, and they do 
not suggest a method for integrating the protocols.   
 
As shown in Figs. 2-6, it is evident that SKAT-eQTL also has high power, despite not taking 
advantage of the TWAS-like feature pre-selection employed by ElasticNet or the multiple-
regression based methods found in SKAT-S-LM and SKAT-S-LMM. In essence, SKAT-eQTL 
only selects for genetic variants with good marginal effects, and does not consider linear 
combinations of variants during feature selection. Our future work will thoroughly investigate the 
theoretical and experimental effectiveness of SKAT-eQTL via simulations and real data 
analyses.  
 
Key points 
 

• New insights into TWAS and kernel methods are revealed. TWAS pre-selects and 
weights features in a linear model via expressions, whereas kernel methods conduct 
association analyses by modeling genetic similarity via various kernels. From the 
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perspective of machine learning, these two methods cover two complementary aspects 
of feature engineering: feature selection/pruning, and feature modeling. 

 
• A novel protocol called kTWAS is proposed, integrating transcriptome-wide association 

studies (TWAS) and sequence kernel association test (SKAT). Thorough testing shows 
this novel protocol enjoys the advantages of both TWAS and kernel-based models, 
resulting in increased power while being robust to non-linear effects.  

 
• Twelve protocols based on TWAS and SKAT are thoroughly tested with four genetic 

architectures, under different heritability levels and other parameterizations.  
 

• Novel genes are disclosed by applying kTWAS to WTCCC genotyping array data (seven 
diseases) and MSSNG sequence data (Autism Spectrum Disorder). kTWAS identified 
more significant genes with literature support than the competing TWAS protocol 
PrediXcan. 
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