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Abstract

Motivation: The high accuracy of current haplotype phasing tools has enabled the interrogation of

haplotype (or phase) information more widely in genetic investigations. Including such information

in eQTL analysis complements SNP-based approaches as it has the potential to detect associations

that may otherwise be missed.

Results: We have developed a haplotype-based eQTL approach called eQTLHap to investigate as-

sociations between gene expression and haplotype blocks. Using simulations, we demonstrate that

eQTLHap significantly outperforms typical SNP-based eQTL methods when the causal genetic ar-

chitecture involves multiple SNPs. We show that phasing errors slightly impact the sensitivity of

the proposed method (< 4%). Finally, the application of eQTLHap to real GEUVADIS and GTEx

datasets finds 22 associations that replicated in larger studies or other tissues and could not be

detected using a single-SNP approach.

Availability: https://github.com/ziadbkh/eQTLHap.

†These authors have contributed jointly to this work as senior authors
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1 Introduction

Genome-wide association studies (GWAS) have revealed numerous significant genetic associations

with diseases. A large number of these variations can not be directly linked to a particular gene [1]

as they are not part of the protein-coding regions [2]. Therefore, understanding how they influence a

specific disease is a challenging task [3]. One mechanism underlying such associations is that genetic

variations, especially those within regulatory regions, can affect gene transcription levels, reducing

their functionality or deactivating them completely [4, 3]. As an example, around 50% of GWAS

variations associated with schizophrenia have an impact on the expression of related genes [4]. Such

cases are investigated statistically through expression quantitative trait loci (eQTL) analysis [5].

Numerous eGenes (genes whose regulation is influenced by SNPs) have been revealed through eQTL

analysis applied to multiple populations and tissues [6, 3].

eQTL analysis has been widely applied using a range of approaches, primarily examining the

relationship of single SNPs and gene expression [7]. In addition, joint analysis of multiple SNPs,

interactions between SNP (epistasis) and phased haplotypes have also been considered [8, 9, 10]. Of

these, haplotype-based approaches are amongst the least explored. However, it is well known that

expression can be influenced by the phase of the mutations and the gene of interest. Such scenarios

include compound heterozygosity, where a disorder is associated with two alternate alleles allocated

on different homologous copies of a specific region, as well as allele-specific expression, where the

allocation of mutations on each haplotype copy can have a different impact on the expression of

homologous gene copies. Hence, phase-aware eQTL analysis is likely to have greater power than

SNP approaches with respect to such cases [11].

A barrier for phased haplotype-based eQTL analysis is the increased complexity of the analysis.

Many large eQTL studies rely on SNP array data and hence phase need to be estimated, a process

which may introduce errors into the analysis. Moreover, decisions also need to be made about

how to form haplotype blocks and how to represent these blocks when evaluating their associations

with gene expression levels. We have shown that when dealing with haplotype blocks, the choice of

partitioning method has an impact on the phasing errors [12]. Previous approaches using haplotypes

for eQTL analysis have defined blocks from pairs of SNPs [9], combinations of up to 4 SNPs [10] or

regulatory regions [13] but it is unclear how the accuracy of the determined haplotypes is influenced

by these partitioning approaches. In contrast, recent work has shown that existing phasing tools

can achieve high accuracy within the haplotype blocks defined using linkage disequilibrium (LD)

[14, 12]. Such results encourage using LD-based blocks in this context. In addition, the use of

LD will also minimise the diversity of the haplotypes within each block, leading to an increased

statistical power to uncover associations with phenotypes of interest.

In this study, we present a method for haplotype-based eQTL analysis, called eQTLHap. In-

dividuals’ phased haplotypes are partitioned into variable-length blocks based on the LD between
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SNPs. Using simulated genotype and gene expression data, we compare the detected significant

associations when considering individuals’ haplotypes to the ones detected using standard eQTL

analysis (single SNP-based) and also considering the block genotype (combining all block’s SNPs).

The latter comparison demonstrates the importance of including the allele allocation in the analysis

as both approaches consider the same combination of variants. Furthermore, we report the impact

of phasing errors on eQTL results for different switch error rates (from 0% to 2.5%). Such novel

analysis is essential to demonstrate the reliability and credibility of obtained results in real applica-

tions using available computationally phased haplotypes data. Finally, we applied our approach to

two real genotype and gene expression datasets, GEUVADIS [3] and GTEx [6] and we investigate

the revealed associations.

The results demonstrate the efficacy of the proposed approach for particular genetic architec-

tures underlying the variation of gene expression. Considering phase information in eQTL analysis

increases the true positive rate (TPR) of the detected eGenes, primarily when the causal genetic

architecture involves multiple SNPs. The three eQTL approaches agree on a large percentage of

the associations, yet each captures its own unique subset. There is a slight impact of phasing errors

(< 2.5%) on the TPR obtained by our method. eQTLHap uncovers associations (replicated in

GTEx and GEUVADIS datasets) in blood that could not be detected by single SNPs but have been

replicated in recent meta-analyses. These results highlight the value haplotype-based approached

to complement current genotype-based methods for uncovering novel eQTLs.

2 Methods

2.1 Block determination and encoding

eQTLHap investigates haplotype blocks to conduct eQTL analysis. The blocks are encoded using

three different ways depending on the conducted assessment SNP, block’s genotype (denoted as

B-Gen) or block’s haplotype (denoted as B-Hap) as illustrated in Figure 1. SNPs are encoded

considering an additive impact as the dosage of minor/reference allele as illustrated in Figure 1 b).

This SNP encoding is similar to the standard SNP representation in most genetic problems and

it does not account for the combined impact of multiple SNPs. The genotypic representation of a

block is encoded by concatenating the genotypes of all SNPs within the block, and it is considered

as a categorical variable as illustrated in Figure 1 c). This encoding accounts for the combined

impact of multiple SNPs. Finally, the haplotypic representation of a block is represented using

a bag-of-haplotypes encoding similar to the bag-of-words (BOW) encoding used in text mining

[15]. The block of each individual is encoded as the dosage of each possible haplotype across all

individuals as illustrated in Figure 1 d). This encoding accounts for both the combined impact of

multiple SNPs as well as the allele location that is ignored by the genotypic encoding.
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Haplotype blocks can be determined by several methods such as D-prime confidence interval

[16], Four gamete [17], Solid spine [18], big-LD [19] and a simple sliding window. In this study,

we used haplotype blocks determined based on LD though PLINK software [20] that implements
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Figure 1: Different encoding for blocks. a) An example representing a block of 4 phased SNPs
across 5 individuals and gene expression. Haplotypes are encoded using the dosage of the minor
allele within the SNP (0: reference, 1: minor). b) SNPs are represented using their genotypes. c)
B-Gen: Block’s genotype is encoded by concatenating the genotypes of block’s SNPs. d) B-Hap:
Bag-of-haplotypes encoding for this block as the dosage of the three unique haplotypes within the
block.
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the Confidence Interval (CI) algorithm [16] (parameters: –blocks no-pheno-req). However, our

eQTLHap accepts any kind of blocks (overlapping/non-overlapping, fixed or dynamic lengths) as

long as the start and end SNP are determined for each block.

2.2 Association analysis

eQTLHap relies on applying eQTL analysis based on haplotype blocks and considering the alleles of

both chromosome copies. After block determination and encoding as mentioned above, a multiple

linear regression model is fitted for gene expression and the haplotype encoding, then R2, F-test

and p-value are calculated:

y =
m∑
i=1

βihi +
c∑

j=1

γjvj + α; F-test =
(n−m− c)R2

m(1−R2)
(1)

where y is the gene expression. m is the number of unique haplotypes within the block (the columns

in Figure 1 d). hi is the dosage of the haplotype i, h ∈ (0, 1, 2). v is a matrix of c covariates. n

is the number of individuals. c is the number of covariates. In addition to haplotype-based eQTL

analysis (B-Hap), eQTLHap assesses the associations between gene expression and each SNP within

a block (similar to the simple linear regression model provided by Matrix eQTL), as well as the

genotype of the block (B-Gen). For block’s genotype that is a categorical variable, an ANOVA

regression model is fitted for this relation. The main difference between this ANOVA model and

the model in Equation (1) is that here the genotype dosage is either 0 or 1. This comprehensive

scan (SNP-based, B-Gen and B-Hap) was applied in all experiments reported in this study. The

covariates part in Equation (1) is dropped out when such data is not included in the analysis.

SNPs with minor allele frequency (MAF) < 0.01 and haplotypes with frequency < 0.02 were

eliminated to reduce the number of unique haplotypes per block. The unique haplotypes can be

further reduced by considering haplotype tagging SNPs (htSNPs) as described in supplementary

methods. However, tests on simulated data showed that complete haplotypes provide slightly

better results as shown in supplementary figures 1 and 2, therefore, we confine the results in this

manuscript to this configuration.

2.3 Implementation

eQTLHap is implemented in R and it depends on matrices operations to calculate correlation

coefficients similar to the ultra-fast Matrix eQTL [7] to achieve high speed. It can be reconfigured

to allow conducting block’s haplotype, block’s genotype and single SNP assessment individually or

combined. In addition, it allows the adjustment of significance p-values through several methods

accepted by p.adjust R function as well as configurable permutation analysis. Other parameters such
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as covariate analysis, frequency thresholds can also be adjusted for customised analysis. Further

implementation details are in the supplementary methods.

2.4 Genotype and haplotype preparation

Haplotypes are simulated using msprime simulator [21] using the same configuration to that of [22].

A region of 20 mbp was simulated for 1000 individuals (regular size in eQTL studies). Diallelic

SNPs and SNPs with MAF < 0.01 were then eliminated.

GEUVADIS [3] and GTEx data from https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/

and https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.

v8.p2 are used in our experiments. Quality control was applied to the genotype datasets using

PLINK to keep only SNPs with MAF > 0.01, Hardy-Weinberg equilibrium (HWE) < 10−6, the

missing rate per individuals < 0.1, and missing rate per SNP < 0.1. Quality controlled genotype

data were phased through consHap consensus phase estimator [23] by aggregating 15 applications

of the SHAPEIT2 tool [24]. This approach has been reported to reduce the switch error rate

significantly for datasets with small sample size (< 2,000).

2.5 Gene expression simulation

Gene expression data were simulated for five causal genetic architectures similarly to the study [9]

using the following equations:

Null : y = ε where ε ∼ N (0, 1)

Causal : y = β + ε where ε ∼ N (0, var(β)
1− σ2

σ2
),

(2)

where y is the simulated gene expression, β is the assumed effect size of the underlying variant (single

SNPs, pairs of SNPs or haplotypes) while σ is the gene expression heritability, i.e the proportion

of the expression variation caused by the genetic architecture. We consider models where causal

variant were common (MAF ≥ 0.05) or rare (MAF < 0.05) SNPs (β = g, where g is minor allele

dosage of a SNP as illustrated in Figure 1 b), common and rare haplotypes (β = h, where h is the

dosage of the haplotype) together with pairs of SNPs (additive where β = g1 + g2 and interaction

where β = g1×g2). Pairs of rare, common and a mix of rare and common SNPs were considered. In

addition, we simulated expression under a null model with no variants having an effect to identify

false-positive rates. σ was fixed at 0.05 in all simulations, with the impact of changing σ reported

in Supplementary Figures 3-5.

For simulation based on a pair of SNPs, pairs within 7.5 kbp were picked (within blocks and

randomly) when their correlation (squared Pearson correlation) is < 0.8 and none of them has

a correlation > 0.8 with the encoding of their interaction or additive impact. Similarly, causal
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haplotypes were picked when they do not have a correlation > 0.8 with any single SNP within

the same block. This limitation avoids the cases where these simulations will be equivalent to

single SNP-based simulations. For each experiment, 100 simulations were run for each causal

architecture with random initialisation. Further details of these simulations are provided within

the supplementary methods.

2.6 Simulations to compare different eQTL approaches

To reduce the impact of synthetic data on the results, we used real genotypes for the simulations

in this experiment. Genotype data were obtained from the 1000 Genome Project for 373 individ-

uals from European population (obtained from GEUVADIS dataset). Genotypes of chromosome

one were phased using SHAPEIT2 [24] and haplotype blocks were determined using PLINK soft-

ware. Five genomic regions were extracted for these individuals within 1mbp up/downstream of

the following arbitrarily chosen genes ENSG00000218510, ENSG00000127074, ENSG00000196539,

ENSG00000162441, and ENSG00000198468. For each of the give genes, we simulate 100 common

and 100 rare SNPs, leading to 1000 simulations for the single SNP and haplotype architectures.

For pair based architectures, we simulate 100 pairs of common SNPs, 100 pairs of rare SNPs and

100 rare/common pairs for the give genes, and repeating simulations to consider pairings within

a single block and pairings between blocks, leading to 6000 simulations in total. As such, 14,000

gene expression simulations were generated for all mentioned casual architectures. eQTL analysis

is performed using eQTLHap for all representations (SNP, B-Gen and B-Hap).

2.7 Impact of phasing error on haplotype-based eQTL

To assess the impact of phasing accuracy on eQTL results, we generated five haplotype datasets

from the same region with different switch errors (SE) ranging from 0 to 2.5%. We conducted eQTL

analysis for each dataset using the same simulated gene expression. For this experiment, a genotype

dataset was formed from simulated haplotypes by combining both haplotype copies of individuals.

To obtain realistic SEs, the formed genotypes were then phased using HAPI-UR [25] 100 times and

all SEs were recorded. HAPI-UR was used as it is fast and non-deterministic by default [12]. The

average SE of the 100 applications was 0.78%, while the maximum SE obtained when considering

all unique SE locations was 2%. Six versions of the simulated region were prepared by switching

individual’s haplotypes within the locations recorded for HAPI-UR’s SEs. SE within these datasets

varies from 0% (the original simulated data with no errors) to 2.5% by 0.5% step. For the version

with SE = 2.5%, in addition to all recorded SE (account for 2%), we used random heterozygous

SNPs as locations of SEs to reach the desired SE (2.5%).

Four different regions (1.5 mbp) were selected arbitrarily from the simulated haplotypes (SE

= 0%). Haplotype blocks determined using PLINK software and overlapping with each region are
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used for further analysis. Gene expression data were generated as explained above. Haplotype-

based eQTL analysis (B-Hap) was applied for the simulated gene expression and the 6 versions of

the haplotypes (different switch errors) for each region.

2.8 Analysis of GEUVADIS and GTEx data

The comprehensive eQTL analysis was applied to the GEUVADIS dataset following similar con-

figurations as its originally reported [3]. Briefly, individuals of European and Yoruba populations

(373 and 89, respectively) were analysed separately. Gene expressions were used after probabilistic

estimation of expression residuals (PEER) normalisation [26]. The top three principal components

(PC) were used as covariates within individuals of European descent, while the top 2 PCs were

used for Yoruba individuals to eliminate any impact of population stratification.

GTEx gene expression and covariates for multiple tissues were obtained from the GTEx web

portal https://www.gtexportal.org/home/datasets. GTEx’s covariates datasets include hidden

factors detected by PEER normalisation. For both datasets, genes with non-zero expression level for

more than 90% of the individuals were investigated considering SNPs within 1mbp up/down from

their transcription start site (TSS). Associations with “empirical” p-value < 0.05 were recorded for

multiple test correction based on a permutation of 1,000 iterations.

2.9 Evaluation and comparison

After conducting eQTL analysis, p-values are reported for all associations. Multiple test correction

(MTC) was carried out for all p-values (SNPs, block’s genotype, and block’s haplotypes, separately)

using the Benjamini-Hochberg (BH). Associations based on simulated data are considered significant

when their BH corrected p-value is < 0.05. Associations based on real data are considered significant

when their BH corrected p-value is < 0.05 and the permutation-based p-value is < 0.015.

With simulated gene expression data, TPR was calculated as the percentage of detected simu-

lated associations of all simulated associations with respect to each causal architecture. For a model

to have 100% TPR for simulations based on SNP pairs, both pairing SNPs should be reported as

significant. If only one SNP of each pair was detected as significant for 100 different simulations,

the TPR will be 50%. For haplotype-based eQTL, the block containing the causal SNP should

be reported significant. When applying SNP-based eQTL on haplotype-based simulations, if any

SNP within the causal haplotype block is reported significant, the association considered detected.

Venn diagrams were generated for each causal architecture, where simulations for pairs account for

2 causal SNPs.

Significant blocks reported for GTEx were transformed from GHR38 to hg19/GHR37 using the

LiftOver web tool https://genome.ucsc.edu/cgi-bin/hgLiftOver to match the same genome

assembly as GEUVADIS data. After that, replications between GTEx and GEUVADIS eGenes are
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identified when a significant block from GTEx overlaps with another one from GEUVADIS for the

same gene.

3 Results

3.1 Comparison of different approaches for eQTL analysis

We compared the results of eQTL analysis using single SNPs, SNP blocks as haplotypes (denoted

B-Hap) and as genotypes (denoted B-Gen) using genotypes from 273 European individuals from

the 1000 Genome Project and simulated gene expression under five causal architectures. Within 5

genes, the average number of haplotype blocks is 816 with an average length of 1.25 kbp and an

average SNP count of 17.

Figure 2 shows that B-Hap analysis is superior to other approaches when the causal architecture

involves a haplotype stretch, an additive impact of a SNP pair or an interaction of rare SNPs. As

expected, simulation-based on single SNPs are detected better via SNP-based eQTL regardless of

the frequency of the SNP. B-Gen approach was more effective when dealing with interactions of

common SNPs. With respect to the null causal architecture, the FDR was 0.06%, 0.05% and 0.05%

for SNP, B-Hap, and B-Gen, respectively. While these results are reported for σ = 0.05, a similar

pattern was observed when changing σ from 0.01 to 0.1 as shown within supplementary Figures 3,

4, and 5. The main difference is that the detection rate increased for all approaches with σ.

We further compared the simulated associations detected by the three approaches to quantifying

the similarity and differences between these models. The Venn diagram shown in Figure 3 illustrates

that each approach could identify a unique set of the simulated associations that was not captured

by others, with B-Gen being the least effective method. With a SNP-based causal architecture, a

SNP-based eQTL analysis has the highest power to detect associations, detecting the casual variant

in 980 out of 1000 simulations. The significance of haplotype-based analysis is demonstrated with

other causal architectures where this approach could reveal a large number of associations that were

ignored by SNP-based analysis. We have observed from detailed results, that SNP-based analysis

could detect one SNP of causal pairs for the majority of the simulations, yet, the other pairing SNPs

were missing. With such cases, the haplotype-based analysis could capture both SNPs involved in

the simulations. As expected, we observe a drop in TPR for all approaches when comparing results

from real vs simulated genotypes.

These experiments show that the three approaches not only agree on a large percentage of the

detected associations but also complement each other by revealing a unique subset of the simulated

associations.

9

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.206391doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.206391
http://creativecommons.org/licenses/by-nc/4.0/


20

40

60

80

SNP Pair(A) Pair(I) Hap

T
P

R
 %

All Common

10

20

30

40

Pair(A) Pair(I)

Rare & Common

0

20

40

60

80

SNP Pair(A) Pair(I) Hap

T
P

R
 %

All Rare
Type

SNP

B−Hap

B−Gen

*

*
*

*

*

Figure 2: TPR for eQTL analysis based on SNP, B-Hap, B-Gen when applied to simulated genotype
and gene expression data for different causal architectures. The x-axis represents the causal archi-
tecture where Pair(A) is an additive impact of a SNP pair and Pair(I) is an interaction of a SNP
pair. The ’Rare & Common’ scenario is only available for SNP pairs. Asterisks represent results
that are significantly higher than all other approaches (using t-test and significance threshold of
0.05).

3.2 Impact of phasing errors on haplotype-based eQTL

In real applications, haplotype information is not perfect as they are obtained computationally

through phasing methods. Therefore, it is important to assess the impact of the errors on the

downstream haplotype-based eQTL analysis. Here, we assess the impact of SE, the standard metric

of phasing evaluation [14], on the sensitivity or TPR of haplotype-based eQTL analysis applied to

four regions of 1.5 mbp (1,945 SNPs) using simulated genotype and gene expression data.

Haplotype-based eQTL analysis was applied to an average of 108 haplotype blocks within each
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Figure 3: Venn diagram for significant associations detected by B-Hap, B-Gen and SNP based
eQTL on simulated data. Subplots correspond to different causal architectures: a) all simulations
combined. b) SNP. c) interaction of SNP pair. d) additive effect of SNP pair. e) haplotype. The
total number of simulated associations are in right bottom corners.

region. Block lengths varied from 0.03 kbp to 59 kbp with an average length equals to 12 kbp

(mean SNP count is 16, min = 2 and max = 68). 6,400 simulations were generated for all causal

architectures followed by association assessment for each block-gene expression pair. This analysis

was repeated for 6 versions of the four regions where SE varied from 0 to 2.5% by 0.5% step. The

percentage of incorrectly phased haplotype blocks within these datasets were 0.4% 0.8%, 1.1%,

1.7%, and 3.2%, respectively.

We observed that the number of reported significant associations reduced by an average of

1,495 associations when SE increased from 0 to 2.5%. After MTC, the false discovery rate (FDR)

when there is no genetic causal was between 0.04% and 0.06%. Figure 4 a) shows the percentage

of detected simulated associations varied from 7% to 100% depending on the causal architecture

and phasing error within the data. There was a slight impact of SE within the range (0-2.5%) on

the TPR of haplotype-eQTL analysis, especially when the causal architecture involves a common

SNP/haplotype (solid lines in the figure). There was 3.9%, 3.6%, 2%, and 1.8% TPR reduction when

SE increased from 0 to 2.5% for single SNP, an additive impact of SNP pair causal architectures,
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Figure 4: Impact of SE on haplotype-based eQTL analysis. a) TPR of the analysis with respect to
switch error. b) Percentage of false positives/negatives with respect to SE.

haplotype, and an interaction of a SNP pair respectively. SNP or haplotype-based association were

easier to detect compared to the associations based on SNP pairs. We observed a low detection

rate of simulations based on interactions of SNP pairs (less than 37%) compared to other casual

architectures.

Furthermore, we investigated how the detected significant associations vary with respect to

different SEs compared to the associations revealed when there were no errors present (i.e. SE

= 0). Haplotype-based eQTL conducted on the data with SE = 0 reported 43,249 significant

associations with a corrected p-value < 0.05. These associations represent 3% of all block-gene

expression combinations tested. 11% of these associations are the true simulated associations. The

comparison of these associations and the ones revealed from datasets with different SEs, shown

in Figure 4 b), shows that when SE increases, the percentage of false positives (detected with SE

> 0 dataset but were not detected when SE = 0) and false negatives (detected when SE = 0,

but not detected when SE > 0) increases reaching 5.9% and 11.7%, respectively. However, the

true simulated associations seem to be more robust against SE as the TPR illustrated in Figure

4 a) is less affected. Investigating the false positives showed that few of them were from the

simulated associations (reaching 2.55%) but not captured when SE equals 0. Around 4.5% of the
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false negatives were from the simulated associations. 11.3% of the true positives (shared between

dataset with SE = 0 and SE > 0) are true simulated associations.

These results support the application of haplotype-based eQTL analysis on real datasets where

SE is usually less than 2.5% [12] especially given there is little impact on the TPR.

3.3 Application to GEUVADIS and GTEx data

After we demonstrated the efficacy of the approach through synthetic data, we applied the compre-

hensive eQTL analysis to real genotype/haplotype and gene expression dataset from both projects

GEUVADIS (lymphoblastoid cell line for European and African populations) and GTEx (whole

blood, artery coronary, and brain amygdala tissues).

In both GEUVADIS and GTEx, the overlap of eQTLs discovered by each representation, shown

in Figure 5, shows a similar pattern to those in the simulated data. The approaches agree on a

large set of associations with each approach finding a subset of unique associations. Similar trends

can be seen in other tissues types (Supplementary Figure 6).

Applying eQTLHap to the whole blood tissue of GEUVADIS (EUR population) and GTEx,

there were 14,229 (of 76,146) and 36,696 (of 187,644) significant haplotype-based associations whose

p-values are less than 100 times the p-value of both block’s genotype and each SNP within the same

block. These results include 1,035 and 748 genes that only haplotype-based eQTL could detect

significant associations with. The average p-value of these eGenes is 2×10−4 and 2×10−4 within

GTEx and GEUVADIS, respectively.

Figure 6 shows an example of a haplotype-only association, plotting the distribution of expres-

sion for USP46-AS1 in whole blood from the European population of GEUVADIS across different

variant representations for a block of three intronic SNPs (rs7657404, rs7698053, rs7688816). In

this instance, the haplotype analysis is highly significant (q-value< 0.017), while the single SNP

and genotype block representations are not (q-values 0.9 and 0.99, respectively). Simplifying the

haplotype analysis in Figure 6 b), we see that the individuals carrying the CTG haplotype have sub-

stantially higher gene expression than those who do not. These three SNPs were found in GTEx to

be significant eQTLs for RASL11B in Testis and DANCR in cultured fibroblasts [27] but we believe

this to be the first association with USP46-AS1 in whole blood reported to date.

Furthermore, we searched for replicable, significant associations from our haplotype-based eQTL

analysis from GTEx and GEUVADIS dataset for whole blood tissue. There were 50,616 common

associations for 2,425 unique genes reported for both datasets with 3,136 common genes between

both datasets. The average p-value of these common associations is 4×10−4 and 9×10−4 with

respect to both GTEx and GEUVADIS, respectively. From these 2,425 genes, there were 11 common

eQTLs for 7 eGenes (Supplementary Table X) that only had significant associations when they were

represented using B-Hap. To further validate these findings, we compared these associations with
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d) e)
GEUVADIS- EUR GTEx-Whole bloodGEUVADIS - AFR

GTEx-Brain AmygdalaGTEx-Artery Coronary

Figure 5: Venn diagram for detected significant associations from GTEx and GEUVADIS datasets.
a) and b) are obtained from analysing 22,466 and 22,474 genes within 22 chromosomes of EUR
(373 individuals) and AFR (89 individuals) populations from GEUVADIS dataset, respectively. c)
is obtained from analysing 19,696 genes of GTEx-whole blood tissue (670 individuals). d) is obtained
from analysing 23,735 genes of GTEx-artery coronary tissue (213 individuals). c) is obtained from
analysing 23,268 genes of GTEx-brain amygdala tissue (129 individuals). These associations are
considered significant as their BH-corrected p-value < 0.05 and permutation-based p-value < 0.015.

eQTL results those of previous meta-analyses [28, 29] finding our 11 eQTLs overlap with significant

findings reported in at least one of these substantially larger studies, highlighting the increased

power of our proposed approach for certain eQTLs.

We also searched for eQTLs that were detectable using haplotype but not single SNPs that

could be replicated across tissues in the GTEx dataset. In total (including haplotypes that are

detected using single SNPs), we find 13,573 common associations (1,312 unique genes) across whole

blood (187,644 associations), artery coronary (66,646 associations), and brain amygdala (35,382

associations) tissues. The averaged p-value for these associations respectively to the mentioned

tissue order is 1×10−4, 4×10−4, and 7×10−4 indicating that many of these are highly significant.

Of these, 729, 1085, and 947 eGenes were only detected by haplotype-based eQTL applied to whole

blood, artery coronary, and brain amygdala, respectively. 11 eGenes of them replicate in across at
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Figure 6: Comparison of gene expression distribution of USP46-AS1 for a haplotype block us-
ing different representations. The block consists of three intronic SNPs (rs7657404 (MAF=0.34),
rs7698053 (0.3) and rs7688816 (0.33)) on chr4:53186299-53186401. The different representations are
a) phased haplotypes (q-value=0.017) b) a simplification of the strongest effect haplotype (CTG,
allele frequency 0.46%) vs all others c) all genotypes (q-value =0.99) and the most significant SNP
within the block (rs7657404, q-value = 0.9). p/q-values are calculated after eliminating haplo-
types/genotypes with frequency ≤ 0.02 but all trends remain the same if these are included.

least one other tissue type.

These findings demonstrate that our haplotype approach is able to uncover novel eQTLs that

are undetectable by single SNP approaches, with a subset replicating across either dataset or tissue.

These results further highlight the utility of phase-aware haplotypes for eQTL analysis.

4 Conclusion

In this study, we propose eQTLHap, a haplotype-based eQTL approach at a block scale that serves

as a complementary analysis to genotype-based eQTL.

Our results show that haplotype-based eQTL outperformed other approaches for eQTL when

the causal genetic architecture comprises multiple SNPs. According to the results obtained in this

study, the three approaches of eQTL (based on SNP, block’s genotype and block’s haplotype) agreed

on a large proportion of the detected associations. At the same time, each approach captured a
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unique subset of the associations that have not been detected by other approaches. This observation

shows that the different approaches complement each other and can provide a comprehensive eQTL

scan when applied together.

To the best of our knowledge, this is the first study that investigates how phasing errors affect

the results of downstream eQTL analysis. Experiments applied to synthetic haplotype and gene

expression datasets demonstrated the small impact of phasing errors on TPR of downstream eQTL

findings (SE ¡ 2.5%). However, there was variation in all reported significant associations demon-

strate by increased false positive and negative rates when SE increased from 0% to 2.5%. This

impact can be mitigated by improving phasing accuracy using consensus estimators [12] or phasing

the data multiple times, applying eQTL analysis to each and keeping the stable findings.

The higher TPR obtained by haplotype-based eQTL can be justified by the less conservative

MTC applied to block assessment compared to single SNPs as block count is substantially less than

SNP count. However, the fact that haplotype-based eQTL outperformed block’s genotype eQTL

analysis in most of the experiments demonstrates that this enhanced performance is also associated

with including haplotype information in the analysis, as both assessments are applied to the same

blocks.

The findings when applying eQTLHap to real dataset demonstrate the efficacy of this approach

as there was a large agreement with standard SNP-based eQTL approaches. In addition, several

results were only revealed when considering haplotype information which replicated in both GTEx

and GEUVADIS datasets as well as independent analyses available through previous meta-analyses.

An interesting avenue of future research would be to explore the properties of these haplotype-based

eQTLs to understand whether they represent examples of phase-specific regulation of expression or

whether the findings are due to changes in the statistical test. In either case, the findings in this

study highlight the potential of haplotype eQTL analysis to uncover eQTLs that have been missed

through standard SNP based analysis.

eQTLHap provided in this study is simplified to accept several configurations in order to control

and customise the analysis based on the user’s preference. eQTLHap allows applying SNP-based,

block’s genotype/haplotype-based analysis separately and combined (with/without covariates). It

accepts any kind of haplotype blocks. MTC can be applied using several standard methods, as well

as permutation-based correction. Finally, all thresholds and options used for filtration and other

purposes can be tuned.
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