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Abstract9

Motivation10

The cooperativity of transcription factors (TFs) is a widespread phenomenon in the gene11

regulation system. However, the interaction patterns between TF binding motifs remain12

elusive. The recent high-throughput assays, CAP-SELEX, have identified over 600 composite13

DNA sites (i.e. heterodimeric motifs) bound by cooperative TF pairs. However, there are over14

25,000 inferentially effective heterodimeric TFs in human cell. It is not practically feasible to15

validate all heterodimeric motifs due to cost and labour. Therefore, it is highly demanding16

to develop a fast and accurate computational tool for heterodimeric motif synthesis.17

Results18

We introduce DeepMotifSyn, a deep-learning-based tool for synthesizing heterodimeric mo-19

tifs from monomeric motif pairs. Specifically, DeepMotifSyn is composed of heterodimeric20

motif generator and evaluator. The generator is a U-Net-based neural network that can syn-21

thesize heterodimeric motifs from aligned motif pairs. The evaluator is a machine-learning-22

based model that can score the generated heterodimeric motif candidates based on the motif23

sequence features. Systematic evaluations on CAP-SELEX data illustrates that DeepMotif-24

Syn significantly outperforms the current state-of-the-art predictors. In addition, DeepMo-25

tifSyn can synthesize multiple heterodimeric motifs with different orientation and spacing26

settings. Such a feature can address the shortcomings of previous models. We believe Deep-27

MotifSyn is a more practical and reliable model than current predictors on heterodimeric28

motif synthesis.29
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Availability and implementation30

The software is freely available at https://github.com/JasonLinjc/deepMotifSyn.31
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1 INTRODUCTION32

Understanding the transcriptions factor (TF) recognition motifs is vital for the analysis of33

gene expression specificity [1, 2, 3, 4, 5, 6]. The related experimental technologies (e.g.34

ChIP-seq, ChIP-exo, and ChIP-nexus) have been developed to detect transcriptions factor35

binding sites (TFBSs) in various cell types and tissues, while some TFBSs do not have36

any strong-match motif [7, 8, 9, 10, 11]. Several studies have revealed that cooperative TF37

pairs can function as heterodimers for binding onto the composite DNA motif to regulate38

gene expression [12, 13, 14, 15, 16, 17]. Therefore, characterizing TF interactions and the39

corresponding heterodimeric DNA motifs are essential for understanding the function of40

non-coding DNA in gene regulation.41

In a previous study, Jolma et al. developed CAP-SELEX (Consecutive Affinity-Purification42

Systematic Evolution of Ligands by Exponential Enrichment), to systematically investigated43

9,400 TF pairs; and 315 of which were detected as heterodimeric DNA motifs [14]. That44

study deduced that there are around 25,000 effective heterodimeric TFs in human cell. How-45

ever, it is not practically feasible to detect heterodimeric motifs of every potential TF pair46

owing to cost and labour. Wong et al. recently presented an machine-learning-based compu-47

tational model, MotifKirin, to synthesize heterodimeric DNA motif [18]. They broke down48

the synthesis task into two phases: the phase one uses Random Forests to predict the orien-49

tation and overlapping length of two motifs; the phase two adapts a IOHMM (Input-Output50

Hidden Markov Model) to synthesize heterodimeric motifs based on the predicted orientation51

and overlap preference.52

Despite such in silico modeling enables low-cost and rapid synthesis of heterodimeric53

DNA motifs in a DNA-binding family specific manner, it still has some shortcomings: 1)54

MotifKirin can only synthesize one heterodimeric motif for a specific monomeric motif pair,55

but practically, TF pairs often display more than one overlap and/or orientation case; 2)56
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IOHMM was trained on the motifs for the same DNA-binding family, thus it is incapable57

of producing heterodimeric motifs from other family. Besides, one family only contains a58

few heterodimer motifs (12 per family averagely), such a few training data could hinder59

the generalizability of machine-learning-based models; 3) IOHMM performs badly on syn-60

thesizing motif pairs with long overlap than those with spacings; it reflects IOHMM has61

limitations on capturing complex patterns between two motifs. To address the above issues,62

we develop a deep-learning-based model to accurately synthesize heterodimeric DNA motifs63

across different DNA-binding families.64

Deep learning has been making impressive advances in DNA motif research since Deep-65

Bind was proposed in 2015 [19]. DeepBind is the first to adapts convolutional neural network66

(CNN) to predict TFBSs from DNA or RNA sequences; it also introduced a subtle approach67

(i.e. mutation maps) to discover motifs from convolutional kernels [20]. Hassanzadeh et68

al. then proposed DeeperBind which uses a bi-directional long short-term memory (LSTM)69

network in addition to CNN. Their experiment showed DeeperBind surpassed DeepBind on70

the motif prediction task [21]. Other researchers have been unremittingly tapping the po-71

tential of various deep learning architectures to improve the accuracy, such as DanQ [22],72

DeepSEA [23], KEGRU [24], and iDeeps [25]. Most recently, Avsec et al. presented BPNet,73

a deep dilated convolutional neural networks with residual connections, predicts TF binding74

motifs at the base resolution [26]. Inspiringly, this study reported that a well-trained BPNet75

can identify the patterns of TF cooperativity (e.g. Oct4-Sox2) directly from DNA sequences.76

The studies above have demonstrated CNN is a feasible architecture for modeling TF binding77

patterns and identifying the corresponding DNA motifs.78

However, unlike the previous tasks, heterodimeric motif synthesis aims at generating79

composite motif sequence patterns instead of simply predicting binary labels or assay profiles.80

In this work, we adapt a variant of CNN (i.e. U-Net [27]) to learn TF interactions and81

generate heterodimeric motifs. We then develop a machine-learning-based model to evaluate82
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generative heterodimeric motifs. Together, we name our end-to-end motif synthesizer as83

DeepMotifSyn, which substantially outperforms the previous model as demonstrated through84

our experiments.85

2 MATERIALS AND METHODS86

2.1 Background of U-Net87

U-Net is a symmetric convolutional network that was first designed for cellular image seg-88

mentation [27, 28, 29]. The general architecture of U-Net consists of three components:89

Contraction, Bottleneck, and Expansion. The contraction down-convolutes a image by ex-90

tracting the spatial features of the image; the bottleneck compresses feature maps that91

preserves the most important information and reduces model complexity; the expansion92

module constructs a segmented image by up-convoluting compressed feature maps using93

transposed convolution operations. Remarkably, the most artful aspect of U-Net is skip94

connection, which concatenates the up-convoluting output in each expansion layer with the95

feature maps in the symmetric construction layer. The concatenated feature map is then96

propagated to the successive layer. Such structure enables the expansion module to retrieve97

spatial information lost in down-sampling, retaining the image integrity and mitigate the98

distortion when reconstructing the segmented image [30].99

Comparing heterodimeric motif synthesis with image segmentation, we notice U-Net has100

great potentials on synthesizing composite motif sequences: 1) The CNN-based contraction101

of U-Net can be used as an encoder to extract TF-interaction patterns, particularly to learn102

how two monomeric motifs overlaps; 2) In addition to overlap, the flanking sequences should103

be well persevered during synthesizing. Skip-connection is ideally suited for network to104

retrieve non-overlapping sequences of two motifs when constructing the heterodimeric motif;105

3) It has been shown that U-Net has impressive performance with small labeled training106
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data [27]. Therefore, we designed a U-Net-based architecture to synthesize heterodimeric107

motifs from monemeric motif pairs.108

2.2 DeepMotifSyn: proposed deep learning model109

Orientation: 4, Overlap: 6 

ALX4 EOMES

Orientation: 4, Spacing: 6 Orientation: 1, Overlap: 5 Orientation: 3, Overlap: 11 Orientation: 2, Overlap: 1 

…

DeepMotifSyn: Generator

DeepMotifSyn: Evaluator

DNA-binding Family: Homeo_Tbox

…

0.83 0.32 0.21 0.15 0.02…

Figure 1: Illustrative example of how DeepMotifSyn synthesizes heterodimeric DNA mo-
tif. Given two monomeric motifs (e.g. ALX4 and EOMES), DeepMotifSyn first generates
multiple heterodimeric motifs with all possible orientation and overlap/spacing cases. It
then scores each candidate based on the motif sequence features. As observed from the
CAP-SELEX data, top 10 generative heterodimeric motifs enough to be considered as Deep-
MotifSyn’s final prediction candidates.

DeepMotifSyn consists of heterodimeric motif generator and evaluator. The generator110

is a U-Net-based neural network that down-convolutes a monomeric motif pair and then111

up-convolute to generate a heterodimeric motif. A downstream machine learning model112

is used as the evaluator to compute for the predicted probability that a generated het-113

erodimeric motif is the true one, based on the motif sequence features and DNA-binding114

family. Together, the generator and evaluator provide an integrated tool that enables users115
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Figure 2: Architecture of the U-Net-based neural network that was trained to predict the
Position Probability Matrix (PPM) of a heterodimeric motif from a aligned monemeric motif
pair.

to conveniently synthesize heterodimeric motifs using any motif pair of interests. Figure 1116

illustrated how DeepMotifSyn can generate and score heterodimeric motifs from two motifs117

(i.e. ALX4 and EOMES): we first generated all possible alignments of two motifs based on118

four orientations [18] and up-to-19 spacing/overlap, each of which DeepMotifSyn generator119

synthesizes a specific heterodimeric motif. Then, DeepMotifSyn evaluator scores each gener-120

ated heterodimeric motif for its possibility based on the motif sequence features (see Section121

2.2.2).122

2.2.1 Heterodimeric motif generator123

The architecture of motif generator is illustrated in Figure 2. It contains a general U-Net124

backbone which involves contracting path, bottleneck module, an expansive path , and the125

subsequent convolutional layers with filter size of 1 produce the heterodimeric motif in the126
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form of a position probability matrix (PPM). The input to the neural network was a 108-127

channel sequence involving a 8-channel (noting A, G, C and T of motif1 and motif2) motif128

pair and a 100-channel DNA-binding family one-hot encode.129

As Figure 2 shows, the contracting path down-samples input sequence by two convo-130

lutions with the filter length of 4 and 2 successively. The expansive path up-samples the131

previous feature maps along with the one in the symmetric contracting layer, using two132

transposed convolutions with the filter lengths of 2 and 4. In between, a bottleneck module133

compressed the feature maps using a 3-layer convolutional autoencoder. Lastly, the expan-134

sive feature maps are passed through a three-layers convolution network with filer with the135

length of 1, to predict the probability of nucleobases at each position. Note that each convo-136

lutional layer in this network was preceded by a batch-normalization and ReLU activation137

except the last layer. The last convolutional layer facilities a softmax operation to produce138

a position probability matrix.139

As the heterodimeric motifs varied in sequence length, we designed a mask mean square140

loss as the cost function for network training. Specifically, we first pad every ground true141

heterodimeric motifs into a 35× 4 matrix with zero vectors, mathematically noting as M =142

[m1,m2, . . . ,m35],mi ∈ [0, 1]4. M̂ denotes the predictive heterodimeric motif accordingly.143

We defined a sign vector δ = [a1, a2, . . . , a35], ai ∈ {0, 1}, to indicate the presence of non-zero144

elements in heterodimeric motif. The mask mean square error (MaskMSE) for the generated145

motif M̂ is defined as:146

MaskMSE(M, M̂, δ) =
1

L

L∑
i

ai

4∑
j

(mij − m̂ij)
2 (1)

where
∑L

i ai is the actual length of the heterodimeric motif, and L = 35 is our padded motif147

length. We then trained our network using Adam optimizer to minimize the MaskMSE loss,148

with the batch size of 100 for 200 epochs.149
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2.2.2 Heterodimeric motif evaluator150

Our evaluator is developed to predict the probability how much each heterodimeric motif151

candidate is the annotated one in gene regulation. To develop such a model, we carefully152

designed a 784-dimensional feature vector to represent the interaction of monomeric motif153

pairs. These features can be categorized into four types: motif pair sequence, generative154

motif sequence, motif pair orientation, motif pair overlapping, and DNA-binding family155

features.156

Note that both the input motif pair and its generated motif are represented by the157

position probability matrix (PPM). To highlight the important position during modeling,158

we convert PPM into an information content matrix (ICM). Specifically, the total value159

of each position in PPM is scaled by information content (IC) which indicates the level of160

conservation [31, 32]. Mathematically, ICM at position i can be computed as:161

ICMi = PPMi × ICi

ICi = log2N −Hi

Hi = −
B={A,G,C,T}∑

b∈B

PPMi(b)× log2 PPMi(b)

(2)

where N = 4 is the number of bases, Hi denotes Shannon’s entropy [33] of PPM at position162

i, and PPMi(b) denotes the probability of base b appearing at position i. Figure 3 illustrates163

a comparative example of ICM and PPM. We then use the ICM and the positional entropy164

of each motif along with the generated heterodimeric motif as the sequence features.165

Given a monomeric motif pair 〈X, Y 〉 in double helix, there are four possible orientations166

to synthesize heterodimeric motif: 〈X, Y 〉, 〈Y,X〉, 〈y,X〉 and 〈X, y〉, where y is the reversion167

complement of Y [18]. We encode the orientation case into a 4-bit one-hot vector. The motif168

pair alignment features can be categorized into spacing and overlapping. The prediction of169
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Figure 3: PPM and ICM of a heterodimeric DNA motif

overlap sequence is crucial to heterodimeric motif synthesis. We extract the ICMs and nu-170

cleobase entropy at every overlapping position as features. We also compute the Euclidean171

distance of two motifs’ ICM and entropy at the overlapping positions. We then sum the172

overlap ICM at position and nucleobase level respectively to store the iteration information.173

For those motif pairs without overlap, we use a zero vector as the placeholder during mod-174

eling. In addition, we use a numerical feature to represent the overlap/spacing length, of175

which the sign indicates the spacing (negtive) and overlap (positive). Lastly, we statistically176

analyze the orientation and overlapping length for each DNA-binding family, and build the177

features to represent the family-specific distribution of overlapping and orientation.178

Based on the above carefully designed features, we have implemented and systemically179

evaluated five classifiers on selecting the actual heterodimeric motif. Our experiments be-180

low reveal that XGBoost with optimized hyper-parameters is promising in evaluating the181

generated heterodimeric motifs.182

2.3 Data construction183

The heterodimeric and monomeric motif dataset contains 614 heterodimeric motifs from184

313 monomeric motif pairs detected by CAP-SELEX [14]. Each motif is represented by185

the position probability matrix. We padded every motif matrix with zero vectors into a186

35× 4 matrix. Note that the longest length of the heterodimeric motif in the dataset is 31.187

Thus, each motif pair can be represented by a 35× 8 matrix as the input to neural network.188

In addition to 614 annotated motif pairs, we generated 368,381 possible alignments of 313189
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monomeric motif pairs to evaluate DeepMotifSyn, based on four orientation cases with the190

spacing/overlap length up to 19.191

2.4 Evaluation Metrics192

To evaluate DeepMotifSyn’s motif generator, we designed a motif position probability matrix193

(PPM) distance as the metric. Given a generated motif PPM M̂ and a ground-true motif194

PPM M , we first align them using Needleman-Wunsch global profile alignment method [34].195

Then, we can calculate the Euclidean distance at every aligned position:196

da(M, M̂) =

LM∑
i

LM̂∑
j

δ(i, j)d(Mi, M̂j)

d(Mi, M̂j) =

√√√√ 4∑
b

(Mi,b − M̂ij,b)2

(3)

where L is the length of motif, and δ(i, j) = 1 indicates Mi is aligned with M̂j, otherwise197

δ(i, j) = 0. We add the maximum distance of aligned base pairs dmax(M, M̂) as the penalty198

to unaligned positions in the calculation of motif PPM distance d(M, M̂):199

d(M, M̂) =
da(M, M̂) + dmax(M, M̂)× Lgap

Laligned + Lgap

dmax(M, M̂) = max{δ(i, j) · d(Mi, M̂j) : i = 1 . . . LM , j = 1 . . . LM̂}

Lgap = Laligned −
LM∑
i

LM̂∑
j

δ(i, j)

(4)

where Lgap denotes the number of unaligned base pairs.200

To estimate different machine learning models as the motif evaluator, we used precision-201

recall analysis instead of ROC (Receiver Operating Characteristic) analysis owing to the202

data imbalance issue. Each model candidate is optimized by a 10-fold cross-validated search203

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432257doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432257
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) ETV2_FOXI1 (b) ETV5_HOXA2 (c) GCM1_HOXB13

Figure 4: Comparison of IOHMM and U-Net-based neural network on heterodimeric motif
synthesis with true orientation and overlap/spacing settings

over hyper-parameters settings. Lastly, we compared each optimized model on an hold-out204

testing dataset, and the model with the highest PR-AUC (Area under the Precision-Recall205

curve) will be used as our final motif evaluator.206

3 RESULTS207

Our experiments demonstrated DeepMotifSyn achieving promising performance on both gen-208

erating and evaluating heterodimeric motif, outperforming the previous approach in the task209

of end-to-end heterodimeric motif synthesis.210

3.1 Performance of DeepMotifSyn’s motif generator211

To compare our study with previous studies fairly, we performed leave-one-motif-pair-out212

cross-validation to estimate our U-Net-based generator on 313 motif pairs which synthesize213

614 heterodimeric motifs. Note that the previous IOHMM-based motif generator was trained214

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.22.432257doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Comparison of U-Net-based neural network and IOHMM under leave-one-motif-
pair-out cross-validation

Motif Generator 530 heterodimers 84 heterodimers

mean std p-value mean std

U-Net-based 0.17 0.08
6.0× 10−44

0.24 0.07
IOHMM-based 0.26 0.11 – –

on the motifs from one specific DNA-binding family. It is thus unable to handle the DNA-215

binding family with very few heterodimeric motifs. We first compared our U-Net-based216

network with IOHMM on 530 heterodimeric motifs from 45 DNA-Binding families. Table217

2 shows U-Net outperformed IOHMM with an average motif PPM distance of 0.17. The218

difference between two predictions is statistically significant with a t-test p-value of 6.0 ×219

10−44. The bar chart in Figure 5 demonstrates that our U-Net-based generator significantly220

outperformed IOHMM across 40 DNA-binding families among 45, and the motif matrix221

distance error has been decreased averagely by 9% among 530 heterodimeric motif synthesis222

comparing to IOHMM-based motif generator. For the other 84 heterodimeric motifs from223

42 DNA-Binding families, U-Net still achieved a comparative performance with an average224

motif PPM distance of 0.24, indicating that our network can leverage the motif interaction225

patterns across different families to synthesize heterodimeric motifs. Figure 4 demonstrates226

three heterodimeric motif synthesis examples, in which DeepMotifSyn showed its ability to227

predict how the individual motifs form composite DNA motif. The predicted sequence in228

the red box shows that our model has advantages over IOHMM on synthesizing overlapping229

motifs. Surprisingly, we found our model can predict the alteration of non-overlapping sites230

(see the sequence in the orange box), which reveals the complexity of genomics grammars231

and the feasibility of our U-Net-based network.232

Our experiment demonstrated U-Net-based motif generator had better synthesis accu-233

racy and generalization comparing to the previous IOHMM. Note that each IOHMM was234
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developed for one specific DNA-binding family, it thus can only be evaluated on the motifs235

from the same family, of which the estimated performance can be easily overrated due to the236

limitation of validation data and the underlying over-fitting issue. By contrast, our model is237

more generalised as it was built on the motifs from multiple families. Besides, the estimated238

performance of our model under leave-one-out cross-validation on 313 motif pairs is much239

better than IOHMM’s inner-family cross-validation.240
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Figure 5: Performance of IOHMM and U-Net-based neural network under leave-one-motif-
pair-out cross-validation. The box-plot chart (left) shows the comparison of IOHMM and
U-Net-based model on 530 heterodimeric motifs, and the performance of U-Net-based model
on 84 motifs from small-sized DNA-binding families. The bar chart (right) demonstrates the
average improvement of U-Net-based model on IOHMM across 45 DNA-binding families,
where 4 motif PPM distance = PPM distance of IOHMM motif − PPM distance of U-Net-
based motif.

3.2 Performance of DeepMotifSyn’s motif evaluator241

To find a suitable machine learning model as the motif evaluator, we tested five well-242

established model including histogram-based gradient boosting tree [35, 36], XGBoost [37],243
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Table 2: Comparison of DeepMotifSyn and MotifKirin under leave-one-motif-out cross-
validation on end-to-end heterodimeric motif synthesis

530 heterodimers 84 heterodimers

mean std p-value mean std

DeepMotifSyn 0.26 0.01
5.1× 10−43

0.28 0.08
MotifKirin 0.39 0.18 – –

CatBoost [38], Random Forest [39], and extremely randomized trees [40] on 368,995 motif244

pairs. The whole dataset was divided into a training dataset (90%) and a testing dataset245

(10%). We then performed 10-fold cross-validated randomized search over hyper-parameter246

settings of five models on the training dataset, models with best hyper parameters were fur-247

ther compared on the independent testing dataset in terms of PR-AUC and ROC-AUC. Table248

3 shows that XGBoost with optimized hyper-parameters achieved then best performance un-249

der both 10-fold cross-validation and independent testing among five models. XGBoost had250

significant advantages over the other four models based on precision-recall analysis with an251

average PR-AUC higher than 40%.252

Moreover, we performed a leave-one-out cross-validation to further estimate XGBoost253

along with U-Net-based generator on 313 motif pairs. In each fold, we first generated all254

possible monomeric motif pairs based on 4 orientations and up-tp-19 overlapping/spacing,255

on which we applied our U-Net-based network to synthesize heterodimeric motif candidates.256

We then trained XGBoost on the handcrafted features of 312 motif pairs, and score the257

heterodimeric motif candidates derived from each leave-one-out motif pair. Note that the258

training motifs of DeepMotifSyn generator excludes the testing motif pair. In this 313-fold259

cross-validation, XGBoost achieved ROC-AUC of 0.99 and PR-AUC of 0.40 (supplemen-260

tary), which was similar to its 10-fold cross-validation performance. Since the maximum261

heterodimeric motifs for a single motif pairs in our dataset is 10, we selected the 10 gener-262

ated motifs with the highest scores as our final predictions. We observed such a selection263
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strategy recovered 433 motifs (70%) among 614 CAP-SELEX-validated heterodimeric mo-264

tifs. It’s also worth mentioning that top 30 XGBoost predictions of each motif pair covered265

90% of ground-true motifs under leave-one-out cross-validation on 313 motif pairs.266

Lastly, we compared our U-Net-based neural network together with XGBoost as Deep-267

MotifSyn to MotifKirin on the end-to-end heterodimeric motifs synthesis task. Table 3268

illustrated that DeepMotifSyn remarkably surpassed MotifKirin with a mean motif PFM269

distance of 0.36 on synthesizing 530 heterodimeric motifs. These 530 heterodimeric motifs270

are grouped by 45 DNA-binding families, as Figure 6 shows, DeepMotifSyn has significantly271

better performance on the 41 families. The lower standard deviation also indicates DeepMo-272

tifSyn is more robust than MotifKirin. Due to the limitation of IOHMM model, MotifKirin273

can not synthesize the other 84 heterodimeric motifs from small-sized families (which con-274

tains no more than two heterodimeric motifs). On the contrary, deepMotifSyn demonstrated275

its impressive capability in handling such motifs, achieving an average motif PPM distance276

of 0.28 on 84 heterodimeric motifs.277

Table 3: Comparison of five machine learning models on the evaluation of heterodimeric
motif candidates

Model 10-fold cross-validation Testing
PR-AUC ROC-AUC PR-AUC

XGBoost 0.405 ± 0.061 0.995 0.431
Histogram Gradient Boosting Trees 0.339 ± 0.059 0.994 0.396

CatBoost 0.365 ± 0.069 0.993 0.371
Random Forest 0.330 ± 0.051 0.975 0.337

Extremely Randomized Trees 0.284 ± 0.037 0.981 0.262
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Figure 6: Comparison of DeepMotifSyn and MotifKirin under leave-one-motif-out cross-
validation across 45 DNA-binding families. The experimental settings are the same as our
previous study [18].

3.3 Application of DeepMotifSyn on end-to-end heterodimeric mo-278

tif synthesis279

Herein, we demonstrated an example of how DeepMotifSyn synthesizes FLI1-FOXI1 het-280

erodimeric motif. Note that this motif is independent of our training data. As Figure281

7 shows, there are four heterodimeric motifs validated by CAP-SELEX derived from two282

monomeric motifs, FLI1 and FOXI1. Taking a position probability matrix pair as the in-283

put, DeepMotifSyn generated 1,218 heterodimeric motif candidates based on four possible284

orientations with the up-to-7 overlapping and up-to-13 spacing. The longest overlapping is285

the length of the short monomeric motif. We set 35 as the maximum length of generative286

heterodimeric motif for our model. Each generated motif is attached with a score predicted287

by DeepMotiSyn evaluator. Figure 7 illustrated the top 3 candidates were well matched with288

the validated heterodimeric motifs. The candidates with the highest deepSynMotif score has289

the lowest motif PPM distance with FLI1-FOXI1-1 among 1,218 generative motifs. The290

best matched generative motif of FLI1-FOXI1-4 ranks 41 among the candidates. We also291
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0.453 
(Rank 1)

deepMotifSyn

MotifKirin

FLI1

FOXI1
CAP-SELEX

0.261
(Rank 2)

0.189
(Rank 3)

0.009
(Rank 41)

FLI1-FOXI1-1 FLI1-FOXI1-2 FLI1-FOXI1-3 FLI1-FOXI1-4

0.133 0.2230.127 0.535

Motif PPM Distance:  0.127
DeepMotifSyn score: 0.453 

0.494

Figure 7: Heterodimeric motif synthesis on FLI1 and FOXI1 using DeepMotifSyn and Mo-
tifKirin. Note that MotifKirin can only synthesize one heterodimeric motif from a monomeric
motif pair. The value in blue is the motif PPM distance of predictive and true heterodimeric
motif, the value in black is DeepMotifSyn score.

applied MotiKirin to synthesize the FLI1-FOX1 motif, it can only produce one motif which is292

better aligned with FLI1-FOXI1-3 than the others. Nevertheless, DeepMotifSyn’s synthesis293

of FLI1-FOXI1-3 significantly surpassed MotifKirin with 27% improvement on motif PFM294

distance. Interestingly, we noticed the DeepMotifSyn score somehow represents the quality295

of the candidate even if we trained our model in a classification manner. In general, this296

case study demonstrated our DeepMotifSyn is a more practical and accurate approach for297

heterodimeric motif synthesis comparing to MotifKirin.298

4 Discussion299

In this work, we introduced a deep-learning-based approach to synthesize heterodimeric300

motifs from monomeric motif pairs. Through systematic investigation, we illustrated that301

our newly developed suite of models, DeepMotifSyn, outperforms the current state-of-the-302

art method with a transformative way on synthesizing heterodimeric motifs. The previous303

model generates the heterodimeric motif based on separated predictive spacing length and304
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orientation of the monomeric motif pair. Such a synthesis approach has some substan-305

tial limitations, since most of TF-TF pairs’ cooperatively bound sits involves more than306

one orientation and various spacing preferences [14, 16]. By contrast, DeepMotifSyn gener-307

ates and scores heterodimeric motif candidates with all potential orientations and spacing308

preferences (see Figure 1). Our experiment demonstrated that DeepMotifSyn-synthesized309

heterodimeric motif candidates were able to recover 70% of bona fide heterodimeric motifs310

validated by CAP-SELEX. In addition, we systematically evaluated MotifKirin on synthe-311

sizing heterodimeric motifs given ground true orientation and spacing settings, showing that312

DeepMotifSyn significantly surpassed MotifKirin on the motif synthesis of 40 heterodimer313

DNA-binding families. DeepMotifSyn also leverages the motifs of multiple DNA-binding314

families to synthesize the heterodimeric motif for new family, which is a substantial feature315

MotifKirin lacks.316

We expect our DeepMotifSyn can be improved through training on additional het-317

erodimeric motif datasets subject to its availability. We also envision our deep-learning-318

based model can be applied to hetero-multimeric motif synthesis by taking multiple motifs319

as input in the future.320
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