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Abstract

Missing values are common in high-throughput mass spectrometry data. Two strategies are available to address missing
values: (i) eliminate or impute the missing values and apply statistical methods that require complete data and (ii) use
statistical methods that specifically account for missing values without imputation (imputation-free methods). This study
reviews the effect of sample size and percentage of missing values on statistical inference for multiple methods under these
two strategies. With increasing missingness, the ability of imputation and imputation-free methods to identify differentially
and non-differentially regulated compounds in a two-group comparison study declined. Random forest and k-nearest
neighbor imputation combined with a Wilcoxon test performed well in statistical testing for up to 50% missingness with
little bias in estimating the effect size. Quantile regression imputation accompanied with a Wilcoxon test also had good
statistical testing outcomes but substantially distorted the difference in means between groups. None of the
imputation-free methods performed consistently better for statistical testing than imputation methods.
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INTRODUCTION
High-throughput mass spectrometry (MS) is commonly used to
analyze small molecular compounds (e.g. metabolites, lipids,
proteins) in biological samples. By profiling hundreds or thou-
sands of compounds simultaneously, investigators aim to iden-
tify compounds suitable for diagnostic and prognostic tests,
understand biological pathways of disease and identify potential
therapeutic targets. A notable characteristic of data from MS
studies is the extent of missing values [1–3]. Depending on the
platform and processing, the amount of missing data can be
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considerable, >20% overall [2] with many compounds having
missing values of varying degrees individually [1, 4].

Missing values create challenges for statistical analyses as
most statistical methods require complete data [5]. When miss-
ing values occur, two strategies are available: (i) eliminate or
impute the missing values and apply statistical methods that
require complete data and (ii) retain the missing observations
and use statistical methods that specifically account for missing
values without imputation. The first approach is the most com-
mon. Elimination of missing values is typically accomplished
by dropping compounds with missing values in excess of a
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pre-specified threshold followed by imputation of any remaining
missing values. The second approach is to use imputation-
free statistical methods such as accelerated failure time (AFT)
models [6], two-part (TP) models [7] and mixture (MM) models
[4, 8]. For these methods, missing values are not imputed but
retained as missing and data analyzed as collected.

Considerable work has been done comparing performance
of imputation methods applied to MS data [1, 3, 9–13]. These
studies have differed in the missing data processes used in
simulations, the degree of missingness, the metrics used to
compare performance of the imputation methods and in the
characteristics of the data sets evaluated in terms of sample
size and features. Several studies have assessed performance
based on how close imputed data values were to original values
[10–12, 14], but of practical consideration, is the effect of impu-
tation on subsequent statistical analysis procedures, including
differential regulation analyses, principal component analysis
(PCA) or partial least squares analysis. Hrydziuszko and Viant [1]
evaluated the effect of eight imputation methods on statistical
testing of differential regulation and PCA hierarchical clustering
for three data sets of small sample sizes (less than 20) but
only considered missingness of about 20%. They recommended
k-nearest neighbor (KNN) and reported poor performance by
half-minimum (HM) imputation. In simulations based on eight
proteomics data sets, Liu and Dongre [13] found imputing all
missing values in a sample with the observed minimum from
that sample to perform best with respect to identifying dif-
ferentially expressed proteins when missing values reflected
values below a detection limit while Bayesian PCA (BPCA) and
singular value decomposition performed better when missing
values were missing at random. This recent study is the only
work on MS studies to have compared imputation performance
with experimental manipulation of sample sizes. Of note, how-
ever, in their simulations, simulated compounds were indepen-
dent from each other, which could have disadvantaged imputa-
tion methods such as BPCA that exploit the correlation pattern
among compounds. Do et al. [9] evaluated power and type I error
of correlation and regression analyses following 31 imputation
methods for different combinations and levels of missingness
using a single large data set (N = 1750) and identified KNN as the
most robust method. Webb-Robertson et al. [3] and Wei et al. [12]
focused on PCA results following imputation. Webb-Robertson
et al. compared PCA results of 11 imputation methods applied to
three small proteomics data sets with thousands of peaks, while
Wei et al. simulated different types and levels of missingness
using four data sets of varying sample sizes (N = 37–977) but with
fewer compounds. Wei et al. recommended random forest (RF)
where data were predominantly missing at random and quantile
regression (QR) where missing values resulted from detection
limit censoring. Webb-Robertson et al. noted that no method was
universally the best.

While many studies have focused on imputation, little work
has been conducted comparing imputation-free methods to
each other and to imputation methods. Taylor and Pollard
[7] found two-part statistics to outperform substitution of
missing values with zero or applying two-sample tests to
non-missing values. Taylor et al. [4] focused on comparing
two imputation-free methods, AFT and MM models, but only
considered one imputation method, KNN. Tekwe et al. [6]
advocated the use of the AFT model based on a simulation study
comparing imputation with row mean, KNN and probabilistic
PCA, but missing data were generated entirely through censoring
consistent with the AFT model assumptions.

No study has comprehensively evaluated application of
imputation and imputation-free methods in MS studies over
a broad range of conditions and specifically evaluated key
practical considerations in MS studies, specifically sample size,
overall level of missingness and level of missingness in individ-
ual compounds. Further, an analytical strategy that integrates
both imputation and imputation-free methods could enhance
MS studies by increasing the number of analyzable compounds
if imputation-free methods can accommodate analysis of
compounds with high levels of missingness, predominantly
due to low concentrations, that are commonly dropped from
analyses. The information necessary to guide statistical analysis
approaches in practice, however, is currently lacking.

Despite extensive previous work, gaps remain in our
understanding of imputation and imputation-free methods
with practical implications for researchers. To address gaps
of particular relevance for deciding on statistical analysis
approaches, we compare the performance of selected impu-
tation and imputation-free methods to detect differentially
regulated compounds over a wide range of missingness and
sample sizes. We emphasize results of statistical analyses for
the detection of differentially regulated compounds in a two-
arm study design and compare imputation and imputation-free
methods. We also compare parametric versus non-parametric
statistical testing procedures following imputation, which
has not been previously considered. Using several simulation
studies motivated by real data and conducted to retain the
correlation structure among compounds, we develop empirical
recommendations for analyzing MS data with missing values.

Methods
Imputation methods

We evaluated five imputation methods: HM [3], KNN [15], BPCA
[16], RF [17] and QR [18, 19]. We selected KNN, RF and BPCA
because these methods have been shown to be strong perform-
ers in previous studies. We included QR imputation because it is
a relatively new method that has not been extensively studied.
Finally, we included HM because it remains commonly used and
it reflects a non-random mechanism for missing values in the
concept of the lower limit of detection, which is only otherwise
captured by QR imputation. These methods and software imple-
mentation are described in Supplementary Material available
online at http://bib.oxfordjournals.org/.

Imputation-free methods

In contrast to imputation, imputation-free methods explicitly
account for missing values in calculating an inferential test
statistic. We evaluated four imputation-free methods: AFT, TP,
MM models and the differential abundance analysis with Bayes
shrinkage estimation of variance method (DASEV). Collectively,
these methods capture the range of missing value mechanisms
present in MS data. The AFT model is a survival analysis method
that assumes missing values reflect compounds that are present
but censored at concentrations below the detection limit [6].
In TP models [7, 20], a compound’s distribution is represented
by the proportion of missing observations and the distribution
of observed values [7]. The model consists of two parts with
one part testing for a difference in proportions of missing val-
ues and a second part evaluating the difference in means for
observed values. These models are appropriate when missing
values either represent the true absence of a compound or



Comparison of imputation and imputation-free methods 3

reflect random technical measurement errors. Mixture models
combine aspects of TP and AFT models to account for missing
values resulting from censoring, true absence and technical lim-
itations resulting in the failure to detect or quantify a compound
[4]. The DASEV method attempts to improve on the MM model
by employing an empirical Bayes shrinkage method to stabilize
estimation of the variance under conditions of high levels of
missingness [21]. These methods and software implementa-
tion are detailed in Supplementary Material available online at
http://bib.oxfordjournals.org/.

Biological data sets

We used three biological data sets from previously published
MS studies using different platforms to compare imputation
and imputation-free methods: (i) polycystic kidney disease
plasma metabolomics (PKD) [22], (ii) renal cell carcinoma urinary
metabolomics (RCC) [23] and (iii) autosomal dominant polycystic
kidney disease (ADPKD) plasma lipidomics (HALT) [24].

Polycystic kidney disease

The PKD data consist of non-targeted liquid chromatography/-
time of flight MS (LC/TOF-MS) analysis of plasma from 13 PKD
patients and 13 healthy controls (HC) from a study evaluating
the effects of meals, time of day and daily changes on the
metabolome. A total of 873 metabolites were identified in at least
one sample across all days and times with 40.6% missing values
overall. For each sample, intensity values were total quantity
normalized to the median total ion counts across all samples.
We used 168 metabolites with no missing values in the dataset
obtained from collected plasma from fasting patients on the first
day of study.

Renal cell carcinoma

The RCC data set consists of metabolomics of urine from 29
RCC patients and 33 HC quantified using ultra-high performance
liquid chromatography/tandem mass spectrometry optimized
for basic species and acidic species. There were 298 known
compounds identified with 12.7% missingness across all sam-
ples. Intensity values in each sample were divided by the sam-
ple’s osmolality to adjust for differences in urine concentra-
tion among patients. We used 106 metabolites with no missing
values.

Autosomal dominant polycystic kidney disease

The HALT data set is gas chromatography (GC-TOF/MS)
lipidomics data for plasma of 544 patients with ADPKD in
the HALT Progression of Polycystic Kidney Disease (HALT),
NCT00283686, http://clinicaltrials.gov) clinical trial. We used 207
negative mode peaks; overall missingness was 0.59%. Intensity
values were total quantity normalized for each sample to
the median total ion counts across all samples. We restricted
our analysis to patients with the two most common genetic
forms: PKD 1 (n = 372) and PKD 2 (n = 82). For these samples,
166 compounds with no missing values were used in our
studies.

Simulation studies

We conducted two simulations studies. Study 1 compared
results of statistical tests to detect differentially regulated
compounds using imputation and imputation-free methods
under a wide range of missingness levels. Study 2 explored the

interplay of sample size and level of missingness on statistical
testing.

Study 1

In Study 1, we used all three real data sets to simulate a two-
group comparison study reflecting a case–control design. Groups
for our data sets were PKD: HC versus PKD; RCC: HC versus RCC;
HALT: PKD 1 versus PKD 2. To create analytical data sets from
the real data sets, we first permuted group labels to make the
mean difference between groups 0 across all compounds. Then,
for each metabolite, zSD was added to each sample in one group
(HC or PKD 1) where SD was the pooled standard deviation for
the metabolite. By first creating a data set with no difference on
average between groups, we could experimentally create group
differences of a specified magnitude allowing us to manipulate
the numbers of differentially and non-differentially regulated
compounds found in the complete data sets. The value for z
was selected to yield power to detect statistically significantly
different compounds between two groups of approximately 50
or 80% at a significance level of 5% in two sets of simulations.
For the 50% power simulations, z was 0.75 for the PKD data set,
0.5 for RCC and 0.25 for HALT, and for 80% power, z was 1.0, 0.75
and 0.33 for PKD, RCC and HALT, respectively. At 50% power, 45–
64% of the compounds were statistically significantly different
(raw P-value <0.05) and at 80% power 67–89% of the compounds
were significant (Supplementary Table S1 available online at
http://bib.oxfordjournals.org/). Over all compounds in a dataset,
the mean effect size (ES) defined as the difference in means
between the two experimental groups (Delta) divided by SD was
zSD but ES varied among compounds (Supplementary Figure S1
available online at http://bib.oxfordjournals.org/). We simulated
100 complete analytical data sets from each real data set.

Using the complete sets, we induced missing values incre-
mentally to yield overall missingness percentages from 1 to 70%
across all samples and compounds using a strategy similar to
Scheel et al. [25]. To generate x% missingness, we identified the
pre-specified yth quantile of the data set. We then randomly
selected values below yth quantile such that x% of the values
in the entire data set were missing. For 1, 5, 10, 20, 30, 40, 50, 60
and 70% missingness, the yth quantiles used were 2, 10, 20, 40, 50,
60, 70, 80 and 90. This approach resulted in more missing values
at low intensities consistent with the existence of a detection
limit but did not impose a hard threshold. Resultant data sets
were similar to real data sets consisting of some compound
with no missing values and the remaining compounds with a
range of missingness. (Supplementary Figure S2 available online
at http://bib.oxfordjournals.org/). Figure 1 shows the process for
simulating data for Study 1.

We analyzed the simulated data with missing values using
the imputation-free methods and imputation methods by
imputing with each imputation method followed by a two-
sample t-test (parametric test) and Wilcoxon rank sum test (non-
parametric test) to identify differentially regulated compounds.
We compared overall performance of analytical approaches
using a metric called the Biomarker List Concordance Index
(BLCI) defined as BLCI = sensitivity + specificity − 1 [14]. A true
positive is defined as a compound identified as being significant
(P < 0.05) in the true complete data set and a true negative as
being were non-significant. We worked with raw P-values for a
direct comparison of how these methods affected significance
testing independent from a particular multiple testing adjust-
ment method. In this context, sensitivity is the percentage of
true positives that were correctly identified as being significant

http://clinicaltrials.gov
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Figure 1. Process for simulating data for Study 1 and 2. Differences between experimental and control groups were created by adding zSD to each compound in the

experimental group where SD was the pooled standard deviation and z was selected to achieve pre-specified statistical power based on a two-sample t-test. For Study

2, data were simulated from a multivariate normal distribution (MVN).

in the simulated data with induced missingness by the method
under consideration. Similarly, specificity is the percentage
of true negatives that were correctly identified as being not
significant in the simulated data set with induced missing
values. We used the BLCI metric for the overall assessment
of a method’s statistical performance because it reflects true
discovery ability of each method in regard to both true positives
and true negatives. Imputation results were compared to the
corresponding test (t-test or Wilcoxon) results for the complete
data set. Results from imputation-free methods were only
compared to t-tests because for all of the imputation-free
methods, the underlying statistical models assume a log

normal distribution for the quantitative component of the
models. Complete data were log transformed for t-tests
resulting in the distributions of most compounds following
an approximately normal distribution. Compounds with no
missing values were not included in calculating performance
metrics.

For imputation methods, we also investigated the effect of
imputation on ES by calculating the bias between ES, Delta and
SD in the complete data sets versus imputed values. Analyses
were conducted using R versions 3.6.2, 4.0.2 and 4.0.3 because
simulations were conducted over many months and on different
computers.
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Table 1. Overall percentage of missing values in the entire datasets
for Study 2 by percentage missing induced per compound

Compound
%
missing

Overall % of missingness in an entire
dataset

PKD-based HALT-based

5% Missing 4.0 4.0
10% Missing 8.0 8.0
20% Missing 16.0 15.9
30% Missing 23.9 23.9
40% Missing 31.9 31.8
50% Missing 39.9 39.8
60% Missing 47.9 47.7
70% Missing 55.8 55.7

There were 168 metabolites in PKD and 166 lipids in HALT. In the simulated data,
20% of all compounds were retained with no missing values. Missing percentages
refer to the percentage of missing values in compounds with missing values.

Study 2

Study 1 provided the most realistic assessment of how the
analysis procedures would perform when applied to real data.
However, Study 1 could not answer questions related to sample
size and thresholds of missingness for retaining compounds in
an analysis.

Study 2 was specifically designed to evaluate sample size and
levels of missingness, which necessitated fully simulating data.
Because KNN, RF and BPCA use information from all the data to
impute missing values, it was important that the simulated data
conserved a realistic covariance structure. Thus, we estimated
the between-compound covariance matrices for cases and con-
trols separately for the PKD and HALT data sets. For HALT, a ran-
dom sample of controls was used to provide a balanced design.
These covariance matrices were then used to simulate data from
a multivariate normal distribution. We again considered a two-
group comparison setting and simulated data with mean 0 for
a control group. For the cases, means varied depending on the
sample size but were selected to provide an ES for which a two-
sample t-test has approximately 50% power at a significance
level of 5%. For sample sizes of 10, 20, 30, 40 and 50 per group, the
means for compounds/lipids in the simulated cases group were
0.89SD, 0.62SD, 0.51SD, 0.44SD and 0.39SD, respectively, where
SD was the respective pooled standard deviation. We generated
1000 data sets for each sample size at each sample based on PKD
and HALT data.

In our data sets, 19–36% of the compounds had no missing
values. In our simulated data sets, we retained 20% of the com-
pounds with no missing values. In the remaining compounds,
we induced missingness levels of 5–70% in each compound using
the same approach as in Study 1. This approach also allowed us
to evaluate the performance of imputation-free methods when
all compounds had fixed, known and constant levels of missing
values. Table 1 shows the overall percentage of missing values
across all samples and compounds including those with no
missing values in the simulated data. Figure 1 shows the process
for simulating data for Study 2.

Results
Study 1

As the level of missingness increased, BLCI decreased for all
methods (Figure 2) and was affected at low percentages of miss-
ingness (e.g. ≤5%). QR or HM imputation with a non-parametric

Wilcoxon test provided the highest BLCI for PKD with ≤5%
missing and ≤10% missing in RCC. At higher levels of miss-
ingness (≥10%), RF yielded the highest BLCI for PKD, RCC and
HALT. However, the statistical test coupled with RF mattered. For
HALT, RF with Wilcoxon had a higher BLCI than RF with a t-test
but vice versa for PKD and RCC Although QR and HM with a
Wilcoxon test performed well at low percentage of missingness,
statistical testing with a t-test was worse than other methods
for missingness >5%. KNN performed relatively well with either
testing procedure at missingness ≥20%, often yielding the sec-
ond highest BLCI. The relative performance of BPCA varied. For
PKD and RCC, the BLCI of BPCA was one of the worst with a
Wilcoxon test but it was relatively better for HALT, comparable
to KNN. With a t-test, BPCA was typically intermediate to other
imputation methods. Supplementary Table S2 available online at
http://bib.oxfordjournals.org/ provides median values of BLCI for
each procedure and level of missingness.

Among the imputation-free methods, BLCI was high for the
AFT model at the smallest missingness levels (≤5%; Figure 2).
The TP and MM procedures had similar BLCI and were best
among the imputation-free methods for missingness ≥20%. The
DASEV method requires at least one missing and one non-
missing observation per group and at least 10 non-missing
observations total in order to obtain the prior distribution for
the variance. At low missingness, some compounds contained
no missing values in one of the groups, and hence no results
were produced for the DASEV method in these instances. This
resulted in low BLCI values because sensitivity and specificity
were calculated as the number of true positives or negatives
identified by DASEV divided by all true positives or true negatives
in the complete data, respectively. At higher missingness levels,
DASEV improved but remained at or below the MM model.
Overall, imputation-free methods yielded similar BLCI values
to imputation approaches with t-tests, which generally were
worse than imputation with Wilcoxon tests (Figure 2).

The BLCI depends on both specificity and sensitivity and
the methods differ in their effects on these components as
missingness increases. Patterns in sensitivity and specificity
were broadly similar across data sets (Supplementary Figures S3
and S4 available online at http://bib.oxfordjournals.org/).
Sensitivity with QR and HM imputation and the imputation-
free methods declined sharply with increasing missingness
in all data sets dropping below 50% when missingness
reached 20–40% depending on the data set. RF and KNN had
more stable sensitivities with varying missingness and were
markedly higher than QR and HM imputation. Sensitivity of
RF and KNN remained above 75 and 50%, respectively, in
nearly all cases (Supplementary Figure S3 available online at
http://bib.oxfordjournals.org/). In the PKD data set, for BPCA
imputation, sensitivity declined with increasing missingness.
However, in HALT and RCC data sets, BPCA sensitivity tended
to remain high (>75%) until the percentage of missing values
exceeded 30% or more. These patterns generally switch for
specificity with QR, HM and imputation-free methods having
high (>75%), stable specificity, while KNN and RF show declining
specificity with increasing missingness. BPCA had a complex
pattern with specificity often among the worst for low levels of
missingness (e.g. up to about 30%) but then performing well for
higher levels of missingness up to 60 or 70%.

For imputation methods with a t-test, the changes in
sensitivity and specificity, and hence BLCI, reflect how impu-
tation changes the ES (Figure 3; Supplementary Figures S5
and S6 available online at http://bib.oxfordjournals.org/). ES
is determined by both Delta and SD and both are affected

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
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Figure 2. Median and quartiles of BLCI versus overall percentage of missing values for 100 simulated data sets using PKD, RCC and HALT data with ESs of 0.75SD, 0.5SD

and 0.25SD respectively, in Study 1. Groups were compared using imputation-free methods [accelerated failure time model (AFT), differential abundance analysis with

Bayes shrinkage estimation of variance method (DASEV), mixture model (MM), two-part model (TP)], or with imputing missing values using BPCA, HM, KNN, QR or RF

followed by inferential testing with a parametric (two-sample t-test) or non-parametric (Wilcoxon rank sum) test.

by imputation. QR imputation increased both Delta and SD
of the imputed data relative to the complete data with
the magnitude of the bias strongly increasing with miss-
ingness (Supplementary Figures S7–S12 available online at
http://bib.oxfordjournals.org/). Because QR imputation uses
the distribution of compounds within a subject as the basis
for imputation, the overall level of missingness was strongly
influential. HM also increased Delta in the imputed data when
the level of missingness in individual compounds was less than
50% but reduced Delta at higher missingness as more values
were imputed as one-half the minimum; the SD also increased
with increasing missingness. KNN was largely unbiased with
respect to Delta and SD although both were biased slightly
smaller for compounds with 10–30% missingness. BPCA and RF
tended to reduce Delta and SD of the imputed data with larger
effects as compound-level missingness increased. Alterations
in ES are explored in more detail in Study 2. These patterns of
results were broadly similar with the 80% power simulations (see
Supplementary Table S3 and Supplementary Figures S13–S24
available online at http://bib.oxfordjournals.org/).

Study 2

Study 2 focused on the joint effects of sample size and missing-
ness. As with Study 1, the level of missingness strongly affected
results of statistical testing of all methods with BLCI declining
as missingness increased. With 5% missingness, all imputation

methods with t-tests or Wilcoxon tests have BLCI greater than
0.75. BLCI drops to about 0.5 by 30% missingness and below 0.5 by
70% missingness. The imputation-free methods followed a simi-
lar pattern (Figure 4; Supplementary Figure S25 and Supplemen-
tary Table S4 available online at http://bib.oxfordjournals.org/).

The overall effect of sample size on BLCI was small. For
imputation methods except HM, BLCI increased a small amount
with increasing sample size when missingness was 50% or
higher. For example, at 50% missingness, median BLCI for KNN
with a t-test was about 0.5 with a sample size of 10 and this
increased to about 0.55 with a sample size of 50. In interpreting
these results, it is important to remember that to simulate
data for Study 2, we decreased the ES with increasing sample
size in order to keep the number of statistically significant
compounds in the complete data sets approximately the same
for each sample size (Supplementary Table S1 available online at
http://bib.oxfordjournals.org/). With this approach, we avoided
potential confounding from increased statistical power with
increasing sample size.

Results of Study 2 generally corroborated findings from Study
1 in terms of results of statistical tests for these procedures.
QR with Wilcoxon had the highest or penultimate median
BLCI for all sample sizes for missingness ≤30%. With higher
missing levels, KNN and RF were typically best in terms of BLCI
as was found in Study 1 (Supplementary Table S4 available
online at http://bib.oxfordjournals.org/). RF tended to have
higher BLCI than KNN in Study 1 while KNN was higher in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
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Figure 3. Bias (median and quartiles) in ES of each imputation method for varying levels of missingness in each compound and overall level of missingness in 100 data

sets simulated in Study 1 from the PKD data set with an ES of 0.75SD. Missing values were imputed with RF, KNN, BPCA, HM or QR. Negative numbers indicate larger ES

in imputed versus complete data.

Study 2 reflecting less variation in KNN’s performance relative
to sample size than for RF. QR and HM had higher BLCI in
combination with a Wilcoxon test than a t-test. However,
for KNN, RF and BPCA, BLCI results were largely similar
with the two statistical testing procedures. The imputation-
free methods were intermediate to the imputation methods,
performing better than some imputation methods and worse
than others (Figure 4; Supplementary Figure S25 and Supple-
mentary Table S4 available online at http://bib.oxfordjournals.
org/).

Because all compounds had the same level of missing values
for a given simulation in Study 2, discerning the effects of the
imputation methods on ES was more straightforward than in
Study 1. The methods varied substantially in their effects on
SD and Delta (Supplementary Figures S27–S30 available online
at http://bib.oxfordjournals.org/). KNN yielded little bias in SD,
only slightly reducing the SD regardless of sample size and
missingness (median bias <0.05 for PKD and <0.03 for HALT).
With RF and BCPA, SD was decreased a little more than KNN
but bias remained low (less than about <0.1 for both PKD and
HALT) across the range of sample sizes and missingness lev-
els. In contrast, QR and HM imputation markedly increased
SD with bias increasing with missingness regardless of sample
size. Median increase in SD was up to about 0.45 for HM and
0.4 for QR (Supplementary Figures S29 and S30 available online
at http://bib.oxfordjournals.org/). Sample size had little effect
for QR imputation since this method imputes on a per-sample
basis, but for HM, increasing sample size increased the bias

in SD (Supplementary Figures S29 and S30 available online at
http://bib.oxfordjournals.org/).

Under KNN, Delta remained largely unbiased (Supplementary
Figures S27 and S28 available online at http://bib.oxfordjournals.
org/) regardless of sample size and missingness. For the PKD-
based simulations, BPCA and RF had larger but still modest
effects on Delta relative to KNN tending to reduce Delta with
increasing missingness and smaller sample sizes. With the
HALT-based simulations, bias in Delta was similar for BPCA
while the bias in Delta for RF was less than with the PKD-based
simulations. QR and HM imputation increased the difference
in means between the groups and the bias in Delta increased
markedly as the level of missingness increased. With the PKD-
based simulations, for HM at the highest levels of missingness
(≥60%), the bias declined because many missing values were
imputed to the same value but this was not seen in the
HALT-based simulations.

Distortion of ES by imputation was greatest at the small-
est sample size (N = 10) with bias decreasing as sample size
increased (Figure 5; Supplementary Figure S26 available online
at http://bib.oxfordjournals.org/). Bias also generally increased
with increasing missingness with the largest bias for high miss-
ing percentages and small sample sizes. With the PKD-based
simulations, QR and KNN were largely unbiased up to about 60
and 40% missingness, respectively. This held true for KNN in
the HALT-based simulations but not for QR, which reduced ES
at 60% missingness (Supplementary Figure S26 available online
at http://bib.oxfordjournals.org/). In the PKD-based simulations,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
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Figure 4. Median BLCI versus sample size (sample size per group) for 1000 simulated data sets based on the PKD covariance matrix in Study 2 at varying levels of missing

values. Groups were compared using imputation-free methods [accelerated failure time model (AFT), differential abundance analysis with Bayes shrinkage estimation

of variance method (DASEV), mixture model (MM), two-part model (TP)], or with imputing missing values using BPCA, HM, KNN, QR or RF followed by inferential testing

with a parametric (two-sample t-test) or non-parametric (Wilcoxon rank sum) test.

HM, BPCA and RF generally reduced ES (Figure 5). The bias in
ES increased with the level of missingness but decreased with
larger sample sizes (Figure 5). Bias was greatest for HM and
smallest for RF (Figure 5); these effects were less marked in
the HALT-based simulations (Supplementary Figure S26 avail-
able online at http://bib.oxfordjournals.org/). For QR, the increase
in SD and Delta were largely offsetting resulting in ES remaining
unbiased on average but highly variable. Although KNN did
not have much effect on Delta and SD, the combined small
changes in Delta and SD increased ES at high levels of miss-
ingness (>40%). RF increased ES for HALT-based simulations but
decreased it in PKD reflecting slightly different magnitudes of
effects on the Delta in these data sets. In PKD-based simulations,
BPCA tended to reduce both the SD and Delta, which combined
to reduce ES (PKD-based simulations) or maintain ES similar to
the complete data (HALT-based simulations).

In Study 2, data were simulated from a multivariate normal
distribution, which might not accurately reflect the distribution
of real data. Thus, we repeated Study 2 by resampling from the
HALT data to generate data sets with desired sample sizes. With
the exception of QR, the results of this resampling study were
qualitatively and quantitatively similar to the results of Study 2
described above. BLCI and bias were notably worse (lower BLCI
and greater bias) for QR in the resampling study than found in
Study 2. In Study 2, samples were drawn from a multivariate
normal distribution, which is consistent with the distributional
assumption of the QR imputation method. As a result, QR perfor-
mance was better in Study 2 than in the resampling study where

the distribution of compounds within a sample could have devi-
ated from normality. The methods and graphical presentation
of results from the resampling study are provided in Supple-
mentary Materials 3 (Study 2 with Data Sets Generated through
Resampling) available online at http://bib.oxfordjournals.org/.

Discussion

A consistent pattern in our evaluations was a marked decline
in BLCI with increasing missingness. In Study 2, the median
BLCI for all methods was below 0.6 once the level of miss-
ingness per compound reached 40–50% regardless of sample
size. Because 20% of compounds in Study 2 had no missing
values, these percentages represent overall missingness of 32–
40%. Sensitivity and specificity were differentially affected by the
level of missingness among the methods. Because imputation
tended to reduce the ES with increasing missingness, sensitiv-
ity was more affected than specificity. Nevertheless, sensitivity
remained relatively high for KNN, RF, TP model and MM model
as missingness increased but declined for the other methods
while specificity tended to show the opposite pattern. Thus, in
selecting an analytical approach, investigators should consider
their tolerance for false positives and false negatives, particu-
larly when pre-screening for differentially regulated compounds
for a large number of compounds for downstream analysis such
as pathway analysis and functional enrichment analysis. High
sensitivity favors correctly identifying truly differentially regu-
lated compounds but potentially with many false positives while

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
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Figure 5. Bias (median and quartiles) in ES of each imputation method versus sample size (N per group) for 1000 simulated data sets based on the PKD covariance

matrix in Study 2 at varying levels of missing values. Missing values were imputed with RF, KNN, BPCA, HM or QR. Negative numbers indicate larger ES in imputed

versus complete data.

high specificity favors correctly identifying compounds that are
not truly differentially regulated at the expense of missing some
true positives.

For the imputation methods, changes in sensitivity and
specificity reflect the effects of imputation on ES. Sensitivity
declined if imputation reduced ES but remained high for
methods that increased ES. Conversely, specificity remained
high if ES was reduced but declined among methods that
increased ES.

Wilcoxon tests yielded higher BLCI than t-tests following
QR and HM imputation. These methods assume that data are
missing entirely due to detection limit censoring. Therefore,
imputed values are small and clustered around a presumed
detection limit. With QR, imputation is done on a per sample
basis and imputes values below all other values in the sample.
For HM, imputed values are half the minimum observed value
for each compound across all the samples. These approaches
substantially alter a compound’s distribution but because non-
parametric inferential methods are less affected by actual values
than parametric methods, QR and HM imputation performed
well with the rank-based Wilcoxon test but not with a t-test.

The distortion in Delta and SD caused by QR and HM is an
important consideration in using these methods. Often investi-
gators report a fold change as a measure of the relative mag-
nitude of the difference between groups. Given the effects of
QR and HM on Delta, the fold change would be affected which
could affect interpretation of the results as well as analyses of
regulatory pathways. Multivariate analysis methods such as PCA
are also commonly used to discriminate groups in MS analyses,

and the effectiveness of these methods could be compromised
by the effects of HM and QR imputation on Delta and SD.

To refine our recommendations, we first identified meth-
ods that provided median sensitivity and specificity greater
than 80% based on Study 2 and secondarily relaxed the speci-
ficity threshold to >60% (Supplementary Tables S5–S8 available
online at http://bib.oxfordjournals.org/). No methods provided
both sensitivity and specificity >80% when the percentage of
missingness was >40% for HALT-based simulations and >30%
for PKD-based simulations. For ≤20% missingness, KNN, RF and
QR with Wilcoxon had 80% specificity and sensitivity for both
HALT- and PKD-based simulations. At 30% missingness, QR with
Wilcoxon met these criteria for both data sets. With HALT-based
simulations, KNN with Wilcoxon met criteria for ≤30% missing-
ness and for 40% missingness when N > 20. The same methods
remained strong performers with relaxing specificity to 60%.
Notably however, KNN with Wilcoxon provided 80% sensitivity
and 60% specificity for missingness levels of 50 or 60% depending
on sample size. Finally, it is important to recognize that at N = 10,
sensitivity and specificity were only acceptable at the lowest
levels of missingness, which suggests that a minimal number of
observed data is required to produce reliable results particularly
for small studies.

Comparison with other imputation evaluations

The imputation methods we considered have been previously
studied. In a microarray setting with sample sizes ranging from
8 to 60, Chiu et al. [14] found KNN to be one of the best methods

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab353#supplementary-data
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while BPCA was poor. Missingness was relatively low ≤20% and
was generated completely at random (MCAR) in this study. Do
et al [9] explored performance under different causes of miss-
ingness including a fixed censoring level, probabilistic censoring
and completely random; missingness ranged from 10 to 70% but
with a very large sample size (N = 1750). They concluded that
KNN was the most robust method. Hrydziuszko and Viant [1]
evaluated several imputation methods in a MS metabolomics
context with missingness up to 20% either MCAR or not at ran-
dom (MNAR). HM did poorly while BPCA and KNN did well; over-
all KNN was recommended. Kokla et al. [10] simulated data with
up to 30% missingness data under different combinations of
MCAR, missing at random (MAR) and MNAR missingness. RF fol-
lowed by KNN were their best performers overall although under
all MNAR missingness, imputing with the minimum observed
value was better than other methods. Lazar et al. [11] had similar
results with KNN doing well with more MCAR missingness and
minimum imputation methods performing better with higher
amounts of MNAR. Finally, Wei et al. [12] found RF best when
MCAR and MAR mechanisms predominated but for left-censored
MNAR data, QR was favored.

Our results are largely consistent with previous studies. We
found RF and KNN to be strong, consistent performers across a
range of conditions; they were often the best with missingness
greater than 20%. BPCA was an intermediate performer consis-
tent with [10, 14] although Hrydziuszko and Viant [1] reported
good results with BPCA. We also found QR to be effective for
statistical inference when paired with a non-parametric (rank-
based) test for missingness levels up to about 30%.

Comparison with previous evaluations
of imputation-free methods

Only a few studies have considered the imputation-free meth-
ods. Tekwe et al. [6] compared the AFT model to row-mean, KNN
and probabilistic PCA imputation and found the AFT model to
identify the most differentially expressed proteins as the per-
centage of censored values increased to 45%. In our results, the
AFT model had high sensitivity (>80%) primarily for missingness
levels ≤20% but performance declined with higher missingness.
In their modeling, all missing values arose due to censoring and
thus the AFT model correctly reflected the missing data mecha-
nism. In real MS data and reflected in our simulations, missing
values arise due to a combination of censoring at a detection
limit and random technical issues making the AFT model less
effective than other methods as missingness increased. Further,
the authors did not report false positives.

Huang et al. [21] reported DASEV to outperform the MM, AFT
and TP models in inferential testing. In our results, when the
percentage of missingness was 30% or greater, DASEV yielded
higher BLCI than both AFT and TP models but was similar to the
MM model. With less than 20% missingness, DASEV did not per-
form well in our simulations. At ≤10% missingness and at small
sample sizes, DASEV generated an error for many compounds
because the simulated data did not have at least one missing
value in each group. We calculated sensitivity and specificity
based on all compounds with at least one missing value even
if DASEV returned an error. This approach resulted in very low
values for DASEV for some simulation settings.

Taylor et al. [4] compared the MM model to the AFT model
and KNN with a t-test for missing values of 25, 50 and 75%.
Missing values consisted of compounds absent from a sample
plus censored values. The AFT model had higher power than
the MM model in this work while KNN with t-test had lower

power. Here we found the AFT model to have higher BLCI than
the MM model for missingness up to 20 or 30% but for the MM
model to perform better at higher levels of missingness. Further,
we found KNN to outperform the AFT and MM models. The
difference is likely due to how missing values were simulated
in the two studies. Taylor et al. [4] expressly modeled missing
values as a point mass in combination with censored values,
whereas in the current study, missing values could arise from
random technical variation or censoring although censoring did
not entail a hard threshold. KNN assumes MAR or MCAR which
was not the setting in [4]. Further, in [4], every compound had the
specified level of missingness, whereas here some compounds
had no missing values. Because KNN uses information from
other compounds and samples, the lack of complete compounds
could have affected this method’s performance in the prior
study.

Overall empirical recommendations

Sample size did not strongly affect the results except at
N = 10 where even moderate levels of missingness markedly
reduced statistical power. None of the imputation-free methods
performed consistently better than the imputation methods nor
were there particular conditions under which they were favored
(e.g. high missingness or small or moderate sample sizes).
QR imputation with Wilcoxon test often had good inferential
testing outcomes but this method substantially distorted Delta
and SD. We only recommend this method for compounds with
≤10% missingness. For greater missingness, KNN and RF are
good choices for statistical testing with little distortion in Delta
and SD.

A common practice is to drop compounds with more than a
set level of missingness, often 30–50% of samples per compound.
We found that no method retained at least 80% sensitivity and
specificity with missingness greater than 30% lending support
for that threshold. With relaxing minimum specificity to 60%,
KNN yielded 80% sensitivity for missingness levels up to 60%
depending on the sample size. Thus, compounds with up to 50%
missingness could be retained if there is tolerance for more false
positives. Beyond 50% missingness, sensitivity and/or specificity
were low for most methods, and thus, analysis results should be
interpreted with caution.

Key Points
• Missing values are common in high-throughput mass

spectrometry data.
• Two general strategies are available to address missing

values: (1) eliminate or impute the missing values
and apply standard statistical methods for complete
data and (ii) use statistical methods that specifically
account for missing values.

• Statistical testing with methods under both
approaches is strongly affected by the amount of
missing values but is less influenced by sample size.

• Random forest and k-nearest neighbor imputation
combined with a Wilcoxon test perform well for sta-
tistical testing with up to 50% missingness. Quantile
regression imputation with a Wilcoxon test has good
statistical testing outcomes but substantially distorts
the mean differences.

• Imputation-free methods do not perform consistently
or markedly better than imputation methods.
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