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Abstract 
Motivation: Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200 

nucleotides. A growing amount of evidence reveals that subcellular localization of lncRNAs can pro-

vide valuable insights into their biological functions. Existing computational methods for predicting 

lncRNA subcellular localization use k-mer features to encode lncRNA sequences. However, the se-

quence order information is lost by using only k-mer features. 

Results: We proposed a deep learning framework, DeepLncLoc, to predict lncRNA subcellular locali-

zation. In DeepLncLoc, we introduced a new subsequence embedding method that keeps the order 

information of lncRNA sequences. The subsequence embedding method first divides a sequence into 

some consecutive subsequences, and then extracts the patterns of each subsequence, last com-

bines these patterns to obtain a complete representation of the lncRNA sequence. After that, a text 

convolutional neural network is employed to learn high-level features and perform the prediction task. 

Compared to traditional machine learning models with k-mer features and existing predictors, 

DeepLncLoc achieved better performance, which shows that DeepLncLoc could effectively predict 

lncRNA subcellular localization. Our study not only presented a novel computational model for pre-

dicting lncRNA subcellular localization but also provided a new subsequence embedding method 

which is expected to be applied in other sequence-based prediction tasks. 

Availability: The DeepLncLoc web server, source code and datasets are freely available at 

http://bioinformatics.csu.edu.cn/DeepLncLoc/, and https://github.com/CSUBioGroup/DeepLncLoc. 

Contact: limin@mail.csu.edu.cn  

 

 

1 Introduction  

Long non-coding RNAs (lncRNAs) are a type of large RNA molecules 

(more than 200 nucleotides) that are transcribed from DNA but not trans-

lated into proteins (Consortium, 2007; Lu, et al., 2018). LncRNAs play 

an important role in various biological processes including regulation of 

gene expression, alternative splicing, nuclear organization, and genomic 

imprinting (Moran, et al., 2012). For example, lncRNAs can bind to 

DNAs, RNAs, and proteins, and then perform their functions through 

these interactions (Esteller, 2011). LncRNAs can act as “miRNA sponge” 

to regulate the level of miRNA and then affect the expression of miR-

NA’s target (DiStefano, 2018). LncRNAs can regulate transcriptional 

activity or pathways under specific stimulation (Wang and Chang, 2011). 

Due to the complexity of molecular functions, lncRNAs-related studies 

have received a lot of attention (Lu, et al., 2019).  

A growing amount of evidence reveals that the subcellular localization 

of lncRNAs can provide valuable insights into their functions 

(Carlevaro-Fita and Johnson, 2019). For example, lncRNA “XIST”, 

which locates in nucleus, interacts with the nuclear-matrix factor hnRN-

PU and modulates nuclear architecture and trans-chromosomal interac-

tions (Hacisuleyman, et al., 2014). LncRNA “lincRNA-p21”, which 

locates in cytoplasm, regulates JUNB and CTNNB1 translation in HeLa 

cells (Yoon, et al., 2012). LncRNA “ZFAS1”, which locates in ribosome, 

regulates mRNAs encoding proteins from the ribosomal complex (Hansji, 

et al., 2016). Thus, identification of lncRNA subcellular localizations is 

very important to understand lncRNA functions (Voit, et al., 2015). 
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Recently, some large databases of RNA-associated subcellular localiza-

tion were released. Zhang et al. published a database, RNALocate 

(Zhang, et al., 2016), to collect the subcellular localization of different 

kinds of RNAs, which contains more than 23,100 RNAs with 42 subcel-

lular localizations in 65 species. Mas Ponte et al. developed a database 

called LncATLAS to display the subcellular localization of lncRNAs 

(Mas-Ponte, et al., 2017). Wen et al. created a lncRNA subcellular local-

ization database called lncSLdb (Wen, et al., 2018), which collects 

14,973 subcellular localization information of lncRNAs from 3 species 

(human, mouse, and fruitfly).  

 However, only a few computational predictors for lncRNA subcellu-

lar localization have been proposed. To our knowledge, the first predic-

tor is lncLocator (Cao, et al., 2018). LncLocator uses 4-mer features and 

high-level features extracted by stacked autoencoder, and feeds the two 

kinds of features into two kinds of classifiers (support vector machine 

and random forest), respectively. Then lncLocator uses an ensemble 

strategy to combine the results of different classifiers and get the final 

prediction. In their training process, lncLocator utilizes a supervised 

over-sampling algorithm to balance the ratio of different classes. The 

second predictor is iLoc-lncRNA (Su, et al., 2018). iLoc-lncRNA uses 8-

mer features to encode lncRNA sequences. Considering the dimension of 

8-mer features is too large, iLoc-lncRNA applies a feature selection 

method based on binomial distribution to select the most optimal features. 

Then iLoc-lncRNA feeds the most optimal features into support vector 

machine (SVM) to get the prediction results. The third predictor is 

DeepLncRNA (Gudenas and Wang, 2018). DeepLncRNA uses 2, 3, 4, 

and 5-mer features to encode lncRNA sequences, and adds additional 

features (RNA–binding motifs and genomic loci). Then the combined 

features are feed into a neural network to obtain the final prediction. 

Although these computational predictors achieve decent performance, 

several improvements can still be made. Encoding raw lncRNA sequenc-

es into discriminative features is very important in developing machine 

learning models. The flaw of these predictors is the use of only k-mer 

features to encode raw lncRNA sequences. Apparently, using only k-mer 

features cannot keep the sequence order information of the raw lncRNA 

sequence. 

 To overcome the limitation, we developed DeepLncLoc, a new deep 

learning-based predictor for subcellular localization of lncRNAs. In the 

predictor, we proposed a new feature embedding method that keeps the 

order information of lncRNA sequences (see “Section 2.3” for details). 

The main idea of the new feature embedding method is encoding a com-

plete RNA sequence by using the combination of its subsequence em-

bedding. In DeepLncLoc, we divided a sequence into some consecutive 

subsequences, and then extracted the patterns of each subsequence by 

using an average pooling layer; last combined these patterns to obtain a 

complete representation of the lncRNA sequence. After obtaining the 

complete representation, a text convolutional neural network (textCNN) 

was applied to learn high-level features and perform the prediction task. 

Different from traditional machine learning models with k-mer features 

in previous studies, DeepLncLoc has two advantages, i) by using the 

new subsequence embedding method, the input lncRNA sequence keeps 

the sequence order information, ii) textCNN has a more powerful capa-

bility of high-level feature extraction. 

We conducted extensive experiments to evaluate the performance of 

DeepLncLoc. Comparison with traditional machine learning models with 

different k-mer features demonstrated the advantages of using subse-

quence embedding to encode the whole lncRNA sequence instead of 

using only k-mer features. Comparison with existing predictors on an 

independent test set showed the capability of DeepLncLoc to predict 

subcellular localization of lncRNAs. Moreover, we investigated the 

effects of different species. Finally, we developed a user-friendly web 

server. 

2 Methods 

2.1 Dataset  

Similar to previous studies, we retrieved known subcellular localization 

information of lncRNA from RNALocate database (Zhang, et al., 2016). 

The current version of RNALocate collects 42,190 manually curated 

RNA-associated subcellular localization entries with experimental evi-

dence. It contains more than 23,100 RNAs with 42 subcellular localiza-

tions in 65 species. We generated a benchmark dataset to train and test 

our model by the following procedure: 

1. All 42,190 manually curated RNA-associated subcellular localiza-

tion entries are downloaded from RNAlocate database; 

2. Total 2,383 manually curated lncRNA-associated subcellular local-

ization entries are selected from 42,190 manually curated RNA-

associated subcellular localization entries; 

3. Some lncRNAs have multiple entries in the extracted entries, we 

merged these entries with the same gene name. Then we removed 

the lncRNAs that do not have sequence information in NCBI and 

Ensembl.  

4. Because most lncRNAs only have one subcellular localization, we 

selected the lncRNAs that are located in one location for model 

construction in the study.  

5. The filtered dataset covers seven different subcellular localizations. 

Two of seven subcellular localizations only have a very small 

number of samples (less than 10). Thus we removed these 

lncRNAs that are located in the two subcellular localizations.  

 

 Table 1. Distribution of the constructed benchmark dataset. 

 

 Finally, we constructed a benchmark dataset of 857 lncRNAs, cover-

ing 5 subcellular localizations including nucleus, cytosol, ribosome, 

cytoplasm, and exosome (see Supplementary Fig. S1). Table 1 lists the 

distribution of the constructed benchmark dataset. 

2.2 Limitations of using only k-mer features to encode RNA 

sequences  

Before putting raw RNA sequences into a machine learning or deep 

learning model, RNA sequences need to be encoded as numeric vectors. 

There are two kinds of widely used RNA sequence embedding methods. 

The first one is encoding each nucleotide into a 4-dimensional one-hot 

vector. The A, C, G and U are encoded with a one-hot vector of (1, 0, 0, 

0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively (Pan, et al., 2019). 

Then the four types of vectors are used to encode RNA sequences. How-

ever, using one-hot encoding has two disadvantages in practice. The 

first disadvantage is that one-hot vector is sparse, i.e., only a small frac-

tion of features contributes to the prediction task. The second disad-

vantage is that using one-hot encoding is difficult to accurately represent 

the similarity between different nucleotides. The second method is using 

k-mer features to encode RNA sequences. The k-mer feature encoding 

Subcellular localization # of samples 

Cytoplasm 328 

Nucleus 325 

Ribosome 88 

Cytosol 88 

Exosome 28 

Total 857 
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method is very simple to implement, and it maps lncRNA sequences 

with variable-length to a vector with a fixed dimension. Thus, k-mer 

feature encoding method is the most widely used method in the predic-

tion of lncRNA subcellular localization. Previous methods (LncLocator 

(Cao, et al., 2018), iLoc-lncRNA (Su, et al., 2018) and DeepLncRNA 

(Gudenas and Wang, 2018)) use k-mer features for lncRNA embedding. 

Formally, we assume a lncRNA sequence is represented as: 

lncRNA = N1, N2, N3, …, NL                                 (1) 

where L denotes the length of the lncRNA, Ni is one of the four nucleo-

tide bases (A, C, G and U) in the i position of the lncRNA sequence.  

For a given k, k-mer features represent the frequency of individual k-

mer from lncRNA sequences. We take 3-mer as an example, each posi-

tion can take four nucleotide bases (A, C, G and U), thus we have 43, i.e., 

64 3-mer features (AAA, AAC, …, UUU). Then we can use a 64-

dimensional vector to represent a lncRNA sequence, and each dimension 

is used to record the occurrence time of a certain 3-mer. Fig. 1 plots the 

k-mer encoding method for a single RNA sequence. The k-mer feature 

encoding method is very simple to understand and implement. But there 

is a disadvantage of using k-mer features. Namely, k-mer feature encod-

ing method lost order information of the raw lncRNA sequence. K-mer 

features encoding method is only concerned with the occurrence of the 

k-mer and ignores the position of k-mer in the raw lncRNA sequence. 

For example, RNA A is “ACACACGCGC”, 3-mer features of RNA A 

are {ACA, CAC, ACA, CAC, ACG, CGC, GCG, CGC}; we reverse the 

RNA sequence to obtain RNA B “CGCGCACACA”, the 3-mer features 

of RNA B are {CGC, GCG, CGC, GCA, CAC, ACA, CAC, ACA}. It 

can be seen that the order of the two RNA sequences is reversed, but 

their 3-mer features are very similar. The difference between the two 3-

mer features is only one 3-mer (“ACG” in RNA A versus “GCA” in 

RNA B). When using the 64-dimensional 3-mer vector to encode the two 

lncRNA sequences, only two dimensions are different.  

 

2.3. Subsequence embedding 

In order to tackle the limitation, we proposed an effective subsequence 

embedding method to keep the sequence order information of lncRNAs. 

The main idea is that we split a lncRNA sequence into some consecutive 

subsequences with no overlap between the subsequences, and then ex-

tract the patterns of each subsequence; last we combine these patterns to 

obtain a complete representation of the lncRNA sequence. In this way, 

we can keep the sequence order information. The idea is motivated by 

spatial pyramid pooling-net (He, et al., 2015), He et al. proposed spatial 

pyramid pooling-net to obtain the features from arbitrary sub-images to 

generate fixed-length representations for the entire image. We trans-

ferred and modified their idea to encode lncRNA sequences. 

We split a lncRNA sequence into m consecutive subsequences, thus 

we denote a lncRNA sequence: 

lncRNA = S1, S2, S3, …, Sm                                    (2) 

where Si is the ith subsequence. We denote Lsi is the length of Si. After 

dividing a lncRNA sequence into m subsequences, the next step is en-

coding these subsequences. Word embedding techniques have shown 

promise in many natural language processing applications including text 

classification, sentiment analysis, and part-of-speech tagging. We used a 

word embedding technique to encode subsequences. Specifically, we 

pre-trained lncRNA sequences in our dataset to obtain the distribution 

representation of k-mer by using word2vec technique, and then used the 

distribution representation of k-mer features to represent subsequences. 

Word2vec is a popular word embedding technique (Mikolov, et al., 

2013). It aims at learning a dense vector automatically for each word in a 

corpus. The word2vec technique has two models: skip-gram and contin-

uous bag of words (CBOW) model. The skip-gram model uses the cen-

tral word to predict context words. In the training process, we maximized 

the co-occurrence likelihood function of the central word and corre-

sponding context words. In our study, we used gensim library to learn k-

mer features of lncRNA sequences (Rehurek and Sojka, 2010). The 

parameter k is chosen from {1, 2, 3, 4, 5, 6} to find the best value.  

The steps of subsequence embedding (see the subsequence embedding 

part in Fig. 2) are described as follows: 

1. We used gensim library to learn representation vectors of k-mer 

(D-dimension) of all lncRNA sequences in our database.  

2. For a given lncRNA, we split it into m subsequences, the length of 

each subsequence is Lsi.  

3. According to the k value in step 1, for each subsequence, used k-

mer features to encode it.  

4. Found the pre-trained vector of each k-mer, and then combined 

these vectors into a matrix as the representation of a subsequence. 

Last, we converted each lncRNA subsequence into a matrix whose 

dimension is (Lsi-2) * D (Lsi is the length of each subsequence), which is 

the actual input for our deep learning model.  

2.4. Network architecture 

So far we have obtained the representation of each subsequence. The 

question then arises: how can we predict the subcellular localization by 

using the representation of subsequences. We have m subsequences, and 

the representation of each subsequence is a matrix whose dimension is D 

* (Lsi-2). If we put them together directly, the dimension is N * D * (Lsi -

2), which has two disadvantages. First, the length of different subse-

quence Lsi in different lncRNA sequence is not the same. If we put them 

together directly, we must pad them to the same length. It means we 

have to fill a lot of zeros at the end of the raw sequence, which brings 

many meaningless between subsequences and vectors with all zeros. 

Second, the dimension is too large after putting them together directly, 

which causes a lot of computational waste. To tackle the two limitations, 

we use an average pooling layer to extract the patterns in each channel of 

the subsequence. By using the average pooling layer, the dimension of 

each sequence is reduced from D * (Lsi-2) to D. It can be seen that D is 

the dimension of the pre-trained vector of k-mer, and has no relationship 

with the length of lncRNA subsequence Lsi. By using this method, we do 

not need to pad with zeros and reduce the dimensionality.  

Fig. 1. Illustration of the k-mer encoding method for single RNA 

sequence, where k is set to 3. The example RNA sequence is 

“ACCGUUCCGA”. 
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After obtaining the representation of each subsequence by using an 

average pooling layer, we combined them together to obtain the com-

plete representation of the whole lncRNA sequence. Then the next step is 

predicting the subcellular localization. TextCNN is a kind of powerful 

deep learning network structure that is used for text classification. Tradi-

tional CNNs are two-dimensional CNNs that are used to process two-

dimensional image data. Actually, a text can be treated as a one-

dimensional image, so that we can use one-dimensional CNN to extract 

features of the text. TextCNN uses a one-dimensional convolutional 

layer and a max-pooling layer to extract features of sequence (Kim, 

2014). Inspired by its success in bioinformatics (Zeng, et al., 2019), we 

used textCNN to extract features of the complete representation. Specifi-

cally, we have m subsequences, and the representation of each subse-

quence is D. We combined them together to form a matrix whose dimen-

sion is N*D to represent the whole sequence. The representation of the 

lncRNA sequence can be treated as a one-dimensional image, the width 

is N, the height is 1, and the channel is D. To extract high-level features, 

textCNN uses three convolutional kernels (sizes=1, 3, 5) to capture the 

correlation of adjacent nucleotides. Then textCNN performs a max-

pooling layer on all channels to obtain the most remarkable features and 

reduce the dimension of the output vector. Last, the output vectors of the 

max-pooling layer are concatenated together as the input of a fully con-

nected layer with a softmax function to perform the final prediction. Fig. 

2 gives a schematic view of the whole network structure.  

2.5 Evaluation metrics 

Similar to previous studies (Cao, et al., 2018; Gudenas and Wang, 2018; 

Su, et al., 2018), we used accuracy (ACC), Macro F-measure, and area 

under the receiver operator characteristic curve (AUC) as evaluation 

metrics to evaluate DeepLncLoc and other methods in the study. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚(𝑃𝑟𝑒𝑑=𝐿𝑎𝑏𝑒𝑙)

𝑁𝑢𝑚(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
                                         (3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖) =
𝑇𝑃(𝑖)

𝑇𝑃(𝑖)+𝐹𝑃(𝑖)
                                             (4) 

𝑟𝑒𝑐𝑎𝑙𝑙(𝑖) =
𝑇𝑃(𝑖)

𝑇𝑃(𝑖)+𝐹𝑁(𝑖)
                                                  (5) 

𝑀𝑎𝑐𝑟𝑜 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
1

𝑛
∑

2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)∗𝑟𝑒𝑐𝑎𝑙𝑙(𝑖)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)+𝑟𝑒𝑐𝑎𝑙𝑙(𝑖)
𝑛
𝑖=1                     (6) 

where TP(i), FP(i), and FN(i) represent the number of true positives, false 

positives, and false negatives of the class i, respectively.  

2.6 Implementation details 

DeepLncLoc is implemented with PyTorch (Paszke, et al., 2017). The 

loss function used in DeepLncLoc is the focal loss of non-α-balanced 

form (Lin, et al., 2017). It is used for object detection to address this 

class imbalance problem. It is defined as follows: 

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 = −
1

𝑛
∑  𝑦 (1 − 𝑦𝑝𝑟𝑒𝑑)𝛾𝑙𝑜𝑔(𝑦𝑝𝑟𝑒𝑑)                  (7) 

where n is the number of training samples, y is the true label, and ypred is 

the predicted label, 𝛾 is the focusing parameter (we set 𝛾 to 2, according 

to Lin’s paper).  

Skip-gram model (Mikolov, et al., 2013) is used to pre-train the vec-

tors of k-mer for embedding. In textCNN, three convolutional kernels 

(sizes=1, 3, 5, filter number=128) are used to extract the high-level fea-

tures of adjacent nucleotides. The fully connected layer in the classifica-

tion part has 384 neurons. To avoid overfitting, dropout rates of 0.3 and 

0.5 are applied in the embedding layer and the fully connected layer, 

respectively. Finally, we trained DeepLncLoc using the Adaptive Mo-

mentum optimizer, the initial learning rate is set to 0.001. 

Fig. 2. Illustration of the deep neural network structure. This figure is only an example. The network structure consists of three parts: subsequence 

embedding, an average pooling layer, and a textCNN. The input is a lncRNA sequence with a length of 400. The lncRNA sequence is split into 4 

subsequences. The sequence embedding part has four steps. After subsequence embedding, we use an average pooling layer to extract the patterns 

of each subsequence. Then we combine these patterns together to obtain a matrix as the representation of the whole lncRNA sequence. Last, a 

textCNN is employed to learn high-level features and perform the prediction task. 
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3 Results 

3.1 Hyper-parameter optimization for DeepLncLoc 

We used 5-fold cross-validation (5-fold CV) to tune the hyper-

parameters of DeepLncLoc based on the value of Macro F-measure. In 

our model, many hyper-parameters affect the computational results, such 

as the parameter k, the number of subsequences, the dimension of the 

pre-trained vector of k-mer, initial learning rate, and kernel sizes. In the 

study, we cared about most is the effect of subsequence embedding on 

computational results. Thus, we considered the parameter k, the number 

of subsequences m and the dimension of the pre-trained vector of k-mer 

d as the major tuning hyper-parameters. A grid search strategy is applied 

to find the best combination of the three hyper-parameters. The parame-

ter k was chosen from {1, 2, 3, 4, 5, 6}, the number of subsequences m 

was chosen from {16, 32, 64, 128, 256} and the dimension of pre-trained 

vector d was chosen from {64, 128}. We tuned these hyper-parameters 

to find the final model parameters (see Supplementary Table S1). From 

Table S1, it is very hard to determine the parameters directly. We ana-

lyzed and found that the performance is unstable when k and m are too 

high or too low. In order to ensure the generalization of DeepLncloc, k, 

m, and d are set to 3, 64, and 64, respectively. In this setting, the ACC, 

Macro F-measure and AUC obtained by DeepLncLoc are 0.548, 0.421 

and 0.820, respectively. 

3.2 Comparison with traditional machine learning classifiers 

with different k-mer features 

Considering that traditional machine learning classifiers with k-mer 

features are widely used in the prediction of lncRNA subcellular locali-

zation, we compared DeepLncLoc with three traditional machine learn-

ing models including SVM, random forest (RF) and logistic regression 

(LR). The parameter k in these machine learning models was chosen 

from {3, 4, 5, 6}. We did not consider the lower and higher k because 

much lower or higher k will increase the risk of underfitting or overfit-

ting. For example, the dimension of 2-mer features is 42, i.e., 16, which 

hardly encodes the diversity of all sequences in the database. In this case, 

the model has a high risk of underfitting. The dimension of 7-mer fea-

tures is 47, i.e., 16,384, which is far beyond the number of all samples. In 

this case, the model has a high risk of overfitting. The results are shown 

in Table 2.  

 

Table 2. Performance of DeepLncLoc and different machine learning 

models with different k-mer features. 

 Note: The best performance values are highlighted in bold. 

 

From Table 2, first noted that the performance of each machine learn-

ing model with different k-mer features is different. We can see that the 

best performance of SVM, RF is achieved when k=5, 4, respectively. For 

LR, the highest ACC, Macro F-measure, AUC are achieved when k=3, 6, 

3, respectively. Second, all evaluation metrics obtained by DeepLncLoc 

are higher than other machine learning classifiers. The ACC and Macro 

F-measure of DeepLncLoc are significantly higher than the other ma-

            Model ACC Macro F-measure AUC 

k=3 

SVM 0.481 0.224 0.794 

RF 0.480 0.305 0.777 

LR 0.497 0.267 0.813 

k=4 

SVM 0.486 0.223 0.808 

RF 0.508 0.327 0.788 

LR 0.469 0.289 0.775 

k=5 

SVM 0.499 0.271 0.811 

RF 0.497 0.282 0.786 

LR 0.446 0.290 0.728 

k=6 

SVM 0.496 0.245 0.809 

RF 0.483 0.280 0.772 

LR 0.479 0.335 0.767 

DeepLncLoc 0.548 0.421 0.820 

Fig. 3. The ROC curves of DeepLncLoc, SVM (k=5), RF (k=4), and LR (k=3) for each class. (a) Cytoplasm, (b) Nucleus, (c) Exosome, (d) 

Ribosome, (e) Cytosol. 
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chine learning methods. The AUC of DeepLncLoc is slightly higher than 

the other machine learning methods. Fig. 3 plots the ROC curves of 

DeepLncLoc and other machine learning methods with the highest AUC. 

It is obvious that DeepLncLoc has the highest AUC value on each class. 

This indicated that our proposed computational approach is better than 

traditional machine learning models with k-mer features. 

3.3 Comparison with current predictors 

The 5-fold CV is applied in our previous experiments. To further evalu-

ate the performance of DeepLncLoc in predicting the subcellular locali-

zation of lncRNAs, we compared DeepLncLoc with current predictors 

by using a stand-alone test set. 

We selected current predictors follow these criteria: i) availability of 

web server or stand-alone version; ii) input that only needs lncRNA 

sequences; and iii) outputs that include predictive scores for subcellular 

localization. Consequently, lncLocator (Cao, et al., 2018) and iLoc-

lncRNA (Su, et al., 2018) satisfy these criteria. LncLocator can predict 5 

subcellular localizations of lncRNAs, including nucleus, cytoplasm, 

cytosol, ribosome, and exosome. iLoc-lncRNA can predict 4 subcellular 

localizations of lncRNAs, including nucleus, cytoplasm, ribosome, and 

exosome. We used the web server of lncLocator (available at 

http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/) and iLoc-lncRNA 

(available at http://lin-group.cn/server/iLoc-LncRNA/download.php) for 

comparison.  

We compared DeepLncLoc with the two predictors (lncLocator and 

iLoc-lncRNA) by using an independent test set. The test set was created 

from another lncRNA subcellular localization database lncSLdb and 

recent literature. Since lncSLdb database only collects 5 subcellular 

localizations: nucleus, chromosome, cytoplasm, nucleoplasm, and ribo-

some, and does not have records in the subcellular localization of cytosol 

and exosome. Thus, we randomly selected some samples from 3 subcel-

lular localizations (nucleus, cytoplasm, and ribosome) in lncSLdb data-

base. To obtain other samples from the subcellular localization of cytosol 

and exosome, we searched some recent literature in the PubMed data-

base using the following keywords: lncRNA and each subcellular locali-

zation, and then obtained lncRNA sequences from NCBI database. we 

used the cd-hit tool to remove the redundant sequences with a cutoff of 

90%. Last, the test set contains 20 samples from cytoplasm, 20 samples 

from nucleus, 10 samples from ribosome, 10 samples from cytosol, and 7 

samples from exosome (see Supplementary Table S2). All lncRNA 

sequences in the independent test set are not used for the construction of 

DeepLncLoc. The independent test set can be accessed at 

https://github.com/CSUBioGroup/DeepLncLoc/tree/master/Independent

_test_set. 

 

Table 3. Comparison of the prediction performance of DeepLncLoc with 

lncLocator and iLoc-lncRNA on the test set. 

 

The confusion matrices of DeepLncLoc and lncLocator are shown in 

Supplementary Fig. S2. Since iLoc-lncRNA treats cytoplasm and cytosol 

as one category, it only predict four classes (nucleus, cytoplasm, ribo-

some, and exosome). To make the comparison fair, we treated cytoplasm 

and cytosol as one category when we compared DeepLncLoc with iLoc-

lncRNA. The confusion matrices of DeepLncLoc and iLoc-lncRNA are 

shown in Supplementary Fig. S3. In Supplementary Figs. S2 and S3, 

each row represents the true class while each column represents the 

predicted class. The diagonal elements represent the number of samples 

that are predicted correctly. Out of the 68 lncRNAs, our method predict-

ed correct subcellular localization for 36 of them, which is far more 

accurate than lncLocator (25) and slightly higher than iLoc-lncRNA (34). 

The results of DeepLncLoc, lncLocator, and iLoc-lncRNA are reported 

in Table 3. Clearly, the accuracy of DeepLncLoc is higher than lncLoca-

tor and iLoc-lncRNA. The Macro Precision, Macro Recall, Macro F-

measure of DeepLncLoc (5 classes) are 0.702, 0.524, and 0.563, respec-

tively, which are significantly higher than those of lncLocator (0.282, 

0.310, and 0.283). Similar results are observed when we compared 

DeepLncLoc (4 classes) with iLoc-lncRNA. All results suggested that 

the DeepLncloc may serve as a useful tool to predict the subcellular 

localization of lncRNAs. We gave the detailed prediction results of 

DeepLncLoc, lncLocator, and iLoc-lncRNA on the test set (see Supple-

mentary Table S3). Precision, recall, F-measure of DeepLncLoc, 

lncLocator, and iLoc-lncRNA for each class on the test set are reported 

in Tables 4 and 5. We observed that the F-measures of DeepLncLoc for 

nucleus, ribosome, cytosol, and exosome are higher than those of 

lncLocator, and the F-measures of DeepLncLoc for cytoplasm is lower 

than that of lncLocator. This phenomenon has been observed when we 

compared DeepLncLoc with iLoc-lncRNA. In addition, we also noted 

that none of samples in exosome have been correctly recognized by 

lncLocator, which lead to very bad prediction results for exosome. A 

possible explanation is that there are too many samples of cytoplasm in 

the training set of lncLocator and iLoc-lncRNA. The machine learning 

model will naturally give more preference to cytoplasm, resulting in a 

bad performance for the other classes. Thus lncLocator and iLoc-

lncRNA tend to classify other subcellular localization to cytoplasm.  

 

Table 4. Precision, recall, F-measure of DeepLncLoc and lncLocator for 

each class on the test set. 

Note: F1 represents F-measure. 

 

Table 5. Precision, recall, F-measure of DeepLncLoc and iLoc-lncRNA 

for each class on the test set. 

Note: F1 represents F-measure. 

Predictor 
Macro 

Precision 

Macro 

Recall 

Macro 

F-measure 
ACC 

lncLocator 0.282 0.310 0.283 0.373 

iLoc-lncRNA 0.488 0.445 0.458 0.507 

DeepLncLoc 

(5 classes) 
0.702 0.524 0.563 0.537 

DeepLncLoc 

(4 classes) 
0.675 0.543 0.560 0.537 

Predictor lncLocator  DeepLncLoc 

Precision Recall F1  Precision Recall F1 

Cytoplasm 0.484 0.750 0.588  0.778 0.350 0.483 

Nucleus 0.308 0.200 0.242  0.400 0.800 0.533 

Ribosome 0.333 0.200 0.250  0.500 0.400 0.444 

Cytosol 0.286 0.400 0.333  0.833 0.500 0.625 

Exosome 0.000 0.000 0.000  1.000 0.571 0.727 

Predictor iLoc-lncRNA  DeepLncLoc 

Precision Recall F1  Precision Recall F1 

Cytoplasm 0.553 0.700 0.618  0.800 0.400 0.533 

Nucleus 0.467 0.350 0.400  0.400 0.800 0.533 

Ribosome 0.333 0.300 0.316  0.500 0.400 0.444 

Exosome 0.600 0.429 0.500  1.000 0.571 0.727 
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3.4 The effects of different species 

In addition, we investigated whether the species has an impact on classi-

fication results. The dataset covers six different species and the species 

distribution of lncRNAs is shown in Supplementary Table S5. Four 

species only have one or two lncRNAs, thus we only used two species 

(Homo sapiens and Mus musculus) for analysis. Homo sapiens group 

contains 461 lncRNAs and Mus musculus group contains 391 samples. 

Supplementary Fig. S4 plots the performance of DeepLncLoc on the two 

species. As shown in this figure, the ACC and AUC of Homo sapiens 

group are 0.547 and 0.823, respectively, which is slightly higher than 

those of Mus musculus group (0.503 and 0.774).  

3.5 DeepLncLoc web server 

A web server that implements DeepLncLoc is freely available at 

http://bioinformatics.csu.edu.cn/DeepLncLoc/. DeepLncLoc requires a 

lncRNA sequence with more than 200 and less than 100,000 nucleotides 

as input. Then click on the submit button to see the predicted results. The 

results have one table and one sentence, and will be shown on the screen 

of your computer. The table has five columns and each column repre-

sents the name of subcellular localization and corresponding probability. 

Last, the final predicted subcellular localization is marked red to show. 

Usually, DeepLncLoc takes less than 5 seconds to predict the subcellular 

localization of a lncRNA sequence. 

4 Discussion and conclusion 

Prediction of lncRNA subcellular localization can help to understand the 

complex biological functions of lncRNAs. However, all existing compu-

tational tools use k-mer features to encode lncRNA sequences, which 

lost the sequence order information. In this paper, we proposed DeepLn-

cLoc, an open-sourced deep learning model, for predicting subcellular 

localization of lncRNAs. DeepLncLoc uses a novel subsequence embed-

ding method to encode lncRNA sequences, then applied a textCNN to 

perform the classification task. Compare with previous studies, DeepLn-

cLoc has two novel design ideas: i) it can keep the sequence order in-

formation of lncRNA sequences by using subsequence embedding; ii) 

textCNN can automatically capture high-level features from the combi-

nation of the patterns of all subsequences.  

For the comparison of DeepLncLoc with other traditional machine 

learning methods, DeepLncLoc outperforms all traditional machine 

learning models with different k-mer features in terms of accuracy, Mac-

ro F-measure, and AUC. This implies that our proposed subsequence 

embedding method might be better than traditional k-mer features. Fur-

ther comparison of DeepLncLoc with existing predictors by using an 

independent test set, DeepLncLoc outperforms existing predictors in 

terms of classification accuracy and Macro F-measure. This indicates 

that DeepLncLoc may serve as a useful tool to predict the subcellular 

localization of lncRNAs.  

While our results are promising, several improvements can still be 

made. We would like to point out the following limitations of DeepLn-

cLoc: 

1. Because the majority of lncRNAs in RNALocate database only 

have one subcellular localization, thus we only chose the lncRNAs 

that only have one subcellular localization for training and testing 

in this study. However, in reality, many lncRNAs have multiple 

subcellular localizations. Therefore, in future work, if we can col-

lect more labeled lncRNAs with multiple subcellular localizations, 

we can expand the dataset to train a more powerful model.  

2. We only used lncRNA sequence-based features in our model for 

training and did not consider other biological information. There 

are some useful features that could be integrated for better predict-

ing the subcellular localization (Zeng, et al., 2019; Zhang, et al., 

2019). For example, Gudenas et al. used k-mer features, RNA–

binding motifs and genomic loci to predict the subcellular localiza-

tion of lncRNAs. Thus, in the future, we plan to incorporate other 

biological information to deep neural networks. 

3. To reduce computational cost and runtime, we did not use a very 

complex deep learning model to extract features and perform the 

classification task. With the development of deep learning tech-

niques, more and more powerful network architecture will be pro-

posed. Therefore, using more powerful network structure to predict 

the subcellular localization is a promising future direction. 

4. Classification for the minority class of subcellular localization (e.g. 

ribosome) is a challenging problem. This could be due to two rea-

sons. First, there are too few samples in the minority class, it causes 

that our model cannot capture the patterns of the minority class. 

Second, the class distribution is imbalanced, the classifier tends to 

bias to the majority class (e.g. nucleus) and hence leads to a loss of 

predictive performance for the minority class (He and Garcia, 

2008). 

The variable-length of lncRNA sequences is hard to address in most 

existing computational methods. Even though our analysis was limited to 

predicting the subcellular localization of lncRNAs, we obtained promis-

ing results. We believe that the subsequence embedding method in 

DeepLncLoc can be used as a general representation method of RNA 

and DNA sequences. It is expected to be applied to other related varia-

ble-length sequence problems, such as prediction of mRNA subcellular 

localization (Yan, et al., 2019), prediction of DNA N4-methylcytosine 

sites (Wei, et al., 2018), RNA shape prediction (Mautner, et al., 2019). 
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