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Quantifying the cell proportions, especially for rare cell types in some scenarios, is of great value to track signals related 
to certain phenotypes or diseases. Although some methods have been pro-posed to infer cell proportions from multi-
component bulk data, they are substantially less effective for estimating rare cell type proportions since they are highly 
sensitive against feature outliers and collinearity. Here we proposed a new deconvolution algorithm named ARIC to 
estimate cell type proportions from bulk gene expression or DNA methylation data. ARIC utilizes a novel two-step marker 
selection strategy, including component-wise condition number-based feature collinearity elimination and adaptive outlier 
markers removal. This strategy can systematically obtain effective markers that ensure a robust and precise weighted υ-
support vector regression-based proportion prediction. We showed that ARIC can estimate fractions accurately in both 
DNA methylation and gene expression data from different experiments. Taken together, ARIC is a promising tool to solve 
the deconvolution problem of bulk data where rare components are of vital importance. 

 

Introduction 
High-throughput biological technologies, such as microar-

rays, RNA-seq and whole-genome bisulfite sequencing, pro-

vide us informative approaches to investigate various biological 

samples collected from laboratories or clinical trials [1, 2]. 

However, plenty of these biological samples are complex mix-

tures of many different cell types without knowing their accu-

rate proportions. Meanwhile, almost all physiological and 

pathological processes in multicellular organisms involve mul-

tiple cell types, each playing its particular roles [3]. Therefore, 

estimating the proportions of all or some specific cell types 

from bulk high-throughput data helps to understand the mecha-

nism of biological processes and decouple signals related to cer-

tain phenotypes or diseases. For instance, the proportion of 

white blood cells can indicate the severity of immunological re-

jection after transplanting kidneys [4]. Quantifying the density 

of tumor infiltrating lymphocytes (TILs) like CD3+ and CD8+ T 

cells helps to predict patient survival in kinds of cancers [5-9]. 

Estimating placental signals in plasma cell-free DNA (cfDNA) 

of pregnant women can characterize the development of fetuses 

[10]. Detecting tumor-derived DNA fragments from plasma 

cfDNA can help us reveal the origin and development of can-

cers [11].  

The fractions of minority cell types are of special interest in 

some deconvolution tasks. For example, the fraction of tumor-

derived cfDNA in total plasma cfDNA, which is ultra-low for 

patients with early-stage cancer, is of vital importance for tumor 

detection [12]. TILs, which are promising biomarkers for clini-

cal outcome prediction, also exhibit low fractions in many can-

cer tissues  [5, 7, 13, 14]. Precise estimation of the fractions of 

certain cell types, especially rare cell types for some scenarios, 

could benefit a lot to discover signatures related to certain phe-

notypes or diseases.  

Currently, many cell-type-specific omics data such as DNA 

methylation and gene expression profiles have been produced 

and can be accessed from various resources, like The Cancer 

Genome Atlas (TCGA) program [15], Encyclopedia of DNA 

Elements (ENCODE) project [16] and Gene Expression Omni-

bus (GEO) [17]. These data help to extract unique features of 

specific cell types, laying the foundation for estimating their 

fractions from bulk data. 

Several cell type deconvolution methods have been proposed 

recently. Many researchers modelled this problem as a mixing 

process of biological signals from each cell type and employed 

overdetermined linear equations to solve it [18-22]. For exam-

ple, CIBERSORT held bulk gene expression data as a linear 

mixture of different cell types [18]. The stability of the signa-

ture matrix was measured through the 2-norm condition number 

and support vector regression (SVR) was adopted to resolve the 

proportion of each cell type successfully [18]. Moss et al. pro-

posed a linear model based on external references for DNA 

methylation data which successfully estimated the contribution 

of tissues to cfDNA [20]. Reference-free deconvolution meth-

ods such as non-negative matrix factorization (NMF) also per-

form well in some situations [23, 24]. Besides, some other stud-

ies modelled the mixing process with probabilistic models. For 

instance, PERT regarded the mixture of gene expression as a 

result of a sampling process and computed cell type proportions 

by the non-negative maximum likelihood model [25]. Cancer-

Locator and CancerDetector regarded DNA methylation as a 

beta distribution to predict the fraction of tumor-derived reads 

in cfDNA sequencing data [26, 27].  

It is rather remarkable that the above-mentioned studies did 

not pay sufficient consideration to rare cell types. Rare cell 
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types have relatively low proportions, therefore, deconvolution 

for these cell types are more prone to be biased by collinearity. 

In addition, these studies did not provide efficient methods to 

avoid the impact of outliers during the selection of cell-type 

specific markers, preventing themselves from accurate decon-

volution [19, 28], especially for rare cell types. 

Here, we presented ARIC as a new approach for robust and 

accurate inference of rare cell type proportions from bulk gene 

expression or DNA methylation data. ARIC adopts a novel two-

step feature selection strategy to ensure an accurate and robust 

detection for rare cell types. ARIC introduces the component-

wise condition number into eliminating collinearity step to pay 

equal attentions for the relative errors of all components. Be-

sides, ARIC contains an automatic step for adaptively removing 

the outliers in markers, ensuring the robustness of the algorithm 

against noises. Finally, ARIC employs a weighted υ-support 

vector regression (υ-SVR) to get component proportions. We 

evaluated ARIC in DNA methylation and gene expression data 

from various experiments. ARIC outperforms other methods 

through many evaluation metrics regardless of data types, espe-

cially for the estimation of rare component proportions. These 

results demonstrate ARIC as an effective tool to infer cell type 

fractions, especially in scenarios where rare components are of 

vital importance. 

Methods and Materials 
Problem definition 

First, we modelled the deconvolution problem as a linear 

mixture of different cell types as previous studies did [20, 22]. 

Here we used 𝒎 ∈ ℝ𝑁×1  and 𝒎̂ ∈ ℝ𝑁×1 to denote the ideal 

value which do not contain any noise and the observed value of 

the bulk data, where 𝑁 represents the number of markers. In or-

der to estimate the proportion of cell types, we collected exter-

nal references of possible components denoted as 𝑿̂, which is 

an 𝑁 × 𝐾  matrix where 𝐾  is the number of cell types. The 

measured level of the i-th marker from the j-th cell type is de-

noted as 𝑥̂𝑖,𝑗 in the reference matrix 𝑿̂. Similarly, the ideal ex-

ternal reference is denoted as 𝑿. The ideal proportion of differ-

ent cell types in one sample is denoted as a non-negative vector 

𝒑 ∈  ℝ𝐾×1, where the sum of 𝒑 should be equal to 1. We use 

𝒑̂  to denote the predicted value of 𝒑. Under the assumption of 

linear mixing model, 𝒎 can be regarded as the linear mixture 

of 𝑿: 

𝒎 = 𝑿𝒑 (𝟏) 

The task here is to estimate 𝒑̂ using 𝑿̂ and 𝒎̂. 

 

Employing component-wise condition number in eliminat-
ing feature collinearity 

Solving 𝒑 by Eq. 1 is an overdetermined equation problem 

due to the high-dimensional features of high-throughput omics 

data. Therefore, we first applied preliminary marker selection 

approaches to weaken the influence of biological and technical 

noise (see Supplementary Section 2). Even though, collinearity 

may occur in many features among different cell types, which 

may confuse the contributions of similar cell types and then lead 

to inaccurate proportion estimation. Previous studies [18, 29] 

used a condition-number-based strategy in RNA-seq data to 

measure the stability of the linear system against input variation 

or noise while reduce collinearity. As the measured 𝒎 from a 

bulk sample is influenced by technical and biological noise, 𝛿𝒑 

is defined as the change of proportion vector 𝒑 if there occurs 

small changes or perturbations in the elements of 𝒎, denoted as 

𝛿𝒎. Besides, the relative errors of 𝒑 and 𝒎 are denoted as 𝛥𝑝 

and 𝛥𝑚  respectively. Then the condition number can be 

denoted as 𝐶: 

𝐶 ≔ max
𝛿𝒎,𝒎 ∈ ℝ𝑁×1

𝛥𝑝

𝛥𝑚
(2) 

where 

𝛥𝑝 =  
‖𝛿𝒑‖

‖𝒑‖
, 𝛥𝑚 =  

‖𝛿𝒎‖

‖𝒎‖
(3) 

The condition number 𝐶 measures the potential sensitivity of 

the proportion vector 𝒑 to the change of bulk data 𝒎 [30]. In 

particular, 𝐶 takes the total relative error of the vector 𝒑 into 

consideration, ignoring possible large relative errors on small-

proportion components (see Supplementary Section 3).  

In order to suppress the relative error of each component, 

here we used the component-wise condition numbers [31] to 

improve the procedure of marker selection. The definition of 

the component-wise condition number of the 𝑐-th component is: 

𝐶𝑊𝑐 ∶= max
𝛿𝒎 ∈ ℝ𝑁×1

𝛥𝑝𝑐

𝛥𝑚
, 𝑐 ∈ {1,2, … , 𝐾} (4) 

where 

𝛥𝑝𝑐 =  
‖𝛿𝑝𝑐‖

‖𝑝𝑐‖
, 𝛥𝑚 =  

‖𝛿𝒎‖

‖𝒎‖
(5) 

Different from Eq. 2, the numerator in Eq. 4 changes from 𝛥𝑝 

to 𝛥𝑝𝑐, where 𝛥𝑝𝑐  denotes the relative error of component 𝑐 in 

the proportion vector 𝒑. 

However, directly computing 𝐶𝑊𝑐  in Eq. 4 is impractical 

since it is a theoretical deduction with unknown content 𝛥𝑝𝑐. 

Therefore, we used Eq. 6 below to calculate 𝐶𝑊𝑐: 

𝐶𝑊𝑐 =  
‖𝒕𝑐‖ ∙ ‖𝒎‖

|𝒕𝑐
𝑇 ∙ 𝒎|

(6) 

where 𝒕𝑐
𝑇 ∈ ℝ𝑁 refers to the c-th row of 𝑿† which denotes the 

pseudo-inverse of 𝑿 [31]. We computing 𝐶𝑊𝑐  using 𝑿̂ and 𝒎̂ 

in practice. 

We further calculated the largest condition number among all 

𝐾 components as the upper bound of relative errors, denoted as 

𝐶𝑊𝑢: 

𝐶𝑊𝑢 = max
𝑐 ∈ {1,2,…,𝐾}

𝐶𝑊𝑐 (7) 

Since every component has a component-wise condition 

number, 𝐶𝑊𝑢 takes the most sensitive component into account. 

Through 𝐶𝑊𝑢, we were able to select markers avoiding large 

relative errors in any component. One example in 

Supplementary Section 4 illustrates how component-wise 

condition numbers successfully represent the large relative 

error on small components. 

We eliminated markers leading to strong collinearity and 

used component-wise condition numbers to avoid large relative 

errors on each component. This process includes three main 

steps: (i) inspired by a former study [20], we used Euclidean 

distances to find cell type pair with the strongest collinearity. 

(ii) Next, the most similar marker of the cell type pair was 

eliminated and 𝐶𝑊𝑢 was computed. We used Eq. 8 to find the 

most similar marker 𝑖𝑀 in cell type pair 𝑗 and 𝑘: 

𝑖𝑀 = arg min
𝑖

|𝑥̂𝑖,𝑗 − 𝑥̂𝑖,𝑘|

|𝑥̂𝑖,𝑘 + 𝑥̂𝑖,𝑘|
(8) 

(iii) The above two steps were repeated to find the markers 

corresponding to the minimum 𝐶𝑊𝑢 . It should be noted that 

searching the global minimum 𝐶𝑊𝑢 is impractical, therefore we 

adopted a heuristic procedure to tackle this problem (see 

Supplementary Section 8). 
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Adaptive and robust outlier detection 

Through the above-mentioned marker selection procedure, 

we can select well-conditioned, non-collinear markers for each 

cell type. However, outliers that deviate from other markers 

may still exist, which may bring negative effects for precise 

deconvolution. Previously, few methods have tried to leverage 

outlier detection to improve the deconvolution performance. 

Here, we proposed a novel iterative and adaptive outlier 

detection method to overcome this problem based on robust 

regression [6, 32, 33]. 

We calculated the standardized residuals to indicate marker 

outliers. The standardized residual on the i-th marker is denoted 

as 𝑆𝑅𝑖, which can be written as: 

𝑆𝑅𝑖 =  
𝑟𝑖

𝑠
(9) 

where 𝑟𝑖  is the prediction error for bulk data, denoted as: 

𝑟𝑖 = 𝑚̂𝑖 − ∑ 𝑥̂𝑖,𝑗𝑝̂𝑗

𝑗

 

where 𝑝̂𝑗 is the prediction value of the j-th component’s fraction. 

In addition, 𝑠 is defined as: 

𝑠 =  √
1

𝑁 − 𝐾
∑ 𝑟𝑖

2

𝑁

𝑖 =1

 

Then a decision whether marker 𝑖  should be regarded as an 

outlier is made: 

𝐷(𝑖) =  {
0, |𝑆𝑅𝑖| ≥ 𝑇

1, |𝑆𝑅𝑖| < 𝑇
 (10) 

The threshold 𝑇 was used to decide which marker should be 

treated as outliers and was a fixed parameter determined at the 

start of the outlier-removal approach (see Supplementary 

Section 8). Next, markers detected as outliers were removed 

and standardized residuals were recalculated based on 

remaining markers. This approach was iterated for ten times 

with the fixed 𝑇, and the rest markers were used for proportion 

estimation. 

 

Novel weighted SVR 

Currently, υ-SVR has been proved to be a robust estimation 

method in many works [18, 34]. The primary problem of υ-

SVR with linear kernel is as follows [35]: 

min
𝒑̂

1

2
𝒑̂𝑇𝒑̂ + 𝐶(𝜐𝜖 +

1

𝑁
∑(𝜉𝑖 + 𝜉𝑖

∗

𝑁

𝑖=1

)) (11) 

𝑥̂𝑖, 𝒑̂ − 𝑚𝑖 ≤ 𝜖 + 𝜉𝑖 

𝑚𝑖 − 𝑥̂𝑖, 𝒑̂ ≤ 𝜖 + 𝜉𝑖
∗ 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑁, 𝜖 ≥ 0 

Here, 0 ≤ 𝜐 ≤ 1, 𝐶 is the regularization parameter. 𝑥̂𝑖, denotes 

the 𝑖-th row of 𝒙, which represents the derived reference for 

marker 𝑖. The 𝜖-insensitive loss function means that the loss is 

only considered when 𝑥̂𝑖, 𝒑̂  is beyond the range of 𝑚𝑖 ± 𝜖 . 

Note that we use 𝑚𝑖  instead of 𝑚̂𝑖  to denote the bulk data 

because 𝑚̂𝑖 can be substituted by  𝑚𝑖 after the previous feature 

selection. 

From the Eq. 11, we can find that the absolute error term 

|𝑥̂𝑖, 𝒑̂ − 𝑚𝑖| not only determines which markers should be the 

support vectors but also influence the loss function value. 

Inspired by dampened weighted least squares (DWLS) which 

adjust the weights of markers in the absolute errors loss function 

[36], we proposed a novel deconvolution method integrating 

marker weights with υ-SVR to minimize the relative errors on 

each component and avoid the ignorance of relative errors on 

rare cell types. 

The absolute error term can be written as: 

𝑎𝑏𝑠𝐸𝑟𝑟(𝒎, 𝒙, 𝒑̂) =  ∑|𝑚𝑖 − 𝑥̂𝑖, 𝒑̂|

𝑁

𝑖=1

(12) 

Same as DWLS, we define 𝑝̂𝑗 =
𝑝𝑗

𝑝1
𝑝̂1, 𝑗 = 1,2,3 … , 𝐾 . Then, 

rewrite Eq. 12: 

𝑎𝑏𝑠𝐸𝑟𝑟(𝒎, 𝒙, 𝒑̂) =  ∑ |𝑚𝑖 − ∑ 𝑥̂𝑖,𝑗𝑝̂𝑗

𝐾

𝑗=1

|

𝑁

𝑖=1

 

=  ∑ |𝑚𝑖 − 𝑥̂1, 𝑝̂1 −  ∑ 𝑥̂𝑖,𝑗

𝑝𝑗

𝑝1

𝑝̂1

𝐾

𝑗=2

|

𝑁

𝑖=1

 

=  ∑ |𝑚𝑖 − ∑ 𝑥̂𝑖,𝑗𝑝𝑗

𝐾

𝑗=1

+  ∑ 𝑥̂𝑖,𝑗𝑝𝑗

𝐾

𝑗=1

− 𝑥̂1, 𝑝̂1 − ∑ 𝑥̂𝑖,𝑗

𝑝𝑗

𝑝1

𝑝̂1

𝐾

𝑗=2

|

𝑁

𝑖=1

 

= ∑ | ∑(𝑥𝑖,𝑗 −  𝑥̂𝑖,𝑗)𝑝𝑗

𝐾

𝑗=1

+ (𝑝1 −  𝑝̂1)(𝑥̂1, + ∑
𝑥̂𝑖,𝑗𝑝𝑗

𝑝1

𝐾

𝑗=2

)|

𝑁

𝑖=1

 

≥ ∑ |(𝑝1 −  𝑝̂1)(𝑥̂1, + ∑
𝑥̂𝑖,𝑗𝑝𝑗

𝑝1

𝐾

𝑗=2

)|

𝑁

𝑖=1

− ∑ | ∑(𝑥𝑖,𝑗 − 𝑥̂𝑖,𝑗)𝑝𝑗

𝐾

𝑗=1

|

𝑁

𝑖=1

  

It is obvious that the second term is constant and the absolute 

error term is trying to minimize the errors on the first term. In 

consequence, we focus on the first term: 

𝑎𝑏𝑠𝐸𝑟𝑟(𝒎, 𝒙, 𝒑̂) ≥ ∑ |(𝑝1 −  𝑝̂1)(𝑥̂1, + ∑
𝑥̂𝑖,𝑗𝑝𝑗

𝑝1

𝐾

𝑗=2

)|

𝑁

𝑖=1

 

=  ∑ |∑ 𝑥̂𝑖,𝑗𝑝𝑗

𝐾

𝑗=1

| |
𝑝1 − 𝑝̂1

𝑝1

|

𝑁

𝑖=1

(13) 

From Eq. 13, cell types which have larger reference value or a 

greater proportion lead to a larger impact on the absolute error 

term in υ -SVR and this phenomenon will lead to a biased 

estimation undoubtedly. Thus we designed weights for the 

markers to alleviate this problem: 

𝑤𝑖 =
1

| ∑ 𝑥̂𝑖,𝑗𝑝𝑗
𝐾
𝑗=1 |

 

Then modify the absolute error term: 

𝑎𝑏𝑠𝐸𝑟𝑟(𝒎, 𝒙, 𝒑̂) =  ∑ 𝑤𝑖|𝑚𝑖 − ∑ 𝑥̂𝑖,𝑗𝑝̂𝑗

𝐾

𝑗=1

|

𝑁

𝑖=1

 

≥  ∑ |
𝑝1 − 𝑝̂1

𝑝1

|  = 

𝑁

𝑖=1

𝑁|
𝑝1 −  𝑝̂1

𝑝1

|  

Without the loss of generality, we have the following 

relationships 

𝑎𝑏𝑠𝐸𝑟𝑟(𝒎, 𝒙, 𝒑̂) =  ∑ 𝑤𝑖|𝑚𝑖 − ∑ 𝑥̂𝑖,𝑗𝑝̂𝑗

𝐾

𝑗=1

|

𝑁

𝑖=1

≥  𝑁|
𝑝𝑗 − 𝑝̂𝑗

𝑝𝑗

|  

After weights adjustment, the absolute error term in υ-SVR can 

optimize the relative errors component-wisely, without 

ignoring rare cell types.  

Finally, we normalize all the weights with Eq. 14 and apply 

υ-SVR to estimate proportions. 
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𝑤𝑖 =
𝑁 ∗ 𝑤𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

 , 𝑤𝑖 =
1

| ∑ 𝑥̂𝑖,𝑗𝑝𝑗
𝐾
𝑗=1 |

(14) 

 

Evaluation Metrics 

Here we used the root mean square error (RMSE) and the 

Pearson’s correlation coefficient (PCC) as evaluation metrics as 

many former studies did [3, 18, 19]. Besides, in order to 

demonstrate the performance on different components, 

especially for rare components, we also adopted the mean 

absolute percentage error (MAPE) as another metric. The 

definition of RMSE and MAPE is: 

RMSE(𝒑̂, 𝒑) = √
1

|𝐾|
∑(𝑝̂𝑖 − 𝑝𝑖)2

𝑖∈𝐾

 

MAPE(𝒑̂, 𝒑) =
1

|𝐾|
∑ |

𝑝̂𝑖 − 𝑝𝑖

𝑝𝑖
𝑖∈𝐾

| 

where 𝑝̂𝑖  and 𝑝𝑖  denotes the estimated value and the ground 

truth of each component respectively. 

 

Benchmark methods 

We selected state-of-art deconvolution methods that were 

designed for DNA methylation data or gene expression data for 

benchmark. Benchmarks for analyzing DNA methylation data 

include QP (quadratic programming) [37], Moss [20], Epidish 

(robust partial correlation) [38, 39], Sun [21], 

MethylCIBERSORT [40] and MethylResolver [41]. 

Benchmarks for analyzing gene expression data include QP 

[37], EPIC [19], CIBERSORT [18], dtangle [3], FARDEEP [6] 

and DeconRNASeq [42]. Of course, some methods which are 

already compared with other methods in previous works [19, 43] 

are not included in our analysis. Different preliminary marker 

selection strategies were used in different kinds of data (see 

Supplementary Section 2). 

 

Datasets 

We selected state-of-art HumanMethylationEPIC BeadArray 

data were used in both simulation and real data evaluation [44]. 

Data used for in silico simulation contains six cell types: NK 

cells, Neutrophils, B cells, monocytes, CD4+ T cells and CD8+ 

T cells, each cell type with six samples. Additionally, there are 

12 real samples which are the mixtures of genomic DNA from 

six purified leukocyte subtypes, with known proportions for 

evaluation [44]. 

153 paired-end RNA-seq samples of 8 cell types were 

collected (Supplementary Table 2), including B cells, CD4+ T 

cells, CD8+ T cells, endothelial cells, macrophages, monocytes, 

neutrophils and NK cells. We processed raw RNA-seq data into 

transcripts per million (TPM) to generate simulation data [19].  

Single-cell RNA-seq (scRNA-seq) data were adopted from a 

previous study [45]. We selected scRNA-seq data of 7 tissues 

from 6 to 10-week-old female mice for generating pseudo-bulk 

data. 

Four gene expression microarray datasets and three RNA-seq 

datasets with known proportion are collected.  

All the datasets can be accessed through supplementary table 

1~4. 

Results 

ARIC infers the cell type fraction accurately on in silico 
mixed data 

We first evaluated ARIC on different in silico mixed datasets 

including DNA methylation assays, RNA-seq and scRNA-seq. 

Each dataset was divided into two parts, one for constructing 

the external reference and the other for evaluation. Proportions 

of all components were generated randomly and adequate 

samples were produced to ensure the existence of rare 

components (see Supplementary Section 7). RMSE, MAPE and 

PCC were calculated to evaluate the performance of different 

methods (Fig. 1).  

Though PCCs of some methods are comparable with ARIC, 

ARIC achieves a relatively low RMSE and MAPE compared 

with any other methods for both DNA methylation assays (Fig. 

1A-B) and RNA-seq (Fig. 1E-F), which indicates the high 

accuracy of ARIC for the prediction of every component’s 

fraction. What’s more, as shown in Fig. 1C~D and G~H, the 

prediction results of ARIC are squeezed into the diagonal line 

gradually as the true fraction decreased by contrast with other 

methods, which indicates the precision of ARIC on rare 

components. Interestingly, the prediction results of dtangle 

showed a significant deviation in comparison with the ground 

truth (the last panel in Fig. 1G), though with a high PCC.  

To further evaluate the performance of ARIC, we generated 

pseudo-bulk RNA-seq samples in silico with data adopted from 

a well-characterized scRNA-seq study [45]. As shown in 

Supplementary Fig. S1, ARIC outperforms in metrics compared 

with others, especially for rare components. Interestingly, the 

deviation of dtangle’s prediction still exists. dtangle shows a 

higher PCC as well as a smaller RMSE than all the other 

methods except for ARIC and FARDEEP, but exhibits the 

highest MAPE value in the meantime. The results, together with 

the results shown in Fig. 1G, indicate that PCC and RMSE are 

insufficient to depict the prediction accuracy and may cause 

erroneous judgements. 

 

ARIC estimate rare cell type fractions accurately 

To illustrate the capability of ARIC to deal with rare 

components, we computationally mixed methylation data [20] 

of individual cell types at varying proportions. In silico 

simulations were performed by setting the proportion of one 

component to 1%, 3%, 5%, 7% and 10% respectively, and the 

proportions of other components were generated randomly. We 

evaluated the results of the rare component solely with all the 

three metrics (Fig. 2). ARIC always shows the smallest RMSE 

(Fig. 2A) and MAPE (Fig. 2B) among all methods across 

different rare-component proportions. Moreover, the results of 

ARIC are the closest to the ground truth with the smallest 

variance across different proportions (Fig. 2C), which 

illustrates the robustness of ARIC on inferring the fraction of 

rare components. The same results were obtained when 

inferring components with lower proportions from 0.1% to 1% 

(Supplementary Fig. S2). 

 

ARIC outperforms in the deconvolution of real data from 
multiple sources 

To evaluate the efficacy of ARIC on real data, we collected 

a DNA methylation dataset [44], which provides us 12 samples 

with known fractions of each cell type. The deconvolution 

results are shown in Fig. 3. Though all methods exhibit high 
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PCCs, ARIC shows a better performance than any other 

baseline methods on the metrics of both RMSE and MAPE.  

We also collected seven expression datasets measured by 

microarray or RNA-seq with known cell type fractions. We 

calculated the performance of each method on all datasets and 

analyzed the results jointly. ARIC achieves a relatively lower 

RMSE (Fig. 4A) and MAPE (Fig. 4B) in different datasets. The 

median RMSE and MAPE of dtangle are almost the same as 

ARIC, but our method shows more outstanding outcomes when 

focusing on rare components (Fig.4C-D). ARIC also shows the 

smallest deviation among all methods (Fig. 4), which indicates 

the robustness of ARIC. 
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Discussion 
As a new approach for deconvolution of cell type fractions, 

ARIC is tested on both in silico mixed data as well as real data 

with various DNA methylation and gene expression datasets. 

Several benchmarks are selected to compare with ARIC. For all 

kinds of datasets, ARIC shows the ability to estimate the 

fractions of different cell types, especially for rare components, 

more precisely than any other deconvolution methods. 

The remarkable performance of ARIC owes to several novel 

designs in the algorithm. Different cell types that are 

differentiated from same progenitors or share similar functions 

may exhibit similar methylome or transcriptome profiles, which 

may further lead to confounded deconvolution results due to 

collinearity [36]. Previous studies minimized the condition 

number to improve the accuracy of the deconvolution results 

[18, 34]. However, the condition number cannot pay equal 

attention to all cell types as it measures the overall error of all 

components instead of the component-wise error. This will 

cause a strong bias for rare cell types. Therefore, the 

component-wise condition number is introduced into ARIC to 

evaluate the error of each component more equally to get rid of 

the negligence of rare components. During the marker selection 

process, the component-wise condition number is calculated at 

each step, and then markers leading to the smallest component-

wise condition number are adopted for further analysis. The 

deconvolution results of both simulated and real datasets reveal 

that employing the component-wise condition number brings 

ARIC a more powerful capacity to estimate the fraction of rare 

components.  

Furthermore, robustness is an indispensable requirement for 

bulk data deconvolution to ensure high accuracies. However, 

the deconvolution procedure is susceptible to outliers brought 

by measure error or environmental effect, which may hamper 

the robustness of algorithms [6]. Here, ARIC utilizes the 

standardized residual to distinguish outliers from effective 

markers. Notably, some outliers are hard to be differentiated 

when there exist more significant outliers in all markers. As the 

consequence, outliers can hardly be detected and removed 

without iterations. Therefore, ARIC computes standardized 

residuals and detects outliers adaptively to ensure that outliers 

are removed as precisely as possible.  

There is still room for improvement of ARIC. ARIC depends 

on external references whose quality may influence the 

prediction results significantly. As the rapid development of 

single-cell sequencing technologies, purer references can be 

produced to enhance the performance of ARIC. Moreover, as 

ARIC is developed independent from the type of data and 

performs well in data generated from HumanMethylationEPIC 

BeadArray, microarray, RNA-seq and scRNA-seq, ARIC is 

promising to be applied into other bulk data, such as ATAC-seq 

and FAIRE-seq. 

In conclusion, ARIC is a robust and accurate tool for 

decoupling the fraction of cell types in mixture data. 

Particularly, ARIC can estimate the fraction of rare components 

far more precisely and robustly than other methods, suggesting 

ARIC as a promising tool to solve the deconvolution problem 

of bulk data where rare components matter, which may further 

benefit both scientific research and clinical applications.  
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Fig. 1 Deconvolution results for in silico bulk DNA methylation (A~D) and gene expression (E~H) datasets. (A) and (E) the RMSE for each method. (B) and (F) the MAPE for each method. (C) and 

(G) are the scatter plots for estimated cell-type fractions against true fractions. PCCs are shown in the top-left corner of each panel. (D) and (H) are zoomed-in versions of (C) and (G) for cell-types with 

fraction less than 10%. Gray lines represent linear regressions of the points. mCBS: MethylCIBERSORT, mRSV: MethylResolver, CBS: CIBERSORT, dRNAseq: DeconRNASeq. 

Fig. 2 Deconvolution results for simulated rare components varying from 1% to 10%. (A) and (B) show RMSEs and MAPEs gradually changing with the rare component proportion. (C) is the box-

plot of the deconvolution results with replicates (n = 60). Black lines represent the estimation values are equal to the ground truth. mCBS: MethylCIBERSORT, mRSV: MethylResolver. 
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Fig. 3 Deconvolution results for experimentally mixed methylation data. (A~C) show RMSEs, MAPEs and prediction results against the ground truth respectively. PCCs are shown in the top-left 

corner for each method in (C). Gray lines in (C) represent linear regressions of the points. Black lines in (C) represent the estimation values are equal to the ground truth. mCBS: MethylCIBERSORT, 

mRSV: MethylResolver. 

 

Fig. 4Deconvolution results for experimentally mixed expression data. (A) and (B) are 

RMSEs and MAPEs for all components. (C) and (D) are RMSEs and MAPEs for rare com-

ponents with fractions less than 10%. Black lines represent the median for each method. 

CBS: CIBERSORT. dRNAseq: DeconRNASeq. 
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