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 23 

Abstract 24 

Direct coupling analysis (DCA) has been widely used to infer evolutionary coupled residue 25 

pairs from the multiple sequence alignment (MSA) of homologous sequences. However, 26 

effectively selecting residue pairs with significant evolutionary couplings according to the 27 

result of DCA is a non-trivial task. In this study, we developed a general statistical 28 

framework for significant evolutionary coupling detection, referred to as IDR-DCA, which 29 

is based on reproducibility analysis of the coupling scores obtained from DCA on manually 30 

created MSA replicates. IDR-DCA was applied to select residue pairs for contact 31 

prediction for monomeric proteins, protein-protein interactions and monomeric RNAs, in 32 

which three different versions of DCA were applied. We demonstrated that with the 33 

application of IDR-DCA, the residue pairs selected using a universal threshold always 34 

yielded stable performance for contact prediction. Comparing with the application of 35 

carefully tuned coupling score cutoffs, IDR-DCA always showed better performance. The 36 

robustness of IDR-DCA was also supported through the MSA down-sampling analysis. 37 

We further demonstrated the effectiveness of applying constraints obtained from residue 38 

pairs selected by IDR-DCA to assist RNA secondary structure prediction.  39 

Key words: direct coupling analysis, quality control, statistical methods, contact prediction 40 
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Introduction  45 

Contacting residues in monomeric proteins/RNAs or between interacting 46 

proteins/RNAs often show covariance in the process of evolution to maintain 47 

the architectures and the interactions of these macromolecules, which allows 48 

us to infer the intra- or inter-protein/RNA residue-residue contacts through 49 

co-evolutionary analysis [1]. Direct coupling analysis (DCA) is a class of widely 50 

used methods for co-evolutionary analysis, which quantifies the direct coupling 51 

strength between two residue positions of a biological sequence through 52 

global statistical inference using maximum entropy models learned from large 53 

alignments of homologous sequences [2]. Comparing with local statistical 54 

methods like mutual information (MI) and correlated mutation analysis, DCA is 55 

able to disentangle direct couplings from indirect transitive correlations, thus 56 

showing much better performance in predicting residue-residue contacts [3,4]. 57 

A wide variety of algorithms at different levels of approximation for 58 

implementing DCA have been developed in recent years, with the focus being 59 

on improving the accuracy of DCA and increasing the computational efficiency. 60 

The developed algorithms for DCA include message passing DCA (mpDCA) 61 

[3], mean-field DCA (mfDCA) [4] and pseudo-likelihood maximization DCA 62 

(plmDCA) [2]. Among these developed algorithms, PlmDCA is currently the 63 

most popular algorithm for implementing DCA because of its high accuracy 64 

and moderate computational cost, which has been successfully applied to 65 

directly acquire contact constraints to assist the prediction of protein/RNA 66 
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structures, interactions and dynamics [5–14], or been used to provide major 67 

feature components for deep learning-based contact/distance prediction 68 

methods [15–19]. 69 

Comparing with so many efforts made on improving DCA algorithms and 70 

applying DCA to obtain structural information from sequence data, relatively 71 

less attention has been made on how to quantify the number of residue pairs 72 

with significant evolutionary couplings and select the predictive residue pairs 73 

from the result of DCA. Generally, residue pairs with higher coupling scores 74 

obtained from DCA tend to have higher probabilities to form contacts. 75 

Therefore, in most previous studies, often a certain number (e.g. top 10 or top 76 

L/5, L as the sequence length) of residue pairs with the highest coupling 77 

scores were selected for contact prediction, or a coupling score cutoff was set 78 

empirically to select residue pairs with coupling scores higher than the cutoff. 79 

However, both the number of predictive residue pairs and the coupling score 80 

values are influenced by many factors including the number and the length of 81 

the homologous sequences forming the MSA, the detailed settings of the DCA 82 

algorithm, the functional characteristics of the macromolecule [6,7]. Therefore, 83 

neither applying a “number” cutoff nor a “coupling score” cutoff is an ideal 84 

protocol for selecting predictive residue pairs from the result of DCA. In a 85 

previous work, for predicting residue-residue contacts between interacting 86 

proteins, Ovchinnikov et al. first rescaled the raw coupling scores from Gremlin 87 

(a software for implementing plmDCA) with an empirical model to consider the 88 
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influence of the number and the length of the homologous sequences forming 89 

the MSA on the coupling scores, then determined an optimal score cutoff 90 

based on the inter-protein residue-residue contacts in the crystal structure of 91 

the 50S ribosome complex [6]. For the same purpose, Hopf et al. did 92 

something similar but rescaled the coupling scores from EVcouplings (another 93 

software for implementing plmDCA) with a different empirical model [7]. Both 94 

the two methods achieve success in selecting inter-protein residue pairs for 95 

contact prediction. However, since the parameters of these empirical models 96 

were tuned on only a limited number of cases, whether they are applicable for 97 

more general cases is questionable. Besides, Xu et al. proposed a statistical 98 

approach referred to as inverse finite-size scaling (IFSS) to estimate the 99 

significance of DCA results, which was later applied in epistasis detection of 100 

microbial genomes [20–22]. However, to the best of our knowledge, the 101 

effectiveness of this approach has never been shown in selecting evolutionary 102 

coupled residue pairs. The lack of a general approach for detecting significant 103 

evolutionary couplings from the result of DCA limits the appropriate application 104 

of this method. For example, when applying DCA to infer inter-protein residue 105 

pairs with significant evolutionary couplings to assist the protein-protein 106 

interaction prediction at large scale, without appropriately measuring the 107 

coupling significance, we may introduce false positive couplings or miss 108 

significant couplings. 109 

In this study, we develop a general statistical framework for significant 110 
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residue-residue coupling detection. The development of this statistical 111 

framework is inspired by the quality control protocols in functional genomic 112 

experiments, in which often reproducible signals in multiple experimental 113 

replicates are considered as the genuine functional signal [23,24]. Here, given 114 

an MSA of homologous sequences, two MSA (pseudo) replicates are created 115 

by randomly assigning the sequences in the MSA into two groups. DCA is then 116 

performed on both the original full MSA and the two MSA replicates. We 117 

assume that the significant couplings are reproducible from DCA on the two 118 

MSA replicates. Therefore, we perform reproducibility analysis on the coupling 119 

scores obtained from DCA on the two MSA replicates, from which we assign 120 

each residue pair an irreproducible discovery rate (IDR) calculated with the 121 

Gaussian copula mixture modelling described in Li et al. [25], with the lower 122 

the IDR, the more reproducible the residue-residue coupling. Then, we create 123 

an IDR signal profile for the residue pairs under consideration, which 124 

represents the IDR variation with the ranking of the residue pairs sorted 125 

descendingly according to the coupling scores obtained from DCA on the full 126 

MSA. The residue pairs before the IDR signal profile reaching a certain 127 

threshold are considered to be with significant evolutionary couplings. This 128 

statistical framework, referred to as IDR-DCA, was applied to select residue 129 

pairs for contact prediction for 150 monomeric proteins, 30 protein-protein 130 

interactions and 36 monomeric RNAs, in which the DCA were performed with 131 

three different versions of DCA including EVcouplings [26], Gremlin [5] and 132 
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CCMpred [27]. The result shows that IDR-DCA can effectively select 133 

evolutionary coupled residue pairs with a universal threshold (IDR cutoff=0.1), 134 

for that the numbers of residue pairs selected by IDR-DCA vary dramatically 135 

for cases across the three datasets, but the accuracies of the selected residue 136 

pairs for contact prediction are kept stable. Comparing with the application of 137 

the DCA tool specific coupling score cutoffs carefully tuned on each dataset to 138 

reproduce the overall accuracies of the residue pairs selected by IDR-DCA, 139 

IDR-DCA is always able to select more residue pairs, and provide effective 140 

contact predictions for more cases. We further evaluated the robustness of 141 

IDR-DCA through the MSA downsampling analysis. The result shows that as 142 

the numbers of homologous sequences forming the MSAs getting smaller and 143 

smaller, generally IDR-DCA would select fewer and fewer residue pairs to 144 

keep the accuracy of the selection, but the advantage of IDR-DCA over the 145 

application of coupling score cutoffs are always kept at different levels of the 146 

MSA down-sampling. Therefore, IDR-DCA provides an effective and robust 147 

statistical framework for selecting evolutionary coupled residue pairs. 148 

Results  149 

1. Overview of IDR-DCA 150 

IDR-DCA includes three major stages: creating pseudo-replicates, 151 

performing reproducibility analysis and detecting significant couplings, which 152 

are described in detail in the following subsections (See Figure 1).  153 

1.1 Creating pseudo-replicates  154 
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As it is shown in Figure 1A, given an MSA of homologous sequences, we 155 

first perform DCA on the full MSA, from which we can obtain a coupling score 156 

��  for each residue pair. The residue pairs are then sorted descendingly 157 

according to the coupling scores, in which the residue pairs with higher 158 

rankings (��) are more likely to be with significant evolutionary couplings. After 159 

that, the aligned sequences in the MSA are randomly grouped into two subsets 160 

without realignment, and we then perform DCA on the two MSA subsets 161 

separately, from which we can obtain a coupling score tuple ���,� , ��,�� and a 162 

ranking tuple ���,�, ��,�� for each residue pair, with ��,�, ��,� representing the 163 

coupling scores for the residue pair � from the DCA on the two MSA subsets, 164 

and ��,� , ��,� representing the rankings of residue pair � sorted according to 165 

the coupling scores descendingly. Since the two MSA subsets can be 166 

considered as (pseudo) biological replicates, the significant couplings are 167 

expected to be reproducible from the DCA on the two MSA replicates. 168 

Therefore, we perform reproducibility analysis on the coupling scores obtained 169 

from the replicated DCA to evaluate the reproducibility of each residue-residue 170 

coupling. It should be noted that if the provided MSA contains a large number 171 

of redundant sequences (including extremely similar sequences), insignificant 172 

couplings may also show a certain level of reproducibility. To avoid 173 

reproducible couplings caused by the issue of sequence redundancy, 174 

redundant sequences in the MSA should be filtered.  175 

1.2 Performing reproducibility analysis 176 
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Since the scale and the distribution of the coupling scores obtained from 177 

DCA are case dependent, it is not appropriate to measure the reproducibility of 178 

the residue-residue coupling through the direct comparison of the coupling 179 

score values from the two MSA replicates. In this study, we measure the 180 

reproducibility of each residue-residue coupling through calculating the 181 

irreproducible discovery rate (IDR) for each residue-residue coupling with the 182 

Gaussian copula mixture modelling described in Li et al [25], in which the 183 

rankings rather than the coupling score values from the two MSA replicates 184 

were employed in the statistical modeling. Specifically, we assume that there 185 

are two types of residue pairs (i.e. evolutionary coupled residue pairs and 186 

evolutionary uncoupled residue pairs), for which the observed coupling score 187 

tuples ���,�, ��,�� are generated by a latent variable tuple (unobserved) �	� , 	�
 188 

following the Gaussian mixture distribution (�����	� , 	�
 
 �����	� , 	�

, with  189 

 ��~� ���
�
�, �1 00 1�� and ��~� ����

��
� , � ��� ���������� ��� �� (�� � 0，�� � 0
  (1). 190 

Where �� and �� correspond to the uncoupling component and the coupling 191 

component respectively, and �� and �� are the corresponding weights of the 192 

two components. Since evolutionary coupled residue pairs generally have 193 

higher and more reproducible coupling scores, we require (�� � 0, �� � 0
. 194 

Because �	� , 	�
 are not observable, and the relationship between �	� , 	�
 195 

and the observable coupling score tuples ���,�, ��,��  is unknown, the 196 

association parameters θ � ��� , ��, ���, ��
 of the Gaussian mixture model are 197 
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determined through maximizing the likelihood function of corresponding copula 198 

mixture model: 199 

      L�θ
=∏  �����!���"�,�
�
�	� )，!���"�,�

+�����!���"�,�
, !���"�,�

]  (2). 200 

Where �"�,� , "�,�� � #��,� �$  , ��,� �$ % is the normalized ranking tuple of residue 201 

pair �, with ��,�, ��,� corresponding to the rankings of residue pair � according 202 

to the coupling scores from replicated DCA, and N representing the total 203 

number of residue pairs; G�	

 � ��

��
Φ�
����

��
)+ ��Φ�	

  is the cumulative 204 

marginal distribution of 	� and 	�, with 	
 representing either 	� or 	�, and 205 

Φ representing the standard normal cumulative distribution function. As we 206 

can see from Equation (2) that only the rankings obtained from the two MSA 207 

replicates are employed in the parameter determination. 208 

Given a set of parameters θ, the probability that a residue pair with the 209 

normalized ranking tuple �"�,�, "�,�
 being an evolutionary uncoupled residue 210 

pair (local IDR) can be computed as: 211 

        idr���,�, ��,�� �
��������	
�,��,���	
�,���

∑ ��������	
�,��,���	
�,������,�

  (3). 212 

The local IDR are then converted to (global) IDR for the multiple hypothesis 213 

correction. The IDR of each residue pair represents the reproducibility of the 214 

corresponding residue-residue coupling, with the lower the IDR value, the 215 

higher the reproducibility (See Figure 1B). 216 

1.3. Detecting significant couplings 217 

The rankings ( �� ) and the reproducibilities (IDRs) of residue-residue 218 
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couplings are unified for the significant coupling detection. Specifically, we 219 

build an IDR signal profile for all residue pairs under consideration, which 220 

represents the IDR variation with the ranking of the residue pairs sorted 221 

descendingly according the coupling scores obtained from DCA on the full 222 

MSA. Generally, the IDR of each residue-residue coupling increases 223 

()log10�IDR
 0) with fluctuation when its ranking goes down. After smoothing 224 

the IDR signal profile using a moving average filter with a window size 5, the 225 

residue pairs before the IDR signal reaching a specified cutoff are considered 226 

to be with significant evolutionary couplings (See Figure 1C). 227 

2. Detecting significant evolutionary couplings with variable IDR cutoffs 228 

IDR-DCA was used to detect intra-protein residue-residue couplings for the 229 

150 monomeric proteins in the original PSICOV contact prediction dataset [28], 230 

inter-protein residue-residue couplings for 30 protein-protein interactions from 231 

Ovchinnikov el al. [6], and intra-RNA residue-residue couplings for 36 232 

monomeric RNAs from Pucci et al. [13], in which the DCA were performed with 233 

three widely used plmDCA-based DCA software including EVcouplings [26], 234 

Gremlin [5] and CCMpred [27]. We first applied variable IDR cutoffs to select 235 

evolutionary coupled residue pairs. The percentage of contacting residue pairs 236 

in the selected residue pairs was used to evaluate the accuracy of the 237 

selection. Two intra-protein residues were considered to be in contact if their 238 

Cβ-Cβ distance (Cα ) Cα distance in the case of glycine) is smaller than 8Å. 239 

For the inter-protein residues, the distance cutoff was relaxed to 12 Å 240 
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considering that the inter-protein residues have much lower contact probability 241 

than the intra-protein residues. For the intra-RNA residues, a contact was 242 

defined if their C1�-C1� distance is smaller than 12 Å. In Figure 2A-2C, we 243 

show the overall accuracies of the selected residue pairs from each dataset 244 

with the application of variable IDR cutoffs. As we can see from Figure 2A-2C 245 

that independent on the DCA tools, for all the three datasets, the accuracies 246 

drop at a relative slow speed when increasing IDR cutoff until reaching 0.1, 247 

and after that the accuracies drop dramatically. Therefore, 0.1 can be 248 

considered as a natural IDR cutoff for selecting residue pairs for contact 249 

prediction when using the IDR-DCA statistical framework.  250 

For the purpose of comparison, we also selected residue pairs based on the 251 

coupling score values. In Figure 2D-2F, we show the overall accuracies of the 252 

residue pairs selected from each dataset with the application of variable 253 

coupling score cutoffs. As we can see from Figure 2D-2F, the accuracy of the 254 

selected residue pairs varies with the choice of the coupling score cutoff in 255 

DCA tool specific and dataset dependent ways. Therefore, a universal 256 

coupling score cutoff is not applicable for selecting residue pairs for contact 257 

prediction. For each dataset, we can set empirical DCA tool specific coupling 258 

score cutoffs for the residue pair selection, with which the selected residue 259 

pairs reproduce the accuracies of the residue pairs selected by IDR-DCA with 260 

0.1 as the IDR cutoff. Specifically, for the monomeric protein dataset, the 261 

coupling score cutoffs for EVcouplings, Gremlin and CCMpred were set as 262 
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0.42, 0.29 and 0.73; for the protein-protein interaction dataset, the coupling 263 

score cutoffs were set as 0.16, 0.09 and 0.24; and for the monomeric RNA 264 

dataset, the coupling score cutoffs were set as 0.29, 0.30 and 0.41. The 265 

dramatic variations of the coupling scores cutoffs between different DCA tools 266 

and different datasets show that the coupling score is not a good metric for the 267 

predictive residue pair selection. 268 

 It is easy to explain that the obtained coupling score cutoffs are tool 269 

dependent. Since all the three versions of DCA use some sort of 270 

regularizations to avoid the model overfitting, if the parameters of the 271 

regularizations are set differently, or the regularizations are done in different 272 

ways, the scales of the obtained coupling score values will vary. This is also 273 

the reason that the standard practice in the DCA application relies more on the 274 

order of the prediction than numeric values of the coupling scores. Besides, it 275 

is also reasonable that different datasets show different scales of coupling 276 

scores, since the different types of biophysical interactions can have different 277 

strengths. For example, the intra-protein residue-residue interactions are 278 

generally stronger and more conserved than the inter-protein residue-residue 279 

interactions, and may also show different evolutionary characteristics from the 280 

RNA residue-residue interactions.   281 

3. The performance of IDR-DCA with a universal IDR cutoff (0.1) on 282 

evolutionary coupled residue pair selection  283 

We analyzed the performance of IDR-DCA on selecting evolutionary 284 
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coupled residue pairs with 0.1 as the IDR cutoff. In Figure 3A-3C, we show the 285 

accuracies, the numbers and the corresponding coupling score cutoffs (i.e. the 286 

smallest coupling score) of the selected residue pairs for each case in the 287 

three datasets. As we can see from Figure 3A-3C, the selected residue pairs 288 

yield quite stable accuracies across cases in the three datasets independent 289 

on the DCA tools (e.g. for most of the cases, the accuracies of selected 290 

residue pairs are higher than 50%.), although the numbers of the selected 291 

residue pairs vary dramatically. We can also see that the corresponding 292 

coupling score cutoffs of the selected residue pairs vary dramatically not only 293 

between DCA tools, but also across cases in the three datasets. This further 294 

supports that it is not appropriate to apply a universal coupling score cutoff to 295 

select residue pairs for contact prediction.  296 

We further analyzed the distance distribution of non-contacting intra-protein 297 

residue pairs ( Cβ - Cβ  distance 5 8 Å) selected by IDR-DCA from the 298 

monomeric protein dataset. The analysis was focused on the intra-protein 299 

residue pairs for which have the largest sample size. We found that the 300 

distances of most of the non-contacting residue pairs selected by IDR-DCA are 301 

just slightly larger than 8Å (e.g. 6 12Å ), as it is shown in Figure S1A. 302 

Therefore, we suspect that many of these “non-contacting” residue pairs by 303 

definition may also be “truly” evolutionary coupled. We also noticed a tiny 304 

fraction of the selected residue pairs are in long distance (e.g. 5 12Å
 in the 305 

crystal structure. These residue pairs can be evolutionary coupled with the 306 
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long distances caused by protein conformational changes, as it is shown by 307 

Anishchenko et al., in which they found that most of the evolutionary coupled 308 

residue pairs not in repeat proteins are actually in spatial proximality in at least 309 

one biologically relevant conformation [11]. Besides, the alignment errors in 310 

MSA and the approximations made in DCA can also be responsible for these 311 

exceptions.   312 

We also noticed that for several cases in the protein-protein interaction 313 

dataset and the monomeric RNA dataset, IDR-DCA was not able to find any 314 

evolutionary coupled residue pairs. The scatter plot of the coupling scores of 315 

all residue pairs for these cases is shown in Figure S1B, in which the 316 

contacting residue pairs are colored red, and the non-contacting residue pairs 317 

are colored black. As we can see from the plot, for all the cases, very few 318 

top-ranked residue pairs based the coupling scores from DCA are in contacts 319 

in the 3D crystal structure. This means that the DCA on these cases failed to 320 

correctly model the residue-residue couplings, which might be caused by the 321 

lack of effective sequences in their MSAs.  322 

Therefore, it is encouraging that IDR-DCA can avoid selecting false positive 323 

residue pairs from these cases. This phenomenon did not happen to our 324 

monomeric protein dataset, for the monomeric proteins used in our study are 325 

all single domain proteins with large number of homologous sequences in their 326 

MSAs, thus the DCA on these cases can always successfully identify a certain 327 

number of evolutionary coupled residue pairs. 328 
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4. The performance comparison between the application of IDR-DCA and 329 

coupling score cutoffs on evolutionary coupled residue pair selection 330 

We compared the performance of IDR-DCA on evolutionary coupled residue 331 

pair selection with the application of the DCA tool specific coupling score 332 

cutoffs tuned on each dataset. As we have described in section 2, the coupling 333 

score cutoffs were determined to reproduce the accuracies of the residue pairs 334 

selected by IDR-DCA. As we can see from Figure 4A-4C, for all the three 335 

datasets, IDR-DCA with a universal IDR cutoff (0.1) is always able to select 336 

more residue pairs than the application of the carefully tuned DCA tool specific 337 

coupling score cutoffs, although the accuracies of the selected residue pairs 338 

are almost the same. 339 

Besides, IDR-DCA also shows a more stable performance across cases in 340 

each dataset. For example, for most of the cases, the numbers of residue pairs 341 

selected by IDR-DCA are very similar between different DCA tools, but the 342 

numbers of residue pairs selected by applying the coupling score cutoffs are 343 

highly dependent on the choice of the DCA tools (See Figure S2). Since the 344 

differences between the three DCA tools are only on the detailed settings of 345 

the plmDCA algorithm (e.g. the initial values for the optimization, the criterion 346 

for the convergence, the ways of regularizations, etc.), DCA implemented with 347 

the three DCA tools on the same MSA should provide similar number of 348 

evolutionary coupled residue pairs. 349 

An effective contact prediction should provide enough residue pairs above a 350 
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certain level of accuracy to assist the structure prediction. Here, as rules of 351 

thumb, for monomeric proteins or RNAs, we defined a prediction providing not 352 

fewer than L/5 (L as the sequence length) residue pairs with an accuracy not 353 

lower than 50% as an effective contact prediction; for protein-protein 354 

interactions, an effective contact prediction was defined if it can provide at 355 

least one residue pairs with an accuracy not lower than 50%, considering even 356 

one inter-protein residue contact constraint can significantly reduce the 357 

configuration space of the protein-protein interactions. It should be noted that 358 

the “effective contact prediction” defined here is only to make performance 359 

comparison between the application of the universal IDR cutoff and the 360 

variable coupling score cutoffs quantitively, thus other reasonable criteria can 361 

also be used in the analysis. In Figure 4D-4F, we show the comparison of the 362 

numbers of cases with effective contact predictions provided by applying 363 

IDR-DCA and by applying the coupling score cutoffs from the three datasets 364 

respectively. As we can see that IDR-DCA is always able to provide effective 365 

contact predictions for much more cases than the application of the coupling 366 

score cutoffs. Besides, we can also see that the performance gap for the 367 

protein-protein interaction dataset is much larger than those for the monomeric 368 

protein dataset and the monomeric RNA dataset. This is mainly because the 369 

coupling scales of DCA methods are also highly dependent on the sequence 370 

length. For the monomeric protein and monomeric RNA dataset, the variations 371 

of the sequence lengths (51~267 and 24~492) are significantly smaller than 372 
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that for the protein-protein interaction dataset (181~1453).  373 

5. Evaluating the robustness of IDR-DCA through the MSA downsampling 374 

analysis 375 

We further evaluated the robustness of IDR-DCA through the MSA 376 

down-sampling analysis on the monomeric protein dataset. Specifically, for 377 

each protein in monomeric protein dataset, 
�

�
, 
�

�
, 
�

�
 and 

�

��
 of sequences in 378 

the original MSA were randomly selected to form the MSAs with different 379 

levels of downsampling, and then we applied IDR-DCA on the downsampled 380 

MSAs with 0.1 as the IDR cutoff to select evolutionary coupled residue pairs. 381 

EVcouplings, Gremlin and CCMpred were still applied respectively to perform 382 

the DCA. 383 

  In Figure 5A-5C, we show the accuracies, the numbers of residue pairs 384 

selected by IDR-DCA for each case in the monomeric protein dataset with the 385 

application of the three tools for DCA respectively. As we can see from the 386 

Figure 5A-5C, as the size of MSA getting smaller and smaller, the numbers of 387 

the selected residue pairs are also getting smaller and smaller, however, the 388 

accuracies of the selected residue pairs for contact prediction are kept stable 389 

(See Figure S3 for an example). Since DCA on MSA with fewer sequences 390 

tends to have lower statistical power to accurately model the residue-residue 391 

couplings, it is reasonable that IDR-DCA selected fewer residue pairs as we 392 

kept downsampling the MSA. 393 

  For the purpose of comparison, we also applied the previous determined 394 
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coupling score cutoffs to select residue pairs according to the coupling scores 395 

obtained from DCA on the MSA with different levels of downsampling (See 396 

Figure S4). In Figure 6A-6C, we show the comparison of the numbers and the 397 

accuracies of the residue pairs selected by applying IDR-DCA and by applying 398 

the coupling scores cutoffs for the three DCA tools respectively. As we can see 399 

from Figure 6A-6C, the accuracies of the residue pairs selected by the two 400 

approaches are kept comparable across different levels of the MSA 401 

downsampling, however, IDR-DCA is always able to select more residue pairs. 402 

Besides, we also compared the numbers of proteins with effective contact 403 

predictions provided by the two approaches, which is shown in Figure 6D-6F. 404 

The definition of an effective contact prediction for the monomeric protein is 405 

the same as before. As we can see from Figure 6D-6F, for all the three DCA 406 

tools, IDR-DCA is always able to provide effective contact predictions for more 407 

proteins across different levels of the MSA downsampling.  408 

6. Applying constraints obtained from IDR-DCA to assist RNA secondary 409 

structure prediction 410 

We used RNA secondary structure prediction as an application example to 411 

show the benefit of leveraging IDR-DCA statistical framework. Specifically, the 412 

webserver 2dRNAdca [29] (http://biophy.hust.edu.cn/new/2dRNAdca/) was 413 

applied for the RNA secondary structure prediction, which first applied a 414 

remove-and-expand algorithm to refine residue pairs selected by IDR-DCA 415 

(0.1 as the IDR cutoff) to form the prior constraints for RNA secondary 416 
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structure prediction, and then the prior constraints were further used to guide 417 

RNAfold [30] (a minimum free energy based RNA secondary structure 418 

prediction method) to predict the RNA secondary structure. 26 RNAs without 419 

broken strands were selected from the RNA dataset for testing the protocol. 420 

Since the result of IDR-DCA is not that dependent on the specific DCA tools, 421 

only the IDR-DCA results based on CCMpred were employed in our study. 422 

Besides, the prediction performances by RNAfold without prior constraints, 423 

with prior constraints refined by the remove-and-expand algorithm from the top 424 

L/5 (L as the sequence length) residue pairs and from residue pairs selected 425 

according to the coupling scores (CCMpred coupling score cutoff: 0.41) were 426 

also evaluated as the references. In Figure 7, we show the Matthews 427 

Correlation Coefficients (MCC) between the experimental RNA secondary 428 

structure and the predicted secondary structures by the four protocols for each 429 

of the 26 RNAs (the RNAs are ordered according to the sequence length 430 

ascendingly). As we can see from the figure that the introduction of prior 431 

constraints by the three protocols all dramatically improves the prediction 432 

performance for most of the cases. However, the prediction protocol using the 433 

constraints refined from the residue pairs selected by IDR-DCA yields a more 434 

stable performance, especially for large RNAs. We also noticed that for short 435 

RNAs (e.g. sequence length<80), the secondary structure prediction with the 436 

three types of prior constraints almost makes no difference. This is mainly 437 

because that for short RNAs, the number of residue pairs selected by the three 438 
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approaches are very similar. However, for long RNAs, IDR-DCA can more 439 

effectively select the residue pairs with significant evolutionary couplings, thus 440 

for which the RNA secondary structure prediction with the IDR-DCA 441 

constraints shows better performance (see Table S1). It should be noted that 442 

since the variations of the RNA sizes and MSA qualities (the numbers of 443 

effective sequences for all the MSAs are larger than 70) of RNA dataset used 444 

in our study are not that large, selecting residue pairs according to the coupling 445 

scores or trivially selecting the top L/5 residue pairs to some extent can also 446 

produce reasonable results. This is also the reason that the predicted RNA 447 

secondary structures using the prior constraints from IDR-DCA only achieved 448 

slightly higher accuracies. It is reasonable to expect that performance gaps 449 

can be enlarged if a more diverse RNA dataset is applied here.    450 

Discussion 451 

  DCA has been widely used to obtain residue-residue contact information to 452 

assist the protein/RNA structure, interaction and dynamics prediction. Besides, 453 

the coupling score matrices obtained from DCA also provide major feature 454 

components for most of the deep learning methods for the protein 455 

residue-residue contact/distance prediction, which has revolutionized the field 456 

of protein structure prediction [15]. Given the MSA of homologous sequences, 457 

DCA can be easily implemented with the state-of-art DCA software to provide 458 

the residue-residue coupling scores. However, it is not easy to quantify the 459 

number of residue pairs with significant evolutionary couplings and select 460 
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these predictive residue pairs from the result of DCA, because the number of 461 

predictive residue pairs and the coupling score values from DCA are 462 

influenced by many factors including the number and the length of the 463 

homologous sequences forming the MSA, the detailed settings of the DCA 464 

algorithm, the functional characteristics of the macromolecule, etc.  465 

  In this study, we presented a general statistical framework named IDR-DCA 466 

for selecting residue pairs with significant evolutionary couplings. 467 

Benchmarked on datasets of monomeric proteins, protein-protein interactions 468 

and monomeric RNAs, we showed that IDR-DCA can effectively select 469 

predictive residue pairs with a universal IDR cutoff (0.1). Comparing with the 470 

application of the DCA tool specific coupling score cutoffs carefully tuned on 471 

each dataset to reproduce the accuracies of the residue pairs selected by 472 

IDR-DCA, IDR-DCA is always able to select more residue pairs and provide 473 

effective contact predictions for more cases. Therefore, IDR-DCA provides an 474 

effective statistical framework for the evolutionary coupled residue pair 475 

detection, which can also be considered as a general approach for controlling 476 

the quality of the result of DCA. Besides, we also used RNA secondary 477 

structure prediction as application example of IDR-DCA. Of course, IDR-DCA 478 

can also be used in other application scenarios. Since the statistical framework 479 

of IDR-DCA is not dependent on any detailed implementation of the DCA 480 

algorithm, this statistical framework is also expected to be applicable to 481 

performing quality control for other data-driven contact prediction methods 482 
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including deep learning.  483 

Materials and Methods 484 

1. Preparing the three datasets  485 

1.1 The protein dataset  486 

The PSICOV contact prediction dataset [28] which contains 150 proteins 487 

was used to evaluate the performance of IDR-DCA on detecting intra-protein 488 

residue-residue couplings. The structures of the 150 proteins were obtained 489 

from http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/suppdata/. The MSAs 490 

of homologous proteins for the 150 proteins were built through searching the 491 

whole-genome sequence databases Uniclust30 [31] and UniRef90 [32] and 492 

the metagenome database (Metaclust) [33] using DeepMSA [34]. The 493 

redundant sequences with sequence identity higher than 90% in the MSA were 494 

removed with HHfilter [35].  495 

1.2 The protein-protein interaction dataset 496 

The PDB benchmark from Ovchinnikov et al. was used to evaluate the 497 

performance of IDR-DCA on detecting inter-protein residue-residue 498 

couplings[6]. 499 

The complex structures of the 30 protein-protein interactions were downloaded 500 

direct from the Protein Data Bank [36]. The MSAs of non-redundant 501 

protein-protein interologs for the 30 protein-protein interactions were obtained 502 

from the supplementary data of Ovchinnikov et al [6]. The original PDB 503 

benchmark contains 32 protein-protein interactions, however, 1IXR_B-1IXR_C 504 
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was removed due to the interacting region of 1IXR_B was missing in the MSA 505 

of protein-protein interologs; and 2Y69_B-2Y69_C was removed for the two 506 

chains do not directly interact with each other in the crystal structure. 507 

1.3 The RNA dataset 508 

The High
D  dataset from Pucci et al. [13] containing 36 RNAs associated to 509 

RNA families with the number of effective sequences larger than 70 was used 510 

to evaluate the performance of IDR-DCA on detecting intra-RNA 511 

residue-residue couplings. The structures and MSAs of the 36 RNAs were 512 

obtained from https://github.com/KIT-MBS/RNA-dataset. For each MSA, the 513 

columns with more than 50% gaps were first removed, and then the redundant 514 

sequences with sequence identity higher than 95% were removed with 515 

HHfilter.  516 

2. Performing the DCA 517 

The three DCA tools: EVcouplings, Gremlin and CCMpred were applied 518 

respectively in this study to perform the DCA. Evcouplings (only the plmc 519 

module) was obtained from https://github.com/debbiemarkslab/plmc; Gremlin 520 

was obtained from https://github.com/sokrypton/GREMLIN; and CCMpred was 521 

obtained from https://github.com/soedinglab/CCMpred. CCMpred and Gremlin 522 

were run with their default settings, and EVcouplings was run with parameters 523 

“-le 16.0 -lh 0.01 -m 100” for proteins and protein-protein interactions, and with 524 

parameters “-a .ACGU -le 20.0 -lh 0.01 -m 50” for RNAs according to the 525 

recommendations from the website. 526 
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3. Performing the reproducibility analysis  527 

The R package ‘idr’ obtained from 528 

https://cran.r-project.org/web/packages/idr/index.html was employed for the 529 

reproducibility analysis with the set of parameters “mu=1.0, sigma=1.0, 530 

rho=0.2, p=0.1, eps=1e-5, max.iter=1000”. For the monomeric proteins and 531 

RNAs, the residue pairs separated by less than 6 residues were not 532 

considered in the IDR estimation. For the protein-protein interactions, 533 

considering the contact probability of inter-protein residues is much lower than 534 

that of intra-protein residues, the intra- and inter-protein residue pairs were 535 

mixed together for the IDR calculation for the purpose of better parametrization 536 

of the statistical model. However, only the IDRs of inter-protein residue-residue 537 

couplings were used to build the IDR signal profile for the inter-protein 538 

evolutionary coupling detection. For the purpose of reducing the computational 539 

cost, we only perform the reproducibility analysis for the top 10*L (L as the 540 

sequence length) couplings ranked based the coupling score obtained from 541 

the DCA on the full MSA, since the number of evolutionary coupled residue 542 

pairs is generally much smaller than this value. 543 

4. Determining the coupling score cutoffs  544 

For the purpose of comparison, we determined a DCA tool specific coupling 545 

score cutoff on each dataset to reproduce the accuracy of the residue pairs 546 

selected by IDR-DCA with 0.1 as the IDR cutoff. Specifically, for each DCA tool, 547 

starting from 0, we kept increasing the coupling score cutoff for selecting 548 
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residue pairs from the corresponding dataset with a step size 0.01, until the 549 

accuracy of the selected residue pairs exceeded the accuracy of the residue 550 

pairs selected by IDR-DCA (0.1 as the IDR cutoff). Then the coupling score 551 

cutoff which yielded an accuracy closest to accuracy of IDR-DCA was chosen 552 

as the empirical coupling score cutoff for this DCA tool on the corresponding 553 

dataset. 554 

5. Predicting RNA secondary structure  555 

The 2dRNAdca webserver (http://biophy.hust.edu.cn/new/2dRNAdca/) were 556 

employed to perform the constraints assisted RNA secondary structure 557 

prediction. Ten RNAs with broken strands were removed from the RNA 558 

dataset in the secondary structure prediction. The experimental secondary 559 

structure of each RNA was calculated with X3DNA [37] without pseudoknotted 560 

base pairs. The predicted secondary structures were evaluated by calculating 561 

the Matthews Correlation Coefficient (MCC) between the predicted structure 562 

and the experimental structure, which was calculated using the following 563 

formula: 564 

   565 

  MCC �
�� � �� 	 
� � 
�

���� 
 
����� 
 
����� 
 
����� 
 
��
�4� 

Where TP is the number of true positive base pairs; FP is the number of false 566 

positive base pairs; TN is the number of true negative base pairs and FN is the 567 

number of false negative base pairs. 568 

Key points: 569 
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� A novel statistical framework is proposed to control the quality of the result 570 

of DCA. 571 

� Our method allows to effectively select residue pairs with significant 572 

evolutionary couplings using a universal threshold. 573 

� Our method with a universal threshold consistently achieves better 574 

performance than carefully tuned coupling score cutoffs. 575 

� Prior constraints obtained from our method has a robust performance in 576 

assisting RNA secondary structure prediction.  577 

Availability 578 

The script for IDR calculation was provided in 579 

https://github.com/ChengfeiYan/IDR-DCA.  580 
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 702 

Figure 1. The flowchart of IDR-DCA. (A) Creating pseudo MSA replicates for DCA; (B) Performing 703 

reproducibility analysis; (C) Detecting significant couplings.  704 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2021. ; https://doi.org/10.1101/2021.02.01.429092doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429092


34 

 

 705 

Figure 2. The overall accuracies of residue pairs selected from each dataset based on IDR-DCA and 706 

coupling scores with the application of variable IDR and coupling score cutoffs. (A)-(C) The overall 707 

accuracies of residue pairs selected by IDR-DCA with the application of variable IDR cutoffs from the 708 

three datasets: (A) The monomeric protein dataset; (B) The protein-protein interaction dataset; (C) The 709 

monomeric RNA dataset. (D)-(F) The overall accuracies of residue pairs selected based on coupling 710 

scores with the application of variable coupling score cutoffs from the three datasets: (D) The monomeric 711 

protein dataset; (E) The protein-protein interaction dataset; (F) The monomeric RNA dataset. 712 

EVcouplings, Gremlin and CCMpred were applied to perform the DCA for each case in the three datasets 713 

respectively. The grey vertical dashed lines in (A)-(C) represent the natural IDR cutoff (0.1) for IDR-DCA. 714 

The blue, green and red vertical dashed lines in (D)-(F) represent the empirical coupling score cutoffs for 715 

EVcouplngs, Gremlin and CCMpred respectively, which were tuned on each dataset to reproduce the 716 

accuracies of residue pairs selected by IDR-DCA with 0.1 as the IDR cutoff.  717 
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 718 

Figure 3. The performance of IDR-DCA on evolutionary coupled residue pair selection with 0.1 as the 719 

IDR cutoff. (A)~(C) The accuracies, the numbers and the corresponding coupling score cutoffs of the 720 

residue pairs selected by IDR-DCA with 0.1 as the IDR cutoff for each case in the three datasets: (A) The 721 

monomeric protein dataset; (B) The protein-protein interaction dataset; (C) The monomeric RNA dataset. 722 

For each case, EVcouplings, Gremlin and CCMpred were applied to perform the DCA respectively. In the 723 

case that no residue pair is selected by IDR-DCA, the corresponding accuracy and the corresponding 724 

score cutoff is not shown. For each dataset, the cases (proteins, protein-protein interactions, RNAs) are 725 

ordered ascendingly in the plot according to their sequence lengths. 726 
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 731 

 732 

 733 

 734 

 735 

Figure 4. The performance comparison between the application of IDR-DCA (0.1 as the IDR cutoff) and 736 

the coupling score cutoffs for the evolutionary coupled residue pair selection. (A)-(C) The comparison of 737 

the numbers of the residue pairs selected by applying IDR-DCA with 0.1 as the IDR cutoff and by 738 

applying the DCA tool specific coupling score cutoffs from the three datasets: (A) The monomeric protein 739 

dataset; (B) The protein-protein interaction dataset; (C) The monomeric RNA dataset. The coupling score 740 

cutoffs for the EVcouplings, Gremlin and CCMpred were tuned on each dataset respectively to reproduce 741 

the accuracies of residue pairs selected by IDR-DCA with 0.1 as the IDR cutoff. (D)-(F) The comparison 742 

of the numbers of cases with effective contact predictions provided by applying IDR-DCA with 0.1 as the 743 

IDR cutoff and by applying the DCA tool specific coupling score cutoffs for residue pair selection on the 744 

three datasets: (D) The monomeric protein dataset; (E) The protein-protein interaction dataset; (F) The 745 

monomeric RNA dataset. 746 
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 748 
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 750 

 751 

 752 

 753 

 754 

 755 

Figure 5. The robustness evaluation of IDR-DCA (0.1 as the IDR cutoff) on evolutionary coupled residue 756 

pair selection through the MSA downsampling analysis. (A)-(C) The accuracies and the numbers of the 757 
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residue pairs selected by IDR-DCA (0.1 as the IDR cutoff) for each protein in the monomeric protein 758 

dataset, in which the DCA were performed on the MSAs with different levels of downsampling with the 759 

application of the three DCA tools: (A) EVcouplings; (B) Gremlin; (C) CCMpred. In the case that no 760 

residue pair is selected, the corresponding accuracy is not shown in the plot. The proteins are ordered 761 

ascendingly in each plot according to their sequence lengths. 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

Figure 6. The performance comparison between the application of IDR-DCA (0.1 as the IDR cutoff) and 770 

the coupling score cutoffs for the evolutionary coupled residue pair selection from the monomeric protein 771 

dataset on the MSAs with different levels of downsampling. (A)-(C) The comparison of the numbers and 772 
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the accuracies of residue pairs selected by applying IDR-DCA (0.1 as the IDR cutoff) and by applying the 773 

coupling score from the monomeric protein dataset, in which the DCA were performed on the MSAs with 774 

different levels of downsampling with the three DCA tools: (A) EVcouplings; (B) Gremlin; (C) CCMpred. 775 

(D)-(F) The comparison of the numbers of cases with effective contact predictions provided by applying 776 

IDR-DCA（0.1 as the IDR cutoff）and by applying the coupling score cutoffs for residue pair selection from 777 

the monomeric protein dataset on the MSAs with different levels of downsampling, in which the DCA 778 

were performed with the three DCA tools: (D) EVcouplings; (E) Gremlin; (F) CCMpred. 779 
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 795 

 796 

 797 

Figure 7. The Matthews Correlation Coefficients (MCC) between the experimental RNA secondary 798 

structure and the predicted RNA secondary structures by the four protocols for each of the 26 RNAs. The 799 

RNAs are ordered ascendingly according to their sequence lengths. 800 
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