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Abstract

Accurately identifying enhancer-promoter interactions (EPIs) is challenging because enhancers usually act on the
promoters of distant target genes. Although a variety of machine learning and deep learning models have been developed,
many of them are not designed to or could not be well applied to predict EPIs in cell types different from the training
data. In this study, we develop the TransEPI model for EPI prediction based on datasets derived from Hi-C and ChIA-
PET data. TransEPI compiles genomic features from large intervals harboring the enhancer-promoter pair and adopts
a Transformer-based architecture to capture the long-range dependencies. Thus, TransEPI could achieve more accurate
prediction by addressing the impact of other genomic loci that may competitively interact with the enhancer-promoter
pair. We evaluate TransEPI in a challenging scenario, where the independent test samples are predicted by models
trained on the data from different cell types and chromosomes. TransEPI robustly predicts cross-cell-type EPI prediction
by achieving comparable performance in cross-validation and independent test. More importantly, TransEPI significantly
outperforms the state-of-the-art EPI models on the independent test datasets, with the Area Under Precision-Recall
Curve (auPRC) score increasing by 48.84 % on average. Hence, TransEPI is applicable for accurate EPI prediction in cell
types without chromatin structure data. Moreover, we find the TransEPI framework could also be extended to identify
the target gene of non-coding mutations, which may facilitate studying pathogenic non-coding mutations.
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Introduction remains challenging to identify EPIs accurately because enhancers
and their target promoters are typically separated by thousands of
base pairs [Schoenfelder and Fraser, 2019, Sanyal et al., 2012].
Previous studies have utilized expression quantitative trait loci
(eQTLs) to infer EPIs indirectly [Wang et al., 2013, Wu et al,,
2020], while eQTL-based methods are limited to investigate only
loci containing variants with high minor allele frequencies due to the

Enhancers are functional DNA fragments acting as cis-regulatory
elements on the genome, which regulate gene expressions through
chromatin interactions with the promoter of target genes [Maston
et al.,, 2006, Plank and Dean, 2014]. The enhancer-promoter
interactions (EPIs) vary highly with cell types and thus play a
critical role in cell development and differentiation [Plank and Dean,
2014, Schoenfelder and Fraser, 2019]. EPIs may be disrupted by
genetic variations and lead to the dysfunction of genes, underlying

requirement of a large number of samples [Consortium, 2015]. Over
the last decade, high-throughput chromatin conformation capture-
based (3C-based) techniques (e.g., Hi-C [Lieberman-Aiden et al.,
2009], ChIA-PET [Fullwood et al., 2009]) have enabled to detect
chromatin interactions directly, which could be applied to identify
EPIs [Rao et al., 2014, Lu et al., 2020]. However, these 3C-based
methods are costly and laborious, experimentally identified EPIs

the potential pathogenicity of mutations occurring in non-coding
regions [Lupidiiez et al., 2015, Li et al., 2018]. Accordingly, linking
enhancer mutations to the promoter of target genes could not only
help to interpret a substantial number of non-coding mutations
but also provide implications for therapeutic approaches [Javierre

et al., 2016, Chen and Tian, 2016, Fadason et al., 2018]. However, it 2t are available in a few cell types.
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To mitigate the problem of identifying EPIs, a variety of
computational methods have been proposed to predict EPIs.
Though enhancers are sometimes assumed to interact with the
nearest promoter, such a method is not reliable because enhancers
do not regulate the nearest gene in most cases [Sanyal et al., 2012].
Hence, correlation-based methods were developed later to decipher
the underlying rules of EPIs using the correlations of genomic signals
at enhancers and genes (or promoters) across a series of cell types
[Thurman et al., 2012, Sheffield et al., 2013, Fishilevich et al., 2017].
These methods are of low performance because enhancers are usually
cell-type-specific, and EPIs vary across cell types [Moore et al.,
2020]. To unveil the complex determinants of EPIs, machine learning
(including deep learning) approaches were adopted. Sequence-based
methods were developed by making predictions from enhancer and
promoter sequences through machine learning or deep learning
techniques. Though many methods successfully predict using DNA
sequences, such as PEP [Yang et al., 2017], SPEID [Singh et al.,
2019], Zhuang’s method [Zhuang et al., 2019], EPIVAN [Hong
et al., 2020], the sequence-based methods are inherently cell-type-
agnostic and thus are not useful for predicting cell-type-specific
EPIs. In parallel, other methods trained machine learning models
based on genomic features derived from ChIP-seq and DNase-seq
to capture the cell-type-specific characteristics, such as RIPPLE
[Roy et al., 2015], TargetFinder [Whalen et al., 2016], JEME [Cao
et al., 2017], EPIP [Talukder et al., 2019], EAGLE [Gao and Qian,
2019]. They are more effective than sequence-based models, while
they tend to become less inaccurate for predicting EPIs in cell
types different from the training data. Besides, the performance
of the machine learning models is often exaggerated because the
test datasets are not rigorously independent from the training
data[Cao and Fullwood, 2019, Moore et al., 2020]. Recently, several
methods, like 3DPredictor [Belokopytova et al., 2020] and DeepC
[Schwessinger et al., 2020], highlight the importance of employing
features of large genomic contexts for chromatin structure modeling.
Inspired by these models, we speculate that integrating additional
genomic features from large genomic contexts would improve EPI
prediction, given that the EPIs are inherently determined by
chromatin conformation.

In this study, we present a novel deep learning model named
TransEPI for EPI prediction using the Transformer architecture
[Vaswani et al., 2017]. TransEPI directly takes the input of
genomic signals from large genomic contexts harboring the enhancer-
promoter pairs to predict the EPIs. We expected that the features
outside enhancers and promoters could enable the model to
address the impact of other genomic loci that may competitively
interact with the enhancers or the promoters. Given the success
of Transformer in protein structure modelling[Jumper et al., 2021,
Baek et al., 2021], we adopt a Transformer-based framework
in TransEPI for capturing the long-range dependencies between
enhancers and promoters. To the best of our knowledge, it is the first
model that applies Transformer to predict chromatin interactions.
To make an EPI model robust for cross-cell-type prediction, we
developed and evaluated TransEPI in a challenging scenario. The
TransEPI is trained by a chromosome-split cross-validation scheme,
where the training data were split by chromosomes. Then, we tested
it on samples where the cell type and chromosome are both different
from the training data, as we expected the evaluation could reliably
reflect the actual performance of models. Our TransEPI method
is shown robust by achieving comparable performance in cross-
validation and the independent test datasets. More importantly,
TransEPI significantly outperforms two state-of-the-art EPI models,
with an average auPRC increase by 48.84 % on the test datasets.
Additionally, we found our TransEPI framework is also helpful
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for predicting cell-type-specific target genes affected by non-coding
mutations.

The implementation of TransEPI and the datasets are available
at https://github.com/biomed-AI/TransEPI.

Materials and Methods
Datasets

‘We employed the BENGI dataset to develop TransEPI for predicting
EPIs and the Hi-C loop dataset to extend TransEPI for identifying
the target gene of non-coding mutations.

The BENGI dataset We recruit data from the “Benchmark of
candidate Enhancer-Gene Interactions (BENGI)” dataset [Moore
et al., 2020] to develop the TransEPI model. BENGI is a collection of
enhancer-target gene pairs from several cell lines or tissues identified
by 3C-based methods or genetic approaches. Since we aimed to
predict the physical interactions between enhancers and promoters,
only the samples identified by Hi-C (GM12878, HeLa-S3, HMEC,
IMR90, K562, and NHEK) and ChIA-PET (GM12878 and HeLa-S3)
were utilized.

Because the samples curated by BENGI are enhancer-gene
interactions, we first mapped the genes to transcripts based
on GENCODE annotation (GRCh37/hgl9) [Frankish et al.,
2019]. Then, by defining the 1500-base pair (bp) upstream and
the 500-bp downstream of transcript start site (TSS) as the
promoter, we obtained the enhancer-promoter(EP) pairs we need
for developing our TransEPI model. Since even the TSSs of
the same gene may be thousands of base pairs apart, the EP
pairs derived from positive samples but with promoters residing
outside the anchor region of chromatin loops were discarded.
Besides, we also removed the samples with low-expressed transcripts
(transcript per million (TPM) < 1) from both positive and
negative samples as they were less likely to be regulated by enhancers
(We did this to eliminate false-positive samples as many as possible).
Finally, we obtained 45,182 positive and 307,135 negative samples
(Table 1) from 6 cell lines.

We combined the samples from GM12878 and HeLa-S3 to
construct a training set, namely BENGI-train, which contains 36,843
positive and 186,967 negative ones. The samples from the other 4 cell
lines are all reserved for independent test, namely BENGI-HMEC,
BENGI-IMR90, BENGI-K562, and BENGI-NHEK, respectively.

The HiC-loop dataset Because most of the non-coding mutations
reside outside the putative enhancer regions, the original TransEPI
model trained on BENGI fails to help find target genes of mutations.
Therefore, we extended the TransEPI model for predicting general
chromatin interactions by training it on a novel dataset consisted
of Hi-C loops. To this end, we obtained Hi-C loops in 7 cell lines
(GM12878, HeLa-S3, HMEC, HUVEC, IMR90, K562, and NHEK)

Table 1. Summary of the dataset

cell line source positive sample negative sample
GM12878 Hi-C 2695 46,212
GM12878 CTCF ChIA-PET 4817 36,028
GM12878 RNAPII ChIA-PET 24,985 70,670
HeLa-S3  Hi-C 2256 21,086
HeLa-S3  CTCF ChIA-PET 1346 10,789
HeLa-S3 ~ RNAPII ChIA-PET 744 2182
HMEC Hi-C 2286 20,019
IMR90 Hi-C 1468 13,268
K562 Hi-C 2765 73,299
NHEK Hi-C 1820 13,582
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from the Gene Expression Omnibus (GEO) database under the
accession number of GSE63525 [Rao et al., 2014].

Positive samples are defined as the pairs of Hi-C loop anchors.
The negative samples were generated by randomly pairing the
anchor regions of loops and the other randomly selected regions from
the genome. Notably, the distances between the loop anchors are not
in the uniform distribution (Figure S2). Therefore, we intentionally
sampled more samples (about 50 %) matching the E-P distribution
of positive samples to avoid the model predicting EPIs by simply
using the E-P distance.

Finally, we compiled the Hi-C loop dataset consisting of 38, 608
positive and 272, 397 negative samples (Details shown in Table S2)

Input features

TransEPI is designed to take the input of features from large genomic
regions harboring the candidate E-P pairs (Figure la). We set
the length of large genomic regions to 2,500,000 bp because the
maximum value of E-P distance in BENGI is 2, 246, 878 and there
are only 30 samples with E-P distance longer than 2,000, 000 bp.
The start and the end of the large genomic regions are determined
by extending 1,250,000 bp from the midpoint of the E-P pair up-
and down-stream. When the enhancer or promoter is close to the
ends of chromosomes, we will shift the region to keep the region
within the range of chromosomes.

Inspired by Belokopytova et al[Belokopytova et al., 2020], we
partitioned each 2.5Mbp region into 5000 consecutive bins using a
bin size of 500 bp and averaged the genomic and epigenomic signals
within each bin to represent the chromatin states. Here, the genomic
and epigenomic signals include CTCF binding sites, chromatin
accessibility (DNase-I signals), and 5 histone modification marks
(H3K4mel, H3K4me3, H3K27me3, H3K36me3, and H3K9me3).
The CTCF binding sites in narrowPeak format for each cell line
were obtained from the Encyclopedia of DNA Elements (ENCODE)
project [Davis et al., 2018]. The DNase-I and histone marks data in
bigWig format were taken from the Roadmap Epigenomics Project
[Kundaje et al., 2015]. Apart from the genomic features, we also
encoded the relative distance to the enhancer or the promoter for
each bin as an additional feature to make the model aware of the
locations of the E-P. Details about feature preparation are described
in Supplementary Methods.

The TransEPI model

The architecture of the TransEPI model is illustrated in Figure 1b.

Firstly, TransEPI utilizes a one-dimensional convolutional neural
network (1D CNN) to exact features from the input signals. A max-
pooling layer is then used to down-sample the features and shrink the
length of each input sequence (The output sequence will be denoted
by X = [z1,®2, - ,x], where z; € R", h is the dimension of
the hidden states).

Next, we employ the Transformer encoder module to capture the
long-range dependencies between enhancers and promoters within
the sequential signals X . X is first transformed into a key, a query,
and a value sequence, respectively:

K = XWy,
Q:XWLI1 (1)
V=XWw,,

where W), € 'Rth,Wq e R"% W, € R"" are learnable
weight matrices. K and Q are then used to construct the attention
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matrix A:

Vd

where the attention coefficient a; ; in A could be understood as

T
A = softmax <ﬂ> , (2)

the correlation between the i-th and the j-th position in X. By
multiplying V' by A, the hidden states at different positions are
exchanged and updated based on A. To make the Transformer
model deeper, multiple Transformer encoder layers could be stacked
sequentially. The output from the Transformer module is denoted
by My € RY M,

Thereafter, we employ a self-attention-based sequence embedding
module [Lin et al., 2017] to obtain a low-dimensional embedding
for each sequence. Specifically, we feed My into a two-layer
fully-connected (FC) network to obtain the attention coefficients
(weights) for different positions in M, and then multiply My
by the weights to obtain a weighted embedding M; € R,
Then, we apply the average and the maximum pooling over all the
hidden states in M7 and concatenate them with the hidden states
corresponding to the location of the enhancer (h.) and the promoter
(hp):

M = AvgPool(M,)||MaxPool(M1)||h.||hp, 3)

where M € R*". It includes the global features from the whole
sequence and the local features from the enhancer and the promoter.

Finally, the final sequence embedding M is passed to a two-layer
FC module to predict the EPI:

p = sigmoid(Wa (W1 M + b1) + ba), (4)

where W7 € R4h><f, W, € R‘fX1,b17b2 are all the weights in
the FC module. As a Sigmoid function is used, p ranges from 0 to
1 (p € (0, 1), representing the probability that the input enhancer
and the promoter interact with each other. Meanwhile, in order to
make TransEPI sensitive to the location of the enhancer and the
promoter, we use another FC module to predict the E-P distance:

dprea = Wa(W3M + b3) + by. (5)

Evaluation metrics

We evaluated the model using the Area Under the Precision-Recall
(PR) curve (auPRC) and the Area Under the Receiver Operating
Characteristic (ROC) curve [Hanley and McNeil, 1982] (AUC). The
PR curve is a plot of precision against the recall at a series of
thresholds. Similarly, the ROC curve is a plot of true-positive
rate (TPR) against the false-positive curve (FPR). Precision, recall,
TPR, and FPR are defined as:

. TP
precision = ———
TP + FP
TP
recall = TP+ FN TEN
TP ©
TPR = —,
TP + FN
FP
FPR= ——,
FP + TN

where TP, FP, TN, and FN are short for the True Positives
(correctly predicted interacting pairs), False Positives (falsely
predicted non-interacting pairs), True Negatives (correctly predicted
non-interacting pairs), and False Negatives (falsely predicted
interacting pairs).

Since the auPRC is associated with the ratio of the number of
positive and negative samples, we also used auPRC-ratio (dividing
auPRC by the proportion of positive samples [Pratapa et al., 2020])
as a metric for comparing performance across datasets.
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Fig. 1. The TransEPI framework. (a) Feature preparation. Genomic features (CTCF, DNase I, H3K27me3, H3K4mel, H3K4me3, H3K36me3, and

H3K9mel) are extracted from large intervals harboring the candidate enhancer-promoter pairs (enhancers are marked in yellow and promoters are

marked in red); (b) The architecture of the TransEPI. TransEPI are mainly consisted of 3 modules, a CNN+MaxPooling module extracting features

from the input sequences, a Transformer Encoder module capturing the long-range dependencies between enhancers and promoters, and a self-attention-

based sequence embedding module encoding the sequential features into a low-dimensional embedding. Finally, the embedding of the whole sequence

and the hidden states of the enhancer bin and the promoter bin are concatenated together to predict the probability with a fully-connected layer. (®:

matrix multiplying operation: CNN: convolutional neural network; MaxPool: max-pooling; FC: fully-connected)

Model training and evaluation

The TransEPI model is implemented with PyTorch (version 1.9.0)
[Paszke et al., 2019] in Python 3.8. It was trained to minimize the
binary cross entropy loss for EPI prediction and the mean squared
error (MSE) loss for E-P distance prediction simultaneously:

L =Lpp1 + LEP—distance

1 N
=- XZ: [ys log(p:) + (1 — w:) log(1 — py)] .

1 N
+ N Z(dpred,i - dtrue,i)27

where p;, ¥i, dpred,i» and dirue,; are the the predicted EPI
probability, true EPI label (0 or 1), the predicted E-P distance,
the true E-P distance of the i-th sample, respectively. We used the
Adam optimizer [Kingma and Ba, 2017] to update the weights in
the neural network. The early stopping strategy was utilized for
regularization.

In order to avoid over-fitting, we adopt a cross-chromosome
5-fold cross-validation scheme to fine-tune the hyper-parameters
(Figure S1) in TransEPI. We divided the samples in BENGI-
train into 5 folds by chromosomes, ensuring that the samples
from the same chromosome would also be put into the same fold
(chromosomes assigned to each fold are listed in Table S1). It is a
critical approach to avoid over-fitting for building machine learning
models in genomics [Schreiber et al., 2020]. In each training epoch,
we trained the model on 4 folds and validated it on the remaining
fold in turn. The average AUC and AUPR on the 5 folds are
used to measure the performance. For evaluating our method in a

challenging way, the independent test sets are also split into 5 folds
by chromosomes according to the partition table in Table S1. The
test samples are only predicted by the models trained on different
chromosomes, as illustrated in Figure S1.

State-of-the-art methods for comparison

‘We compared TransEPI to two state-of-the-art methods: TargetFinder
and 3DPredictor.

TargetFinder The TargetFinder model is a Gradient Boosting model
using various genomic features [Whalen et al., 2016]. As shown
in two studies [Xi and Beer, 2018, Cao and Fullwood, 2019], the
reported performance in the original paper was inflated because the
test data was not rigorously independent from the training data.
However, it still outperforms many other EPI models, according
to a benchmark study by Moore et al [Moore et al., 2020]. Thus,
we used TargetFinder as the first baseline model for comparison.
Given that no official implementation of TargetFinder is available,
we implemented it in Python using the XGBoost package, which
is a state-of-the-art gradient boosting model [Chen and Guestrin,
2016]. The genomic features used in TargetFinder are the same as
our TransEPI model.

3DPredictor The 3DPredictor model [Belokopytova et al., 2020]
is an XGBoost model which was originally developed to identify
enhancer-promoter contacts via predicting the Hi-C contact map.
It demonstrates that integrates only integrating the oriented CTCF
binding peaks within and around the pair of chromatin loci could
achieve accurate predictions. Here, we adapted it to directly predict
EPIs.
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Fig. 2. Evaluating TransEPI on independent test datasets. (a) The auPRC-ratio scores of TransEPI on BENGI-train(CV) and 4 independent tests. (b)
The auPRC-ratio scores of TransEPI on independent test samples stratified by distance. TransEPI consistently outperforms the naive distance-based

method in every group.

For a fair comparison, the baseline models and TransEPI were
trained on the same datasets. The hyper-parameters in the baseline
models are rigorously refined using the random grid search strategy.

The source codes associated with data preparation and model
training of the baseline models are available in our Github repository,
as well.

Identifying target genes for non-coding mutations

We extend the TransEPI framework to predict the target gene
of non-coding mutations. As the original TransEPI is built for
predicting EPIs, it is not directly applicable to predict mutation-
gene pairs because we expect it to be applicable for all non-coding
mutations, even the mutations residing outside enhancer regions.
Hence, we trained TransEPI on the Hi-C loop dataset, using HMEC,
HUVEC, and the remaining cell lines as the validation, test, and
training datasets, respectively.

For
transcript list is first curated for each mutation by pairing it with

identifying the target genes, a candidate mutation-
the transcripts (transcript’s TSS) within 1M bp. Subsequently,
TransEPI is applied on the mutation-TSS pairs using genomic
features from two neural cells and 3 brain tissues (Table S10). The
mutation-TSS pair with a predicted probability above a certain
threshold will be kept as interacting pairs.

Results

TransEPI accurately predicts EPIs in different cell types

EPIs
significantly across cell types. To make TransEPI applicable for

are cell-type-specific chromatin interactions that vary
cross-cell-type EPI prediction, it is critical to avoid over-fitting when
we develop and evaluate the model [Schreiber et al., 2020]. To this
end, we not only adopt the chromosome-split 5-fold cross-validation
scheme to train and fine-tune the model but also test it on samples
from different cell types and chromosomes (Figure S1).

We first compared the results of TransEPI on cross-validation
and independent test datasets to investigate whether it could achieve
consistent performance across cell types. As shown in Figure 2a, the
auPRC-ratios achieved by TransEPI on 4 independent test datasets
are 6.516, 5.847, 5.301, and 3.717, 3 out of which are higher (in
red) than that on the cross-validation dataset (auPRC-ratio=4.278).

Moreover, such a trend is consistently observed in the results on

each fold. As such, the results suggest that TransEPI trained on
BENGI-train can be well applied to new cell types.

Previous studies have found that the distance from enhancer to
the promoter (EP-distance) may have a strong predictive power on
some datasets [Gao and Qian, 2019, Moore et al., 2020]. However,
in fact, the predictive power of the EP-distance is determined by
the distribution of EP-distance in negative samples, which could be
controlled by the way of negative sampling. In order to eliminate
potential bias caused by EP-distance, we additionally evaluated
TransEPI on test datasets stratified by EP-distance. Specifically,
we merged the samples in BENGI-HMEC, BENGI-IMR90, BENGI-
K562, and BENGI-NHEK and stratified the samples by E-P
distance into 8 groups using the bin size of 250,000 bp. In this
way, we ensured that using only EP-distance can hardly predict
EPIs in each group, as the auPRC-ratio ranges from 0.7222 to
1.727 (a random model is expected to achieve the auPRC-ratio
of 1). In contrast, TransEPI achieves much higher auPRC-ratios,
which range from 1.125 to 9.036, on the E-P distance-stratified
datasets (Figure 2b), demonstrating that TransEPI does capture
the underlying determinants of EPI instead of just relying on E-P
distance alone.

Taken together, we could conclude that TransEPI is capable of
deciphering the mechanisms of enhancer-promoter interaction that

are universal to different cell types.

TransEPI significantly outperforms the baseline methods

To further evaluate TransEPI, we compared it with two state-of-the-
art methods, TargetFinder [Whalen et al., 2016] and 3DPredictor
[Belokopytova et al., 2020], on the independent test datasets.

In Figure 3a, the ROC plots show that TransEPI significantly
outperforms TargetFinder and 3DPredictor on BENGI-HMEC and
BENGI-IMRY0 (all the P-values < 1 X 1075, by McNeil &
Hanley’s test on AUC, as listed in Table S3). On BENGI-K562
and BENGI-NHEK, although the AUC of TransEPI does not
surpass that of TargetFinder and 3DPredictor, TransEPI tends
to have a higher TPR when the FPR scores are close to O.
This means that TransEPI can find more interacting E-P pairs
when controlling false positive rate at a low level, implying that
TransEPI is more helpful for practical use. When we compare these
models by auPRC (Figure 3b), TransEPI consistently outperforms
TargetFinder and 3DPredictor on all the test datasets. The average
auPRC of TransEPI increases by 48.84 % compared with the second
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best method TargetFinder, further demonstrating the superior
performance of TransEPI to the other methods.

Compared to our TransEPI model, TargetFinder employs only
the average genomic signals within the genomic windows between
enhancers and promoters. It does not only lack a fine representation
of the features in genomic windows but also completely ignores the
features within the outer regions of the enhancer-promoter pairs.
Therefore, we believe that it is important to use a finer features
representation strategy and leverage features from larger genomic
contexts.

As for 3DPredictor, its authors employ only the CTCF binding
site as a feature for chromatin structure modelling as they found
additional features could not provide a significant performance
improvement. However, in our study, additional features are found
beneficial (See Supplementary Methods and Table S4). We speculate
that this is because the EPIs may have distinct characteristics from
the common chromatin interactions, as the activity of promoters
and enhancers are usually inferred from chromatin accessibility and
histone modification marks [Tsompana and Buck, 2014, Gao and
Qian, 2020].

TransEPI benefits from the features outside enhancers
and promoters

In this section, we quantitatively studied the contribution of
features from the window regions between the enhancers and
promoters (“window features”) and the neighboring regions outside
the enhancer-promoter pairs (“neighbor features”). To this end, we
masked the window or the neighbor features by setting the genomic
features within the window (the w/o W setting) or the neighbor
(the w/o N setting) regions to 0, respectively. In both settings, the
features in the enhancer and promoter bin along with the 2 bins up-
and down-stream of them are kept. Additionally, we also conducted
a w/o NW setting by masking both the window and the neighbor

features.
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As shown in Figure 4a, masking window and neighbor features
decrease the auPRC scores on all 4 independent test datasets. The
exclusion of window features has the most prominent effect, with
the average auPRC score decreasing by 41.45 % (Table S5). Such
an observation is in concordance with previous studies [Whalen
et al., 2016, Gao and Qian, 2019], in which they demonstrate the
importance of window features. More importantly, we found that the
neighbor features are non-trivial, as well. The absence of neighbor
features decreases the average auPRC score by 13.08 % and masking
both neighbor and window features results in the average auPRC
score decreasing by 54.96 %, on the 4 independent test datasets
(Table S5).

A case study under the w/o N setting intuitively explains why
the features outside enhancers and promoters are indispensable. In
cell line NHEK, the enhancer E, (EH37E0265448,chr12:47,070,581-
47,071,150) interacts with the promoter P; (ENSEMBL transcript
ID: ENSTO00000548870, TSS=chr12:46,761,193), but not the
promoter P, (ENSEMBL transcript ID: ENST00000550413,
TSS=chr12:47,473,425). The promoter P; resides at the neighboring
region of Ey-P;. When we use all the features, TransEPI correctly
identifies Ey-P; as an interacting pair (P(Eo-P;) = 0.7248) and
Ey-Py as a non-interacting pair (P(Eo-Py) = 0.4732), respectively
(taking 0.5 as the threshold) (Figure 4b). When we mask the
neighbor features, TransEPI is not able to aware of the existence
of promoter Py. As a result, TransEPI mistakenly regards Eg-Py
as an interacting pair, with P(Eo-Pp) increasing from 0.4732 to
0.7254 (Figure 4c). The case study suggests the other regulatory
elements (elg.: enhancers, promoters) around the enhancer-promoter
pair may competitively interact with them. Considering only the
chromatin states of the enhancer-promoter pair is far from enough
for predicting EPIs accurately.

(b) BENGI-HMEC BENGI-IMR90
1.0 1.0
—— TransEPI, 0.5826
—— 3DPredictor, 0.3090
0.8 0.8 TargetFinder, 0.3850
E 0.6 _g 0.6
@ o
] ]
& 0.44 I 0.4

02— TransEP.I, 0.6679 0.2
—— 3DPredictor, 0.4021

TargetFinder, 0.4488

0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall
BENGI-K562 BENGI-NHEK
1.0 1.0
—— TransEPI, 0.1929 —— TransEPI, 0.4397
—— 3DPredictor, 0.1381 —— 3DPredictor, 0.3349
0.8 1 TargetFinder, 0.1252 0.8 TargetFinder, 0.3138
5 0.6 1 75 0.6
o o
o o]
< o
a 0.4 a 0.4
0.2 0.21
4 —
=
0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

Fig. 3. Comparing TransEPI with TargetFinder and 3DPredictor on 4 independent test sets. (a) Receiver Operating Characteristic (ROC) curves and

(b) Precision-recall (PR) curves are plotted.
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regions (w/o NW) on 4 independent test sets, where the error bar stands for the standard deviation; (b) E, (EH37E0265448) is an enhancer in the
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the window features, TransEPI correctly predicts Eo-P0O and E(-P; as non-interacting (marked with dotted line) and interacting pairs (marked with

solid line), respectively. (c) When we mask the neighbor features, TransEPI mistakenly identifies Eg-P, as an interacting pair. The genomic signals

shown in (b) and (c) are the average over different features.
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TransEPI facilitates identifying target genes of
non-coding mutations

Explaining GWAS results may be a challenging task because a
large number of the risk variants reside in non-coding regions
whose functions are not well characterized. An effective solution
is to link the variants to target genes and previous studies have

successfully employed Hi-C or eQTL data for explaining GWAS
results [Sey et al., 2020, Chen and Tian, 2016, Lu et al., 2020].
However, the Hi-C and eQTL data are tissue-specific and may not
be available in the tissue or the cell line studied by researchers. Here,
given the outstanding performance of TransEPI for predicting EPIs,
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we extended to predict tissue-specific target genes of non-coding
variants.

We collected the mutations associated with neural diseases or
brain disorders sorted by Lu et al [Lu et al., 2020], which are taken
from the GWAS Catalog [Buniello et al., 2019]. Only the non-coding
mutations residing in intergenic or intronic regions are kept, by
which we obtained 3943 non-coding mutations (Table S6). Using
TransEPI, we identified 5131 mutation-target gene pairs associated
with 3034 genes and 2571 mutations (Table S7), only protein coding
genes are included). We firstly conducted Gene Ontology (GO)
analysis on the target genes using gProfiler [Raudvere et al., 2019].
As shown in Table S8, the target genes significantly enrich 400
GO terms, which suggests that TransEPI-predicted genes are of
biological significance. More importantly, we found various neural
function-associated GO terms and 5 out of the top-10 GO biological
process (GO:MF) are relevant to neural functions (Figure 5a).
As a case study, TransEPI correctly identifies the target gene
of two mutations: rs10153620 (NRP2, TransEPI-score = 0.9100)
[Ebejer et al., 2013] and rs10457592 (POU3F2, TransEPI-score =
0.9400)[Hyde et al., 2016], which have been validated using Hi-C[Lu
et al., 2020].

The above analysis implies that TransEPI-predicted genes may
be functionally associated with neural functions. However, the
statistical significance of our observations can not be assessed since
we lack the ground-truth target genes for most mutations. To further
evaluate the predictions, we adopted an alternative approach by
comparing the predicted target genes of disease-related mutations to
those of disease-irrelevant mutations: We first extracted the highest
TransEPI-predicted probability, namely top-1 score, among all the
candidate target genes for each mutation. The top-1 score represents
the probability that a mutation interacts with at least one target
gene. We believe that the disease-related mutations are expected
to be more likely to interact with target genes than the disease-
irrelevant ones. Accordingly, the top-1 scores of the disease-related
mutations should be higher than those of the disease-irrelevant ones.

Specifically, we used the above-mentioned GWAS mutations as
disease-related mutations (GWAS-mutations) and compiled a group
of disease-irrelevant non-coding mutations (n = 19,715, 5 times
that of GWAS mutations) from the gnomAD database (gnomAD-
mutations) (Table S9). As shown in Figure 5b, the disease-related
mutations have significantly higher top-1 scores than the disease-
irrelevant ones (P-value = 9.33 x 1075, by t-test). Next, we split
non-coding mutations into an intronic and an intergenic group and
compared the predictions for them, respectively. We observed a
more significant difference in the intergenic group (P-value=1.55 X
10712)7 while no significant difference is found in the intronic group.
This is likely because that the intergenic mutations are more likely
to affect distal target genes than intronic mutations.

Taken together, we could conclude that the TransEPI framework
is also helpful to identify the target gene of non-coding mutations
and thus could potentially facilitate explaining GWAS results.

Discussion

In this study, we present a novel deep learning model, TransEPI,
for predicting EPIs by capturing large genomic contexts using the
Transformer architecture. Instead of considering only the states of
an individual pair of enhancer and promoter (EP), TransEPI takes
the whole environment where they locate into account. In this way,
TransEPI could be aware of the impact of other regulatory elements
that may competitively interact with the EP and hence achieve the
state-of-the-art performance for EPI prediction.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A variety of EPI models have been proposed yet, while many
of them suffer from exaggerated performance and are not well
applicable for cross-cell-type EPI prediction [Xi and Beer, 2018,
Cao and Fullwood, 2019, Moore et al., 2020]. This is because the
datasets used for training and validation (or test) are randomly
separated. Therefore, samples with sharing features may be included
in both the training and the validation data, resulting in severe
over-fitting caused by data leakage. To alleviate the problem of
over-fitting, we train and fine-tune the TransEPI model through 5-
fold cross-validation (CV), where the data are split by chromosomes
to ensure that the samples in different folds do not overlap
with each other. Besides, we evaluate TransEPI on independent
datasets derived from 4 cell lines to assess whether it could predict
EPIs in cell lines different from the training data. As TransEPI
achieves comparable performance in CV and on independent test
datasets, the chromosome-split cross-validation scheme is shown to
be effective to avoid over-fitting.

Since EPIs are inherently determined by the conformation of
chromatin, we speculated that additional enhancers and promoters
around the E-P pair to be predicted are all critical for accurate
EPI prediction. To effectively capture the long-range dependencies
between the enhancers and promoters, we present the TransEPI
framework which is mainly based on the Transformer encoder
architecture. By ablation study, we found TransEPI is sensitive to
the additional regulatory elements that may competitively interact
with the E-P pair to be predicted, demonstrating the importance of
using large genomic contexts in EPI models.

Given that TransEPI enables accurate EPI prediction, we
extended the framework to find the target genes of non-coding
mutations. By applying the model on mutations associated with
neural diseases or brain disorders, TransEPI found target genes that
are functionally associated with neural functions. Moreover, these
disease-associated non-coding mutations are found to have a higher
ratio to act on target genes than those irrelevant to diseases.

Although TransEPI has achieved the state-of-the-art performance,
there is still much room for improvement. For example, the time
complexity and memory usage required by the standard Transformer
module [Vaswani et al., 2017] are quadratic to the length of
the input sequence, which are computationally expensive. It is
infeasible for us to take larger genomic contexts into consideration
in our model. In the future, we may leverage more light-weight
Transformer architectures [Zhou et al., 2020, Choromanski et al.,
2020, Katharopoulos et al., 2020] to alleviate the problem. As for
datasets, we currently leverage only EPIs identified by Hi-C and
ChIA-PET. Future versions of TransEPI could consider using EPIs
identified by the other 3C-based methods like capture Hi-C [Mifsud
et al., 2015] and HiChIP[Mumbach et al., 2016], which are more
suitable to detect EPIs. Besides, due to the resolution of 3C-based
experiments, the assignment of enhancers to target promoters may
be ambiguous and thus make the training data noisy. It is of
interest to explore how to integrate additional evidence (e.g.: eQTL
mapping) or employ the models enhancing the resolution of Hi-C
data [Zhang et al., 2018, Li and Dai, 2020]to improve the quality of
training data.
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