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Abstract 
Motivation: Identifying disease-related genes is important for the study of human complex diseases. 

Module structures or community structures are ubiquitous in biological networks. Although the modular 

nature of human diseases can provide useful insights, the mining of information hidden in multiscale 

module structures has received less attention in disease-gene prediction.   

Results: We propose a hybrid method, HyMM, to predict disease-related genes more effectively by 

integrating the information from multiscale module structures. HyMM consists of three key steps: ex-

traction of multiscale modules, gene rankings based on multiscale modules and integration of multiple 

gene rankings. The statistical analysis of multiscale modules extracted by three multiscale-module-

decomposition algorithms (MO, AS and HC) shows that the functional consistency of the modules grad-

ually improves as the resolution increases. This suggests the existence of different levels of functional 

relationships in the multiscale modules, which may help reveal disease-gene associations. We display 

the effectiveness of multiscale module information in the disease-gene prediction and confirm the ex-

cellent performance of HyMM by 5-fold cross-validation and independent test. Specifically, HyMM with 

MO can more effectively enhance the ability of disease-gene prediction; HyMM (MO, RWR) and HyMM 

(MO, RWRH) are especially preferred due to their excellent comprehensive performance, and HyMM 

(AS, RWRH) is also good choice due to its local performance. We anticipate that this work could provide 

useful insights for disease-module analysis and disease-gene prediction based on multi-scale module 

structures.    
Availability: https://github.com/xiangju0208/HyMM  
Contact: limin@mail.csu.edu.cn   

Supplementary information: Supplementary data are available at Bioinformatics online.   

 

 

 

1 Introduction  

The progress of human disease-gene discovery has helped understand the 

underlying molecular basis of human diseases, but genes known to be as-

sociated with diseases only account for a very small proportion of the in-

cidences (Barabasi, et al., 2011; Kann, 2010; Moreau and Tranchevent, 

2012; Wang, et al., 2011). Traditional approaches such as linkage analysis 

and genome-wide association studies often provide a long list of candidate 

genes, requiring expensive and time-consuming experimental identifica-

tion (Botstein and Risch, 2003; Hirschhorn, 2009). Therefore, developing 

computational algorithms for predicting disease-related genes is indispen-

sable to accelerate the discovery of disease-related genes (Li, et al., 2019; 

Luo, et al., 2019; Moreau and Tranchevent, 2012).    
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Human complex diseases can be recognized as the consequences of per-

turbations or functional abnormalities of biomolecule networks (del Sol, 

et al., 2010). Thus, network-based algorithms have been a popular strategy 

for disease-gene prediction (Cáceres and Paccanaro, 2019; Hu, et al., 2018; 

Lei and Zhang, 2019; Lin, et al., 2018; Luo and Liang, 2015; Moreau and 

Tranchevent, 2012; Peng, et al., 2017; Valdeolivas, et al., 2018; Yang, et 

al., 2015; Zeng, et al., 2017) and “guilt-by-association” provides a top-

down central principle for predicting disease-related genes in the networks. 

For example, some algorithms infer disease-related genes by considering 

the shortest-path distance or closeness between candidate genes and 

known disease gene (set) in a network (Hsu, et al., 2011; Hu, et al., 2018; 

Zhu, et al., 2012); some algorithms make use of network propagation to 

extract disease-related information (Chen, et al., 2009; Cowen, et al., 2017; 

Jiang, 2015; Köhler, et al., 2008); some module-based algorithms are also 

applied to the analysis of disease genes/modules as well as related issues 

(Akram and Liao, 2017; Choobdar, et al., 2019; Kitsak, et al., 2016; Liu, 

et al., 2012; Sun, et al., 2011). As we know, module structures or commu-

nity structures are ubiquitous in the biomolecule networks. The modular 

nature of human diseases can provide useful insights for the study of dis-

eases, but it has not been fully explored for disease-gene prediction 

(Choobdar, et al., 2019; Oti and Brunner, 2007).  

Generally, genes related to the same or similar diseases are more similar 

functionally and their products tend to be highly interconnected in biomol-

ecule networks, forming so-called disease modules (Barabasi, et al., 2011; 

Dwivedi, et al., 2020). However, genes related to the same disease are 

usually found to be distributed in several modules/subnetworks by specific 

algorithms (Barabasi, et al., 2011; Lage, et al., 2007). There are several 

possible reasons for this phenomenon. (1) Complex diseases usually in-

volve functional abnormalities of multiple genes, and these genes may 

have different functions, playing different roles in the development of 

complex diseases (Barabasi and Oltvai, 2004). (2) The existing biomole-

cule networks such as protein-protein interactions are still incomplete 

(Menche, et al., 2015; Peng, et al., 2016). This may cause the detected 

network modules to be broken and incomplete. (3) Detected modules in 

networks are often algorithm-specific, because specific definitions of 

modules are different for different module identification algorithms 

(Fortunato and Hric, 2016). For example, Disease Module Identification 

DREAM Challenge specifies a valid module size between 3 and 100 

(Choobdar, et al., 2019). Furthermore, some module identification algo-

rithms may split a large module into several small submodules, or aggre-

gate several small modules into a large one, because of the resolution re-

lated to the intrinsic definition or mechanism of algorithms (Fortunato and 

Barthélemy, 2007; Xiang, et al., 2018; Xiang, et al., 2017). In this case, 

algorithms with flexible resolution may more effectively mine the module 

structures of networks.         

Multi-scale structures widely exist in various natural and artificial com-

plex networks, so multi-scale module detection is an important strategy 

for studying complex systems such as biomolecular networks (Ahn, et al., 

2010; Mucha, et al., 2010). For example, a module in a protein network 

may contain several sub-modules, e.g., some protein complexes (such as 

SAGA) contain several secondary complexes. Most of biological infor-

mation (e.g., gene function and disease phenotype data) is organized in the 

form of hierarchical structure. Dunn, et al. (2005) used edge-betweenness 

clustering to separate protein interaction networks into modules 

correlating to annotated gene functions, where modules of different sizes 

can be identified by removing different numbers of edges. Lewis, et al. 

(2010) investigated the correlation between the functions of sets of 

proteins and network module/community structures at multiple 

resolutions/scales, and they showed that there exist different important 

scales of module/community structures depending on studied proteins and 

processes. Wang, et al. (2011) proposed a fast hierarchical clustering al-

gorithm using the local metric of edge clustering value, which can uncover 

the hierarchical organization of functional modules that approximately 

corresponds to the hierarchical structure of GO annotations. In the 

DREAM Challenge, extended (multiscale) modularity optimization was 

used to identify disease modules (Choobdar, et al., 2019). Multiscale mod-

ule structures can provide more information than single-scale one, but 

there are still many challenging problems, such as how to mine the 

valuable information hidden in the multiscale structures.  

In order to make use of multiscale module structures to predict disease-

related genes more effectively, we propose a hybrid method integrating 

the information of multiscale modules (HyMM), which consists of three 

key stages: extraction of multiscale modules, disease-gene scorings/rank-

ings based on multiscale module structures and integration of multiple 

gene rankings (see Figure 1). The rest of the paper is organized as follows. 

In section 2, we introduce three multiscale module decomposition algo-

rithms, including the sampling of multiscale module partitions, and pro-

pose the method for gene scorings/rankings based on multiscale modules. 

Then, we present a theoretical framework for integrating multi-feature in-

formation from multiscale modules or others, based on naïve Bayes theory. 

In section 3, we first introduce the experimental settings. Then, we con-

duct statistical analysis of multiscale modules, display the effectiveness of 

disease-gene scorings based on multiscale modules in disease-gene pre-

diction, and verify the performance of HyMM by 5-fold cross-validation 

and independent test. Finally, we come to a conclusion.    

2 Methods 

Here, we propose a hybrid method for disease-gene prediction by integrat-

ing multiscale module structures (see Figure 1 for the workflow of 

HyMM). In the following, we introduce the three key steps of HyMM: 

extracting multiscale modules, rankings of disease-related genes based on 

multiscale modules, and integration of multiple gene rankings.      

 

Figure 1. Workflow of the hybrid method for integrating the information of 

multiscale modules to predict disease-related genes in the network (HyMM).   

2.1 Extraction of multiscale modules 

Many algorithms have been proposed to detect module/community struc-

tures at different scales (Fortunato and Hric, 2016; Singhal, et al., 2020). 

We here use three typical multi-scale module identification algorithms 

(see Figure 1): modularity optimization (MO) (Newman and Girvan, 2004; 

Xiang, et al., 2015), asymptotic surprise (AS) (Xiang, et al., 2019) and fast 

hierarchical clustering (HC) (Wang, et al., 2011), all of which have flexi-

ble parameters to adjust the scales or sizes of modules. These algorithms 
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can extract a set of network module partitions that contain important in-

formation of network structure, which can help predict disease genes.   

2.1.1 Multiscale module-identification algorithms  

(1) Modularity optimization (MO). MO detects module structure via 

optimizing modularity Q—a widely used quality function of module struc-

ture (Newman and Girvan, 2004). MO has been widely applied to module 

detection in networks (Choobdar, et al., 2019; Rahiminejad, et al., 2019). 

Given a module partition of a network, modularity Q can be calculated as,  

𝑄 = ∑ (
𝑘𝑠

𝑖𝑛

2𝑀
− 𝛾 (

𝑘𝑠

2𝑀
)

2

)𝑠 ,                 (1) 

where 𝛾 is the resolution parameter; 𝑀 is the total number of edges in the 

network; 𝑘𝑠
𝑖𝑛 the inner degree of module s; 𝑘𝑠 the total degree of module 

s; the sum over all modules in the network. MO can detect module struc-

tures at different scales by adjusting the resolution parameter 𝛾. It can find 

large-size modules if the 𝛾-value is small. It can find small-size modules 

if the 𝛾-value is large. Network can be decomposed into a set of single-

node modules if 𝛾 is large enough, e.g., 𝛾 > 2𝑀/𝑘𝑚𝑖𝑛
2  where 𝑘𝑚𝑖𝑛 is the 

minimum node degree in the network (Xiang, et al., 2012).    

(2) Asymptotic surprise (AS). It is an extension of surprise for commu-

nity/module detection, originally proposed by Aldecoa, et al. (Aldecoa and 

Marín, 2014). Traag, et al. proposed the asymptotic approximation of sur-

prise for weighted networks, by considering only the dominant term and 

using Stirling’s approximation of the binomial coefficient (Traag, et al., 

2015). Recently, the multiscale version of the asymptotic surprise was pro-

posed by adjusting the null model (Xiang, et al., 2019). It can be written 

as,   

𝑆(𝛾) = 𝑚𝐷(𝑞||𝑞),                            (2) 

where 𝐷(𝑥||𝑦) = 𝑥 𝑙𝑛(𝑥/𝑦) + (1 − 𝑥) 𝑙𝑛((1 − 𝑥)/(1 − 𝑦)) is the Kull-

back-Leibler divergence, which measures the distance between two prob-

ability distributions x and y; 𝑞 = 𝑚𝑖𝑛𝑡/𝑚 denotes the probability that an 

edge exists within a community; 𝑚 is the number of existing edges in the 

network; while 𝑚𝑖𝑛𝑡 is the number of existing intra-community links in 

the partition; 𝑞 = 𝛾𝑞̄ = 𝛾𝑀𝑖𝑛𝑡/𝑀 denotes the expected value of 𝑞; M is 

the maximal possible number of edges in a network; 𝑀𝑖𝑛𝑡 is the maximal 

possible number of intra-community edges in a given partition; 𝛾 is the 

resolution parameter.           

(3) Fast hierarchical clustering (HC). It is a fast hierarchical clustering 

algorithm based on the local metric of edge clustering value (ECV) (Wang, 

et al., 2011),  
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
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
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 
,               (3) 

where 𝑁𝑢 and 𝑁𝑣  denote the sets of neighbors of nodes 𝑢 and 𝑣, respec-

tively; 𝐼𝑢,𝑣 = 𝑁𝑢 ∩ 𝑁𝑣  denotes the set of common neighbors of nodes 𝑢 

and 𝑣; 𝜔(𝑢, 𝑠) denotes the weight of edge between 𝑢 and 𝑠. Given an un-

directed network and a threshold 𝜆, a subgraph H is a 𝜆-module if    

( , ) ( , )in out

w w

v H v H

d H v d H v
 

  ,                   (4) 

where 𝜆 is a tunable parameter; 𝑑𝑤
𝑖𝑛(𝐻, 𝑣) and 𝑑𝑤

𝑜𝑢𝑡(𝐻, 𝑣) denote the in- 

and out-degrees of H, respectively. HC is an agglomerate algorithm. First, 

all nodes in the network are initialized as singleton modules. Then, all the 

edges are enqueued into a queue in nonincreasing order in terms of their 

ECV-values. The higher ECV-value the edge has, the more likely its two 

nodes are inside a module. Finally, HC assembles all the singleton mod-

ules into 𝜆 -modules by gradually adding edges in the queue to modules. 

One can get 𝜆 -modules of different sizes in the network by adjusting the 

value of 𝜆. Generally, the larger the 𝜆-value is, the larger the size of mod-

ules and thus the less the number of modules. In order to make the corre-

lation between tunable parameter and module sizes consistent with other 

algorithms, we define a threshold parameter 𝛾 equivalent to 𝜆 by,  

( , )
1

=
+1 ( , )+ ( , )

out

w

v H

in out

w w

v H v H

d H v

d H v d H v





 




 
.                      (5) 

It provides a threshold for the ratio between out-degree and total degree of 

module.   

2.1.2 Sampling of multiscale module partitions  

To extract a set of meaningful module partitions at different scales 

{𝛹1, 𝛹2 , ⋯ 𝛹ℎ , ⋯ 𝛹𝐻}, we first define a meaningful range  [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥] of 

𝛾-values, which covers all possible resolution samplings. Theoretically, 

𝛾𝑚𝑖𝑛  and 𝛾𝑚𝑎𝑥  can be defined as 𝛾𝑚𝑖𝑛 = 𝑚𝑎𝑥{ 𝛾|#[𝛹ℎ] = 1]}  and 

𝛾𝑚𝑎𝑥 = 𝑚𝑖𝑛{ 𝛾|#[𝛹ℎ] = 𝑁]}. Here, we use the semi-empirical boundary 

for the three multiscale algorithms mentioned above, because it is usually 

difficult to obtain accurate interval boundaries.  

Then, we use exponential sampling to sample 𝛾-values from 𝛾𝑚𝑖𝑛  to 

𝛾𝑚𝑎𝑥, because it can give a reasonable coverage to different scales in the 

network, according to previous research  (Xiang, et al., 2015; Xiang, et al., 

2019). The exponential sampling uses a set of 𝛾 -values that are equally 

spaced on a logarithmic scale, i.e.,  

𝑙𝑜𝑔 𝛾ℎ+1 − 𝑙𝑜𝑔 𝛾ℎ ≡ 𝛥 𝑙𝑜𝑔 𝛾,                             (6) 

Here, 𝛥 𝑙𝑜𝑔 𝛾=0.01 for default. The multiscale methods can extract a set 

of module partitions corresponding to the set of sampled 𝛾-values.   

2.2 Rankings of genes based on multiscale module structures  

Given the set of extracted module partitions {𝛹1 , 𝛹2, ⋯ 𝛹ℎ , ⋯ 𝛹𝐻}, known 

disease-gene associations as well as disease-disease associations, we cal-

culate the disease-relatedness scorings of modules and genes for each 

module partition one by one, and then generate a disease-association scor-

ing/ranking matrix of genes (see Figure 1). The hypothesis of evaluating 

the disease relatedness of modules and genes is that the larger the propor-

tion of disease-related genes in a module, the more likely the module is 

related to the disease, and thus the more likely other genes in the module 

are related to the disease. 

Definition 1. A vector indicating association scores between 𝑁 genes 

and a disease under study is defined as,  

1

1 2( , , , , )T N

i Nl l l l l R =  ,                        (7) 

where 𝑙𝑖=1 if the i-th node is a known disease-related gene and 𝑙𝑖=0 oth-

erwise in PPI network.  

Definition 2. A partition matrix 𝐵
(ℎ)

 is defined to indicate the ℎ-th 

module partition, where 𝐵𝑖,𝑗

(ℎ)
 indicates whether gene 𝑖 belongs to module 

𝑗 in this partition (see Figure 1).  

Definition 3. A diagonal matrix 𝐶
(ℎ)

 for each partition is defined as,  

( )
1

( ) ( )= ( )k T kC diag e B
−

,                            (8) 

where 𝑒 = (1,1, ⋯ ,1)𝑇 ∈ 𝑅𝑁×1.            

Now, we evaluate the disease relatedness of all modules in the ℎ-th 

module partition by,  

( )( ) ( ) ( )
T

h T h h

Ms l B C= .                              (9) 

And the disease-relatedness scores of all genes can be calculated by,  

( ) ( ) ( )h h h

G Ms B s= .                                 (10) 

Then, we can introduce a scoring matrix of genes 𝑆𝐺 =

(𝑠⃗𝐺
(1)

, 𝑠⃗𝐺
(2)

, ⋯ , 𝑠⃗𝐺
(ℎ)

, ⋯ , 𝑠⃗𝐺
(𝐻)

) to record the gene scoring lists for all module 
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partitions. Finally, we can transform the scoring matrix of genes into the 

ranking matrix of genes 𝑅𝐺 = (𝑟𝐺
(1)

, 𝑟𝐺
(2)

, ⋯ , 𝑟𝐺
(ℎ)

, ⋯ , 𝑟𝐺
(𝐻)

) by the decreas-

ing order of scores of genes,  

𝑅𝐺 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑛𝑘(𝑆𝐺).                                (11) 

Note that the mean value of ranking is used for genes with the same scores.  

According the above gene scoring/ranking strategy, genes within the 

same module have the same disease-relatedness scorings/rankings. There-

fore, these scoring/ranking lists of genes contain the information of dis-

ease relatedness as well as the information of multiscale module structures 

from low to high resolutions. For example, if a module partition consists 

of two modules: one contains disease genes while not for another, gene 

scorings/rankings will have two values/levels. If the module with disease 

genes further split into two sub-modules with disease genes, then gene 

scorings/rankings will have at least three values/levels when there is no 

degeneracy of module scorings. The number of values/levels in the scor-

ing/ranking list of genes is closely related to the number of disease-related 

modules in a module partition. As the resolution increases, we can get the 

gene scoring/ranking lists with more levels/values, thereby revealing dif-

ferent levels of disease-related information in the network.   

Definition 4. From the perspective of kernel function, a kernel matrix 

for each module partition 𝛹ℎ  is defined as,   

𝐾
(ℎ)

= 𝐵̃
(ℎ)

(𝐵̃
(ℎ)

)
𝑇
,                                  (12) 

where 𝐵̃
(ℎ)

= 𝐵
(ℎ)

𝐶̃
(ℎ)

 is a normalized partition matrix, 𝐶̃
(ℎ)

=

(𝑑𝑖𝑎𝑔(𝑒⃗
𝑇

𝐵
(ℎ)

))
−1/2

 and 𝑒 = (1,1, ⋯ ,1)𝑇 ∈ 𝑅𝑁×1.  

This kernel matrix indicates the relationships between genes at the ℎ-th 

partition, or say, the information extracted from this partition has been 

contained in the kernel matrix. As a result, all the information extracted 

from multi-scale module partitions can be recorded in the set of multi-

scale module kernel matrices {𝐾
(ℎ)

|ℎ = 1~𝐻}. And then, the disease-re-

latedness scores of all genes for module partition 𝛹ℎ  can be calculated by,  

( ) ( )h h

Gs K l= .                                       (13) 

This provides another possible way to understand the scorings based on 

multi-scale module partitions.     

2.3 Integration of multiple gene rankings   

In order to effectively fuse the information derived from multiple module 

partitions, we introduce a theoretical framework for integrating multi-fea-

ture information based on naive bayesian theory. Given a set of features 

{𝑓ℎ|ℎ = 1~𝐻}, the probability at state 𝑥 can be expressed as,    

1 2

1 2

1 2

1

1 2

( ) ( , , , )
( , , , )

( , , , )

( ) ( )

( , , , )

H

H

H

H

h

h

H

P x P f f f x
P x f f f

P f f f

P x P f x

P f f f

=

=

=


.                (14) 

Here 𝑃(𝑓ℎ|𝑥) = 𝑃(𝑓ℎ)𝑃(𝑥|𝑓ℎ)/𝑃(𝑥), where 𝑃(𝑓ℎ) denotes the prior prob-

ability of feature, and 𝑃(𝑥) denotes the prior probability of a gene being 

at state x. Let 𝑃(𝑓ℎ) ≡ 1/𝐻 and 𝑃(𝑥) ≡ 𝐶, then  

𝑃(𝑥|𝑓1 , 𝑓2, ⋯ , 𝑓𝐻) ∝ ∏ 𝑃(𝑥|𝑓ℎ)𝐻
ℎ=1 .                      (15) 

In disease-gene prediction, considering each module partition as a fea-

ture, we have calculated the scoring list 𝑠⃗𝐺
(ℎ)

 of candidate genes being re-

lated to a disease, and get the ranking list of the genes 𝑟
(ℎ)

 by the decreas-

ing order of their scores. So, 𝑃(𝑥|𝑓ℎ) can be defined as a function of the 

ℎ-th scoring/ranking list of genes. Consider that the higher ranking of a 

gene means the larger value of the conditional probability 𝑃(𝑥𝑔|𝑓ℎ) . 

Therefore, we can define 𝑃(𝑥𝑔|𝑓ℎ) ∝ exp(−𝛽ℎ𝑟𝑔
(ℎ)

) for each gene 𝑔. As a 

result, the above equation can be expressed as,   

𝑃(𝑥𝑔|𝑓1, 𝑓2, ⋯ , 𝑓𝐻) ∝ ∏ 𝑒−𝛽ℎ𝑟𝑔
(ℎ)

𝐻
ℎ=1 .                    (16) 

This study uses the strategy to get the comprehensive scores/rankings of 

all candidate genes for multiple features.   

Given the above ranking matrix of genes from multiscale modules 

(MM), we calculate a comprehensive scoring list 𝑠⃗𝐺  of genes and then get 

the ranking list of genes 𝑟𝑀𝑀 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑛𝑘(𝑠⃗𝐺) (see Figure 1).  

The scorings/rankings from multiscale modules may provide useful and 

complementary information for disease-gene prediction, which is differ-

ent from that of many other algorithms. So, we further integrate these 

rankings (𝑟𝑀𝑀) with that (denoted by 𝑟𝑇𝐴) of eight typical algorithms (e.g., 

RWR, KS, RWRH and BiRW) (see Figure 1). The final scores/rankings 

of genes will be used to prioritize candidate genes. We will show that this 

integration can effectively improve the ability to predict disease genes due 

to information complementarity.     

3 Results 

In this section, we first introduce the experimental settings, including the 

datasets and evaluation methods. Then, we conduct statistical analysis of 

extracted multiscale modules, show the effectiveness of disease-gene 

scorings based on multiscale modules, and evaluate the performance of 

HyMM in predicting disease-related genes by a series of experiment tests 

and analyses.    

3.1 Experimental settings   

3.1.1 Datasets    

In order to conduct functional analysis of modules, we adopt three types 

of functional groups: Gene Ontology (GO) annotations, pathways, and 

disease-gene sets. To evaluate the predictive ability of algorithms, we em-

ploy the disease-gene associations, gene-gene associations and disease-

disease associations. See Supplementary Note 1 for details of datasets.  

(1) The GO annotations are downloaded from the Molecular Signatures 

Databases (MSigDB) (Consortium, 2018; Subramanian, et al., 2005). 

MSigDB omits GO terms with fewer than 5 genes or in very broad cate-

gories.   

(2) The pathway-gene sets are also obtained from the MSigDB, which 

are curated from several online pathway databases (such as KEGG and 

Reactome), publications in PubMed, and knowledge of domain experts  

(Kanehisa, et al., 2015; Matthews, et al., 2009).  

(3) Disease-gene sets. (a) We obtain the integrated disease-gene dataset 

(Ghiassian, et al., 2015; Menche, et al., 2015) retrieved from GWAS and 

OMIM (Hamosh, et al., 2005). MeSH is used to combine the different dis-

ease nomenclatures of the two sources into a single standard vocabulary. 

(b) Furthermore, we obtain the disease-gene associations from DisGeNet, 

and map the UMLS disease into MeSH disease (Piñero, et al., 2017). Dis-

GeNET is known as a platform that contains one of the largest publicly 

available collections of disease-related genes.    

(4) The disease-disease associations are derived by using the associa-

tions between symptoms and diseases (Zhou, et al., 2014).  

(5) Gene-gene associations are derived from a comprehensive protein-

protein interaction (PPI) network that consists of the multiple sources of 

protein interactions (Menche, et al., 2015). The network data considers 

only physical protein interactions with experimental support. The identi-

fiers of proteins are mapped into gene symbols.    

Moreover, we construct disease-gene heterogenous network by inte-

grating gene-gene associations, disease-gene associations and disease-dis-
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ease associations mentioned above. Note that only the disease-gene asso-

ciations in training set are used in the construction of the heterogenous 

network.  

 

3.1.2 Metrics for analysis of multiscale modules    

In order to quantify the functional relevance of modules, we define the 

functional consistency of a module 𝑀𝑚  with respect to a functional group 

𝐺𝑓, by,   

𝐶𝑓,𝑚 = |𝐺𝑓 ∩ 𝑀𝑚|/|𝑀𝑚|,                          (17) 

where a functional group denotes a set of genes with common character-

istics and |*| denotes the number of elements in the group. For a set of 

functional groups, the functional consistency of a module is defined as the 

maximal functional consistency over all functional groups,  

𝐶𝑚 = 𝑚𝑎𝑥 
𝑓

𝐶𝑓,𝑚.                               (18) 

For a module partition 𝛹ℎ , consisting of a set of modules, its functional 

consistency is defined as the weighted average of the functional con-

sistency scores of modules,  

𝐶(ℎ) = ∑ 𝜔𝑚𝐶𝑚𝑚 / ∑ 𝜔𝑚𝑚 ,                    (19) 

where 𝜔𝑚 is proportional to the number of genes in the module.  

3.1.3 Evaluation methods   

To investigate the performance of algorithms in disease-gene prediction, 

we use two evaluation strategies: traditional 5-fold cross-validation 

(5FCV) and independent test (IndTest).  

(1) For 5FCV, known disease-related genes for each disease are ran-

domly split into five subsets. In each realization, one of the subsets is 

treated as a test set, while the rest is treated as a training set.  

(2) For IndTest, the disease-gene associations in the Mesh dataset are 

used as training set, and the disease-gene associations that belong to the 

DisGeNet dataset but do not belong to the Mesh dataset are used as test 

set.   

Then, two kinds of standard evaluation metrics are used to quantify the 

performance of the prediction algorithms from the global and local per-

spectives respectively. 

(1) Global evaluation metric. The area under the receiver operating 

characteristic curve (AUROC) is a single scalar value and it is widely used 

to evaluate the comprehensive performance of the prediction algorithms. 

In a statistical sense, AUROC can be considered as the probability that the 

score of a randomly selected positive sample is larger than that of a ran-

domly selected negative sample.   

(2) Local evaluation metric. Differing from AUROC, top-k Recall fo-

cuses on how many disease-related genes in the test set have been found 

in the top-k genes of the ranking list. As k-value varies, top-k Recall can 

provide a local performance curve intuitively to compare the performance 

of algorithms. For convenience of comparison, we further calculate the 

area under the top-k Recall curve (AURecall) to comprehensively and 

quantitatively evaluate the local performance of algorithms.   

3.2 Statistical analysis of multiscale modules    

We quantify the functional consistency of module partitions at different 

scales by using three functional groups: disease-gene set, pathways and 

GO annotations. The results shows that the functional consistency scores 

of module partitions at different levels increase with the increase of the 

resolution parameter (Figure S1). This means that the proportion of simi-

lar genes within the modules is increasing with the resolution parameter: 

these genes will more likely tend to have the same GO annotations, or 

belong to the same pathway or disease-gene set. This is because the edge 

density in the modules becomes higher with the increase of resolution pa-

rameter. Genes in the modules more likely tend to interact with each other, 

and thus have the same or similar functions or participate in common bio-

logical process. Therefore, the module partitions at different scales can 

provide different levels of information about the relationship between 

genes. This may provide more comprehensive understanding of genes and 

their functions.  

Further, we analyze the distribution of disease-related genes/modules 

(referred as to modules containing disease-related genes) at different 

scales. As expected, the number of modules (Nm) and disease-related mod-

ules (Ndm) in module partition increases with the resolution parameter (see 

Figure S2(a)-(c)), because the network is being split into smaller and 

smaller modules. With the increase of resolution, the disease-related genes 

tend to be dispersed into more modules of smaller sizes (see Figure S2(d)-

(f)), but these modules often have stronger functional consistency; at the 

same time, the total number of genes within the disease-related modules 

also becomes less and less (see Figure S2(d)-(f)), and the disease-related 

genes tend to be enriched in a subnetwork composed of the disease-related 

modules (see Figure S2(g)-(i)). As discussed above, the genes within 

these disease-related modules generally have stronger functional correla-

tion (for diseases, pathways or GO). Thus, they are more likely to be dis-

ease-related genes.      

3.3 Effectiveness of disease-gene scorings based on multiscale 

module structures  

To check if multiscale module structures can really provide useful infor-

mation for disease-gene prediction, we firstly use the comprehensive scor-

ings of genes based on multiscale modules (i.e., HyMM(#, NULL)) di-

rectly to identify disease-related genes. The results show that HyMM(#, 

NULL), especially with MO, has comparable and even better performance 

in predicting disease-related genes (see Figure 2, Figure 3, Figure 4, Fig-

ure 5, and Figures S3-S6).  

In the PPI network, for example, HyMM(MO/AS/HC, NULL) has 

larger AUROC-values than VS (Figure 2). The top-k recall curve of 

HyMM(MO, NULL) is similar to that of VS, and higher than that of ICN 

(Figure 3). The AURecall-values of the algorithms again confirm their 

above results of top-k recalls (Figure 2, Figure 3 and Figure S3-S4). In 

the disease-gene heterogeneous network, HyMM(MO/AS, NULL) has 

larger AUROC- and AURecall-values than CIPHER and KATZ (Figure 

4 and Figure 5). Moreover, in terms of AUROC and AURecall (or top-k 

recall), the multiscale algorithm MO is better than AS and HC in disease-

gene prediction.   

3.4 Performance evaluation in cross-validation  

The unique information from multiscale modules may improve the pre-

dictive ability of disease genes due to the information complementarity. 

Here, we first study the performance improvement of HyMM compared 

to eight baseline algorithms by 5-fold cross-validation, and then compare 

the performance of HyMM using different multiscale algorithms (see Fig-

ure 2, Figure 3, Figure 4 and Figure 5)  

3.4.1 Performance improvement of HyMM to baseline algorithms   

Here, we provide a pairwise comparison for each HyMM algorithm to the 

corresponding baseline algorithms both in the PPI network and the dis-

ease-gene heterogeneous network.     
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In the PPI network, HyMM(MO,#), i.e., HyMM with MO, outperforms 

the corresponding baseline algorithms (RWR, KS, VS and ICN) both in 

terms of AUROC and AURecall (see Figure 2). In the disease-gene het-

erogeneous network, HyMM(MO,#) also outperforms the corresponding 

algorithms (RWRH, CIPHER and KATZ) both in terms of AUROC and 

AURecall, except for BiRW (see Figure 4); and HyMM with MO has the 

second highest AURecall improvement ratio for RWRH as well as the 

second highest AURecall-value, meaning that it has excellent local per-

formance. These results indicate that the integration of MO can result in 

the performance improvement for most baseline algorithms, especially for 

the local performance.      

HyMM with AS in the PPI network can improve the AURecall perfor-

mance of RWR/KS/ICN, and only the AUROC performance of VS (see 

Figure 2). In the disease-gene heterogeneous network, HyMM with AS 

can improve the AURecall performance of RWRH/CIPHER/KATZ, and 

only the AUROC performance of CIPHER/KATZ (see Figure 4). And, 

HyMM with AS has the highest AURecall-improvement ratio for RWRH. 

These results means that the integration of AS also can lead to the large 

performance improvement in many cases, e.g., especially for the local per-

formance of RWRH, though it is slightly inferior to MO in the global per-

formance.    

Also, HyMM with HC in the PPI network can only improve the 

AUROC performance of VS, but it can improve the AURecall perfor-

mance of four baseline algorithms (RWR/KS/VS//ICN) (see Figure 2). 

HyMM with HC in the disease-gene heterogeneous network can improve 

the AURecall performance of RWRH/CIPHER/KATZ and the AUROC 

performance of CIPHER/KATZ, but the improvement ratio of HyMM 

with HC is inferior to HyMM with MO and AS (see Figure 4).     

 

 

Figure 2. In the PPI network, performance comparison of (a) AUROC and (b) 

AURecall obtained by HyMM algorithms and four baseline algorithms. Mul-

tiscale module identification algorithms: MO, AS and HC. “(#, RWR)” denotes 

the HyMM algorithm integrating MO/AS/HC with RWR. “NULL” means that 

the multi-scale algorithm or baseline algorithm is not applicable. The percent-

age on the bar is performance improvement ratio to baseline algorithm.      

 

Figure 3. In the PPI network, top-k recall curves of HyMM with MO, com-

pared to corresponding baseline algorithms: (a) RWR, (b) KS, (c) VS, (d) ICN.  

3.4.2 Comparison and recommendation of HyMM using different 

multiscale algorithms  

The above results show that, in most cases, HyMM with MO can improve 

the baseline algorithms more effectively than HyMM with other mul-

tiscale algorithms (AS and HC) (see Figure 2 and Figure 4), obtaining 

better prediction performance, especially when integrating with RWRH in 

the heterogeneous network or integrating with RWR/KS in the PPI net-

work.    

The comparison between AS and HC shows that, in the PPI network, 

HyMM with HC has higher AURecall-values than HyMM with AS, while 

they have similar AUROC values (see Figure 2). In the disease-gene het-

erogeneous network, HyMM with AS has better AUROC and AURecall 

performance than HyMM with HC, and HyMM(AS, RWRH) has the high-

est AURecall-value (see Figure 4).  

As a whole, based on the above analysis, the multiscale algorithm MO 

is preferred. In the PPI network, HyMM(MO,RWR) and HyMM(MO,KS) 

are both good choices because of their good global and local performance, 

while HyMM(HC, RWR/KS) is the second recommendation in terms of 

the local performance. In the heterogeneous network, HyMM(MO, 

RWRH) is the best recommendation in terms of its global and local per-

formance, while HyMM(AS, RWRH) is the second recommendation in 

terms of its local performance.     

 

 

Figure 4. In the disease-gene heterogeneous network, performance comparison 

of (a) AUROC and (b) AURecall obtained by HyMM algorithms and four base-

line algorithms: RWRH, CIPHER, BiRW and KATZ. “(#, RWRH)” denotes 

the HyMM algorithm with MO/AS/HC with RWRH. “NULL” means that the 

multi-scale algorithm or baseline algorithm is not applicable. The percentage 

on the bar is performance improvement ratio to baseline algorithm.         
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Figure 5. In the disease-gene heterogeneous network, top-k recall curves of 

HyMM with MO, compared to corresponding baseline algorithms: (a) RWRH, 

(b) CIPHER, (c) BiRW, (d) KATZ. 

3.5 Performance evaluation with external dataset    

Furthermore, we calculate the scores of candidate genes by using the Mesh 

disease-gene associations as a training set, and then evaluate the prediction 

performance by using the disease-gene associations belonging only to Dis-

GeNet as a test set.    

In both the PPI network and the heterogeneous network, HyMM with 

MO can improve the global and local performance of all the baseline al-

gorithms in pairwise comparisons (see Figures S7-S8). HyMM with 

AS/HC can improve the local performance of all the baseline algorithms 

in the PPI network as well as the baseline algorithms (except for BiRW) 

in the heterogeneous network.  

In the PPI network, HyMM(MO,RWR) and HyMM(MO,KS) are still 

good choices in terms of global and local performance metrics, while 

HyMM(AS,RWR) and HyMM(AS,KS) are better candidates in terms of 

local performance metrics (see Figures S7). In the heterogeneous network, 

both HyMM(MO,RWRH) and HyMM(MO,BiRW) are good choices in 

terms of global and local performance metrics (see Figures S8).  

As a whole, HyMM with MO has excellent performance in the inde-

pendent test of external dataset; and HyMM(MO,RWR/KS) and 

HyMM(MO,RWRH) are still good recommendations.  

3.6 Case study     

As an example, we obtain a list of top-20 candidate genes for Alzheimer's 

disease (AD) (see Table S1). Through literature verification, we find that 

many genes in the list have been proven to have associations with AD. For 

example, Park, et al. (2021) showed that ALK is important to the tau-me-

diated AD pathology; Pichiah, et al. (2020) showed that C4B was differ-

entially expressed in AD; Stoye, et al. (2020) demonstrated that APOA1 

might be a key factor within intestine altered in AD-like pathology. 

MTHFR and MAPT have been recorded as related to AD in DisGeNet. 

See Supplementary Note 5 for details.  

By the enrichment analysis of the above genes, we obtain the most rel-

evant KEGG pathways and GO terms (see Table S2 and Table S3), many 

of which have been known to be related to AD, such as the pathways: 

Lysosome, Metabolic pathways, Oxidative phosphorylation and Parkin-

son's disease.    

In addition, we analyze the druggability of the candidate genes (see Ta-

ble S1), and find that many genes correspond to protein targets of ap-

proved or clinical trial-phase drug candidates (Finan, et al., 2017; Wang, 

et al., 2019) and many genes have a large number of interacted drugs 

(Freshour, et al., 2020), which may be potential therapeutic agents (see 

Table S1).      

3.7 Parameter stability      

HyMM mainly involves the sampling parameter, as well as the parameter 

𝛽  measuring multiple features. For simplicity, we set 𝛽  as a vector of 

equal weights, though optimizing the parameter can generate better results. 

We here study the effect of the sampling parameter 𝛥 𝑙𝑜𝑔 𝛾 on prediction 

performance, because it is closely related to the number of multi-scale 

module partitions and the amount of information extracted from the net-

work.  

We calculate the AUROC and AURecall values of all HyMM algo-

rithms in the interval of 𝛥 𝑙𝑜𝑔 𝛾 ∈ [0.01, 0.2] (Figures S9-S10). The re-

sults show that the HyMM algorithms with MO and AS are very stable to 

the sampling parameter, while the HyMM algorithms with HC have rela-

tively large fluctuations.    

4 Conclusion 

Identifying human disease-related genes is important for the understand-

ing of the underlying molecule basis of diseases and the prevention, diag-

nosis and treatment of human diseases. Network-based algorithms for dis-

ease-gene prediction are very popular, because human complex diseases 

are usually considered to be caused by the perturbations or functional ab-

normalities of disease-related modules or subnetworks in the biomolecule 

networks. However, multi-scale module structures are not fully utilized in 

the analysis and prediction of disease-related genes, though it widely ex-

ists in complex systems such as biomolecular networks. Therefore, we 

proposed the hybrid method called HyMM that integrates the information 

of multiscale modules to predict disease-related genes in the network, 

which can effectively enhance the ability of disease-gene prediction due 

to information complementarity.   

Through three multiscale-module-decomposition algorithms (MO, AS 

and HC), we analyzed the functional consistency of multiscale modules 

and the distribution of disease-related genes in modules of different scales, 

and displayed the effectiveness of the information of multi-scale modules 

in identifying disease-related genes. By cross-validation and independent 

test, we confirmed the ability of HyMM to improve the performance of 

disease-gene prediction. The results showed that HyMM with MO can 

more effectively enhance the ability of disease-gene prediction in both 

global and local performances. HyMM(MO,RWR) and 

HyMM(MO,RWRH), as typical representatives, are especially preferred 

candidate algorithms, due to their excellent comprehensive performance 

in the PPI network and the heterogenous network, respectively. Moreover, 

HyMM(AS,RWRH) is also good choice due to its local performance.    

Overall, this work provides an effective strategy for integrating multi-

scale module structures to enhance the ability of disease-gene prediction. 

We anticipate that it can provide useful insights for disease-module anal-

ysis and disease-gene prediction based on multi-scale module structures.   
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Supplementary Note 1: Datasets     

 

Here, we describe in detail the relevant datasets used in the study.         

(1) GO-gene sets. Gene Ontology (GO) is developed to provide biologically meaningful annotations 

of genes and their products (http://geneontology.org/). A GO annotation consists of a GO term associated 

with a specific reference that describes the work or analysis upon which the association between a 

specific GO term and gene product is based. The GO annotations here are downloaded from the 

Molecular Signatures Databases (MSigDB; http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp), a 

collection of annotated gene sets (Consortium, 2018; Subramanian, et al., 2005). MSigDB omits GO 

terms with fewer than 5 genes as well as in very broad categories that would produce extremely large 

gene sets, and gene sets in each sub-collection are filtered to remove inter-set redundancy.    

(2) Pathway-gene sets. The pathway-gene sets here are also downloaded from the MSigDB 

(http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp), which are curated from several online 

pathway databases (such as KEGG and Reactome), publications in PubMed, and knowledge of domain 

experts (Kanehisa, et al., 2015; Matthews, et al., 2009). These gene sets are often canonical 

representations of a biological process compiled by domain experts. As described in MSigDB, the 

pathway-gene sets are curated from the following online databases: BioCarta: 

http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways; KEGG: http://www.pathway.jp; Pathway 

Interaction Database: http://pid.nci.nih.gov; http://www.ndexbio.org; Reactome: 

http://www.reactome.org; SigmaAldrich: http://www.sigmaaldrich.com/life-science.html; Signaling 

Gateway: http://www.signaling-gateway.org; SuperArray SABiosciences: 

http://www.sabiosciences.com/ArrayList.php; WikiPathways: https://www.wikipathways.org/.   

(3) Disease-gene sets. We use two disease-gene datasets. (a) The first dataset is an integrated disease-

gene dataset (Ghiassian, et al., 2015; Menche, et al., 2015) retrieved from GWAS (Genome-Wide 

Association Studies) and OMIM (Online Mendelian Inheritance in Man)(Hamosh, et al., 2005). We call 

it as the MeSH dataset, because MeSH (Medical Subject Headings ontology) is used to combine the 

different disease nomenclatures of the two sources into a single standard vocabulary. (b) The second 

dataset is obtained from DisGeNet (https://www.disgenet.org/), and we map the UMLS disease in the 

dataset into MeSH disease (Piñero, et al., 2017). DisGeNET is known as a platform that contains one of 

the largest publicly available collections of disease-related genes.    

(4) Disease-disease associations. The disease-disease association network is constructed by using the 

associations between symptoms and diseases. The strengths of these associations between symptoms and 

diseases are quantified through MeSH term co-occurrence, i.e., the number of PubMed identifiers where 

two Mesh terms occur together, and then they are normalized by the term frequency-inverse document 

frequency (Zhou, et al., 2014). Finally, the cosine similarity scores of the normalized symptom vectors 

of two diseases are used to quantify the association scores between the diseases.    

(5) Gene-gene associations. Because there exist noises in existing protein networks and the single-

source protein networks are often incomplete, we here adopt a comprehensive protein interactome that 

consists of the following sources of protein interactions: regulatory interactions, binary interactions from 

several yeast two-hybrid high-throughput and literature-curated datasets, literature-curated interactions 

derived mostly from low-throughput experiments, metabolic enzyme-coupled interactions, protein 

complexes, kinase-substrate pairs and signaling interactions (Menche, et al., 2015). The network data 

considers only physical protein interactions with experimental support. The identifiers of proteins are 

mapped into gene symbols.     
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Supplementary Note 2: Statistical analysis of multiscale modules       

 

Here, we provide the results of statistical analysis of multiscale modules detected by using MO, AS and 

HC.   

 

 

Figure S 1. For three types of functional groups: GO annotations, pathways and diseases, functional consistency of 

module partitions detected by (a) MM, (b) AS and (c) HC, as a function of resolution parameter.  

 

 

Figure S 2. Statistics of modules and genes related to Alzheimer Disease. Nm and Ndm denotes the number of modules 

and the number of disease-related modules (i.e., modules containing disease genes), respectively. DP indicates the 

degree of dispersion of disease-related genes, which is defined as the ratio of the number of disease-related modules 

to its maximum (i.e., the number of known disease genes). Fgdm denotes the fraction of genes belonging to disease-

related modules among all genes. P-value measures the enrichment of disease genes in disease-related modules. (a)-

(c) the Nm- and Ndm-values as a function of 𝛾-values for three multiscale algorithms (MM, AS and HC). (d)-(f) the 

DP and Fgdm as a function of 𝛾-values for the three algorithms. (g)-(i) the P-value as a function of 𝛾-values for the 

three algorithms.     
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Supplementary Note 3: Cross-validation in PPI network and disease-gene 

heterogeneous network     

 

The eight baseline algorithms are used to study the performance of HyMM:  

(1) Four baseline algorithms in the PPI network: RWR (Köhler, et al., 2008), KS (Chen, et al., 

2009), VS(Zhu, et al., 2012) and ICN (Hsu, et al., 2011);  

(2) Four baseline algorithms in the disease-gene heterogeneous network: RWRH (Li and Patra, 

2010), CIPHER (Wu, et al., 2008), BiRW (Xie, et al., 2015) and KATZ (Singh-Blom, et al., 

2013).   

Figure S 3 and Figure S 4 supplement the results of top-k recall curves of HyMM using AS and 

HC in the PPI network.  

Figure S 5 and Figure S 6 supplement the results of top-k recall curves of HyMM using AS and 

HC in the disease-gene heterogeneous network.   

 

 

Figure S 3. In the PPI network, top-k recall curves of HyMM algorithms using AS, compared to corresponding 

algorithms: (a) RWR, (b) KS, (c) VS, (d) ICN.  

 

 

Figure S 4. In the PPI network, top-k recall curves of HyMM algorithms using HC, compared to corresponding 

algorithms: (a) RWR, (b) KS, (c) VS, (d) ICN.  
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Figure S 5. In the disease-gene heterogeneous network, top-k recall curves of HyMM algorithms using AS, 

compared to corresponding baseline algorithms: (a) RWRH, (b) CIPHER, (c) BiRW, (d) KATZ.  

  

 

Figure S 6. In the disease-gene heterogeneous network, top-k recall curves of HyMM algorithms using HC, 

compared to corresponding baseline algorithms: (a) RWRH, (b) CIPHER, (c) BiRW, (d) KATZ.  

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442111


Supplementary Materials 

 6 / 11 

 

Supplementary Note 4: Performance evaluation on external dataset    

 

Here, we display the evaluation results of HyMM and baseline algorithms on external dataset (i.e., 

DisGeNet), also called IndTest. In this case, we calculate the scores of candidate genes by using the Mesh 

disease-gene associations as training set, and then evaluate the prediction performance by using the 

disease-gene associations belonging only to DisGeNet as test set.  

 

 

Figure S 7. In the PPI network, for IndTest, performance comparison of (a) AUROC and (b) AURecall obtained by 

HyMM algorithms and four baseline algorithms. Multiscale module identification algorithms: MO, AS and HC. “(#, 

RWR)” denotes the HyMM algorithm integrating MO/AS/HC with RWR. “NULL” means that the multi-scale 

algorithm or baseline algorithm is not applicable. The percentage on the bar is performance improvement ratio to 

baseline algorithm.       

 

Figure S 8. In the disease-gene heterogeneous network, for IndTest, performance comparison of (a) AUROC and 

(b) AURecall obtained by HyMM algorithms and four baseline algorithms. Multiscale module identification 

algorithms: MO, AS and HC. “(#, RWRH)” denotes the HyMM algorithm integrating MO/AS/HC with RWRH. 

“NULL” means that the multi-scale algorithm or baseline algorithm is not applicable. The percentage on the bar is 

performance improvement ratio to baseline algorithm.        
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Supplementary Note 5: Case study         

 

As an example, we obtain the top-20 genes from the ranking list of genes related to Alzheimer's disease 

(AD). Table S 1 shows the top-20 predicted genes for AD, the druggability of the candidate genes (Finan, 

et al., 2017; Freshour, et al., 2020; Wang, et al., 2019) as well as related information. Table S 2 and 

Table S 3 show the results of KEGG and GO enrichment analysis for the candidate genes.      

Through literature verification, we find that this list of genes contains many genes experimentally 

proven to have associations with AD. For example, Park, et al. (2021) showed that ALK was important 

to the tau-mediated AD pathology; Annunziata, et al. (2013) showed that the deficiency of NEU1 caused 

the occurrence of an AD-like amyloidogenic process; Lian, et al. (2015) showed that the dysregulation 

of neuron-glia interaction through NFκB/C3/C3aR signaling may lead to synaptic dysfunction in AD; 

Rasmussen, et al. (2018) confirmed that the low baseline levels of complement C3 were associated with 

high risk of AD; Pichiah, et al. (2020) showed that C4B was differentially expressed in AD; Michele, et 

al. (2017) observed a statistically significant increase of CNVs for C4B in AD patients, suggesting a 

possible role for C4A CNVs in the risk of AD; Stoye, et al. (2020) demonstrated that APOA1 might be 

a key factor within intestine altered in AD-like pathology.   

 

Table S 1. Analysis of candidate genes for AD. “Y” denotes that there exists record in DisGeNet. Tier 1 denotes 

genes that encode protein targets of approved or clinical trial-phase drug candidates and tier 2 denotes genes that 

encode protein targets with high sequence similarity to tier 1 proteins or targeted by small drug-like molecules.       

 

  

DGIdb

Target Type Disease #Drug

GLB1 - Tier 2 Literature Not Available 1

CTSA - Tier 2 Clinical Diabetic complication; 2

ALK - Tier 1 Successful Lung cancer; Anaplastic large cell lymphoma; 59

GALNS - Tier 3A Successful Mucopolysaccharidosis; Morquio syndrome; 1

NEU1 - Tier 3A 1

HLA-B - Tier 3A Clinical Melanoma 25

GAA - Tier 1 Clinical Pompe disease; Type 2 glycogen storage disease; 68

C4B - Tier 3B 3

C3 - Tier 3A Clinical Paroxysmal nocturnal haemoglobinuria; Non-hodgkin lymphoma; 7

MT-ND6 - - 4

NDUFS4 - - 4

PANK2 - - -

GALC - Tier 3A Literature Not Available 1

APOA1 - Tier 3A Clinical Arteriosclerosis; Acute coronary syndrome; 11

MTHFR Y - Literature Not Available 26

NDUFA13 - - Clinical Myocardial disease; 4

HSPA1L - - 1

ETFDH - - 2

MAPT Y Tier 1 Clinical Acute myeloid leukaemia; Cognitive impairment; 440

NDUFV1 - - 4

DisGeNet
Druggable

(Science 2017)

Therapeutic Target Database (TTD)
Symbol

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2021.04.30.442111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442111


Supplementary Materials 

 8 / 11 

 

 

Table S 2: Enrichment analysis of KEGG pathways for top-k predicted genes related to AD.   

 

  

#term ID term description FDR

hsa04142 Lysosome 1.6E-07

hsa01100 Metabolic pathways 3.6E-06

hsa00190 Oxidative phosphorylation 1.9E-04

hsa00600 Sphingolipid metabolism 2.0E-04

hsa04723 Retrograde endocannabinoid signaling 2.0E-04

hsa05012 Parkinson's disease 2.0E-04

hsa05010 Alzheimer's disease 2.1E-04

hsa04714 Thermogenesis 6.0E-04

hsa00511 Other glycan degradation 1.2E-03

hsa00531 Glycosaminoglycan degradation 1.2E-03

hsa00052 Galactose metabolism 2.6E-03

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 2.6E-03

hsa05016 Huntington's disease 4.6E-03

hsa05150 Staphylococcus aureus infection 5.7E-03

hsa05134 Legionellosis 5.9E-03

hsa04612 Antigen processing and presentation 8.1E-03

hsa05133 Pertussis 9.5E-03

hsa04610 Complement and coagulation cascades 9.9E-03

hsa05322 Systemic lupus erythematosus 1.4E-02

hsa04145 Phagosome 2.9E-02

hsa05167 Kaposi's sarcoma-associated herpesvirus infection 4.2E-02

hsa05168 Herpes simplex infection 4.2E-02

hsa05169 Epstein-Barr virus infection 4.2E-02

hsa05203 Viral carcinogenesis 4.2E-02
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Table S 3: Enrichment analysis of GO for top-k predicted genes related to AD. 

 

  

 

 

 

  

Category #term ID term description FDR

GO:0002274 myeloid leukocyte activation 6.3E-05

GO:0002443 leukocyte mediated immunity 6.6E-05

GO:0045055 regulated exocytosis 6.6E-05

GO:0055114 oxidation-reduction process 6.6E-05

GO:0006687 glycosphingolipid metabolic process 8.4E-05

GO:0032981 mitochondrial respiratory chain complex I assembly 8.4E-05

GO:0043312 neutrophil degranulation 8.4E-05

GO:0015980 energy derivation by oxidation of organic compounds 1.4E-04

GO:0007005 mitochondrion organization 1.6E-04

GO:0044281 small molecule metabolic process 1.6E-04

GO:0004308 exo-alpha-sialidase activity 9.4E-06

GO:0004553 hydrolase activity, hydrolyzing O-glycosyl compounds 9.4E-06

GO:0008137 NADH dehydrogenase (ubiquinone) activity 9.4E-06

GO:0003824 catalytic activity 5.2E-05

GO:0016491 oxidoreductase activity 9.4E-04

GO:0031072 heat shock protein binding 2.9E-03

GO:0016645 oxidoreductase activity, acting on the CH-NH group of donors 4.5E-03

GO:0071813 lipoprotein particle binding 4.5E-03

GO:0043168 anion binding 7.6E-03

GO:0051539 4 iron, 4 sulfur cluster binding 8.7E-03

GO:0005775 vacuolar lumen 6.3E-08

GO:0043202 lysosomal lumen 6.3E-08

GO:0005764 lysosome 3.0E-05

GO:0030141 secretory granule 3.0E-05

GO:0034774 secretory granule lumen 3.0E-05

GO:0042582 azurophil granule 3.0E-05

GO:0035578 azurophil granule lumen 4.0E-05

GO:0070469 respirasome 4.0E-05

GO:1990204 oxidoreductase complex 4.8E-05

GO:0005747 mitochondrial respiratory chain complex I 1.9E-04

MF

CC

BP
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Supplementary Note 6: Parameter stability      

 

We here display the effect of the sampling parameter 𝛥 𝑙𝑜𝑔 𝛾 on prediction performance. We have 

calculated the AUROC and AURecall values of all HyMM algorithms in the interval of 𝛥 𝑙𝑜𝑔 𝛾 ∈

[0.01, 0.2]. The results show that the HyMM algorithms using MO and AS are very stable to the sampling 

parameter, while the HyMM algorithms using HC have relatively large fluctuations.    

 

 

Figure S 9. In the PPI network, (a)-(c) Effect of resolution interval on the AUROC performance of HyMM using 

MO, AS and HC respectively; (d)-(f) Effect of resolution interval on the AURecall performance of HyMM using 

MO, AS and HC respectively.  

  

 

Figure S 10. In the disease-gene heterogeneous network, (a)-(c) Effect of resolution interval on the AUROC 

performance of HyMM using MO, AS and HC respectively; (d)-(f) Effect of resolution interval on the AURecall 

performance of HyMM using MO, AS and HC respectively.  
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