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Abstract

Candidate compounds with high binding affinities toward a target protein are likely to be developed as drugs. Deep
neural networks (DNNs) have attracted increasing attention for drug-target affinity (DTA) estimation owning to their
efficiency. However, the negative impact of batch effects caused by measure metrics, system technologies, and other assay
information is seldom discussed when training a DNN model for DTA. Suffering from the data deviation caused by batch
effects, the DNN models can only be trained on a small amount of “clean” data. Thus, it is challenging for them to
provide precise and consistent estimations. We design a batch-sensitive training framework, namely BatchDTA, to train
the DNN models. BatchDTA implicitly aligns multiple batches toward the same protein, alleviating the impact of the
batch effects on the DNN models. Extensive experiments demonstrate that BatchDTA facilitates four mainstream DNN
models to enhance the ability and robustness on multiple DTA datasets. The average concordance index (CI) of the DNN
models achieves a relative improvement of 4.0%. BatchDTA can also be applied to the fused data collected from multiple
sources to achieve further improvement.
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Introduction

Evaluation of drug-target affinity (DTA) (also known as

receptor-ligand affinity) is one of the fundamental tasks for

drug discovery. The drug-target binding affinity indicates

the strength of binding interaction between the drug

(ligand/compound) and target (receptor/protein). Laboratory

experiments [27], e.g., in vivo and in vitro experiments,

are usually involved in measuring the affinities between the

protein to be studied and the candidate compounds. The

compounds with the highest measured affinities are screened

for further validation and could be future drugs. Since

laboratory experiments are laborious, expensive, and time-

consuming, some advanced studies employ efficient machine

learning methods to estimate binding affinities, accelerating

drug discovery. Machine learning methods [5, 26, 7, 6, 14],

especially deep neural networks (DNNs) [31, 35, 32, 28,

34, 22, 30, 18, 29, 16], have gained increasing attention of

many scholars, which utilize the affinity data collected from

laboratory experiments to infer the affinities of other protein-

compound interactions.

The Batch effects, as common effects in data from high-

throughput laboratory experiments, have been widely discussed

in many previous studies [24, 8]. This paper defines the

batch effects as the systematic batch variation caused by

differences in measure metrics, system technologies, laboratory

conditions, reagents, and other assay information. Many

published studies [1, 3] have shown that the systematic

variation in experimentally collected data may lead to incorrect

biological conclusions. Lots of techniques [23, 12, 38] have

attempted to detect and adjust batch effects in laboratory

experiments, but the negative impact of batch effects is still

barely discussed in the field of DTA estimation, especially DTA

estimation through DNN models.

The model parameters of the mainstream DNN models for

DTA [31, 32, 22, 28, 18, 16] are usually optimized through the

pointwise training framework, which minimizes the distance

between the estimated affinity and the ground-truth affinity
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for each protein-compound interaction. Due to the lack of

consideration of batch effects in model training, the DNN

models trained by the pointwise framework is difficult to

fully exploit the existing affinity data from multiple sources,

measured by various techniques and systems, and could lead to

the following issues:

First, the assays of affinity evaluation may adopt various

metrics, e.g., dissociation constant (KD), inhibition constant

(KI), half-maximal inhibitory concentration (IC50), and

half-maximal effective concentration (EC50), to measure the

binding affinities. The affinity values evaluated through

different metrics are usually incomparable (refer to Appendix B).

A DNN model trained by the pointwise framework is confused

by the multifarious incomparable “affinities” from multiple

assays/batches of the same protein-compound interaction,

thus struggling to provide a consistent estimation. Previous

academic works tend to train a DNN model on the data

points measured by the same metric to get around the metric

incomparability issue. Nevertheless, the data points with

respect to a specific metric are insufficient to train a capable

DNN model, usually with numerous parameters and thus

requiring lots of training data points.

Second, even though only utilizing those data points of

a specific metric to train a model, the trained model still

suffers from variance caused by other assay information. For

example, some metrics, e.g., IC50 and EC50, are highly assay-

specific [19], and the measured affinities under different assay

settings are incomparable. The DNN model is confounded

by the multifarious “affinities” from multiple assays of the

same protein-compound interaction, thus struggling to provide

consistent estimates.

Consequently, the batch effects caused by various metrics,

assay settings, and other factors obstruct advanced DNN

models from fully exploiting the collected data points or

achieving more satisfactory precision. It is attractive to take

advantage of fuse multi-source data points with various assay

settings and align these data points to further enhance the DNN

model’s ability.

To facilitate the effectiveness of the DNN models for

DTA, we attempted to alleviate the negative impact of

batch effects through a batch-sensitive training framework,

namely BatchDTA. BatchDTA learns the ranking orders of the

comparable protein-compound interactions in the same batch.

In this way, the interactions of a protein from multiple batches

can be implicitly aligned by taking those interactions that

simultaneously appeared in multiple batches as the reference

for comparison. Extensive experiments are conducted to verify

that through training with BatchDTA framework, multiple

mainstream DNN models, including DeepDTA [31], GraphDTA

[28], and MolTrans [16], can achieve higher concordance

indexes (CIs) and lower deviation. We also visualize a case

to demonstrate that BatchDTA can successfully learned the

ranking orders of the compounds from different batches through

the reference interaction. Furthermore, BatchDTA is applied

to utilize fused data points measured by multiple metrics from

multiple sources as the training data. The concordance indexes

(CIs) [11] of the DNN models are promoted in most cases,

exhibiting the potential practical value of BatchDTA.

Our main contributions can be summarized as follows:

1. We utilize a batch-sensitive training framework, called

BatchDTA, to alleviate the harmful influence of the batch

effects for DTA prediction.

2. BatchDTA aims to implicitly align multiple batches for the

same target protein by learning the ranking orders of the

interactions within a batch.

3. Extensive experiments demonstrate that BatchDTA can

facilitate the precision and robustness of multiple

mainstream DNN models in multiple situations.

Materials and Methods

Problem Formulation

Advanced proposed DNN models for DTA utilize the pointwise

training framework, which regards DTA estimation as a

classification or regression problem. Since the goal of the

DTA estimation task is locating those compounds with higher

affinities toward a target protein, we regard the task of DTA

estimation as a ranking problem instead. More concretely, a

ranking task of DTA is defined as a batch (or an assay) with

batch b = (p, C), containing a protein p and a set of the

candidate compounds C. The set of candidate compounds is

defined as C = {ci}|nCi=1, where nC represents the number of

candidate compounds in the corresponding batch. We expect to

screen out the most promising compounds in C as the potential

drugs for target protein p for batch b. Usually, hundred to

tens of thousands of batches can be collected from a data

source, S = {(bi,yi)}|
ns

i=1, where ns represents the number

of batches in data source S. The set of the corresponding

labels, i.e., collected affinities, of the candidate compounds C in

batch b is denoted by y = {yi}|nCi=1. Additionally, we attempt

to simultaneously exploit the data from various data sources

{Si}|nS

i=1 to train the DNN models for DTA to test the prospect

of data fusion, where nS denotes the number of data sources.

Implicit Batch Alignment

We attempt to align a target protein’s corresponding

protein-compound interactions from multiple batches. Those

interactions are implicitly aligned through the reference

interactions that simultaneously appear in multiple batches.

The demonstration of implicit batch alignment is shown in

Fig. 1, and the details will be introduced in the following.

We first define the ranking order of two compounds

concerning a batch. Since two interactions from different

batches may target different proteins or their corresponding

affinities may be evaluated under different assay settings, the

ranking orders of most compound pairs are valueless. Thus,

we concentrate on learning the ranking order of two candidate

compounds ci and cj for a given batch b = (p, C). To

formalize, we introduce a new operator >b for comparison

of two compounds. Formula ci >b cj indicates the affinity

of compound ci measured by a assay is significantly larger

than that of compound cj for the same batch b. Since

affinities measured by the laboratory assays are usually noisy,

a hyper-parameter, i.e., deviation ε, is introduced to determine

whether the two measured affinities differ significantly. More

concretely, formula ci >b cj indicates that yi > yj + ε,

where yi and yj denotes the assay-measured affinities of

compound ci and compound cj in the compound set C of

the batch b = (p, C). Then, for a batch b = (p, C), we

can theoretically generate O(n2
C) training pairs of compounds:

{(ci, cj), s.t., ci >b cj}nCi,j=1. We define the training dataset as

D = {(p, ci, cj), s.t., (b,y) ∈ Sk, b = (p, C), ci >b cj}|nSk=1. Pair

(ci, cj) is called a training pair as demonstrated on the left of

Fig. 1, and triple (p, ci, cj) is called a training sample.
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Fig. 1. Implicit batch alignment. Compound pairs for training are generated from each batch. The compounds in multiple batches for the same protein

are implicitly aligned through the compounds in both batches. (Notched circles represent proteins and sectors of various colors represent compounds)

Then, we introduce reference compounds to align the

interactions from different batches. A reference compound is

defined as a compound that appears in multiple batches toward

the same protein. Given a protein p, there might be multiple

batches studying that protein. We assume both batch b1 =

(p, C1) and batch b2 = (p, C2) study protein p. A reference

compound cref should satisfy that cref ∈ C1 ∧ cref ∈ C2. For

batch b1 = (p, C1), we denote the compounds in C1 with the

corresponding ground-truth affinities smaller than that of the

reference compound cref as Cworse
1 . For batch b2 = (p, C2), the

compounds in C2 with the corresponding ground-truth affinities

larger than that of the reference compound cref as Cbetter2 . It

is likely the affinity of compound c2 ∈ Cbetter2 is larger than

that of compound c1 ∈ Cworse
1 . In this way, the compounds

from different batches can be implicitly aligned. A toy case is

exhibited in Fig. 1. Both the batch b1 = (p, C1) in data source

S1 and the batch b2 = (p, C2) in data source S2 study the

protein p, where C1 = {c1, c2, c3, c4} and C2 = {c3, c5, c2, c6}.
Due to the batch effects, the affinity values collected from

various sources are incomparable (e.g., from 0.3 to 1.0 in batch

b1 and from 4 to 10 in batch b2). Training pairs (compound

pairs) are extracted from each batch based on the ranking order

of the compounds. The training pairs from different batches

with respect to protein p are collected. As compound c3 appear

in C1 and C2, compound c3 is taken as a reference compound.

Though the reference compound c3, compound c4 from batch

b1, compounds c5, and c6 from batch b2 become comparable.

Since compounds from different batches are comparable

through implicit batch alignment, we can effortlessly fuse the

data points from multiple sources to train a more capable model

for DTA.

Learning the Ranking Orders

Many studies utilized deep neural networks (DNNs) to predict

the affinity between proteins and compounds, including

DeepDTA [31], GraphDTA [28], and MolTrans [16]. We train

these DNN models by learning the ranking orders of the training

pairs.

A typical DNN model for DTA prediction consists of

three components: Protein Encoder, Compound Encoder, and

Interaction Estimator, as shown on the left of Fig. 2.

• Protein Encoder. The primary structure of a protein is

described by an amino acid sequence. A Protein Encoder

applies various kinds of sequence-based neural networks,

e.g., Convolutional Neural Networks (CNNs) [21, 20] and

Transformers [37], to produce the representation vectors

of the proteins. We formalize the Protein Encoder as a

function fprotein(p; ΘP ), taking a protein p as input, where

Θp represents the corresponding model parameters. The

representation vector of a protein p is defined as hp =

fprotein(p; ΘP ).

• Compound Encoder. A Compound Encoder typically

generates the compounds’ representation vectors through

molecular fingerprints (e.g., ECFP [33] and MACCS [10]),

sequence-based representation methods (e.g., LSTMs [15]

and Transformers), or graph-based representation methods

(e.g., GNNs). We describe the Compound Encoder as a

function fcompound(c; ΘC), taking a compound c as input,

where ΘC represents the model parameters needed to be

optimized. Then, the representation vector of a compound

c can be written as hc = fcompound(c; ΘC).

• Interaction Estimator. The Interaction Estimator

estimates the interaction score between a protein p

and a compound c in accordance to a function

finteration(hp, hc; ΘI), where ΘI denotes the function’s

learnable parameters. Function finteration(hp, hc; ΘI)

takes the representation vectors hc and hp as inputs and

outputs an estimated affinity score.

The parameters of whole model f(p, c; Θ) can be formulated

as Eq. 1, combining fprotein(p; ΘP ), fcompound(c; ΘC), and
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Fig. 2. Inference of a typical DNN model f(p, c; Θ) for DTA and the training framework that trains the DNN model f(p, c; Θ) through learning the

ranking orders of the candidate compounds.

finteraction(hp, hc; ΘI):

f(p, c; Θ) = finteraction(fprotein(p; ΘP ), fcompound(c; ΘC); ΘI).

(1)

where Θ = {ΘC ,ΘP ,ΘI} are the model parameters need to be

optimized. The candidate compounds are ranked in accordance

with the affinities estimated by the DNN model f(p, c; Θ), and

the compounds with the highest estimated affinities are selected

as promising drugs for further validation.

Advanced studies optimize the model parameters Θ to

minimize the absolute error between the assay-measured

affinity and the model-estimated affinity of a protein-compound

pair. In contrast to the previously applied training framework

(pointwise training), we adopt a pairwise training framework

to optimize the ranking orders of the candidate compounds of

a given batch, as shown on the right of Fig. 2. More concretely,

the pairwise training framework takes the sample (p, ci, cj) ∈ D

as input to learn the order of compounds ci and cj with respect

to protein p. Following the classical pairwise ranking method

RankNet [4], we regard the pairwise order learning problem as

a binary classification task, where the cross-entropy is used as

the loss function for the sample (p, ci, cj) ∈ D:

L(p, ci, cj ; Θ) =− P̂p,ci,cj
logPp,ci,cj

− (1− P̂p,ci,cj
)log(1− Pp,ci,cj

),

P̂p,ci,cj
=δ(yi, yj),

Pp,ci,cj
=

exp(op,ci,cj
)

1 + exp(op,ci,cj
)
,

op,ci,cj
=f(p, ci; Θ)− f(p, cj ; Θ).

(2)

P̂p,ci,cj
indicates whether the ground-truth affinity score of

compound ci, i.e., yp,ci
is larger than that of compound cj ,

i.e., yp,cj
. δ(x, y) is an indicator function that δ(x, y) = 1

if x > y, and δ(x, y) = 0 if x ≤ y. Besides, Pp,ci,cj

represents the model-estimated probability whether the affinity

of compound ci is larger than that of compound cj . Pp,ci,cj

applies Sigmoid function [13] on op,ci,cj
, i.e., the difference

between the estimated affinities f(p, ci; Θ) and f(p, cj ; Θ). The

cross-entropy between the ground-truth probability P̂p,ci,cj
and

the estimated probability Pp,ci,cj
is minimized to learn the

model parameters of the DNN model f(p, c; Θ). As an affinity

pair (p, ci, cj) ∈ D satisfies ci >b cj and yi > yj , P̂p,ci,cj
=

1, the loss function for a sample (p, ci, cj) in Eq. 2 can be

simplified as

L(p, ci, cj ; Θ) = −log
exp(op,ci,cj

)

1 + exp(op,ci,cj
)
,

op,ci,cj
= f(p, ci; Θ)− f(p, cj ; Θ).

(3)

Then, the overall loss function of dataset D is defined as

L(D; Θ) =
∑

(p,ci,cj)∈D

L(p, ci, cj ; Θ). (4)

We minimize the loss function L(D; Θ) to optimize the model

parameters of f(p, c; Θ).

As we mentioned above, we can theoretically produce O(n2
C)

samples for a batch b = (p, C). In order to balance the effects

of different batches for training, we randomly sample nsample

samples for each compound within a batch b at each iteration,

where N is the sampling times. In this way, for each batch,

only O(nsample ·nC) samples are exploited for training at each

iteration.

Results

We use the pointwise framework and BatchDTA to train

multiple advanced DNN models, respectively, to observe the

effect of BatchDTA.

Datasets

The DNN models are trained on three DTA datasets, including

BindingDB [25], Davis [9], and KIBA [36]. The BindingDB

dataset collected affinities with various metrics (KD, KI , IC50,

and EC50) and other assay information from multiple data

sources. The affinities in the Davis dataset are measured by

KD, while those in the KIBA dataset are indicated by the KIBA

score that integrates multiple bioactivity types, i.e., KD, KI ,

and IC50. These datasets are processed to filter out the invalid

protein-compound interactions (refer to Appendix. A) for data

processing).

Previous DTA studies [28, 18, 32] randomly split the protein-

compound interactions of a dataset into a training set and a test

set. However, random splitting over-simplifies the task of DTA.

Due to multiple batches, a target protein in the test set could

have already been observed in the training set, resulting in

information leakage and model overfitting. Therefore, we split

the datasets on the basis of batches and ensure that the proteins
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observed in the training set will not appear in the test set,

which is more in line with the real-world applications. For each

dataset, we strive to identify the batches based on the available

assay information recorded in the corresponding dataset. Since

the batch IDs are not recorded in the datasets, we can not

completely guarantee the accuracy of batch identification (refer

to Appendix. A for batch identification of each dataset). The

statistics of the datasets are shown in Tab. 2.

DNN Models for DTA

We compare two training frameworks, Pointwise and

BatchDTA, by applying them to three previously proposed

DNN models for DTA:

• DeepDTA [31] employs three-layers Convolutional Neural

Networks (CNNs) as Protein Encoder and Compound

Encoder to encode the protein sequences and the compound

SMILES strings, respectively. Then, for the Interaction

Estimator, the encoded protein and compound are

concatenated to predict the affinity score.

• GraphDTA [28] regards each compound as a graph and

attempts several GNNs, such as GIN, GAT, GCN, and

GAT-GCN, as the Compound Encoders to represent the

compounds. In the meantime, GraphDTA regards each

protein as a sequence and adopts CNNs as the Protein

Encoder to encode the proteins. The Interaction Estimator

is the same as DeepDTA’s. In this paper, we implement two

versions of GraphDTA, denoted by GraphDTA(GCN) and

GraphDTA(GATGCN), respectively.

• MolTrans [16] decomposes the compounds’ SMILES

strings and the proteins’ acid amino sequences into high-

frequency sub-sequences. Then, it applies Transformers as

the Compound Encoder and Protein Encoder to obtain

the augmented representation with the chemical semantics.

MolTrans uses the outer-product operator and CNN

blocks as Interaction Estimator to capture the high-order

interaction between the compounds and proteins.

For all the DNN models, we use the hyper-parameters suggested

by the corresponding papers.

Training and Evaluation Settings

We follow the settings of the previous works to implement

Pointwise framework, where the mean squared error (MSE)

between the models’ predicted values and the ground-truth

affinities are taken as the loss function to optimize the model

parameters. For the BatchDTA framework, we apply grid

search to search the hyper-parameters, including sample times,

learning rate, and batch size. The details of hyper-parameter

settings are described in Appendix C.1.

Concordance Index (CI) [11] is used to evaluate the

performance of Pointwise and BatchDTA training frameworks

in terms of batches. The CI for a given batch b = (p, C) is

defined as:

CI(b) =
1

z

∑
ci,cj∈C

I(yi − yj) · I(f(p, ci; Θ)− f(p, cj ; Θ)), (5)

where z =
∑

ci,cj∈C I(yi−yj), and I(.) is an indicator function.

I(x) = 1 if x > ε∗, and I(x) = 0 otherwise. ε∗ is used to identify

the compound pairs with large gap of their corresponding

affinities. ε∗ set to be 0 by default unless otherwise specified.

Then, we define the overall CI for all the test batches B =

{bi}|nBi=1 by summarizing CI(b), where nB is the number of test

batches. The overall CI is formalized as

CI =
1∑

b∈B w(b)

∑
b∈B

w(b)CI(b), (6)

where w(b) = nC for task b = (p, C) is introduced to balance

the impact of different batches.

Overall Performance

To verify that implicit batch alignment can alleviate the

negative impact of batch effects, we trained multiple previously

proposed DNN models for DTA through the Pointwise and

BatchDTA training frameworks, respectively. We expect a

DNN model trained by BatchDTA framework can achieve

further improvement compared with that trained by Pointwise

framework.

Database BindingDB records the affinities of millions of

protein-compound interactions measured by various metrics.

Most data points in BindingDB are measured by metrics

inhibition constant (KI) and half-maximal inhibitory concentration

(IC50). Two hundred thousand protein-compound interactions

from ten thousand batches are measured by KI , while six

hundred thousand interactions from twenty thousand batches

are measured by IC50 (refer to Table 2 for statistics of the

datasets). Since the assay information, such as temperature, pH

degree, and competitive substrate, affect the values of KI and

IC50, the data points measured by KI and IC50 are suitable

for verifying whether BatchDTA can effectively mitigate the

impact of batch effects. The dataset of each metric is divided

into the training set, validation set, and test set by 8:1:1.

A model is trained on the training set with the best epoch

selected by the validation set. For each experimental setting,

we trained each model five times and evaluated the CIs on

all the compound pairs (ε∗ = 0) as well as the confident

compound pairs (ε∗ = 0.6) in the test set. Confident compound

pairs are introduced to diminish the impact of the experimental

variance for the evaluation. We eliminated the compound pairs

with small affinity gaps from all the compound pairs, and

the remaining pairs are called confident compound pairs (refer

to Appendix C.2) for details of confident compound pairs

generation).

Fig. 3 shows the CIs of four DNN models trained by

Pointwise framework and BatchDTA framework. We can draw

the following conclusions:

• Since BatchDTA is a batch-sensitive training framework,

it can make more rational use of the collected data points

than the Pointwise framework, which could further enhance

the ability and robustness of a DNN model for DTA.

BatchDTA framework significantly outperforms Pointwise

framework under 14/16 settings. Besides, in most cases,

the standard deviation of CIs of the model trained by the

Pointwise framework is greater than that by the BatchDTA

framework. We suspect that the conflicting data between

batches cause the larger variance of the model trained by

the Pointwise framework.

• For each DNN model, the relative improvement of

BatchDTA compared with Pointwise is higher when

evaluating on the confident compound pairs than on all

the compound pairs. Since the gaps between the measured

affinities of some compounds in a batch are not significant,

excluding those incomparable compound pairs in the

evaluation can highlight the advantages of BatchDTA. For

example, for KI , BatchDTA achieves an average relative
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* * * *

* * * *

* * *

** *

(a) Evaluation on all compound pairs in dataset KI (b) Evaluation on confident compound pairs in dataset KI

(c) Evaluation on all compound pairs in dataset IC50 (d) Evaluation on confident compound pairs in dataset IC50

Fig. 3. Comparing the CIs of the DNN models trained by Pointwise framework and BatchDTA framework on database BindingDB under different

settings. (A red star stands for statistical significance with P-value less than 0.05 for a two-tailed test.)

Reference compound Indicating the comparable compound pairs

(a) Gaps of ground-truth affinities (b) Gaps of affinities estimated by Pointwise framework (c) Gaps of affinities estimated by BatchDTA framework
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Indicating the incomparable compound pairs

Fig. 4. Case study analyzing whether Pointwise framework and BatchDTA framework can learn the ranking orders of the compound from two batches

for the same protein.

improvement of 3.2% on all the compound pairs, while 5.5%

on the confident compound pairs. For IC50, the average

relative improvement is 4.7% for all the compound pairs

and 7.8% for confident compound pairs.

• Compared with KI , IC50 is also affected by the

concentration of enzyme and substrate, and thus the

systematic variance of the assays measured by IC50 is larger

than that measured by KI . The larger variance makes a

DNN model more difficult to provide accurate estimations

on the IC50 dataset, but we can observe that all the

DNN models trained by BatchDTA can still achieve further

improvement.

Case Study

We further explore whether BatchDTA can successfully align

and learn the ranking orders of the compounds from multiple

batches by case study. We selected a case of two batches

toward the same protein from the training set of IC50 with a

reference compound appearing in both batches. The reference

compound is expected to implicitly align the compounds from

two batches. In Fig. 4, we visualize three matrices with each

element representing the affinity gap between a compound in

Batch 1 and a compound in Batch 2. The affinity gaps are

normalized, and the darker the color in the matrices, the greater

the affinity gap. More concretely, we sorted compounds in

Batch 1 and Batch 2 according to the ground-truth affinities,

respectively. For each matrix, each column stands for a

compound from Batch 1, each row stands for a compound

for Batch 2, and each element stands for a compound pair
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Fig. 5. Exploring the performance of the DNN models trained on the

fused data points measured by multiple metrics, i.e., KI , KD , IC50, and

EC50 by BatchDTA framework.

with its color indicating the affinity gap. The three matrices

describe the gaps between the ground-truth affinities collected

in the dataset, the gaps between the predicted affinities of the

MolTrans model trained by the Pointwise framework, the gaps

between the predicted affinities of the MolTrans model trained

by BatchDTA framework, respectively.

In general, the color pattern of the gaps of affinities

estimated by BatchDTA framework (Fig. 4(c)) is similar to that

of the gaps of ground-truth affinities (Fig. 4(a)). The colors in

both the ground-truth matrix and BatchDTA matrix transition

smoothly, with dark red at the upper right, dark green at

the lower left, and white at the diagonal. The consistent color

patterns reveal that BatchDTA can well learn the ranking order

of a compound pair with one compound in Batch 1 and the

other in Batch 2. In contrast, the color pattern of Pointwise

is chaotic, which is distinct from that of the ground-truth.

More specifically, the grids (compound pairs) in a matrix can

be divided into two portions: the comparable compound pairs

indicated by the red boxes (lower left and upper right) and

the incomparable compound pairs indicated by the black boxes

(lower right and upper left). For example, the compounds

with higher affinities than the reference compound in Batch 1

(the first 18 columns) should rank ahead of those with lower

affinities than the reference compound in Batch 2 (the last

13 rows). Thus, the corresponding compound pairs indicated

by the red box at the lower left are regarded as comparable

compound pairs. The model trained by BatchDTA can infer

the compounds’ ranking order with a high certainty (indicated

by darker color) for most of the comparable compound pairs.

For the incomparable compound pairs, although the model

trained by BatchDTA can not determine some compounds’

ranking order, e.g., the ranking order of the first compound in

Batch 1 and the first compound in Batch 2, the overall ranking

predictions are consistent with those of the ground-truth.

Fusing Data

The BatchDTA framework can also be applied to the fused data

points collected from multiple sources. It is attractive to take

advantage of fused data points to train the DNN models for

DTA. Therefore, we explore the practicality of BatchDTA in

two data fusion scenarios: fusing data measured with multiple

metrics and fusing data from multiple open-source datasets.

Fusing Data Points Measured by Multiple Metrics

We utilized the database BindingDB and trained the DNN

models on the fusing data measured with multiple metrics. Each

DNN model is trained on four datasets, i.e., KI , KI&KD,

KI&KD&IC50, and KI&KD&IC50&EC50, respectively by

BatchDTA framework, where operator & denotes fusing the

data points measured by different metrics. The trained DNN

models are evaluated on the test set of KI . We consider

the correlations between the metrics (refer to Appendix B)

when designing the experiments. Since the metrics with higher

correlations to KI are more likely to provide advantages to

the DNN models that only trained on the data points of KI ,

we first integrated the data points of KD into the training set,

then those of IC50, and finally those of EC50. Each experiment

is run five times, and the performance of the DNN models

trained on the fused data points measured by multiple metrics

is shown in Fig. 5. We can observe the following phenomena:

(1) By adding the data points of KD to the training set, all

the DNN models gain significant performance improvement

(average relative improvement of 1.21%). Since KI and KD

have a strong correlation (Pearson r=0.83), the data points

of KD potentially augment valuable information. (2) Due to

the higher systematic deviations of the data measured by

IC50 and EC50, the correlation between KI and IC50 as well

as the correlation between KI and EC50 are relatively low

(Pearson r=0.74 and 0.64, respectively). Thus, fusing the data

points of IC50 and EC50 can not further significantly raise the

accuracy of the DNN models. These phenomena enlighten us

that integrating high correlation data into the training set could

improve the effectiveness of existing DNN models on DTA.

Fusing Data Points from Multiple Datasets

Datasets Davis and KIBA are utilized to explore the potential

of BatchDTA when training the DNN models on the fused

data points collected from multiple datasets. Since these two

datasets contain only hundreds of batches (refer to Table 2 in

Appendix), we perform 5-fold cross-validation [2] to reduce the

evaluation deviation. When evaluating the DNN models on the

Davis dataset, we compare three training methods: Pointwise

(Davis) and BatchDTA (Davis) that only utilize the Davis

dataset for training, as well as BatchDTA (Davis + KIBA)

that utilize both the datasets Davis and KIBA for training.

The setting is similar when evaluating the DNN models on

the KIBA dataset. Fig. 6 exhibits the comparison of the DNN

models trained on the fused data points collected from multiple

datasets. As we expected, the CIs of the DNN models trained

on only one dataset by BatchDTA framework surpass those by

Pointwise framework, which is consistent with the evaluation

results of Fig. 3 on database BindingDB. Furthermore, by

combining the datasets Davis and KIBA for training, the DNN

models trained by BatchDTA achieve better performance in

general. The better results of the fused datasets illustrate that

as a DNN model usually requires lots of training data, the

additional data points for training are likely to benefit the

ability of the DNN models for DTA.

Discussion

Many published literature have discussed the impact of batch

effects, but little work has been done to explore the batch

effects on the DNN models for DTA. Table 1 reports the data

analysis of the database BindingDB. We attempt to analyze the

impact scope of batch effects for DTA through the dimensions

of proteins and batches (the first two rows in Table 1) and

investigate which group of the impacted data points (the last

row in Table 1) can be effectively taken advantage of by

BatchDTA to achieve better results. From the table, we can

observe: (1) About 40% of proteins simultaneously appear in

multiple batches, and the collected affinities of corresponding
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Fig. 6. Exploring the performance of the DNN models trained on the fused data points collected from multiple datasets, i.e., Davis and KIBA, by

BatchDTA framework.

Table 1. Data analysis of dataset BindingDB.

KD KI IC50 EC50 All

Proteins appearing in multiple batches 40.0% 42.2% 40.5% 36.1% 44.0%

Batches with interactions appearing in another batch 43.3% 55.7% 48.5% 48.6% 57.9%

Inconsistent ranking orders 12.4% 8.1% 7.1% 14.6% 13.9%

(a) Evaluation on all compound pairs in dataset KI (b) Evaluation on all compound pairs in dataset IC50

Fig. 7. Impact of the quality of batch identification methods.

data points could be inconsistent. A batch-sensitive training

framework is demanded to alleviate the negative impact of

those inconsistent data points. (2) There are 43.3% to 55.7%

of batches with interactions appearing in another batch for

each metric. That means about half of the batches can

be implicitly aligned through those interactions (reference

compounds), and BatchDTA has the opportunity to model

those batches better. (3) We extracted the compound pairs that

appeared in multiple batches against the same protein from the

datasets and found that the ranking orders of a small number

of compound pairs (7.1% to 14.6%) were inconsistent. We

suspect the inconsistency is caused by the assay errors, batch

identification errors, biological variance, and other factors.

Employing BatchDTA to train DNN models can not overcome

the impact of those noisy data points. Fortunately, the ranking

orders of only less than 1% of all the compound pairs are

inconsistent.

We further investigate the impact of the quality of batch

identification. Fig. 7 compares the effects of two batch

identification methods. For the first method Batch, we try

our best to distinguish different batches according to the fields

recorded in the database. For the second method Protein, all

the data points with respect to the same protein are grouped

in the same batch. Thus, the quality of method Batch is

higher than that of method Protein for batch identification.

The results of dataset KI (Fig. 7(a)) illustrate that the quality

of batch identification plays a critical role in the effectiveness

of BatchDTA. Besides, for dataset IC50, the CIs of methods

Batch and Protein are comparable. Since IC50 is affected by

more factors as mentioned, but those factors are not recorded

in the database, we can not precisely identify the batches from

the database. We believe that the DNN models trained by

BatchDTA will benefit from more detailed assay information.

Conclusions

Many advanced studies have applied deep learning to drug-

target affinity (DTA) estimation to screen the promising

compounds toward the given target proteins. Existing studies

focus more on designing DNN model architectures for DTA.

We argue that a batch-sensitive training framework, i.e.,

BatchDTA, can further enhance the accuracy and robustness of

the previously proposed DNN models, weakening the influence

of batch effects (systematic variance). Each batch is regarded as

a ranking task. BatchDTA implicitly aligns the corresponding

compounds toward the same protein from multiple batches
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Table 2. Statistics of the datasets.

Dataset Metric #Compound #Protein #Interaction #Batch

BindingDB

KD 6,704 587 31,239 1,070

KI 126,122 1,225 249,598 11,292

IC50 407,462 2,582 653,344 20,041

EC50 75,142 699 105,364 3,143

Davis KD 68 442 30,056 442

KIBA KIBA score 2,111 229 118,254 229

by learning the compounds’ ranking orders in each batch.

Extensive experimental results demonstrate that four advanced

DNN models trained by BatchDTA can achieve significant

improvement on three datasets for DTA. BatchDTA can also be

applied to train the DNN models on fused data collected from

multiple sources to further enhance the models’ precision. We

believe our work could inspire researchers working on applying

machine learning methods to drug discovery.

Appendix: Datasets and Data Process

We describe the details of the data process in this section,

and the data statistics of the processed datasets are shown in

Table 2.

BindingDB

The BindingDB database with the version of May 2021

contains 2,221,487 compound-protein interactions, including

7,965 proteins and 963,425 compounds.

First, we cleaned up the raw data from BindingDB by

the following steps: (1) Keep compound-protein interactions

measured by metrics KD, KI , IC50 and EC50). (2)

Remove the recorded affinities with ’>’ or ’<’. (3) Rescale

the affinities larger than 10,000 to be 10,000. (4) Drop

out the duplicate records. (5) Remove the compounds

with illegal SMILES strings that can not be processed by

the Cheminformatics software RDKit (https://rdkit.org). (6)

Remove the proteins that can not be converted to FASTA

format (https://zhanggroup.org/FASTA/).

Second, we identify the batches from the cleaned data: (1)

Multiple fields in BindingDB, including ’BindingDB Target

Chain Sequence’, ’pH’, ’Temp (C)’, ’Curation/DataSource’,

’Article DOI’, ’PMID’, ’PubChem AID’, ’Patent Number’,

’Authors’, and ’Institution‘, are considered to identify batches.

(2) Remove the batches with less than ten candidate

compounds.

Davis and KIBA

We followed the previous work [31] to process Davis and

KIBA datasets, and the implementation of which is at

https://github.com/hkmztrk/DeepDTA/tree/master/data. Then,

the batches are identified according to ’Gene ID’ for the Davis

dataset and ’Uniprot ID’ for the KIBA dataset.

Appendix: Relations between Metrics of Binding
Affinities

Dissociation constant (KD), inhibition constant (KI), half-

maximal inhibitory concentration (IC50), and half-maximal

effective concentration (EC50) are mainly used for measuring

binding affinities. Both KD and KI are used to indicate

the dissociation equilibrium constant, i.e., the reverse of the

association constant, for the dissociated components. KD is

a more general term, while KI is more specifically used under

enzyme-inhibitor complex. IC50 is the inhibitory concentration,

measured by an inhibitor with the response (or binding)

reduced by half. EC50 stands for effective concentration of an

inhibitor with half-maximal response. Comparing with KI and

KD, IC50 and EC50 are influenced by more assay information,

such as substrate concentration [17].

In particular, through Cheng-Prusoff equation, KI can be

converted from IC50 [19]:

KI =
IC50

1 + |S|
Km

, (7)

where |S| is the substrate concentration, and Km is the

Michaelis-Menten constant of the substrate. Thus, IC50 is

assay-specific, and the IC50 values under different assay

information are incomparable.

In Section. 3.6.1, we evaluate the DNN models that are

trained on fused data measured by multiple metrics on the test

set of KI . The data points are added gradually according to

the Pearson correlation of the corresponding metrics to KI .

The Pearson correlations are shown in Fig. 8. We first added

the data points of KD, then IC50, and finally EC50.

Appendix: Experimental Settings

Hyper-parameters of BatchDTA

Following the previous works [31, 14, 28, 18], we normalize the

original affinities as labels for training. Take KD for example.

We use pKD values as labels to train the DNN models:

pKD = −log10(
KD

109
). (8)

KI , IC50 and EC50 and KIBA score are normalized in the same

way.

We used Adam optimizer and applied grid search to explore

the best hyper-parameters for each DNN model on each dataset.

For BindingDB database, the candidate settings of each

hyper-parameter are shown in Table 3.

For Davis and KIBA datasets, the candidate settings of the

hyper-parameters for searching are shown in Table 4.

All the models are trained by NVIDIA Tesla V100 GPUs.

Since BatchDTA is a training framework, it would not change

the number of model parameters and the time complexity for

training.

Generation of Confident Compound Pairs

To generate the confident compound pairs for BindingDB

database, we eliminated the compound pairs with small affinity

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2021.11.23.469641doi: bioRxiv preprint 

https://github.com/hkmztrk/DeepDTA/tree/master/data
https://doi.org/10.1101/2021.11.23.469641
http://creativecommons.org/licenses/by-nc-nd/4.0/


D
ra
ft

10 Luo et al.

(a) Correlation between & (b) Correlation between & (c) Correlation between &

Pearson r = 0.83 Pearson r = 0.74 Pearson r = 0.67

Fig. 8. Pearson correlations between KI and other metrics.

Table 3. Candidate settings of hyper-parameters for BindingDB.

Hyper-parameter Candidate settings

deviation ε {0.2, 0.5, 1}
nsample for KI 10

nsample for KD {1, 3, 5}
nsample for IC50 {0.2, 0.5, 1}
nsample for EC50 {0.1, 0.2, 0.5}

learning rate {1× 10−3, 5× 10−4 }
batch size {256, 512}

Table 4. Candidate settings of hyper-parameters for Davis and

KIBA.

Hyper-parameter Candidate settings

deviation ε {0.2,0.5,1}
nsample {0.5, 1, 3, 5, 10}

learning rate {1× 10−3, 5× 10−4}
batch size {256, 512}

Fig. 9. Probability of the compound pairs with affinity gaps smaller than

ε∗.

gaps from all the compound pairs. The probability of the

compound pairs with affinity gaps smaller than ε∗ is shown

in Fig. 9. When ε∗ = 0.6, about 50% compound pairs are

eliminated.

Appendix: Detailed Results

Overall Performance

Table 5 shows the detailed results corresponding to Fig.3. The

DNN models trained by BatchDTA framework significantly

outperform those trained by Pointwise framework in most

cases.

Fusing Data Points Measured by Multiple Metrics

Table 6 shows the detailed results corresponding to Fig.5.

All the models achieve significant improvement when fusing

the data points of KD. Two models, DeepDTA and

GraphDTA(GATGCN), gain significant improvement when

fusing the data points of IC50, but no model can get further

improvement when fusing the data points of EC50. These

results indicate that the data points with higher correlations

play a more important role for data argumentation.

Fusing Data Points from Multiple Datasets

Table 7 shows the detailed results corresponding to Fig.6. As

we expected, the CIs of the DNN models trained by BatchDTA

framework significantly surpass those trained by Pointwise

framework in most cases, consistent with the results in the

BindingDB database (refer to Fig. 3). Besides, training on

the fusing data points from Davis and KIBA allows the DNN

models to achieve better performance than training on a single

dataset. Especially when evaluating the models on the KIBA

dataset, three models gain significant improvement. Since the

KIBA dataset contains only two hundred batches, we suspect

that combining four hundred batches from the Davis dataset

enhances the richness of batches.
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Table 5. The detailed results corresponding to Fig. 3

Evaluated dataset KI

Evaluated compound pairs All compound pairs Confident compound pairs

Training framework Pointwise BatchDTA Pointwise BatchDTA

DeepDTA 0.6127 (±0.0053) 0.6252 (±0.0021)∗ 0.6566 (±0.0077) 0.6775 (±0.0028)∗
GraphDTA(GCN) 0.6174 (±0.0063) 0.6347 (±0.0021)∗ 0.6472 (±0.0264) 0.6929 (±0.0029)∗

GraphDTA(GATGCN) 0.6168 (±0.0042) 0.6298 (±0.0036)∗ 0.6600 (±0.0307) 0.6857 (±0.0053)
MolTrans 0.6185 (±0.0019) 0.6559 (±0.0026)∗ 0.6672 (±0.0039) 0.7204 (±0.0047)∗

Evaluated dataset IC50

Evaluated compound pairs All compound pairs Confident compound pairs

Training framework Pointwise BatchDTA Pointwise BatchDTA

DeepDTA 0.5608 (±0.0042) 0.5748 (±0.0009)∗ 0.5868 (±0.0081) 0.5945 (±0.0038)
GraphDTA(GCN) 0.5527 (±0.0164) 0.5787 (±0.0002)∗ 0.5606 (±0.0281) 0.6149 (±0.0004)∗

GraphDTA(GATGCN) 0.5440 (±0.0090) 0.5749 (±0.0016)∗ 0.5436 (±0.0379) 0.6116 (±0.0020)∗
MolTrans 0.5623 (±0.0037) 0.5995 (±0.0043)∗ 0.5902 (±0.0071) 0.6344 (±0.0049)∗

Note: The standard deviations (std) are given in parenthesis. ∗ stands for the corresponding value is significantly

higher than the value on its left (p-value p<0.05) under the T-test with the two-tailed distribution.

Table 6. The detailed results corresponding to Fig. 5

Training framework BatchDTA

Training dataset KI KI&KD KI&KD&IC50 KI&KD&IC50&EC50

DeepDTA 0.6252 (±0.0021) 0.6317 (±0.0021)∗ 0.6368 (±0.0005)∗ 0.6350 (±0.0003)

GraphDTA(GCN) 0.6347 (±0.0021) 0.6507 (±0.0003)∗ 0.6483 (±0.0019) 0.6488 (±0.0002)

GraphDTA(GATGCN) 0.6298 (±0.0036) 0.6346 (±0.0010)∗ 0.6377 (±0.0065)∗ 0.6363 (±0.0006)

MolTrans 0.6559 (±0.0026) 0.6595 (±0.0004)∗ 0.6558 (±0.0016) 0.6550 (±0.0015)

Note: The standard deviations (std) are given in parenthesis. ∗ stands for the corresponding value is significantly

higher than the value on its left (p-value p<0.05) under the T-test with the two-tailed distribution.

Table 7. The detailed results corresponding to Fig. 6

Evaluated dataset Davis

Training framework Pointwise BatchDTA

Training dataset Davis Davis Davis+KIBA

DeepDTA 0.7966 (±0.0074) 0.8028 (±0.0111) 0.8058 (±0.0085)
GraphDTA(GCN) 0.7906 (±0.0057) 0.7995 (±0.0044)∗ 0.8046 (±0.0013)

GraphDTA(GATGCN) 0.7917 (±0.0034) 0.8023 (±0.0009)∗ 0.8038 (±0.0042)
MolTrans 0.8047 (±0.0083) 0.8079 (±0.0037) 0.8082 (±0.0054)

Evaluated dataset KIBA

Training framework Pointwise BatchDTA

Training dataset KIBA KIBA KIBA+Davis

DeepDTA 0.7317 (±0.0130) 0.7516 (±0.0138)∗ 0.7631 (±0.0051)∗
GraphDTA(GCN) 0.7210 (±0.0343) 0.7519 (±0.0052)∗ 0.7568 (±0.0042)∗

GraphDTA(GATGCN) 0.7140 (±0.0210) 0.7520 (±0.0059)∗ 0.7561 (±0.0013)
MolTrans 0.7392 (±0.0066) 0.7588 (±0.0115)∗ 0.7733 (±0.0060)∗

Note: The standard deviations (std) are given in parenthesis. ∗ stands for the

corresponding value is significantly higher than the value on its left (p-value p <0.05)

under the T-test with the two-tailed distribution.

cs.utu.fi/~aatapa/data/DrugTarget/ and https://jcheminf.

biomedcentral.com/articles/10.1186/s13321-017-0209-z. The

processed data is available at GitHub https://github.com/

PaddlePaddle/PaddleHelix/tree/dev/apps/drug_target_interaction/

batchdta to allow replication of the results.
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