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Motivation: Accurate and efficient prediction of the molecu-
lar property is one of the fundamental problems in drug re-
search and development. Recent advancements in representa-
tion learning have been shown to greatly improve the perfor-
mance of molecular property prediction. However, due to lim-
ited labeled data, supervised learning-based molecular repre-
sentation algorithms can only search limited chemical space and
suffer from poor generalizability.
Results: In this work, we proposed a self-supervised learn-
ing method, ATMOL, for molecular representation learning
and properties prediction. We developed a novel molecu-
lar graph augmentation strategy, referred to as attention-wise
graph masking, to generate challenging positive samples for
contrastive learning. We adopted the graph attention net-
work (GAT) as the molecular graph encoder, and leveraged
the learned attention weights as masking guidance to generate
molecular augmentation graphs. By minimization of the con-
trastive loss between original graph and augmented graph, our
model can capture important molecular structure and higher-
order semantic information. Extensive experiments showed that
our attention-wise graph mask contrastive learning exhibited
state-of-the-art performance in a couple of downstream molec-
ular property prediction tasks. We also verified that our model
pretrained on larger scale of unlabeled data improved the gen-
eralization of learned molecular representation. Moreover, vi-
sualization of the attention heatmaps showed meaningful pat-
terns indicative of atoms and atomic groups important to spe-
cific molecular property.
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Introduction
The physicochemical properties of molecules, such as water
solubility, lipophilicity, membrane permeability and degree
of dissociation, are of great importance to the screening of
leading compounds in drug development. As traditional wet-
lab experiments is time-consuming and labor-intensive, it is
impossible to cover hundred millions of candidate molecules
(1). So, many in silico methods have been proposed to predict
molecular properties, and these methods greatly promoted
the efficiency of drug development and return on investment
(2).
Molecular representation is crucial to identify various physic-
ochemical properties of molecules (3–5). The feature
engineering-based chemical fingerprint, in which each bit
represents the absence or presence of a certain biochemical
property or substructure, transforms the structural informa-

tion or properties to a fixed-length vector (6). For example,
PubChem fingerprint (7) and extended connectivity finger-
prints (ECFPs) (8) are frequently used molecular representa-
tions. However, most chemical fingerprints rely on domain
knowledge and contain only task-specific information, which
often lead to limited performance when applied to down-
stream tasks. In recent years, deep learning has achieved re-
markable success in natural language processing (NLP) (9),
computer vision (CV) (10), and graph structure prediction
(11). Many studies have applied deep learning to chemi-
cal modeling (12–17), and drug discovery (10, 18, 19), etc.
However, the performance of fully-supervised deep learn-
ing depends on a large amount of manually labeled sam-
ples (13, 20), such as molecules with known properties in
our case. When applied to small-size dataset, the fully-
supervised model is vulnerable to overfitting and poor gen-
eralizability.

In recent years, self-supervised learning has caught much at-
tention because of its better generalizability achieved in mul-
tiple fields. Self-supervised learning first run pretraining on
large-scale unlabeled dataset to derive latent representation
(embedding) (9, 10, 21), and then transfer to downstream
tasks to obtain better robustness (22, 23). For molecular prop-
erty prediction task, a few self-supervised methods have been
proposed to learn molecular representation (24–29). These
methods fall roughly into two categories: generation-based
methods and contrastive learning-based methods. The gen-
erative methods learned embedding by establishing specific
pretext tasks that encourage the encoder to extract high-order
structural information. For example, MG-BERT learned to
predict the masked atomic (24), by integrating the local mes-
sage passing mechanism of graph neural networks (GNNs)
into the powerful BERT model (25) to enhance representa-
tion learning from molecular graphs. MolGPT (26) trained
a transformer-decoder model for the next token prediction
task using masked self-attention to generate novel molecules.
Contrastive learning encourages augmentations (contrastive
views) of the same molecules to have more similar embed-
dings compared to those generated from different molecules.
For example, MolCLR (27) proposed three different graph
augmentation by masking nodes or edges or subgraphs, and
then maximize the agreement of the augmentations from
same molecule while minimizing the agreement of differ-
ent molecules. CSGNN (28) designed a deep mix-hop graph
neural network to capture higher-order dependencies and in-
troduced a self-supervised contrastive learning framework.
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MolGNet (29) used both paired subgraph recognition (PSD)
and attribute masking (AttrMasking) to achieve node-level
and graph-level pre-training, which was shown to improve
the ability to extract feature from molecular graphs.
The performance of contrastive representation learning of-
ten relies on the quality of augmented views. Current meth-
ods generated contrastive views by randomly masking some
nodes and edges [28]. However, the way of random masking
cannot guide the encoder to detect most important substruc-
ture. In this work, we proposed an attention-wise contrastive
learning framework for molecular representation and prop-
erty prediction. Specifically, we first constructed the molec-
ular graph from SMILES, and used the graph attention net-
work (GAT) as encoder to transform molecular graph into la-
tent representation. Next, we leveraged the attention weights
of nodes and edges learned by GAT to generate augmentation
graph, by masking a percentage of nodes or edges according
to their attention weights. By minimization of the contrastive
loss between original graph and augmented graph, our model
was driven to capture important substructure and thus pro-
duce concise and informative molecular representation. Our
extensive experiments showed that the molecular representa-
tions learned by our method exhibited state-of-the-art perfor-
mance in various downstream molecular property prediction
tasks. Performance comparison verified our method outper-
formed competitive methods. Moreover, we explored the in-
terpretability and found the attention wights revealed impor-
tance patterns of important substructure.

Materials and methods

Data source. We downloaded two molecule sets from ZINC
database (substance channel). One is the in vitro set, which
includes 306,347 unique substances reported or inferred to
be bioactive at 10 µM or better in direct binding assays.
All molecules in the in vitro set were used in our evalua-
tion experiments. The other set was built from ZINC’s now
set, which include all in-stock and agent substances for im-
mediate delivery. This dataset includes 9,814,569 unique
molecules. For molecule, the open-source tool RDkit (30)
was used to transform its SMILES descriptor to molecular
graph, in which a node represents an atom and edge repre-
sent a chemical bond. The molecular graphs were ready as
input of graph attention network.
For performance evaluation on downstream tasks, we chose
7 datasets from MoleculeNet (31), which has established
more than forty molecular property prediction tasks. Table
1 showed the total number of molecules in each dataset, as
well as the number of subtasks. The 7 datasets covered dif-
ferent molecular properties, including membrane permeabil-
ity, toxicity and bioactivity. For each dataset, we used the
scaffold split from DeepChem (32) to create an 80/10/10
train/valid/test subset. Rather than random split, scaffold-
split divided the molecules based on their substructures, mak-
ing the prediction task more challenging yet realistic.

Method.

Table 1. Seven datasets representing prediction tasks of different molecular prop-
erties

DataSet Molecule number Task number
BBBP 2,039 1
BACE 1,513 1
HIV 41,127 1

ClinTox 1,478 2
Tox21 7,831 12
SIDER 1,478 27
MUV 93,087 17

ATMOL framework. Our framework consisted of two stages:
pre-training and transfer learning. As shown in Figure 1,
we first performed contrastive learning on large-scale unla-
beled datasets to obtain molecular representations, and then
applied transfer learning to predict molecular properties. The
molecular graph was taken as input, and mapped to latent
space by GAT encoder. Meanwhile, an attention-wise mask-
ing module closely tracked the GAT encoder is developed to
use the attention scores to produce augmented view (masked
graph) by masking some nodes or edges. We deliberately
designed the masking module to produce augmented graphs
that posed challenge for GAT encoder to discriminate posi-
tive samples from negative samples, so that the graphs de-
rived from same molecule were given similar embeddings but
dissimilar embeddings from other molecules. Consequently,
the contrastive learning model was forced to capture impor-
tant chemical structure and higher-order semantic informa-
tion. We validated the molecule representations obtained by
contrastive learning on a couple of molecular property pre-
diction tasks.

Molecule graph embedding . The graph attention network
(GAT) is a multihead attention-based architecture developed
to learn graph embedding. The GAT architecture was built
from multiple graph attention layers, and each layer applied
linear transformation to node-level representations for calcu-
lation of attention scores. Let hi be the embedding of node
i, W is a learnable attention weight matrix. The attention
score αi,j between node i and its first-order neighbor node j
is calculated as

αij = exp(elu(aT (Whi,Whj)))∑
k∈N(i) exp(elu(aT (Whi,Whk))) (1)

where a is a learnable vector, elu is the exponential linear
unit activation function. The attention score αij was actu-
ally the softmax normalized message between node i and its
neighbors. Once the attention scores were computed, the out-
put feature of node i computed by aggregating its neighbor
features weighted by corresponding attention scores:

hi = σ(aiiWhi+
∑

j∈N(i)
αijWhj) (2)

where σ(.) is the ReLU activation function. In our model, we
used two GAT layers. The multi-head attention mechanism
was applied to the first layer and the number of heads was set
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Fig. 1. Illustrative flowchart of the proposed ATMOL contrastive learning framework for molecular property prediction.

to 10. Given the node-level features, the global max pooling
layer is used to obtain the graph embedding. The dimen-
sion of hidden features is set to 128. The multihead attention
weight matrices in the first graph layer were aggregated into
an integrative attention matrix in the second layer, which was
used in the attention-wise mask module to produced augmen-
tation graph.

Attention-wise mask for graph augmentation. To produce
high-quality augmented graph, we masked a percentage of
nodes (edges) of the input molecule graph according to the
attention scores learned by GAT encoder. When a node
(edge) was masked, its embedding was set to 0 in the graph
convolutional operation. If an edge was masked, the mes-
sage passing along this edge was blocked. Formally, we de-
fine the masking rate r, representing the percent of nodes
(edges) of the input graph would be masked. We iteratively
masked nodes (edges) until the percentage of masked nodes
(or edges) reached the predefined masking rate r. To explore
the effect of masking different edges and nodes, we tried dif-
ferent masking strategies:

1. Max-attention masking: r% nodes (edges) with the
largest attention scores were masked. This masking
produced an augmented view with greatest difference
to the current view of the input molecule graph.

2. Min-attention masking: r% nodes (edges) with the
smallest attention scores were masked. This masking
produced an augmented graph with least difference to
the current view of the input molecule graph.

3. Random masking: r% nodes (edges) was randomly se-
lected from the input graph and masked, neglecting the
learned attention scores. This masking strategy was
commonly used in previous studies, we thereby in-
cluded it for comparison.

4. Roulette masking: the probability of each node or
edge to be masked was proportional to its attention

score. The attention weight matrix W was normalized
by softmax function to yield a probability distribution.
The possibility of an node (or edge) being masked is
proportional to its probability.

Contrastive learning. The GAT encoder transformed the in-
put molecule graph and its augmented graph into embed-
ding hi and h′

i, which were then mapped to zi and z′
i by a

nonlinear projector. Next, the similarity sim(zi,z′
i) between

two projected views was computed. We adopted the normal-
ized temperature-scaled cross entropy (NT-Xent) as the con-
trastive loss function:

L= log exp(sim(zi,z′
i)/τ)∑2N

k=11[k 6=i] exp(sim(zi,z′
i)/τ)

(3)

where 1[k 6=i] ∈ {0,1} is an indicator function evaluating to 1
iff k 6= i, τ denotes a temperature parameter;N is the number
of samples in a mini-batch. In our study, the cosine distance
was used to evaluate the similarity of two views came from
one molecule.
The number and diversity of negative samples played crucial
role in self-supervised representation learning, and previous
studies have confirmed that a large number of negative sam-
ples could help improving performance. So, apart from the
negative samples in a minibatch, we supplemented the aug-
mented molecule graphs generated by attention-wise mask-
ing to the negative sample pool, so that the number of neg-
ative samples was greatly extended. Of more importance,
the augmented molecule graph enriched the diversity of neg-
ative samples. The advantages our attention-wise masking
for graph augmentation were reflected in two aspects. First,
attention-wise masking generated challenging positive sam-
ple pairs, which increased the difficulty of contrastive learn-
ing and thereby prevented to learn collapsed latent represen-
tation. Also, it enriched the diversity of negative samples that
were helpful for our model to learn molecular representations
with good generalization.
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Pretraining and transfer learning. In the pretraining stage, the
contrastive loss is minimized using the batch gradient descent
algorithm by Adam optimizer. The learning rate is set to 1e-
4, the batch-size is set to 128, and the number of pre-training
epochs is set to 20 epochs.
During the transfer learning for molecular property predic-
tion, we appended two fully-connected layers directly fol-
lowed the GAT encoder. We froze the weights of GAT and
tuned only the two fully-connected layers in the fine-tuning
stage. The cross-entropy loss was applied for all classifica-
tion task, and the learning rate is set to 1e-7. Adam optimizer
was used and batch-size was set to 100. The performance of
molecular property prediction was evaluated by ROC-AUC.
The early stopping and dropout strategies were applied to
prevent overfitting.
Each downstream dataset used for molecular property predic-
tion was split into training, validation and test datasets in a
ratio of 8:1:1. The transfer model was trained on the training
set and validated on the validation set. To avoid random bias,
the process was repeated for five times and each time evalu-
ated on the test set. The mean AUC values were reported as
the final performance.

Results
Contrastive learning boosted performance. We first ver-
ified whether contrastive learning-based pre-training im-
proved the performance on downstream tasks. For this pur-
pose, we compared our method to the model without pre-
training on different molecular property prediction tasks. For
each task, we trained a fully-supervised model, whose archi-
tecture consisted of a GAT encoder for molecular graph em-
bedding and two fully-connected layers for molecular prop-
erty prediction. To systematically evaluating the effective-
ness of pre-training, we also took into account different
molecular augmented graphs produced by masking nodes,
edges or both nodes and edges (masking ratio r always was
25%). Table 2 showed the ROC-AUC values of these models
on seven benchmark tasks. It can be seen that pre-training
significantly boosted the performance on various molecular
property prediction tasks.
Meanwhile, we found that the molecular graph augmented by
masking both nodes and edges achieved best performance,
compared to those augmented graphs by masking nodes or
edges alone. The results showed that contrastive learning-
based pre-training obtained informative molecular represen-
tations, and thereby greatly improved the performance of
downstream tasks.

Masking strategy affected feature extraction. To explore
the influence of different graph augmentations on the feature
extraction, we compared the performance derived from four
masking strategies on seven downstream tasks. As shown in
Figure 2, although the prediction performance varied on dif-
ferent molecular properties, the max-weight masking dom-
inately achieved the best performance compared to other
masking strategies. The random masking had the least per-
formance. Seen by the GAT encoder, masking the nodes

and edges with high attention scores produced an augmented
graph that differed largely from the positive counterpart sam-
ple. So, we drew a conclusion that max-weight masking strat-
egy posed a challenge for the contrastive learning to discrim-
inate a pair of positive samples from a pool of negative sam-
ples came from other molecules. This challenge encouraged
the model to learn informative molecular representations.

BBBP BACE HIV ClinTox Tox21 SIDER MUV
ATMOL(max) 94.5 89.2 83.2 98.1 81.9 82.6 80.3
ATMOL(min) 93.7 89.1 82.1 96.9 81.9 82.2 74.6
(random) 92.1 86.3 81.6 96.3 81.5 81.8 74.4
(roulette) 92.1 88.7 82.1 97.2 81.4 81.9 78.8

ATMOL(max) 0.5 0.2 0.5 0.2 0.1 0.3 0.1

ATMOL(min) 1 1.2 1.3 0.3 0.4 0.1 2.6

(random) 1 2.2 1.6 0.1 0.3 0.4 0.8

(roulette) 0.5 1.4 0.8 1.4 0.5 0.2 1.1

Fig. 2. Performance comparison of four masking strategies for graph augmentation
on seven molecular property prediction tasks

Influence of masking rate . We went further to evaluate the
impact of masking rate, namely, the percentage of masked
nodes (edges). As max-weight masking has been shown to
gain best performance, we evaluated its performance when
different percentage edges were masked. As shown in Figure
3, the masking rate increased from 5% to 75%, the perfor-
mance on seven downstream tasks rose up firstly, and reached
the highest ROC-AUC values when masking rate was 25%.
Thereafter, the performance decreased rapidly. Across all
seven tasks, we observed similar tendency of performance.
This result implied that too low masking rate did not produce
effective augmented molecular graphs, while too high mask-
ing rate broke the essential chemical structure so that learned
molecular representation was collapsed.

BBBP BACE HIV ClinTox Tox21 SIDER MUV
0.05 91.17 80.95 71.72 96.05 78.21 81.61 76.27
0.15 91.7 80.58 69.04 96.2 80.67 82.08 79.59
0.25 94.5 89.2 83.2 98.1 81.9 82.6 80.3
0.5 81.12 73.59 70.93 91.3 73.4 78.79 74.52

0.75 73.86 71.2 65.29 86.08 70.57 77.41 63.9

Fig. 3. Performance achieved by different masking rate on seven downstream tasks

Large-scale dataset improve representation learning.
We were interested in whether larger scale of unlabeled data
would improve the representation learning or not. So, apart
from the in vitro set, we selected 3,000,000 molecules from
the ZINC now set as another dataset, which was roughly ten-
fold of the in vitro set. For comparison, we referred them
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Table 2. ROC-AUC (%) values of pretrained models and fully-supervised model on seven molecular property prediction tasks

Model BBBP BACE HIV ClinTox Tox21 SIDER MUV
Fully-supervised 85.5±1.4 76.2±0.1 72.6±0.1 92.6±0.2 76.2±0.1 80.5±0.2 69.8±0.1
ATMOL (mask nodes) 91.1±0.4 84.3±0.6 75.1±0.1 97.1±0.1 79.1±0.2 81.4±0.3 79.1±0.1
ATMOL (mask edges) 90.3±0.8 82.5±0.4 80.7±0.3 96.5±0.3 76.2+0.1 80.2+0.1 79.0+0.4
ATMOL (mask nodes and edges) 92.1±0.1 87.3±0.3 81.2±0.5 97.5±0.3 77.1±0.3 81.9±0.2 78.8±0.1

Table 3. Performance comparison between small vs. large unlabeled datasets on seven molecular property prediction tasks

Dataset Masking strategy BBBP BACE HIV ClinTox Tox21 SIDER MUV

in vitro
(small)

Max-weight 92.1±0.5 87.3±0.3 81.2±0.5 97.5±0.3 79.1±0.2 81.9±0.3 79.1±0.1
Min-weight 89.4±0.8 82.3±1.2 72.1±1.3 96.9±0.5 77.1±0.4 81.2±0.1 77.6±1.6

random 83.5±0.1 78.1±0.2 68.9±0.6 96.6±0.3 76.1±0.2 80.8±0.4 76.6±0.2
roulette 81.5±0.5 78.5±0.2 69.6±0.2 96.2 ±0.1 75.5±0.2 80.5±0.2 76.5±0.1

now subset
(large)

Max-weight 94.5±0.5 89.2±0.2 83.2±0.5 98.1±0.5 82.5+0.4 82.6±0.3 80.3±0.1
Min-weight 93.7±1.0 89.1±1.2 82.1±1.3 96.9±0.5 81.9±0.4 82.2±0.1 74.6±2.6

random 92.1±1.0 86.3±2.2 81.6±1.6 96.3±0.3 81.5±0.3 81.8±0.4 74.4±0.8
roulette 91.9±0.5 88.7±1.4 82.1±0.8 97.2 ±0.1 81.4±0.5 81.9±0.2 78.8±1.1

to as small and large set, respectively. We conducted repre-
sentation learning on these two datasets separately, and then
compared the performance on downstream tasks. As shown
in Table 3, on the large dataset our model achieved higher
performance over all downstream tasks. We concluded that
self-supervised learning on large-scale dataset yielded molec-
ular representations with better generalizablity.

Performance comparison to other methods. To verify
the superior performance of our method, we compared it to
five other competitive methods. All these methods used self-
supervised learning for molecular feature extraction. We con-
cisely introduced the methods as below:

• HU. et.al (33) pre-trained an expressive GNN at the
level of individual nodes as well as entire graphs so as
to learn useful local and global representations.

• N-Gram (34) run node embedding and then con-
structed a compact representation for the graph by as-
sembling the node embeddings in short walks in the
graph.

• GROVER (35) integrated GNN into Transformer with
the context prediction task and the functional motif
prediction task.

• MolCLR (27) proposed a graph contrast learning using
graph neural network (GNNs), which generated con-
trastive pairs by randomly removal of nodes, edges or
subgraphs.

• MGSSL (36) proposed topic-based graph self-
supervised learning and a new GNN self-supervised
topic generation framework.

Table 4 showed the ROC-AUC values of our method and five
competitive methods on seven classification tasks. It was
found that our method petrained on the in vitro dataset al-
ready outperformed five other methods on all tasks except

MUV. Especially, on the SIDER prediction task, our method
boosted the performance by 14% compared to the second best
method MolCLR. Moreover, when pretrained on the large-
scale dataset, our method achieved greater performance su-
periority. For example, on ClinTox and Tox21, our method
outperformed all other methods by nearly 5%.

Exploration of model interpretability.

Spatial localization of molecular representations. Spa-
tial distribution of molecular representations was helpful to
verify the effectiveness of the proposed method. We visual-
ized the molecular representations before and after pretrain-
ing using UMAP tool (37), which is a manifold learning al-
gorithm for dimension reduction with good preservation of
data global structure. Figure 4 showed the 2D embeddings of
molecules in BBBP and SIDER sets. The initial molecular
representations spatially distributed in confusion, while after
pretraining these molecules belonging to one same class gath-
ered together and separated from other classes clearly. The
observation illustrated the our method can effectively detect
the physicochemical properties from chemical structure, so
that the molecules with similar physicochemical properties
gained similar latent representations.

Attention weight revealed important chemical sub-
structure. In the molecular representation learning stage,
we tried to use graph attention network to identify chemical
components that were important to specific prediction tasks.
To investigate how the attention mechanism affected the
focus of representation learning, we unfreeze the attention
parameters and fine-tuned them during transfer learning.
For intuitive interpretation, we visualized the attention
weights in the molecular graph. From the BBBP dataset
(38) regarding to membrane permeability, we randomly
selected a molecule as an exemplar, whose SMILES
is C[S](=O)(=O)c1ccc(cc1)[C@@H](O)[C@@H](CO)
NC(=O)C(Cl)Cl. We computed the Pearson correlation
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Table 4. ROC-AUC (%)of our method and five competitive methods on seven downstream tasks

DataSet BBBP BACE HIV ClinTox Tox21 SIDER MUV
HU. et.al[39] 70.8±1.5 85.9±0.8 80.2±0.9 78.9±2.4 78.7±0.4 65.2±0.9 81.4±2.0
N-Gram[40] 91.2±3.0 87.6±3.5 83.0±1.3 85.5±3.7 76.9±2.7 63.2±0.5 81.6±1.9
Grover[41] 68.0±1.5 79.5±1.1 77.8±1.4 76.9±1.9 76.3±0.6 60.7±0.5 75.8±1.7
MolCLR[42] 73.6±0.5 89.0±0.3 80.6±1.1 93.2±1.7 79.8±0.7 68.0±1.1 88.6±2.2
MGSSL[43] 70.5±1.1 79.7±0.8 79.5±1.1 80.7±2.1 76.5±0.3 61.8±0.8 78.7±1.5
ATMOL(small) 92.1±0.5 87.3±0.3 81.2±0.5 97.5±0.3 79.1±0.2 81.9±0.3 79.1±0.1
ATMOL(large) 94.5±0.5 89.2±0.2 83.2±0.5 98.1±0.5 82.5+0.4 82.6±0.3 80.3±0.1

(a) Before training (b) After training

(c) Before training (d) After training

Fig. 4. Visualization of spatial localization of molecular representations in BBBP
and SIDER dataset. The left column showed the initial embeddings and the right
column showed petrained embeddings.

coefficients of attention weights for each pair of atoms,
and visualized the correlation matrix as a heatmap. As
shown in Figure 5a, the heatmap displayed several highly
correlated atomic groups, indicating that they functioned
together to affect specific molecular properties. A further
inspect can find that the benzene ring in this molecule
may played important roles in determining the membrane
permeability. Similarly, we randomly select a molecule
FC1(F)COC(=NC1(C)c1cc(NC(=O)c2nn(cc2)C)ccc1F)N
from the BACE dataset (39), its heatmap also illustrated a
few significant atomic groups, as shown in Figure 5b.
To further explore the influence of individual atoms on spe-
cific molecular properties, we visualized atomic-level atten-
tion weights. Keeping in mind the BBBP task focused on
the membrane permeability, we found that two Cl atoms in
the exemplar molecule had high attention weight, as shown
in Figure 5c. Because the Cl atom has a strong electron at-
traction, we assume it affects the polarity of the molecule to
a large extent, thereby affecting the membrane permeability.
Also, since the hydroxyl groups promotes hydrophilicity, and
we accordingly found that the hydroxyl groups were given
relatively high attention weights (40).
Similarly, another exemplar molecule selected from BACE

dataset is a human beta-secretase 1 (BACE-1) inhibitor. Ac-
cording to precious study by Mureddu et al (41), the hetero-
cytosine aromatic family had the inhibitory effect to BACE-
1. As shown in Figure 5d, the isocytosine component of this
molecule has received more attention accordingly. The vi-
sualization and interpretability exploration illustrate how our
model paid attention to relevant features from the perspective
of molecular property prediction tasks.

Discussion and Conclusion
The diversity of negative samples has been shown to greatly
affect representation learning. There are two main methods
to construct negative samples for contrastive learning. Some
methods maintained a negative sample queue (22) and itera-
tively updated it in a FIFO manner, while other methods used
only the samples in the current mini-batch as negative sam-
ples (23). In our study, beyond the samples in minibatch as
negative samples, we added the augmented molecule graphs
generated by attention-wise masking strategy to the negative
sample queue, so that the negative samples was greatly ex-
tended and diversified.
Our attention-wise mask of molecular graph generated differ-
ent contrastive views. By comparison, we found that the con-
trastive views generated by simultaneously masking edges
and nodes achieved best performance in almost all down-
stream tasks, except for Tox21 and MUV. This was consistent
with the conclusions of MolCLR[28].
Moreover, we found that max-weight masking, i.e. mask-
ing the edges or nodes with large attention weights, achieved
best performance. Intuitively, max-weight masking is simi-
lar to the idea of adversarial learning, by which each time an
augmented molecular graph was generated with the largest
difference to the positive couterpart view, from the perspec-
tive of contrastive loss. Moreover, the graph augmentation
process dynamically tracked the change of attention weights,
so that our model was forced to inspect different components
of the molecular graph and finally reach steady state. There-
fore, we concluded that the challenging contrastive views
were helpful to learn important semantic structure.
In summary, our self-supervised representation learning on
large-scale unlabeled molecules significantly improved the
performance of various molecular property prediction tasks.
This a task-agnostic pretraining and thus yielded the molecu-
lar representation with desirable expressiveness and general-
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(a) (b)

(d)(c)

Fig. 5. Visualization of correlation heatmaps of attention weights and molecule structure with atoms colored by attention weights. (a) and (c) showed the exemplar molecule
selected from BBBP set, (b) and (d) showed the exemplar molecule selected from BACE set.

izability.
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